JP6472575B2 - 正則化ゼロフォーシングプリコーダーを構成するためのパラメーターを決定する方法 - Google Patents
正則化ゼロフォーシングプリコーダーを構成するためのパラメーターを決定する方法 Download PDFInfo
- Publication number
- JP6472575B2 JP6472575B2 JP2018514925A JP2018514925A JP6472575B2 JP 6472575 B2 JP6472575 B2 JP 6472575B2 JP 2018514925 A JP2018514925 A JP 2018514925A JP 2018514925 A JP2018514925 A JP 2018514925A JP 6472575 B2 JP6472575 B2 JP 6472575B2
- Authority
- JP
- Japan
- Prior art keywords
- transmitter
- transmitters
- receiver
- here
- receivers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004891 communication Methods 0.000 claims description 90
- 230000005540 biological transmission Effects 0.000 claims description 34
- 239000013598 vector Substances 0.000 claims description 34
- 239000011159 matrix material Substances 0.000 claims description 33
- 230000007774 longterm Effects 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 27
- 238000005457 optimization Methods 0.000 claims description 23
- 238000004590 computer program Methods 0.000 claims description 5
- 238000010606 normalization Methods 0.000 claims description 4
- 230000006870 function Effects 0.000 description 13
- 238000013139 quantization Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/022—Site diversity; Macro-diversity
- H04B7/024—Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
- H04B7/046—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
- H04B7/0465—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking power constraints at power amplifier or emission constraints, e.g. constant modulus, into account
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0626—Channel coefficients, e.g. channel state information [CSI]
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Radio Transmission System (AREA)
- Mobile Radio Communication Systems (AREA)
Description
本発明は、包括的には、無線通信システムにおいて複数の送信機から複数の受信機にデータを送信するために適用される正則化ゼロフォーシングプリコーダー(regularized zero-forcing precoder:正規化ゼロフォーシングプリコーダー)のパラメーターを決定することに関する。
通信システムは、この通信システムの環境に関するこの通信システムの性能を改善するために協調に依拠することがある。1つの例によれば、そのような協調は、通常は基地局又はeNodeB等のアクセスポイントである送信機ノードデバイスが、UE(ユーザ機器)等の受信機デバイスに向けた仮想MIMO(多入力多出力)チャネルを介した通信の全体のロバスト性を改善するために協調する仮想MIMOチャネルベースの通信ネットワークの状況で見ることができる。送信機ノードデバイスが協調することを可能にするために、多くの場合にプリコーディングが実施される。
ゼロフォーシング(又はヌルステアリング)プリコーディングは、送信チャネルが送信機側で完全に既知であるときにマルチユーザー干渉信号を無線通信においてヌル化することができる空間信号処理方法である。正則化ゼロフォーシングプリコーディングは、送信機における背景雑音、未知のユーザ干渉又は不完全なチャネル知識の影響を考慮するように拡張された処理である。限られた、送信機におけるチャネル状態情報(以下、CSIT(Channel State Information at Transmitter)とする)を用いて、正則化ゼロフォーシングプリコーディングの性能は、CSITの不正確性が高まるにつれ降下する。これは、正則化ゼロフォーシングプリコーディングが、通常、CSITの不正確性を可能な限り回避し、これにより、残りのマルチユーザー干渉に起因した大幅なスループット損失を回避するために、大量のCSI(チャネル状態情報)交換を必要とすることを意味する。さらに、正則化ゼロフォーシングプリコーディングを送信チャネルの変動にリアルタイムで適合させることを可能にするために、正則化ゼロフォーシングプリコーディングが分散形式で構成される場合、送信機ノードデバイス間でかなり高速のCSI交換が必要とされ、正則化ゼロフォーシングプリコーディングが集中型方式で構成される場合、送信機ノードデバイスから中央処理ユニットへのかなり高速なCSI交換が必要とされる。これは、無線通信システム設計において大きな制約である。
したがって、従来技術の前述の欠点を克服することが望ましい。より詳細には、そのような高速CSI交換に依拠しない正則化ゼロフォーシングプリコーディングを実施することを可能にする解決策を提供することが望ましい。
そのために、本発明は、無線通信システムにおいて、多入力多出力(MIMO)送信チャネルを介して、複数のn個の送信機から複数のK個の受信機にデータを送信するために適用されることを目的とした正則化ゼロフォーシングプリコーダーを構成するためのパラメーターを決定する方法であって、各送信機は、MTX本の送信アンテナを有し、各受信機は、単一の受信アンテナを有し、K≦nMTX=Mであり、方法は、第1のフェーズを含み、第1のフェーズは、
n個の送信機のうちの任意のかつ全てのj番目の送信機、及びK個の受信機のうちの任意のかつ全てのk番目の受信機について、MIMO送信チャネルの観測に関する以下の長期統計、すなわち、
上記j番目の送信機から上記k番目の受信機へのMIMOチャネルの平均電力と、上記j番目の送信機において、このj番目の送信機から上記k番目の受信機へのMIMOチャネルを推定するときに得られる、送信機におけるチャネル状態情報(CSIT)における推定雑音の平均電力との間の比を表す
と、
上記複数の送信機から上記k番目の受信機に向けたMIMOチャネルの共分散行列であるθkと、
と
との間の相関を表す
であって、
は、j番目の送信機において得られる、このj番目の送信機と上記k番目の受信機との間のMIMOチャネルのCSITにおける白色推定雑音であり、
は、j’番目の送信機において得られる、このj’番目の送信機と上記k番目の受信機との間のMIMOチャネルのCSITにおける白色推定雑音である、
と、
を得ることを含む、方法に関する。
第1のフェーズは、以下のことを更に含む。すなわち、各受信機の観点から信号対雑音比漸近表現
の関数として以下のように最適化問題を解くことによって、n個の送信機のうちの任意のかつ全てのj番目の送信機について、電力制約Pを満たすことを目的として、電力スケーリング係数μjを収集する電力スケーリング係数ベクトルμ*を得ることであって、電力スケーリング係数ベクトルμ*は、
となる、
であり、ここで、
は、以下のように定義される行列であり、
ここで、表記IZは、サイズZの恒等行列又は部分行列を意味し、表記OZ×Wは、サイズZ×Wのヌル部分行列を意味し、
K個の受信機のうちの任意のk番目の受信機の観点からの信号対雑音比の漸近表現
は、以下のように定義され、
ここで、
は、以下のように表され、
ここで、
は、以下のように定義される関数であり、
ここで、
であり、
ここで、
であり、
ここで、αjは、正則化ゼロフォーシングプリコーダーTの正則化係数(regularization coefficient)であり、
ここで、γj,j’,k(ただし、k=1,...,K)は、
となる、ベクトル
のk番目のエントリであり、
は、各インデックスl、tにおいて以下の式に等しいエントリを有する行列であり、
ここで、
は、各インデックスlにおいて
に等しいエントリを有するベクトルであり、
ここで、Φj,kは、以下のように定義される。
n個の送信機のうちの任意のかつ全てのj番目の送信機、及びK個の受信機のうちの任意のかつ全てのk番目の受信機について、MIMO送信チャネルの観測に関する以下の長期統計、すなわち、
上記j番目の送信機から上記k番目の受信機へのMIMOチャネルの平均電力と、上記j番目の送信機において、このj番目の送信機から上記k番目の受信機へのMIMOチャネルを推定するときに得られる、送信機におけるチャネル状態情報(CSIT)における推定雑音の平均電力との間の比を表す
上記複数の送信機から上記k番目の受信機に向けたMIMOチャネルの共分散行列であるθkと、
を得ることを含む、方法に関する。
第1のフェーズは、以下のことを更に含む。すなわち、各受信機の観点から信号対雑音比漸近表現
K個の受信機のうちの任意のk番目の受信機の観点からの信号対雑音比の漸近表現
ここで、
ここで、αjは、正則化ゼロフォーシングプリコーダーTの正則化係数(regularization coefficient)であり、
ここで、γj,j’,k(ただし、k=1,...,K)は、
ここで、Φj,kは、以下のように定義される。
さらに、該方法は、上記複数のn個の送信機のうちの任意のかつ全ての送信機によって独立して行われる第2のフェーズを更に含む。第2のフェーズは、上記複数のn個の送信機のうちの各j番目の送信機の観点からMIMO送信チャネルの推定値
を得ることと、
正則化ゼロフォーシングプリコーダーTを以下のように構成することであって、
ここで、
は、上記j番目の送信機によって適用されなくてはならない正則化ゼロフォーシングプリコーダーTのパラメーターを表し、
ここで、Ψ(j)は、以下のように定義される電力正規化スカラーであり、
ここで、μjは、第1のフェーズの実行の結果として得られることと、
を含む。
このため、代わりに長期統計のみが交換されるので、そのような高速CSI交換に依拠する必要なく、特にマッシブMIMO手法の範囲において良好な性能を有する正則化ゼロフォーシングプリコーディングが実施される。
正則化ゼロフォーシングプリコーダーTを以下のように構成することであって、
ここで、Ψ(j)は、以下のように定義される電力正規化スカラーであり、
を含む。
このため、代わりに長期統計のみが交換されるので、そのような高速CSI交換に依拠する必要なく、特にマッシブMIMO手法の範囲において良好な性能を有する正則化ゼロフォーシングプリコーディングが実施される。
特定の特徴によれば、最適化問題を、各受信機の観点から信号対雑音比漸近表現
の関数として解くことは、
となる、
を解くことにあり、
ここで、Akは、長期的及び漸近的視点からK個の受信機のうちのk番目の受信機に宛てられたシンボルが搬送されるチャネルを表し、Bkは、上記k番目の受信機を除く全ての受信機に宛てられたシンボルが搬送され、長期的及び漸近的視点から上記k番目の受信機に宛てられたシンボルとの干渉を生成するチャネルを表し、Cは、電力制約を表し、
Akは、各インデックスj、j’において以下の式に等しいエントリを有する定数行列であり、
Bkは、各インデックスj、j’において以下の式に等しいエントリを有する定数行列であり、
Re{X}は、複素入力Xの実数部分を表し、diag()は、Z個のエントリが上記関数に入力されるときにサイズZの対角行列を形成する関数である。このため、最適化問題を、各受信機の観点から信号対雑音比漸近表現
の関数として解くことが簡略化される。
ここで、Akは、長期的及び漸近的視点からK個の受信機のうちのk番目の受信機に宛てられたシンボルが搬送されるチャネルを表し、Bkは、上記k番目の受信機を除く全ての受信機に宛てられたシンボルが搬送され、長期的及び漸近的視点から上記k番目の受信機に宛てられたシンボルとの干渉を生成するチャネルを表し、Cは、電力制約を表し、
Akは、各インデックスj、j’において以下の式に等しいエントリを有する定数行列であり、
特定の特徴によれば、正則化係数αjは、
となる、
を解くことによって、電力スケーリング係数μjと共に共同で最適化され、
ここで、α*は、n個の送信機間の任意のかつ全てのj番目の送信機について正則化係数αjを収集する正則化係数ベクトルである。このため、n個の送信機のうちの任意のかつ全てのj番目の送信機について共同で最適化された正則化係数αj及び電力スケーリング係数μjに依拠することによって、有効な信号対雑音比に関して、正則化ゼロフォーシングプリコーダーTの構成の性能が高まる。
ここで、α*は、n個の送信機間の任意のかつ全てのj番目の送信機について正則化係数αjを収集する正則化係数ベクトルである。このため、n個の送信機のうちの任意のかつ全てのj番目の送信機について共同で最適化された正則化係数αj及び電力スケーリング係数μjに依拠することによって、有効な信号対雑音比に関して、正則化ゼロフォーシングプリコーダーTの構成の性能が高まる。
特定の特徴によれば、第1のフェーズは、上記複数の送信機の任意のかつ全ての送信機によって分散形式で実施され、上記複数の送信機は、上記長期統計を共有する。このため、本方法は、複数の送信機から複数の受信機への協調送信を行うための無線通信システムの単純なアーキテクチャに依拠することによって実施することができる。
特定の特徴によれば、サーバーは、上記複数の送信機から上記長期統計を得て、サーバーは、上記複数の送信機の任意のかつ全ての送信機の代わりに上記第1のフェーズを実施する。このため、主な処理リソースは、サーバーにおいて集中化され、これにより、無線通信システムにおける長期統計の交換が更に制限される。
本発明は、上述した方法を行うように構成された無線通信システムにも関する。
本発明は、通信ネットワークからダウンロードすることができ及び/又はコンピューター若しくは処理デバイスが読み出すことができる媒体上に記憶することができるコンピュータープログラムにも関する。このコンピュータープログラムは、当該プログラムがプロセッサによって実行されると、前述の方法の実施をもたらす命令を含む。本発明は、記憶された情報が情報ストレージ媒体から読み出され、プロセッサによって実行されると、本発明の実施形態の任意の1つにおいて、前述の方法の実施をもたらす一組の命令を含むコンピュータープログラムを記憶する上記情報ストレージ媒体にも関する。
本発明の特徴は、例示の実施形態の以下の説明を読むことによってより明らかになる。この説明は、添付図面に関して作成されたものである。
無線通信システムにおいて、より詳細には、マッシブMIMO手法の範囲において、MIMO送信チャネルを介して複数の送信機から複数の受信機にデータを送信するために適用されることを目的とした正則化ゼロフォーシングプリコーダーを構成するためのパラメーターを決定するために、第1のフェーズは、MIMO送信チャネルの観測に関する長期統計を得ることと、最適化問題を、各受信機の観点からの信号対雑音比漸近表現の関数として解くことによって、電力制約Pを満たすことを目的とした電力スケーリング係数を得ることとを含む。第1のフェーズは、以下で図3〜図5に関して詳述される。第1のフェーズは、電力スケーリング係数と、潜在的には、共同で正則化係数とを含む正則化ゼロフォーシングプリコーダーの長期パラメーターを決定することを目的とする。次に、第2のフェーズは、MIMO送信チャネルの推定値を得ることと、第1のフェーズで決定された電力スケーリング係数、及びMIMO送信チャネルの得られた推定値を用いて、正則化ゼロフォーシングプリコーダーを構成することとを含む。第2のフェーズは、図6を参照して以下で詳述される。第2のフェーズは、長期パラメーター及び有効MIMO送信チャネルの推定値に基づいて、正則化ゼロフォーシングプリコーダーを短期的に精緻化することを目的とする。
図1Aは、本発明を実施することができる無線通信システム100の第1のアーキテクチャを概略的に表す。
無線通信システム100は、複数の送信機を備え、そのうちの2つ120a、120bが図1Aに表されている。無線通信システム100は、複数の受信機を更に備え、そのうちの2つ110a、110bが図1Aに表されている。例えば、送信機120a、120bは、無線電気通信ネットワークのアクセスポイント又は基地局であり、受信機110a、110bは、これらのアクセスポイント又は基地局を介して無線電気通信ネットワークへのアクセスを有するモバイル端末である。送信機120a、120bは、複数の送信機120a、120bから無線リンク111a、111b、111c、111dを介して複数の受信機110a、110bに向けた送信を行う際の性能を改善するために互いに協調する。無線リンク111aは、送信機120aから受信機110aへの送信チャネルを表し、無線リンク111bは、送信機120aから受信機110bへの送信チャネルを表し、無線リンク111cは、送信機120bから受信機110aへの送信チャネルを表し、無線リンク111dは、送信機120bから受信機110bへの送信チャネルを表す。送信機120a、120bは、送信チャネル観測に関する長期統計を交換することを可能にするために、図1Aにおいてリンク121によって示されるように相互接続される。リンク121は有線又は無線とすることができる。
協調は、上記送信を行う際に、送信機120a、120bに正則化ゼロフォーシングプリコーダーTを共同で適用させることによって達成される。正則化ゼロフォーシングプリコーダーTのパラメーターは、図1Aに示す無線通信システムにおいて分散形式で決定され、それによって、各送信機は、上記送信の範囲において上記送信機によって適用されなくてはならない正則化ゼロフォーシングプリコーダーTのパラメーターを決定する。
ここで、使用される送信機120a、120bの数は、nで表され、各送信機は、MTX本の送信アンテナを有し、使用される受信機110a、110bの数は、Kで表され、各受信機は、単一の受信アンテナを有する。複数の送信機120a、120bから複数の受信機110a、110bに向けた送信を検討すると、このとき、無線通信システム100における送信アンテナの総数Mは、nMTXに等しく、無線通信システム100における受信アンテナの総数は、Kに等しいことになる。無線通信システム100における受信アンテナの総数に対する送信アンテナの総数の比βは、以下のように定義される。
受信機110a、110bは、n個の送信機のうちの複数の送信機から信号を同時に受信するように構成される。このため、n個の送信機とK個の受信機との間で大域MIMOチャネル
が作成される。ここで、hkは、n個の送信機から、K個の受信機のうちのk番目の受信機(1≦k≦K)へのMIMOチャネルを表す。
K個の受信機のうちのk番目の受信機に宛てられるシンボルベクトルskを検討し、所与の時点においてn個の送信機によってK個の受信機に送信される全てのデータを含むスタックベクトルs=[s1,s2,...,sK]Tをsと表す。ここで、ATは、ベクトル又は行列Aの転置を表す。
スタックベクトルsをK個の受信機に協調方式で送信するために、n個の送信機が、正則化ゼロフォーシングプリコーダーTを共同で適用する。これは、マルチユーザー信号xが大域MIMOチャネルを介して以下のように送信されることを暗に意味する。
ここで、T=[t1,t2,...,tK]Tであり、ここで、tkは、K個の受信機のうちのk番目の受信機(1≦k≦K)に対処するためにプリコーダーTによって示されるビームフォーミングベクトルを表す。
K個の受信機によって全体として受信される全体信号y=[y1,y2,...,yK]Tを検討すると、以下の関係を表すことができる。
これは、以下のように表すこともできる。
ここで、ykは、ベクトルskがK個の受信機のうちのk番目の受信機(1≦k≦K)に宛てられたときにこのk番目の受信機によって効果的に受信される信号を表し、ここで、n’=[n’1,n’2,...,n’K]Tは、送信ベクトルxと独立した付加雑音を表し、n’k(1≦k≦K)は、MIMOチャネルhkを介したベクトルxkの送信中に上記k番目の受信機が受ける雑音を表す。雑音nは、独立同一分布のエントリn’kを有することに留意しなくてはならない。
正則化ゼロフォーシングプリコーダーTのパラメーターの最適化は、図3〜図6に関して以下で詳述される。
図1Bは、本発明を実施することができる無線通信システム100の第2のアーキテクチャを概略的に表す。図1Bに示されるアーキテクチャは、図1Bにおいて、無線通信システム100がサーバー130を更に備えるという点で、図1Aに示されるアーキテクチャと異なる。送信機120a、120bは、図1Aに示すように相互接続されるのではなく、図1Bにおけるそれぞれのリンク122a、122bによって示されるように接続され、それによって、送信チャネル観測に関する長期統計をサーバー130に送信し、サーバー130から、送信機120a、120bによってそれぞれ適用される正則化ゼロフォーシングプリコーダーTのパラメーターを受信することができる。リンク122a、122bは、有線又は無線とすることができる。
正則化ゼロフォーシングプリコーダーTのパラメーターは、図1Bに示す無線通信システムにおいて集中型で決定され、図3〜図5に関して以下で詳述されるように、サーバー130が正則化ゼロフォーシングプリコーダーTのパラメーターの最適化を行うようになっている。次に、図6に関して以下で詳述されるように、正則化ゼロフォーシングプリコーダーTの他のパラメーターが、n個の送信機の各々によって独自に決定される。
図2は、無線通信システム100において用いられるような通信デバイスのハードウェアアーキテクチャの例を概略的に表す。図2に例示的に示されるハードウェアアーキテクチャは、無線通信システム100の各送信機120a、120b及び/又は無線通信システム100の各受信機110a、110b及び/又はサーバー130を表すことができる。
示されるアーキテクチャによれば、通信デバイスは、通信バス206によって相互接続される以下のコンポーネント、すなわち、プロセッサ、マイクロプロセッサ、マイクロコントローラー又はCPU(中央処理装置)200と、RAM(ランダムアクセスメモリ)201と、ROM(読み出し専用メモリ)202と、SD(セキュアデジタル)カードリーダー203、若しくはHDD(ハードディスクドライブ)、又はストレージ媒体に記憶された情報を読み出すように適合された他の任意のデバイスと、第1の通信インターフェース204及び潜在的に第2の通信インターフェース205とを備える。
通信デバイスが無線通信システム100の1つの受信機を表すとき、第1の通信インターフェース204は、通信デバイスが、n個の送信機から大域MIMOチャネルHを介してデータを受信することを可能にする。第2の通信インターフェース205は、この場合には不要である。第1の通信インターフェース204は、通信デバイスがチャネル状態情報をn個の送信機のうちの1つ以上の送信機デバイスにフィードバックすることを更に可能にする。
通信デバイスが無線通信システム100の1つの送信機を表すとき、第1の通信インターフェース204は、通信デバイスが、大域MIMOチャネルHを介してデータを送信することを可能にする。第1の通信インターフェース204は、通信デバイスがK個の受信機のうちの1つ以上の受信機によってフィードバックされるチャネル状態情報を受信することを更に可能にする。さらに、図1Aに示すアーキテクチャによれば、第2の通信インターフェース205は、通信デバイスが、無線通信システム100の1つ以上の他の送信機とデータを交換することを可能にする。最終的に、図1Bに示されるアーキテクチャによれば、第2の通信インターフェース205は、通信デバイスがサーバー130とデータを交換することを可能にする。
通信デバイスがサーバー130を表すとき、第1の通信インターフェース204は、通信デバイスが、無線通信システム100のn個の送信機のうちの任意の1つとデータを交換することを可能にする。第2の通信インターフェース205は、この場合、不要である。
CPU200は、ROM202又はSDカード等の外部メモリからRAM201内にロードされた命令を実行することが可能である。通信デバイスに電源が投入された後、CPU200は、RAM201から命令を読み出し、これらの命令を実行することが可能である。これらの命令は、図3〜図5に関して以下で説明するアルゴリズムのステップの一部又は全てをCPU200に実行させる1つのコンピュータープログラムを形成する。
図3〜図5に関して以下で説明するアルゴリズムの全てのステップは、PC(パーソナルコンピューター)、DSP(デジタル信号プロセッサ)又はマイクロコントローラー等のプログラマブルコンピューティングマシンによって一組の命令又はプログラムを実行することによるソフトウェアで実施することもできるし、それ以外に、FPGA(フィールドプログラマブルゲートアレイ)又はASIC(特定用途向け集積回路)等のマシン又は専用のコンポーネントによるハードウェアで実施することもできる。
図3は、無線通信システム100において複数の送信機120a、120bから複数の受信機110a、110bに向けて協調方式でデータを送信するために適用されることが意図される正則化ゼロフォーシングプリコーダーTを構成することを可能にするための電力スケーリング係数μj(j=1〜n)を共同で決定するためのアルゴリズムを概略的に表す。図3のアルゴリズムは、図1Aに示すアーキテクチャの範囲において無線通信システム100の各送信機120a、120bによって並列に行われ、図3のアルゴリズムは、図1Bに示されるアーキテクチャの範囲においてサーバー130によって行われる。例示として、図3のアルゴリズムが送信機120aによって行われることを考える。
図3のアルゴリズムの範囲において、正則化ゼロフォーシングプリコーダーTが、スタックされた正則化係数ベクトルα=[α1,α2,...,αn]Tによって表すことができる正則化係数αj(ただし、j=1〜n)と、それに加えて、スタックされた電力スケーリング係数ベクトルμ=[μ1,μ2,...,μn]Tによって表すことができる、電力スケーリング係数μj(ただし、j=1〜n)によって形成された組とによって定義されると考える。
図3のアルゴリズムの範囲において、正則化係数αjが固定であることが更に検討される。正則化係数αjは、無線通信システム100の通常の動作方式(機能点として既知である)に従って、例えば、予め定義された信号対雑音比、又は、予め定義された信号対干渉雑音比を検討して予め決定される。変形実施形態において、正則化係数αjは、文献Qianrui Li他「Robust Regularized ZF in Decentralized Broadcast Channel with Correlated CSI Noise」53rd Annual Allerton Conference on Communication, Control and Computing, 2015において記載されているように、最適化プロセスを用いて予め決定される。
ステップS301において、送信機120aは、送信機120aがCSIT(送信機におけるチャネル状態情報)関連の長期統計を構築し、送信機120aが大域MIMOチャネルHの統計的ビューを得ることを可能にすることができるように、長期統計を得る。送信機120aは、K個の受信機のうちの1つ以上の受信機からのフィードバックCSI(チャネル状態情報)、及び/又は、チャネル相反特性を用いて上記送信機120aにおいて行われるチャネル推定値から、CSITを構築する。
より詳細には、上記長期統計は、
−n個の送信機のうちのj番目の送信機からK個の受信機のうちのk番目の受信機への実際のMIMOチャネルの平均電力と、上記j番目の送信機において、このj番目の送信機から上記k番目の受信機への上記MIMOチャネルを推定するときに得られるCSITにおける推定雑音の平均電力との間の比を表す
と、
−MIMOチャネルhkの共分散を表す共分散行列であるθkと、
−
と
との間の相関を表す
と、であり、
は、n個の送信機のうちのj番目の送信機において得られる、このj番目の送信機とK個の受信機のうちのk番目の受信機との間のチャネルのCSITにおける白色推定雑音であり、
は、n個の送信機のうちのj’番目の送信機において得られる、このj’番目の送信機とK個の受信機のうちのk番目の受信機との間のチャネルのCSITにおける白色推定雑音である。
−n個の送信機のうちのj番目の送信機からK個の受信機のうちのk番目の受信機への実際のMIMOチャネルの平均電力と、上記j番目の送信機において、このj番目の送信機から上記k番目の受信機への上記MIMOチャネルを推定するときに得られるCSITにおける推定雑音の平均電力との間の比を表す
−MIMOチャネルhkの共分散を表す共分散行列であるθkと、
−
上記j番目の送信機におけるCSITを
で表すことによって、以下の関係を表すことができる。
ここで、
は、上記j番目の送信機にCSIフィードバックを送信するときにK個の受信機のうちのk番目の受信機によるMIMOチャネルhkの量子化によって主に生じる推定誤差を表し、以下のように分解される。
まず、共分散行列θkは、hkの実現の観測から上記k番目の受信機において直接推定され、上記j番目の送信機等の少なくとも1つの送信機にフィードバックされる。次に、長期統計
を、量子化の入力の分散と、量子化の出力の分散との間の比を1から減算したものとして計算することができる。これは、MIMOチャネルhkの実現のいくつかの観測から上記k番目の受信機において求め、上記j番目の送信機にフィードバックすることができるか、又は量子化の入力のトレーニングセットを用いることによって、量子化特性も知っている上記j番目の送信機において、hkと同じ分散を用いて計算することができる。最終的に、変数
は、
の知識から上記k番目の受信機において計算することができる。当然ながら、n個の送信機のうちのj’番目の送信機に関する
について同じプロセスが当てはまる。第1の手法において、変数
が、j番目及びj’番目の双方の送信機にフィードバックされ、それによって、これらの送信機が、
と
との間の相関
を計算することが可能になる。別の手法において、上記k番目の受信機から上記j番目及びj’番目の送信機への量子化の特性は、上記j番目の送信機によって知られていなくてはならず、上記j番目の送信機は、
の知識から相関
を推定するために、双方の量子化についてhkに対するトレーニングセットを用いることができる。まず、j番目の送信機は、少なくともθkに依拠するhkの分布に従ってhkのランダムな実現を生成し、次に、k番目の受信機からj番目の送信機への
及び量子化を知ることによって、j番目の送信機は、量子化バージョン
を評価し、
を計算することができ、ここから、j番目の送信機は、
を計算することができる。j番目の送信機は、同じプロセスを
に適用し、これらの演算を数回繰り返し、
の実現間の相関を推定することによって、
を評価することができる。更に別の手法は、
間の相関
が上記k番目の受信機によって計算され、次に上記j番目及びj’番目の送信機にフィードバックされることである。
次に、各送信機は、無線通信システム100の全ての送信機120a、120bが上記長期統計に対する同じ知識を共有するように、(図1Aのアーキテクチャの範囲において)無線通信システム100の他の送信機に上記長期統計の少なくとも一部を提供する。図1Bのアーキテクチャの範囲において、各送信機は、上記長期統計の少なくとも一部をサーバー130に提供し、それによって上記長期統計は、サーバー130に全体的に既知となる。
以下のステップS302において、送信機120aは、(1〜Kの値をとるインデックスkによって特定されるような)各受信機の観点から信号対雑音比の漸近表現
の関数として定式化することができる最適化問題を解くことによって、電力スケーリング係数ベクトルμを以下のように得る。ここで、μ*は、最適化された電力スケーリング係数ベクトルμを表す。
となる、
であり、ここで、
は、以下のように定義される行列である。
ここで、IZは、サイズZの恒等行列又は部分行列であり、OZ×Wは、サイズZ×Wのヌル部分行列であり、
ここで、無線通信システム100のK個の受信機のうちのk番目の受信機の観点からの信号対雑音比の漸近表現
は、以下のように定義され、
ここで、
は、以下のように表される。
ここで、
は、以下のように定義される関数である。
ここで、
であり、ここで、
であり、ここで、γj,j’,k(ただし、k=1,...,K)は、
となる、ベクトル
のk番目のエントリである。ここで、
は、各インデックスl、tにおいて
に等しいエントリを有する行列であり、
は、各インデックスlにおいて
に等しいエントリを有するベクトルであり、ここで、
は、以下のように定義される。
上述した最適電力スケーリングベクトルμ*は、以下のように再定式化することができる。
となる、
であり、ここで、
は、フロベニウスのノルム、すなわち、Zの係数の平方値の和の二乗根を表し、
ここで、Akは、長期的及び漸近的視点からK個の受信機のうちのk番目の受信機に宛てられたシンボルが搬送されるチャネルを表し、Bkは、k番目の受信機を除く全ての受信機に宛てられたシンボルが搬送され、長期的及び漸近的視点から上記k番目の受信機に宛てられたシンボルとの干渉を生成するチャネルを表し、Cは、電力制約を表し、
Akは、各インデックスj、j’において
に等しいエントリを有する定数行列であり、Bkは、各インデックスj、j’において
に等しいエントリを有する定数行列であり、
Re{X}は、複素入力Xの実数部分を表し、diag()は、Z個のエントリが上記関数に入力されるときにサイズZの対角行列を形成する関数である。
ここで、無線通信システム100のK個の受信機のうちのk番目の受信機の観点からの信号対雑音比の漸近表現
ここで、Akは、長期的及び漸近的視点からK個の受信機のうちのk番目の受信機に宛てられたシンボルが搬送されるチャネルを表し、Bkは、k番目の受信機を除く全ての受信機に宛てられたシンボルが搬送され、長期的及び漸近的視点から上記k番目の受信機に宛てられたシンボルとの干渉を生成するチャネルを表し、Cは、電力制約を表し、
Akは、各インデックスj、j’において
Re{X}は、複素入力Xの実数部分を表し、diag()は、Z個のエントリが上記関数に入力されるときにサイズZの対角行列を形成する関数である。
以下のステップS303において、送信機120aは、ステップS302において行われた最適化によって得られた正則化係数αj及び電力スケーリング係数μjを用いて、送信機120aに関するものについて正則化ゼロフォーシングプリコーダーTの構成を可能にする。ここで、jは、無線通信システム100の送信機のうちの送信機120aを表す。図3のアルゴリズムがサーバー130によって実行されるとき、サーバー130は、無線通信システム100の各送信機に、ステップS302において実行された最適化によって得られた正則化係数αj及び電力スケーリング係数μjを送信し、jは、無線通信システム100の送信機のうちの上記送信機を表す。次に、各送信機は、サーバー130によって提供された正則化係数αj及び電力スケーリング係数μjを用いて、上記送信機に関するものについて正則化ゼロフォーシングプリコーダーTの構成を可能にする。正則化ゼロフォーシングプリコーダーTの効果的な構成については、図6に関して以下に詳述される。
図3のアルゴリズムは、ステップS301に関して示すように、長期統計が展開するときに繰り返されることが好ましい。
図4は、本発明の特定の実施形態における、図3のアルゴリズムの範囲において電力スケーリング係数ベクトルμを決定するためのアルゴリズムを概略的に表す。例示として、図5のアルゴリズムが送信機120aによって行われることを考える。
以下において、表記v[z]は、vの値の収束が求められるループの反復zにおけるvの値を表す。
ステップS401において、送信機120aは、デフォルト値、例えば、各エントリについて同じ値を用いて、||Cμ[0]||2=1となるようにμ[0]を初期化し、更に局所変数tを値「0」に設定する。
以下のステップS403において、送信機120aは、デフォルト値、例えば、各エントリについて同じ値を用いて、||Cw[0]||2=1となるようにw[0]を初期化し、局所変数iを値「0」に設定する。
以下のステップS404において、送信機120aは、
を以下のように計算し、
送信機120aは、
を以下のように計算し、
送信機120aは、w[i+1]を以下のように計算する。
||Cw[i+1]||2≦1となる、
||Cw[i+1]||2≦1となる、
このステップは、半正定値計画緩和、及びG. Pataki「On the Rank of Extreme Matrices in Semi-definite Programs and the Multiplicity of Optimal Eigenvalues」Mathematics of Operations Research, 23(2):339-358におけるShapiro−Barvinok−Patakiからの結果を用いることによって解くことができ、新たな最適化問題は、行列W[i+1]が、以下の最適化を行うことによって計算されるという意味で緩和される。
Trace(CTCW)≦1であり、かつ、Wが半正定値である、
Trace(CTCW)≦1であり、かつ、Wが半正定値である、
次に、特異値分解(SVD)を用いることによって、更にW[i+1]の最大の特異値s及びその関連付けられた固有ベクトルw’を選択することによって、更に
を設定することによって、W[i+1]からw[i+1]を得ることができる。別の手法は、コレスキー分解W[i+1]=W’W’Tを計算し、それによってW’を得て、最終的にw[i+1]=11×nW’を得ることであり、ここで、11×nは、「1」に等しい値で埋められたサイズnの行行列である。
以下のステップS405において、送信機120aは、局所変数iを1単位だけインクリメントする。
以下のステップS406において、送信機120aは、w[i]に関して収束に達したか否かをチェックする。そのような収束に達した場合、ステップS407が行われ、そうでない場合、ステップS404が繰り返される。
ステップS407において、送信機120aは、w[i]の値をμ[t+1]に割り当てる。
以下のステップS408において、送信機120aは、局所変数tを1単位だけインクリメントする。
以下のステップS409において、送信機120aは、μ[t]に関して収束に達したか否かをチェックする。そのような収束に達した場合、ステップS410が行われ、そうでない場合、ステップS402が繰り返される。
ステップS410において、送信機120aは、μ[t]を用いて、電力スケーリング係数ベクトルμの適切な値μ*を得たとみなす。
図5は、無線通信システム100において複数の送信機120a、120bから複数の受信機110a、110bに向けて協調方式でデータを送信するために適用されることが意図される正則化ゼロフォーシングプリコーダーTを構成することを可能にするための電力スケーリング係数μj(j=1〜n)及び正則化係数αj(j=1〜n)を共同で決定するためのアルゴリズムを概略的に表す。図5のアルゴリズムは、図3のアルゴリズムに対する代替である。図5のアルゴリズムは、図5のアルゴリズムにおいて、正則化係数αjが電力スケーリング係数μjと共同で最適化されているという点で、図3のアルゴリズムと異なる。図5のアルゴリズムは、図1Aに示すアーキテクチャの範囲において無線通信システム100の各送信機120a、120bによって並列に行われ、図5のアルゴリズムは、図1Bに示されるアーキテクチャの範囲においてサーバー130によって行われる。例示として、図5のアルゴリズムが送信機120aによって行われることを考える。
ステップS501において、送信機120aは、図3に関して上記で説明したステップS301におけるように、長期統計を得る。
以下のステップS502において、送信機120aは、(1〜Kの値をとるインデックスkによって識別される)各受信機の観点から信号対雑音比の漸近表現
の関数として定式化することができる最適化問題を解くことによって、以下の式のように、電力スケーリング係数ベクトルμ及び正則化係数ベクトルαを共同で得る。ここで、α*は、最適化された正則化係数ベクトルαを表す。
となる、
特定の実施形態では、これは、まず、上述した文献Qianrui Li他「Robust Regularized ZF in Decentralized Broadcast Channel with Correlated CSI Noise」53rd Annual Allerton Conference on Communication, Control and Computing, 2015に記載されているように正則化係数最適化を適用し、次に、図3に関して上記で説明した電力スケーリングベクトル最適化を適用し、次に、上記正則化係数最適化を反復し、再び、図3に関して上記で説明した電力スケーリングベクトル最適化を適用し、これを収束するまで行うことを意味する。上記の文献において記載されているような正則化係数最適化を適用するために、上記文献において定義されるチャネル行列Hは、HΔμによって置き換えられており、ここで、Δμは、ブロック対角行列に等しく、各ブロックはサイズMTX×MTXであり、それによって、上記ブロック対角行列の任意のj番目のブロックを検討すると、上記ブロックが恒等行列
と電力スケーリング係数μjとを乗算したものに等しいことに留意されたい。
以下のステップS503において、送信機120aは、いずれもステップS502において行われた共同最適化によって得られた正則化係数αj及び電力スケーリング係数μjを用いて、送信機120aに関するものについて正則化ゼロフォーシングプリコーダーTの構成を可能にする。ここで、jは、無線通信システム100の送信機のうちの送信機120aを表す。図5のアルゴリズムがサーバー130によって実行されるとき、サーバー130は、無線通信システム100の各送信機に、いずれもステップS502において実行された共同最適化によって得られた正則化係数αj及び電力スケーリング係数μjを送信し、jは、無線通信システム100の送信機のうちの上記送信機を表す。次に、無線通信システム100の各送信機は、サーバー130によって提供された正則化係数αj及び電力スケーリング係数μjを用いて、上記送信機に関するものについて正則化ゼロフォーシングプリコーダーTの構成を可能にする。正則化ゼロフォーシングプリコーダーTの効果的な構成については、図6に関して以下に詳述される。
図5のアルゴリズムは、ステップS501に関して示すように、長期統計が展開するときに繰り返されることが好ましい。
図6は、無線通信システム100において複数の送信機120a、120bから複数の受信機110a、110bに向けて協調方式でデータを送信するために正則化ゼロフォーシングプリコーダーTを構成するためのアルゴリズムを概略的に表す。図6のアルゴリズムは、無線通信システム100の各送信機120a、120bによって独立して行われる。例示として、図5のアルゴリズムが送信機120aによって行われることを考える。
ステップS601において、送信機120aは、有効MIMOチャネルHの推定値
を得るために、MIMOチャネルHを表す短期CSITを得る。受信機110a、110bが送信機120a、120bにフィードバックCSIを送信するときに量子化が存在し、各送信機は、無線通信システム100における任意の受信機からフィードバックCSIを受信することができない場合があるので、送信機120a、120bは、互いに異なる有効MIMOチャネルHのそれぞれの推定値
を有する場合がある。長期CSIT統計が用いられる図3及び図5のアルゴリズムの範囲と対照的に、図6のアルゴリズムの範囲において、送信機ごとに、有効MIMOチャネルHに可能な限り近い推定値
を得ることを試みるために短期CSITが用いられることに留意しなくてはならない。
以下のステップS602において、送信機120aは、ステップS601において得られる短期CSIT情報が、MIMOチャネルHの変更を示すか否かをチェックする、すなわち、ステップS601の先行する反復から、有効MIMOチャネルHの推定値
が変化したか否かをチェックする。ステップS601において得られた短期CSIT情報が、MIMOチャネルHの変更を示すとき(当然ながら、ステップS602の最初の発生時に)、ステップS603が行われる。そうでない場合、ステップS601は、無線通信システム100の少なくとも1つの受信機によって最新のCSIがフィードバックされるたびに繰り返される。
ステップS603において、送信機120aは、正則化ゼロフォーシングプリコーダーTのパラメーターを以下のように決定する。
ここで、
は、(インデックスjによって表される)送信機120aによって決定された、(インデックスjによって表される)送信機120aによって適用されなくてはならない正則化ゼロフォーシングプリコーダーTのパラメーターを表し、
Ψ(j)は、以下のように定義される電力正規化スカラーである。
Ψ(j)は、以下のように定義される電力正規化スカラーである。
以下のステップS604において、送信機120aは、ステップS602において決定されたパラメーターを用いて、送信機120aに関するものについて、正則化ゼロフォーシングプリコーダーTを構成する。次に、送信機120a、120bから受信機110a、110bへの送信が、ステップS604において構成された正則化ゼロフォーシングプリコーダーを用いることによって行われる。次に、短期CSITを得るために、ステップS601が繰り返される。
Claims (8)
- 無線通信システムにおいて、多入力多出力(MIMO)送信チャネルを介して、複数のn個の送信機から複数のK個の受信機にデータを送信するために適用されることを目的とした正則化ゼロフォーシングプリコーダーTを構成するためのパラメーターを決定する方法であって、各送信機は、MTX本の送信アンテナを有し、各受信機は、単一の受信アンテナを有し、K≦nMTX=Mであり、該方法は、第1のフェーズを含み、該第1のフェーズは、
前記n個の送信機のうちの任意のかつ全てのj番目の送信機、及び前記K個の受信機のうちの任意のかつ全てのk番目の受信機について、前記MIMO送信チャネルの観測に関する以下の長期統計、すなわち、
前記j番目の送信機から前記k番目の受信機への前記MIMOチャネルの平均電力と、前記j番目の送信機において、該j番目の送信機から前記k番目の受信機への前記MIMOチャネルを推定するときに得られる、送信機におけるチャネル状態情報(CSIT)における推定雑音の平均電力との間の比を表す
前記複数の送信機から前記k番目の受信機に向けた前記MIMOチャネルの共分散行列であるθkと、
を得ることと、
各受信機の観点から信号対雑音比漸近表現
前記K個の受信機のうちの任意のk番目の受信機の観点からの前記信号対雑音比の前記漸近表現
ここで、
ここで、αjは、前記正則化ゼロフォーシングプリコーダーTの正則化係数であり、
ここで、γj,j’,k(ただし、k=1,...,K)は、
ここで、Φj,kは、以下のように定義される
を含み、
該方法は、前記複数のn個の送信機のうちの任意のかつ全ての送信機によって独立して行われる第2のフェーズを更に含み、該第2のフェーズは、
前記複数のn個の送信機のうちの各j番目の送信機の観点から前記MIMO送信チャネルの推定値
前記正則化ゼロフォーシングプリコーダーTを以下のように構成することであって、
ここで、Ψ(j)は、以下のように定義される電力正規化スカラーであり、
を含む、方法。 - 前記最適化問題を、各受信機の観点から前記信号対雑音比漸近表現
ここで、Akは、長期的及び漸近的視点から前記K個の受信機のうちの前記k番目の受信機に宛てられたシンボルが搬送されるチャネルを表し、Bkは、前記k番目の受信機を除く全ての受信機に宛てられたシンボルが搬送され、長期的及び漸近的視点から前記k番目の受信機に宛てられたシンボルとの干渉を生成するチャネルを表し、Cは、前記電力制約を表し、
Akは、各インデックスj、j’において、以下の式に等しいエントリを有する定数行列であり、
- 前記第1のフェーズは、前記複数の送信機の任意のかつ全ての送信機によって分散形式で実施され、前記複数の送信機は、前記長期統計を共有する、請求項1から3までのいずれか1項に記載の方法。
- サーバーが、前記複数の送信機から前記長期統計を得て、該サーバーが、前記複数の送信機の任意のかつ全ての送信機の代わりに前記第1のフェーズを実施する、請求項1から3までのいずれか1項に記載の方法。
- プログラムコード命令を含み、該プログラムコード命令は、プログラマブルデバイス上で実行されるときに、請求項1から4までのいずれか1項に記載の方法を実施するために前記プログラマブルデバイスにロードすることができる、コンピュータープログラム。
- プログラムコード命令を含むコンピュータープログラムを記憶し、該プログラムコード命令は、プログラマブルデバイス上で実行されるときに、請求項1から4までのいずれか1項に記載の方法を実施するために前記プログラマブルデバイスにロードすることができる、情報ストレージ媒体。
- 無線通信システムであって、該無線通信システムは、多入力多出力(MIMO)送信チャネルを介して、複数のn個の送信機から複数のK個の受信機にデータを送信するために適用されることを目的とした正則化ゼロフォーシングプリコーダーTを構成するためのパラメーターを決定するように構成され、各送信機は、MTX本の送信アンテナを有し、各受信機は、単一の受信アンテナを有し、K≦nMTX=Mであり、該無線通信システムは、第1のフェーズを実施するように構成され、該第1のフェーズは、
前記n個の送信機のうちの任意のかつ全てのj番目の送信機、及び前記K個の受信機のうちの任意のかつ全てのk番目の受信機について、前記MIMO送信チャネルの観測に関する以下の長期統計、すなわち、
前記j番目の送信機から前記k番目の受信機への前記MIMOチャネルの平均電力と、前記j番目の送信機において、該j番目の送信機から前記k番目の受信機への前記MIMOチャネルを推定するときに得られる、送信機におけるチャネル状態情報(CSIT)における推定雑音の平均電力との間の比を表す
前記複数の送信機から前記k番目の受信機に向けた前記MIMOチャネルの共分散行列であるθkと、
を得ることと、
各受信機の観点から信号対雑音比漸近表現
前記K個の受信機のうちの任意のk番目の受信機の観点からの前記信号対雑音比の前記漸近表現
ここで、
ここで、αjは、前記正則化ゼロフォーシングプリコーダーTの正則化係数であり、
ここで、γj,j’,k(ただし、k=1,...,K)は、
ここで、Φj,kは、以下のように定義される
を含み、
該無線通信システムは、前記複数のn個の送信機のうちの任意のかつ全ての送信機によって独立して行われる第2のフェーズを実施するように更に構成され、該第2のフェーズは、
前記複数のn個の送信機のうちの各j番目の送信機の観点から前記MIMO送信チャネルの推定値
前記正則化ゼロフォーシングプリコーダーTを以下のように構成することであって、
ここで、Ψ(j)は、以下のように定義される電力正規化スカラーであり、
を含む、無線通信システム。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16154332.7A EP3203648B1 (en) | 2016-02-04 | 2016-02-04 | Method for determining parameters for configuring a regularized zero-forcing precoder |
EP16154332.7 | 2016-02-04 | ||
PCT/JP2017/004137 WO2017135464A1 (en) | 2016-02-04 | 2017-01-30 | Method for determining parameters for configuring regularized zero-forcing precoder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018533279A JP2018533279A (ja) | 2018-11-08 |
JP6472575B2 true JP6472575B2 (ja) | 2019-02-20 |
Family
ID=55310723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018514925A Expired - Fee Related JP6472575B2 (ja) | 2016-02-04 | 2017-01-30 | 正則化ゼロフォーシングプリコーダーを構成するためのパラメーターを決定する方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10396863B2 (ja) |
EP (1) | EP3203648B1 (ja) |
JP (1) | JP6472575B2 (ja) |
CN (1) | CN108702181A (ja) |
WO (1) | WO2017135464A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017133772A1 (en) * | 2016-02-04 | 2017-08-10 | Telefonaktiebolaget Lm Ericsson (Publ) | A method for adapting a beam shape of a beam |
CN113055068B (zh) * | 2020-10-16 | 2022-06-10 | 武汉大学 | 一种大规模mimo快速收敛的低复杂度预编码方法 |
CN112383329B (zh) * | 2020-10-29 | 2022-02-08 | 杭州红岭通信息科技有限公司 | 一种基于zf算法的波束赋型优化方法 |
US11870516B2 (en) | 2021-07-14 | 2024-01-09 | Samsung Electronics Co., Ltd. | Apparatus and methods for better estimation of radiation power utilizing PAPC compensation |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090075686A1 (en) * | 2007-09-19 | 2009-03-19 | Gomadam Krishna S | Method and apparatus for wideband transmission based on multi-user mimo and two-way training |
US20110299617A1 (en) * | 2008-09-25 | 2011-12-08 | Mohammad Ali Maddah-Ali | X-mimo systems with multi-transmitters and multi-receivers |
EP2278761B1 (en) * | 2009-07-21 | 2013-04-03 | ST-Ericsson SA | Precoding process for a transmitter of a MU-MIMO communication system |
US8750205B2 (en) * | 2009-08-07 | 2014-06-10 | Texas Instruments Incorporated | Multiple rank CQI feedback for cellular networks |
WO2011096747A2 (en) * | 2010-02-02 | 2011-08-11 | Lg Electronics Inc. | Feedback method for interference alignment in wireless network |
US8577310B2 (en) * | 2010-02-05 | 2013-11-05 | Futurewei Technologies, Inc. | System and method for transceivers in a wireless network |
US8787484B2 (en) * | 2010-06-18 | 2014-07-22 | Nec Corporation | Precoding techniques for downlink coordinated multipoint transmission in radio communications system |
US8442145B2 (en) * | 2010-12-03 | 2013-05-14 | Industrial Technology Research Institute | Transmitting terminal and transmit antenna selecting method thereof |
US9048970B1 (en) * | 2011-01-14 | 2015-06-02 | Marvell International Ltd. | Feedback for cooperative multipoint transmission systems |
US8811514B2 (en) * | 2011-05-06 | 2014-08-19 | Dynamic Invention Llc | Partial interference alignment for K-user MIMO interference channels |
US8731028B2 (en) * | 2011-12-02 | 2014-05-20 | Futurewei Technologies, Inc. | Method and apparatus for modulation and coding scheme adaption in a MIMO system |
KR101968704B1 (ko) * | 2012-03-13 | 2019-04-12 | 삼성전자주식회사 | 다중 안테나 통신 시스템에서의 전송 파워 결정 방법 및 장치 |
US9674801B2 (en) * | 2012-07-26 | 2017-06-06 | Huawei Technologies Co., Ltd. | UE power allocation according to scheduler utility metric for DL MU-MIMO and DL CoMP |
US8867503B2 (en) * | 2012-08-16 | 2014-10-21 | Futurewei Technologies, Inc. | Localized CoMP precoding |
CN105246158A (zh) * | 2015-09-01 | 2016-01-13 | 东南大学 | 基于高信噪比的能效最大化多天线中继系统功率分配方法 |
CN105142209A (zh) * | 2015-09-17 | 2015-12-09 | 东南大学 | 基于能效最优的多输入多输出中继系统联合功率分配方法 |
WO2017129227A1 (en) * | 2016-01-26 | 2017-08-03 | Huawei Technologies Co., Ltd. | An apparatus and a method for managing full-duplex communication between a base station and a plurality of user equipments |
-
2016
- 2016-02-04 EP EP16154332.7A patent/EP3203648B1/en not_active Not-in-force
-
2017
- 2017-01-30 JP JP2018514925A patent/JP6472575B2/ja not_active Expired - Fee Related
- 2017-01-30 CN CN201780008506.9A patent/CN108702181A/zh active Pending
- 2017-01-30 US US16/062,260 patent/US10396863B2/en not_active Expired - Fee Related
- 2017-01-30 WO PCT/JP2017/004137 patent/WO2017135464A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
EP3203648A1 (en) | 2017-08-09 |
US10396863B2 (en) | 2019-08-27 |
EP3203648B1 (en) | 2018-08-15 |
JP2018533279A (ja) | 2018-11-08 |
US20180375548A1 (en) | 2018-12-27 |
CN108702181A (zh) | 2018-10-23 |
WO2017135464A1 (en) | 2017-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114285447B (zh) | 信道状态信息的反馈、确定方法及装置 | |
CN106209195B (zh) | 信道状态信息获取方法、信道状态信息反馈方法及装置 | |
JP6472575B2 (ja) | 正則化ゼロフォーシングプリコーダーを構成するためのパラメーターを決定する方法 | |
JP5666581B2 (ja) | Mu−mimo通信システムの送信機のためのプリコーディング方法 | |
JP5204255B2 (ja) | 多重受信アンテナ受信機での線形マルチユーザプリコーディング | |
Hanif et al. | Computationally efficient robust beamforming for SINR balancing in multicell downlink with applications to large antenna array systems | |
JP6641506B2 (ja) | データの送信を行う方法及びデバイス | |
WO2021155610A1 (zh) | 一种信息传输方法及装置 | |
CN114982140A (zh) | Mu-mimo系统中的下行链路波束赋形 | |
CN113839695B (zh) | Fdd大规模mimo和速率最优统计预编码方法及设备 | |
Wang et al. | Joint user association and hybrid beamforming designs for cell-free mmWave MIMO communications | |
Miretti et al. | Team precoding towards scalable cell-free massive MIMO networks | |
Dreifuerst et al. | Machine learning codebook design for initial access and CSI type-II feedback in sub-6GHz 5G NR | |
JP2009268106A (ja) | 信号対干渉電力と雑音比の決定方法およびその装置 | |
US20240154653A1 (en) | Neural network for mu-mimo user selection | |
Li et al. | Robust regularized ZF in decentralized Broadcast Channel with correlated CSI noise | |
Zhang et al. | A unified framework for precoding and pilot design for FDD symbol-level precoding | |
EP3306828B1 (en) | Method for determining a precoder in a distributed fashion | |
Singh et al. | Tight bounds on the optimal UL sum-rate of MU RIS-aided wireless systems | |
Singh et al. | Efficient optimization techniques for RIS-aided wireless systems | |
Chen et al. | Joint Learning of Channel Estimation and Beamforming for Cell-Free Massive MIMO Systems | |
RU2804839C1 (ru) | Способ для полнодуплексной системы предварительного кодирования с многоканальным входом и многоканальным выходом (MIMO) | |
US20230155643A1 (en) | Multi-user precoding | |
Liao et al. | Multi-user wideband sparse channel estimation for aerial BS with hybrid full-dimensional MIMO | |
TW202437714A (zh) | Csi壓縮方法及其使用者設備 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181225 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190122 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6472575 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |