JP6464656B2 - 非水系電解質、およびそれを用いた非水系電解質二次電池 - Google Patents

非水系電解質、およびそれを用いた非水系電解質二次電池 Download PDF

Info

Publication number
JP6464656B2
JP6464656B2 JP2014215735A JP2014215735A JP6464656B2 JP 6464656 B2 JP6464656 B2 JP 6464656B2 JP 2014215735 A JP2014215735 A JP 2014215735A JP 2014215735 A JP2014215735 A JP 2014215735A JP 6464656 B2 JP6464656 B2 JP 6464656B2
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
mass
carbonate
compound
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014215735A
Other languages
English (en)
Other versions
JP2015111557A (ja
Inventor
浩二 深水
浩二 深水
大橋 洋一
洋一 大橋
古田土 稔
稔 古田土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2014215735A priority Critical patent/JP6464656B2/ja
Publication of JP2015111557A publication Critical patent/JP2015111557A/ja
Application granted granted Critical
Publication of JP6464656B2 publication Critical patent/JP6464656B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、非水系電解質、およびそれを用いた非水系電解質二次電池に関するものである。
電子機器の急速な進歩に伴い、二次電池に対する高容量化への要求が高くなっており、エネルギー密度の高いリチウムイオン二次電池等の非水系電解質電池が広く使用され、また活発に研究されている。
非水系電解質電池に用いる電解液は、一般に、主として電解質と非水溶媒とから構成されている。リチウムイオン二次電池の電解液としては、LiPF、LiBF、LiN(CFSO等の電解質を、エチレンカーボネート、プロピレンカーボネート等の高誘電率溶媒と、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の低粘度溶媒との混合溶媒に溶解させた非水系電解液が用いられている。
リチウムイオン二次電池は、充放電を繰り返すと、電解質が電極上で分解したり、電池を構成する材料の劣化などが起きたりし、電池の容量が低下する。また、場合によっては電池の膨れや発火、爆発などに対する安全性が低下する可能性もある。
これまでに、特定の添加剤を非水電解液中に含有させることで、リチウムイオン二次電池の電池特性を改善する方法が提案されている。例えば、特許文献1では、特定構造のジカルボニル化合物を含有することを特徴とする非水電解液が提案されている。それによれば、円筒型電池を25℃において200サイクル充放電試験したときの放電容量維持率が向上する。
WO2006−070546号公報
しかしながら特許文献1に記載の、ジカルボニル化合物を含有する電解液を用いた場合、ガス発生や電池の内部抵抗に関しては未だ満足できるものではなかった。本発明は、非水系電解質二次電池において、サイクル特性を向上させるだけでなく、ガス発生が少なく、内部抵抗が小さい非水系電解質と、この非水系電解質を用いた非水系電解質二次電池を提供することを課題とする。
本発明者らは、上記課題を解決するために種々の検討を重ねた結果、特定構造の化合物(下記一般式(1)で表される化合物)と特定の化合物を組み合わせた時に、上記課題を解決できることを見出し、本発明を完成させるに至った。
即ち、本発明の要旨は、
[1] 金属イオンを吸蔵・放出しうる正極活物質を有する正極と、金属イオンを吸蔵・放出しうる負極活物質を有する負極とを備える非水系電解液二次電池に用いられる非水系電解液であって、
下記一般式(1)で表される化合物を含有し、
さらに、炭素−炭素三重結合を有する環状カーボネート化合物、フッ素原子を2以上有する環状カーボネート化合物、ニトリル化合物、イソシアネート化合物、芳香族炭化水素、フッ素化芳香族化合物、モノフルオロ燐酸塩、ジフルオロ燐酸塩、及び、酸無水物からな
る群より選ばれた少なくとも1種の化合物を含有し、
非水系電解液がニトリル化合物を含有する場合、非水系電解液全量に対し0.01質量%以上10質量%以下の割合で含有する事を特徴とする非水系電解液。
Figure 0006464656
(R、Rは、それぞれ独立にアルキル基、フッ素化アルキル基、アルケニル基、アルキニル基、又は、アリール基を表す。)
[2] 前記ニトリル化合物が、プロピオニトリル、ブチロニトリル、ラウロニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、セバコニトリル、2−メチルグルタロニトリル、クロトノニトリル、3−メトキシアクリロニトリル、及び、3−メトキシプロピオニトリルからなる群より選ばれた少なくとも1種の化合物であることを特徴とする[1]に記載の非水系電解液。
[3] 前記イソシアネート化合物が、イソシアナト基を2以上有する化合物であることを特徴とする[1]又は[2]に記載の非水系電解液。
[4] 前記芳香族炭化水素が、シクロヘキシルベンゼン、t−ブチルベンゼン、及び、t−ペンチルベンゼンからなる群より選ばれた少なくとも1種の化合物であることを特徴とする[1]乃至[3]の何れか一項に記載の非水系電解液。
[5] 前記フッ素化芳香族化合物が、フルオロベンゼン、ジフルオロベンゼン、トリフルオロベンゼン、テトラフルオロベンゼン、ペンタフルオロベンゼン、ヘキサフルオロベンゼン、及び、ベンゾトリフルオリドからなる群より選ばれた少なくとも1種の化合物であることを特徴とする[1]乃至[4]の何れか一項に記載の非水系電解液。
[6] 前記モノフルオロ燐酸酸塩及びジフルオロ燐酸塩が、リチウム塩であることを特徴とする[1]乃至[5]の何れか一項に記載の非水系電解液。
[7] 前記、酸無水物が、コハク酸無水物、マレイン酸無水物、シトラコン酸無水物、イタコン酸無水物、アクリル酸無水物、メタクリル酸無水物、及び、クロトン酸無水物からなる群より選ばれた少なくとも1種の化合物であることを特徴とする[1]乃至[6]の何れか一項に記載の非水系電解液。
[8] 前記一般式(1)で表される化合物の含有量が、非水系電解液全量に対し、0.01質量%以上、10質量%以下であることを特徴とする、[1]乃至[7]の何れか一項に記載の非水系電解液。
[9] 前記一般式(1)で表される化合物が、以下の一般式(2)で表されることを特徴とする[1]乃至[8]の何れか一項に記載の非水系電解液。
Figure 0006464656
(Rは、アルキル基、フッ素化アルキル基、又は、アリール基を表し、Rは、アルキル基、フッ素化アルキル基、アルケニル基、アルキニル基、又は、アリール基を表す。)[10] 金属イオンを吸蔵・放出しうる正極活物質を有する正極と、金属イオンを吸蔵・放出しうる負極活物質を有する負極とを備える非水系電解液二次電池であって、[1]乃至[9]の何れか一項に記載の非水系電解液を用いることを特徴とする非水系電解液二次電池
本発明によれば、サイクル特性を向上させるだけでなく、ガス発生が少なく、内部抵抗が小さい非水系電解質二次電池を得ることができる。
以下、本発明の実施の形態について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明は請求項に記載の要旨を超えない限り、これらの内容に限定はされない。
〔1.非水系電解液〕
〔1−1.一般式(1)で表される化合物〕
本発明の非水系電解液は、一般的な非水系電解液と同様に、電解質及びこれを溶解する非水溶媒を含有し、
下記一般式(1)で表される化合物とさらに、炭素−炭素三重結合を有する環状カーボネート化合物、フッ素原子を2以上有する環状カーボネート化合物、ニトリル化合物、イソシアネート化合物、芳香族炭化水素、フッ素化芳香族化合物、モノフルオロ燐酸塩、ジフルオロ燐酸塩、酸無水物からなる群より選ばれた少なくとも1種の化合物を含有する事を特徴とする。
Figure 0006464656
(R、Rは、それぞれ独立にアルキル基、フッ素化アルキル基、アルケニル基、アルキニル基、又は、アリール基を表す。)
一般式(1)で表される化合物の中でも、以下の一般式(2)で表される化合物が好ましい。
Figure 0006464656
(Rは、アルキル基、フッ素化アルキル基、又は、アリール基を表し、Rは、アルキル基、フッ素化アルキル基、アルケニル基、アルキニル基、又は、アリール基を表す。)
上記、アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、t−ブチル基、アミル基、t−アミル基、2−エチルヘキシル基などが挙げられる。
上記、フッ素化アルキル基の具体例としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2−フルオロエチル基、2,2−ジフルオロエチル基、2,2,2−トリフルオロエチル基、ペンタフルオロエチル基などが挙げられる。
上記、アルケニル基の具体例としては、ビニル基、アリル基、2−ブテニル基などが挙げられる。
上記、アルキニル基の具体例としては、エチニル基、プロパルギル基などが挙げられる
上記、アリール基の具体例としては、フェニル基、2−トリル基、3−トリル基、4−トリル基、2−t−ブチルフェニル基、3−t−ブチルフェニル基、4−t−ブチルフェニル基、2−t−アミルフェニル基、3−t−アミルフェニル基、4−t−アミルフェニル基、などが挙げられる。
一般式(1)で表される化合物の具体例としては、以下の化合物が挙げられる。
Figure 0006464656
上記化合物の中でも、以下の化合物を用いることが好ましい。
Figure 0006464656
これらの化合物は、入手・製造が比較的容易であり、適度な反応性を有するため、ガス発生抑制や内部抵抗の低減など電池特性の向上効果も大きい。
本発明の非水系電解液は、一般式(1)で表される化合物を含有することを特徴としているが、含有する一般式(1)で表される化合物は1種類に限られず、複数種を併用してもよい。
また、一般式(1)で表される化合物の含有量として(複数種を併用する場合は合計量)は、特に制限はないが、非水系電解液全量に対し、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.2質量%以上であり、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは1質量%以下、特に好ましくは0.5質量%以下である。上記の範囲内であると、安定な皮膜を形成できるため、サイクル特性が向上するだけでなく、ガス発生が抑制でき、内部抵抗の上昇も抑制できるので、電池特性を特に向上させることが期待できる。
〔1−2.炭素−炭素三重結合を有する環状カーボネート化合物〕
炭素−炭素三重結合を有する環状カーボネート化合物の具体例としては、エチニルエチレンカーボネート、4,5−ジエチニルエチレンカーボネート等のエチニルエチレンカーボネート化合物類等が挙げられる。中でも、エチニルエチレンカーボネートが、安定な界面保護被膜を形成するので好ましい。これらは単独で用いても、2種類以上を併用してもよい。
炭素−炭素三重結合を有する環状カーボネート化合物を含有する場合、非水系電解液中における含有量は、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.3質量%以上であり、通常10質量%以下、好ましくは8質量%以下、より好ましくは6質量%以下であり、更に好ましくは3質量%以下である。炭素−炭素三重結合を有する環状カーボネート化合物の含有量が上記範囲にあることにより、電池のサイクル特性や高温保存後の容量維持特性を向上させるという効果を十分に発揮し、また、高温保存時のガス発生量の増大を抑制し、更には内部抵抗が低減できるなど電池特性を特に向上させることが期待できる。
〔1−3.フッ素原子を2以上有する環状カーボネート化合物〕
フッ素原子を2以上有する環状カーボネート化合物の具体例としては、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、4,4,5−トリフルオロエチレンカーボネート、テトラフルオロエチレンカーボネート、4,5−ジフルオロ−4−メチルエチレンカーボネート、4,4,5−トリフルオロ−5−メチルエチレンカーボネート、トリフルオロメチルエチレンカーボネート等が挙げられる。これらのうち、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネートがサイクル特性向上や高温保存特性向上、内部抵抗の低減の点から好ましく、4,5−ジフルオロエチレンカーボネートがより好ましい。これらは単独で用いても、2種類以上を併用してもよい。
非水系電解液がフッ素原子を2以上有する環状カーボネート化合物を含有する場合、非水系電解液中における含有量は、通常0.001質量%以上、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、更に好ましくは0.5質量%以上であり、通常10質量%以下、好ましくは5質量%以下、より好ましくは4質量%以下、更に好ましくは3質量%以下である。
〔1−4.ニトリル化合物〕
ニトリル化合物としては、ニトリル基(CN基)を有していれば限定されるものではないが、以下に挙げるものが好適に用いられる。
アセトニトリル、プロピオニトリル、ブチロニトリル、ペンタンニトリル、ヘキサンニトリル、ヘプタンニトリル、オクタンニトリル、ノナンニトリル、デカンニトリル、ドデカンニトリル(ラウロニトリル)、トリデカンニトリル、テトラデカンニトリル(ミリストニトリル)、ヘキサデカンニトリル、ペンタデカンニトリル、ヘプタデカンニトリル、オクタデカンニトリル(ステアノニトリル)、ノナデカンニトリル、イコサンニトリル、アクリロニトリル、クロトノニトリル、メタクリロニトリル、シンナモニトリル、3−メトキシアクリロニトリル、3−エトキシアクリロニトリル、3−メトキシプロピオニトリル等がニトリル基を1つ有する化合物として挙げられる。
マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル、メチルマロノニトリル、エチルマロノニトリル、イソプロピルマロノニトリル、tert−ブチルマロノニトリル、メチルスクシノニトリル、2,2−ジメチルスク
シノニトリル、2,3−ジメチルスクシノニトリル、トリメチルスクシノニトリル、テトラメチルスクシノニトリル、2−メチルグルタロニトリル、3,3’−オキシジプロピオニトリル、3,3’−チオジプロピオニトリル、3,3’−(エチレンジオキシ)ジプロピオニトリル、3,3’−(エチレンジチオ)ジプロピオニトリル、フマロニトリル等がニトリル基を2つ有する化合物として挙げられる。
1,2,3−プロパントリカルボニトリル、1,3,5−ペンタントリカルボニトリル、1,2,3−トリス(2−シアノエトキシ)プロパン、トリス(2−シアノエチル)ア
ミン、等がニトリル基を3つ有する化合物として挙げられる。
上記の中ではプロピオニトリル、ブチロニトリル、ラウロニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、セバコニトリル、2−メチルグルタロニトリル、クロトノニトリル、3−メトキシアクリロニトリル、3−メトキシプロピオニトリルが好ましい。これらのニトリルは本発明の一般式(1)で表される化合物と併用するとサイクル特性が向上するだけでなく、ガス発生が抑制でき、内部抵抗が低減できるなど電池特性が特に向上するため好ましい。
本発明の非水系電解液にニトリル化合物が含有される場合、ニトリル化合物は1種類に限られず、複数種を併用してもよい。
また、非水系電解液全量に対し、ニトリル化合物の含有量として(複数種を併用する場合は合計量)は、0.01質量%以上で、好ましくは0.1質量%以上、さらに好ましくは0.5質量%以上であり、また10質量%以下、好ましくは8質量%以下、より好ましくは5質量%以下、最も好ましくは3質量%以下である。上記の範囲内であると、一般式(1)で表される化合物の効果を損なうことなく、サイクル特性が向上するだけでなく、ガス発生が抑制でき、内部抵抗が低減できるなど電池特性を特に向上させることが期待できる。
〔1−5.イソシアネート化合物〕
イソシアネート化合物としては、イソシアナト基(NCO基)を有していれば限定される
ものではないが、以下に挙げるものが好適に用いられる。
イソシアナトメタン、イソシアナトエタン、1−イソシアナトプロパン、1−イソシアナトブタン、1−イソシアナトペンタン、1−イソシアナトヘキサン、1−イソシアナトヘプタン、1−イソシアナトオクタン、1−イソシアナトノナン、1−イソシアナトデカン、イソシアナトシクロヘキサン、
メトキシカルボニルイソシアネート、エトキシカルボニルイソシアネート、プロポキシカルボニルイソシアネート、ブトキシカルボニルイソシアネート、メトキシスルホニルイソシアネート、エトキシスルホニルイソシアネート、プロポキシスルホニルイソシアネート、ブトキシスルホニルイソシアネート、フルオロスルホニルイソシアネート、
1,4−ジイソシアナトブタン、1,5−ジイソシアナトペンタン、1,6−ジイソシアナトヘキサン、1,7−ジイソシアナトヘプタン、1,8−ジイソシアナトオクタン、1,9−ジイソシアナトノナン、1,10−ジイソシアナトデカン、
1,3−ジイソシアナトプロペン、1,4−ジイソシアナト−2−ブテン、1,4−ジイソシアナト−2−フルオロブタン、1,4−ジイソシアナト−2,3−ジフルオロブタン、1,5−ジイソシアナト−2−ペンテン、1,5−ジイソシアナト−2−メチルペンタン、1,6−ジイソシアナト−2−ヘキセン、1,6−ジイソシアナト−3−ヘキセン、1,6−ジイソシアナト−3−フルオロヘキサン、1,6−ジイソシアナト−3,4−ジフルオロヘキサン、
トルエンジイソシアネート、キシレンジイソシアネート、トリレンジイソシアネート、1,2−ビス(イソシアナトメチル)シクロヘキサン、1,3−ビス(イソシアナトメチ
ル)シクロヘキサン、1,4−ビス(イソシアナトメチル)シクロヘキサン、1,2−ジイソシアナトシクロヘキサン、1,3−ジイソシアナトシクロヘキサン、1,4−ジイソシアナトシクロヘキサン、ジシクロヘキシルメタン−1,1’−ジイソシアネート、ジシ
クロヘキシルメタン−2,2’−ジイソシアネート、ジシクロヘキシルメタン−3,3’−ジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、イソホロン
ジイソシアネート、1,6,11−トリイソシアナトウンデカン、4−イソシアナトメチル−1,8−オクタメチレンジイソシアネート、1,3,5−トリイソシアネートメチルベンゼン、ビシクロ[2.2.1]ヘプタン−2,5−ジイルビス(メチルイソシアネート)、ビシクロ[2.2.1]ヘプタン−2,6−ジイルビス(メチルイソシアネート)、1,3,5−トリス(6−イソシアナトヘキサ−1−イル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン、2,4,4−トリメチルヘキサメチレンジイソシアナート、2,2,4−トリメチルヘキサメチレンジイソシアナート、4−(イソシアナトメチル)オクタメチレンジイソシアネート等のイソシアナト化合物が挙げられる。
中でも、メトキシカルボニルイソシアネート、エトキシカルボニルイソシアネート、プロポキシカルボニルイソシアネート、ブトキシカルボニルイソシアネート、メトキシスルホニルイソシアネート、エトキシスルホニルイソシアネート、プロポキシスルホニルイソシアネート、ブトキシスルホニルイソシアネート、フルオロスルホニルイソシアネート、1,4−ジイソシアナトブタン、1,5−ジイソシアナトペンタン、1,6−ジイソシアナトヘキサン、1,7−ジイソシアナトヘプタン、1,8−ジイソシアナトオクタン、1,9−ジイソシアナトノナン、1,10−ジイソシアナトデカン、トルエンジイソシアネート、キシレンジイソシアネート、トリレンジイソシアネート、1,3−ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン−1,1’−ジイソシアネート、
ジシクロヘキシルメタン−2,2’−ジイソシアネート、ジシクロヘキシルメタン−3,3’−ジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、イソホ
ロンジイソシアネート、1,6,11−トリイソシアナトウンデカン、4−イソシアナトメチル−1,8−オクタメチレンジイソシアネート、1,3,5−トリイソシアネートメチルベンゼン、ビシクロ[2.2.1]ヘプタン−2,5−ジイルビス(メチルイソシアネート)、ビシクロ[2.2.1]ヘプタン−2,6−ジイルビス(メチルイソシアネート)、1,3,5−トリス(6−イソシアナトヘキサ−1−イル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン、2,4,4−トリメチルヘキサメチレンジイソシアナート、2,2,4−トリメチルヘキサメチレンジイソシアナート、4−(イソシアナトメチル)オクタメチレンジイソシアネートが好ましい。
これらの中でも、イソシアナト基を2以上有するイソシアネート化合物であると、サイクル特性向上や高温保存特性向上の点から更に好ましい。
具体的には、1,6−ジイソシアナトヘキサン、1,3−ビス(イソシアナトメチル)シクロヘキサン、1,3,5−トリス(6−イソシアナトヘキサ−1−イル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン、2,4,4−トリメチルヘキサメチレンジイソシアナート、2,2,4−トリメチルヘキサメチレンジイソシアナートが特に好ましい。
これらは単独で用いても、2種類以上を併用してもよい。
非水系電解液がイソシアネート化合物を含有する場合、非水系電解液中における含有量は、特に限定されないが、通常0.001質量%以上、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、更に好ましくは0.3質量%以上であり、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは4質量%以下、更に好ましくは3質量%以下である。イソシアネート化合物の含有量が上記範囲にあることにより、サイクル特性が向上するだけでなく、ガス発生が抑制でき、内部抵抗が低減できるなど電池特
性を特に向上させることが期待できる。
〔1−6.芳香族炭化水素〕
芳香族炭化水素としては、芳香族であれば限定されるものではないが、以下に挙げるものが好適に用いられる。
トルエン、クメン、シクロヘキシルベンゼン、t−ブチルベンゼン、t−ペンチルベンゼン、ビフェニル等が好ましく、上記の中ではシクロヘキシルベンゼン、t−ブチルベンゼン、t−ペンチルベンゼン、ビフェニルが更に好ましい。これらの芳香族炭化水素は本発明の一般式(1)で表される化合物と併用すると電池特性が特に向上するため好ましい。
本発明の非水系電解液に芳香族炭化水素が含有される場合、芳香族炭化水素は1種類に限られず、複数種を併用してもよい。
また、非水系電解液全量に対し、芳香族炭化水素の含有量(複数種を併用する場合は合計量)は、特に限定されないが、通常0.01質量%以上であり、好ましくは0.1質量%以上、さらに好ましくは0.5質量%以上であり、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下、最も好ましくは2質量%以下である。上記の範囲内であると、一般式(1)で表される化合物の効果を損なうことなく、サイクル特性が向上するだけでなく、ガス発生が抑制でき、内部抵抗が低減できるなど電池特性を特に向上させることが期待できる。
〔1−7.フッ素化芳香族化合物〕
フッ素化芳香族化合物としては、フッ素化ベンゼン類であれば限定されるものではないが、以下に挙げるものが好適に用いられる。
フルオロベンゼン、ジフルオロベンゼン、トリフルオロベンゼン、テトラフルオロベンゼン、ペンタフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオリド等
上記の中ではフルオロベンゼン、ペンタフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオリドが好ましい。これらのフッ素化ベンゼン類は本発明の(1)式と併用すると、サイクル特性が向上するだけでなく、ガス発生が抑制でき、内部抵抗が低減できるなど電池特性が特に向上するため好ましい。
本発明の非水系電解液にフッ素化ベンゼン類が含有される場合、フッ素化ベンゼン類は1種類に限られず、複数種を併用してもよい。
また、非水系電解液全量に対し、フッ素化ベンゼン類の含有量(複数種を併用する場合は合計量)は、特に限定されないが、通常0.01質量%以上、好ましくは0.1質量%以上、さらに好ましくは0.5質量%以上であり、また、通常20質量%以下、好ましくは15質量%以下、より好ましくは10質量%以下、最も好ましくは5質量%以下である。上記の範囲内であると、一般式(1)で表される化合物の効果を損なうことなく、サイクル特性が向上するだけでなく、ガス発生が抑制でき、内部抵抗が低減できるなど電池特性を特に向上させることが期待できる。
〔1−8.モノフルオロ燐酸塩、ジフルオロ燐酸塩〕
モノフルオロリン酸塩およびジフルオロリン酸塩のカウンターカチオンとしては特に限定はないが、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、及び、NR(式中、R〜Rは、各々独立に、水素原子又は炭素数1〜12の有機基を表わす。)で表されるアンモニウム等が例示として挙げられる。
上記アンモニウムのR〜Rで表わされる炭素数1〜12の有機基としては特に限定はないが、例えば、ハロゲン原子で置換されていてもよいアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいシクロアルキル基、ハロゲン原子又はアルキル基で置
換されていてもよいアリール基、置換基を有していてもよい窒素原子含有複素環基等が挙げられる。中でもR〜Rとして、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、又は窒素原子含有複素環基等が好ましい。
モノフルオロリン酸塩およびジフルオロリン酸塩の具体例としては、モノフルオロリン酸リチウム、モノフルオロリン酸ナトリウム、モノフルオロリン酸カリウム、モノフルオロリン酸テトラメチルアンモニウム、モノフルオロリン酸テトラエチルアンモニウム、ジフルオロリン酸リチウム、ジフルオロリン酸ナトリウム、ジフルオロリン酸カリウム、ジフルオロリン酸テトラメチルアンモニウム、ジフルオロリン酸テトラエチルアンモニウム等が挙げられ、これらの中でもリチウム塩が好ましい。モノフルオロリン酸リチウム、ジフルオロリン酸リチウムが更に好ましく、ジフルオロリン酸リチウムがより好ましい。これらは単独で用いても、2種類以上を併用してもよい。
非水系電解液がモノフルオロリン酸塩および/またはジフルオロリン酸塩を含有する場合、非水系電解液中における含有量は、特に限定されないが、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.2質量%以上であり、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下、特に好ましくは2質量%以下である。上記の範囲内であると、一般式(1)で表される化合物の効果を損なうことなく、サイクル特性が向上するだけでなく、ガス発生が抑制でき、内部抵抗が低減できるなど電池特性を特に向上させることが期待できる。
なお、モノフルオロリン酸塩及びジフルオロリン酸塩は、非水系電解液として実際に二次電池作製に供すると、その電池を解体して再び非水系電解液を抜き出しても、その中の含有量が著しく低下している場合が多い。従って、電池から抜き出した非水系電解液から、少なくとも1種のモノフルオロリン酸塩及び/又はジフルオロリン酸塩が検出できるものは、非水系電解液中にこれらを本発明で規定する所定割合で含む非水系電解液であるとみなされる。
〔1−9.酸無水物〕
酸無水物としては、酸無水物であれば限定されるものではないが、以下に挙げるものが好適に用いられる。
コハク酸無水物、メチルコハク酸無水物、フェニルコハク酸無水物、アリルコハク酸無水物、グルタル酸無水物、マレイン酸無水物、シトラコン酸無水物、フタル酸無水物、シクロヘキサン1,2−ジカルボン酸無水物、イタコン酸無水物、無水酢酸、無水プロピオン酸、アクリル酸無水物、メタクリル酸無水物、クロトン酸無水物、等が挙げられる。
上記の中ではコハク酸無水物、マレイン酸無水物、シトラコン酸無水物、イタコン酸無水物、アクリル酸無水物、メタクリル酸無水物、クロトン酸無水物が好ましい。これらの酸無水物は本発明の一般式(1)で表される化合物と併用するとサイクル特性が向上するだけでなく、ガス発生が抑制でき、内部抵抗が低減できるなど電池特性が特に向上するため好ましい。
本発明の非水系電解液に酸無水物が含有される場合、フッ素化ベンゼン類は1種類に限られず、複数種を併用してもよい。
また、非水系電解液全量に対し、酸無水物の含有量(複数種を併用する場合は合計量)は、特に限定されないが、通常0.01質量%以上、好ましくは0.1質量%以上、さらに好ましくは0.3質量%以上であり、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下、最も好ましくは1質量%以下である。上記の範囲内であると、一般式(1)で表される化合物の効果を損なうことなく、サイクル特性が向上
するだけでなく、ガス発生が抑制でき、内部抵抗が低減できるなど電池特性を特に向上させることが期待できる。
以上に記載したような、本発明の効果が発現されるメカニズムについてはすべて明らかにはなっていないが、以下の様に推察する。すなわち、一般式(1)で表される化合物、および、炭素−炭素三重結合を有する環状カーボネート化合物、フッ素原子を2以上有する環状カーボネート化合物、ニトリル化合物、イソシアネート化合物、芳香族炭化水素、フッ素化芳香族化合物、モノフルオロ燐酸塩、ジフルオロ燐酸塩、酸無水物からなる群より選ばれた少なくとも1種の化合物をそれぞれ単独で用いてしまうと、それらが電極表面に形成する被膜は密で抵抗が高いものとなってしまう。一方で、一般式(1)で表される化合物、および、炭素−炭素三重結合を有する環状カーボネート化合物、フッ素原子を2以上有する環状カーボネート化合物、ニトリル化合物、イソシアネート化合物、芳香族炭化水素、フッ素化芳香族化合物、モノフルオロ燐酸塩、ジフルオロ燐酸塩、酸無水物からなる群より選ばれた少なくとも1種の化合物を同時に用いると、両者の成分が適切に混合された被膜を形成することにより、被膜の緻密さが適度に保たれ、被膜としての性能を保ちつつ、抵抗が低いことが実現されるものと推察される。また、一般式(1)で表される化合物はその構造として、隣接する2つのカルボニル基に対し、炭素原子と酸素原子がそれぞれ結合しているため、隣接する2つのカルボニル基に対し、両方とも炭素原子が結合している場合に比べて対称性が低下するため、上記の効果が大きいと考えられる。
〔1−10.電解質〕
本発明の非水系電解液に用いる電解質に制限は無く、目的とする非水系電解質二次電池に電解質として用いられるものであれば公知のものを任意に採用することができる。本発明の非水系電解液をリチウム二次電池に用いる場合には、通常は、電解質としてリチウム塩を用いる。
電解質の具体例としては、LiClO、LiAsF、LiPF、LiBF、LiSbF、LiSOF、LiN(FSO等の無機リチウム塩;
LiCFSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,3−ヘキサフルオロプロパンジスルホニルイミド、リチウム環状1,2−テトラフルオロエタンジスルホニルイミド、LiN(CFSO)(CSO)、LiC(CFSO、LiPF(CF、LiPF(C、LiPF(CFSO、LiPF(CSO、LiBF(CF、LiBF(C、LiBF(CFSO、LiBF(CSO等の含フッ素有機リチウム塩;
リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート、リチウムトリス(オキサラト)ホスフェート、リチウムジフルオロビス(オキサラト)ホスフェート、リチウムテトラフルオロ(オキサラト)ホスフェート等の含ジカルボン酸錯体リチウム塩などが挙げられる。
これらのうち、非水溶媒への溶解性・解離度、電気伝導度および得られる電池特性の点から、LiPF、LiBF、LiSOF、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート、リチウムトリス(オキサラト)ホスフェート、リチウムジフルオロビス(オキサラト)ホスフェート、リチウムテトラフルオロ(オキサラト)ホスフェートが好ましく、特にLiPF、LiBFが好ましい。
また、電解質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。中でも、特定の無機リチウム塩の2種を併用したり、無機リチウム塩と
含フッ素有機リチウム塩とを併用したりすると、サイクル特性が向上するだけでなく、ガス発生が抑制でき、内部抵抗が低減できるなど電池特性が特に向上するため好ましい。特に、LiPFとLiBFとの併用や、LiPF、LiBF等の無機リチウム塩と、LiCFSO、LiN(CFSO、LiN(CSO等の含フッ素有機リチウム塩とを併用することが好ましい。
更に、LiPFとLiBFとを併用する場合、電解質全体に対してLiBFが通常0.01質量%以上、50質量%以下の比率で含有されていることが好ましい。上記比率は、好ましくは0.05質量%以上、より好ましくは0.1質量%以上であり、一方、好ましくは20質量%以下、より好ましくは10質量%以下、特に好ましくは5質量%以下、最も好ましくは3質量%以下である。比率が上記範囲にあることにより、所望の効果を得やすくなり、また、LiBFの低い解離度により、サイクル特性が向上するだけでなく、ガス発生が抑制でき、内部抵抗が低減できるなど電池特性が特に向上するため好ましい。
一方、LiPF、LiBF等の無機リチウム塩と、LiSOF、LiN(FSO等の無機リチウム塩や、LiCFSO、LiN(CFSO、LiN(CSO、リチウム環状1,3−ヘキサフルオロプロパンジスルホニルイミド、リチウム環状1,2−テトラフルオロエタンジスルホニルイミド、LiN(CFSO)(CSO)、LiC(CFSO、LiPF(CF、LiPF(C、LiPF(CFSO、LiPF(CSO、LiBF(CF、LiBF(C、LiBF(CFSO、LiBF(CSO等の含フッ素有機リチウム塩や、リチウムビス(オキサラト)ボレート、リチウムトリス(オキサラト)ホスフェート、リチウムジフルオロオキサラトボレート、リチウムトリ(オキサラト)ホスフェート、リチウムジフルオロビス(オキサラト)ホスフェート、リチウムテトラフルオロ(オキサラト)ホスフェート等の含ジカルボン酸錯体リチウム塩などとを併用する場合、電解質全体に占める無機リチウム塩の割合は、通常70質量%以上、好ましくは80質量%以上、より好ましくは85質量%以上であり、また、通常99質量%以下、好ましくは95質量%以下である。
本発明の非水系電解液中におけるリチウム塩の濃度は、本発明の要旨を損なわない限り任意であるが、通常0.5mol/L以上、好ましくは0.6mol/L以上、より好ましくは0.8mol/L以上であり、また、通常3mol/L以下、好ましくは2mol/L以下、より好ましくは1.8mol/L以下、更に好ましくは1.6mol/L以下の範囲である。リチウム塩の濃度が上記範囲にあることにより、非水系電解液の電気伝導率が十分となり、また、粘度上昇による電気伝導率が低下、本発明の非水系電解液を用いた非水系電解液二次電池の性能の低下を抑制する。
〔1−11.非水溶媒〕
本発明の非水系電解液が含有する非水溶媒としては、従来から非水系電解液の溶媒として公知のものの中から適宜選択して用いることができる。
通常使用される非水溶媒の例としては、環状カーボネート、鎖状カーボネート、鎖状及び環状カルボン酸エステル、鎖状及び環状エーテル、含リン有機溶媒、含硫黄有機溶媒、芳香族含フッ素溶媒等が挙げられる。
環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネートが挙げられ、環状カーボネートの炭素数は、通常3以上6以下である。これらの中でも、エチレンカーボネート、プロピレンカーボネートは、誘電率が高いため電解質が溶解し易く、非水系電解液二次電池にしたときにサイクル特性が良いという点で好ましい。また、これらの化合物の水素の一部をフッ素で置換した環
状カーボネートも挙げられる。フッ素で置換した環状カーボネートとしては、フルオロエチレンカーボネート、1,2−ジフルオロエチレンカーボネート、1,1−ジフルオロエチレンカーボネート、1,1,2−トリフルオロエチレンカーボネート、テトラフルオロエチレンカーボネート、1−フルオロ−2−メチルエチレンカーボネート、1−フルオロ−1−メチルエチレンカーボネート、1,2−ジフルオロ−1−メチルエチレンカーボネート、1,1,2−トリフルオロ−2−メチルエチレンカーボネート、トリフルオロメチルエチレンカーボネート等のフッ素で置換した炭素数3〜5の環状カーボネート類が挙げられ、これらの中でもフルオロエチレンカーボネート、1,2−ジフルオロエチレンカーボネート、トリフルオロメチルエチレンカーボネートが好ましい。
鎖状カーボネートとしては、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチル−n−プロピルカーボネート、エチル−n−プロピルカーボネート、ジ−n−プロピルカーボネート等の鎖状カーボネートが挙げられ、構成するアルキル基の炭素数は、1以上5以下が好ましく、特に好ましくは1以上4以下である。中でも、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートが電池特性向上の点から好ましい。また、アルキル基の水素の一部をフッ素で置換した鎖状カーボネート類も挙げられる。フッ素で置換した鎖状カーボネートとしては、ビス(フルオロメチル)カーボネート、ビス(ジフルオロメチル)カーボネート、ビス(トリフルオロメチル)カーボネート、ビス(2−フルオロエチル)カーボネート、ビス(2,2−ジフルオロエチル)カーボネート、ビス(2,2,2−トリフルオロエチル)カーボネート、2−フルオロエチルメチルカーボネート、2,2−ジフルオロエチルメチルカーボネート、2,2,2−トリフルオロエチルメチルカーボネート等が挙げられる。
鎖状カルボン酸エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸sec−ブチル、酢酸イソブチル、酢酸t−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸イソプロピル、酪酸メチル、酪酸エチル、酪酸プロピル、イソ酪酸メチル、イソ酪酸エチル、吉草酸メチル、吉草酸エチル、ピバル酸メチル、ピバル酸エチル等及びこれらの化合物の水素の一部をフッ素で置換した鎖状カルボン酸エステルが挙げられる。フッ素で置換した鎖状カルボン酸エステルとしては、トリフルオロ酢酸メチル、トリフルオロ酢酸エチル、トリフルオロ酢酸プロピル、トリフルオロ酢酸ブチル、トリフルオロ酢酸2,2,2−トリフルオロエチル等が挙げられる。この中でも、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、酪酸エチル、吉草酸メチル、イソ酪酸メチル、イソ酪酸エチル、ピバル酸メチルが電池特性向上の点から好ましい。
環状カルボン酸エステルとしては、γ−ブチロラクトン、γ−バレロラクトン等及びこれらの化合物の水素の一部をフッ素で置換した環状カルボン酸エステルが挙げられる。これらの中でも、γ−ブチロラクトンがより好ましい。
鎖状エーテルとしては、ジメトキシメタン、1,1−ジメトキシエタン、1,2−ジメトキシエタン、ジエトキシメタン、1,1−ジエトキシエタン、1,2−ジエトキシエタン、エトキシメトキシメタン、1,1−エトキシメトキシエタン、1,2−エトキシメトキシエタン等及びこれらの化合物の水素の一部をフッ素で置換した鎖状エーテルが挙げられる。フッ素で置換した鎖状エーテルとして、ビス(トリフルオロエトキシ)エタン、エトキシトリフルオロエトキシエタン、メトキシトリフルオロエトキシエタン、1,1,1,2,2,3,4,5,5,5−デカフルオロ−3−メトキシ−4−トリフルオロメチル−ペンタン、1,1,1,2,2,3,4,5,5,5−デカフルオロ−3−エトキシ−4−トリフルオロメチル−ペンタン、1,1,1,2,2,3,4,5,5,5−デカフルオロ−3−プロポキシ−4−トリフルオロメチル−ペンタン、1,1,2,2−テトラフルオロエチル−2,2,3,3−テトラフルオロプロピルエーテル、2,2−ジフルオロ
エチル−2,2,3,3−テトラフルオロプロピルエーテル等が挙げられる。これらの中でも、1,2−ジメトキシエタン、1,2−ジエトキシエタンがより好ましい。
環状エーテルとしては、テトラヒドロフラン、2−メチルテトラヒドロフラン等及びこれらの化合物の水素の一部をフッ素で置換した環状エーテルが挙げられる。
含リン有機溶媒としては、リン酸トリメチル、リン酸トリエチル、リン酸ジメチルエチル、リン酸メチルジエチル、リン酸エチレンメチル、リン酸エチレンエチル、リン酸トリフェニル、亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリフェニル、トリメチルホスフィンオキシド、トリエチルホスフィンオキシド、トリフェニルホスフィンオキシド等及びこれらの化合物の水素の一部をフッ素で置換した含リン有機溶媒が挙げられる。フッ素で置換した含リン有機溶媒として、リン酸トリス(2,2,2−トリフルオロエチル)、リン酸トリス(2,2,3,3,3−ペンタフルオロプロピル)などが挙げられる。
含硫黄有機溶媒としては、スルホラン、2−メチルスルホラン、3−メチルスルホラン、ジメチルスルホン、ジエチルスルホン、エチルメチルスルホン、メチルプロピルスルホン、ジメチルスルホキシド、メタンスルホン酸メチル、メタンスルホン酸エチル、エタンスルホン酸メチル、エタンスルホン酸エチル、硫酸ジメチル、硫酸ジエチル、硫酸ジブチル等及びこれらの化合物の水素の一部をフッ素で置換した含硫黄有機溶媒が挙げられる。
上記の非水溶媒の中でも、環状カーボネートであるエチレンカーボネート及び/又はプロピレンカーボネートを用いることが好ましく、更にこれらと鎖状カーボネートとを併用することが電解液の高い電導度と低い粘度を両立できる点から好ましい。
非水溶媒は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。2種以上を併用する場合、例えば環状カーボネートと鎖状カーボネートとを併用する場合、非水溶媒中に占める鎖状カーボネートの好適な含有量は、通常20体積%以上、好ましくは40体積%以上であり、また、通常95体積%以下、好ましくは90体積%以下である。一方、非水溶媒中に占める環状カーボネートの好適な含有量は、通常5体積%以上、好ましくは10体積%以上であり、また、通常80体積%以下、好ましくは60体積%以下である。鎖状カーボネートの割合が上記範囲にあることにより、非水系電解液の粘度上昇を抑制し、また、電解質であるリチウム塩の解離度の低下による非水系電解液の電気伝導率低下を抑制する。ただし、フルオロエチレンカーボネートは溶媒として用いても添加剤として用いてもよく、その場合は上記の含有量に限定されない。
なお、本明細書において、非水溶媒の体積は25℃での測定値であるが、エチレンカーボネートのように25℃で固体のものは融点での測定値を用いる。
〔1−12.その他の添加剤〕
本発明の非水系電解液は、本発明の効果を著しく損なわない範囲において、各種の添加剤を含有していてもよい。添加剤としては、従来公知のものを任意に用いることができる。尚、添加剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で
併用してもよい。
(不飽和結合を有する環状カーボネート化合物)
不飽和結合を有する環状カーボネート化合物としては、例えば、ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、1,2−ジメチルビニレンカーボネート、1,2−ジエチルビニレンカーボネート、フルオロビニレンカーボネート、トリフルオロメチルビニレンカーボネート等のビニレンカーボネート化合物類;ビニルエチレンカーボネート、1−メチル−2−ビニルエチレンカーボネート、1−エチル−2−ビニルエチレンカーボネート、1−n−プロピル−2−ビニルエチレンカーボネート、1−メチル−2−ビニルエチレンカーボネート、1,1−ジビニルエチレンカーボネー
ト、1,2−ジビニルエチレンカーボネート等のビニルエチレンカーボネート化合物類;1,1−ジメチル−2−メチレンエチレンカーボネート、1,1−ジエチル−2−メチレンエチレンカーボネート等のメチレンエチレンカーボネート化合物類、等が挙げられる。これらは単独で用いても、2種以上を併用してもよい。
不飽和結合を有する環状カーボネート化合物を含有する場合、非水系電解液中における含有量は、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.3質量%以上であり、また、通常10質量%以下、好ましくは8質量%以下、より好ましくは6質量%以下である。炭素−炭素不飽和結合を有する環状カーボネート化合物の含有量が上記範囲にあることにより、サイクル特性が向上するだけでなく、ガス発生が抑制でき、内部抵抗が低減できるなど電池特性が特に向上するため好ましい。
(フッ素原子を有する環状カーボネート化合物)
フッ素原子を有する環状カーボネート化合物としては、例えば、1,1,2−トリフルオロエチレンカーボネート、テトラフルオロエチレンカーボネート、1−フルオロ−2−メチルエチレンカーボネート、1−フルオロ−1−メチルエチレンカーボネート、1,2−ジフルオロ−1−メチルエチレンカーボネート、1,1,2−トリフルオロ−2−メチルエチレンカーボネート、トリフルオロメチルエチレンカーボネート等が挙げられる。これらのうち、1−フルオロ−2−メチルエチレンカーボネートがガス発生の抑制や内部抵抗の低下の点から好ましい。これらは単独で用いても、2種類以上を併用してもよい。
非水系電解液がフッ素原子を有する環状カーボネート化合物を含有する場合、非水系電解液中における含有量は、特に限定されないが、通常0.001質量%以上、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、更に好ましくは0.5質量%以上であり、通常10質量%以下、好ましくは5質量%以下、より好ましくは4質量%以下、更に好ましくは3質量%以下である。ただし、フルオロエチレンカーボネートは溶媒として用いてもよく、その場合は上記の含有量に限定されない。上記の範囲内であると、サイクル特性が向上するだけでなく、ガス発生が抑制でき、内部抵抗が低減できるなど電池特性が特に向上するため好ましい。
(過充電防止剤)
過充電防止剤の具体例としては、2−メチルビフェニル、2−エチルビフェニル等のアルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロペンチルベンゼン、シス−1−プロピル−4−フェニルシクロヘキサン、トランス−1−プロピル−4−フェニルシクロヘキサン、シス−1−ブチル−4−フェニルシクロヘキサン、トランス−1−ブチル−4−フェニルシクロヘキサン、ジフェニルエーテル、ジベンゾフラン、エチルフェニルカーボネート、トリス(2−t−アミルフェニル)ホスフェート、トリス(3−
t−アミルフェニル)ホスフェート、トリス(4−t−アミルフェニル)ホスフェート、ト
リス(2−シクロヘキシルフェニル)ホスフェート、トリス(3−シクロヘキシルフェニル)ホスフェート、トリス(4−シクロヘキシルフェニル)ホスフェート、トリフェニルホスフェート、トリトリルホスフェート、トリ(t-ブチルフェニル)ホスフェート、メチルフェニルカーボネート、ジフェニルカーボネート等の芳香族化合物;2−フルオロビフェニル、3−フルオロビフェニル、4−フルオロビフェニル、4,4’−ジフルオロビフェニル、2,4−ジフルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘ
キシルフルオロベンゼン等の芳香族化合物の部分フッ素化物;2,4−ジフルオロアニソール、2,5−ジフルオロアニソール、2,6−ジフルオロアニソール、3,5−ジフルオロアニソール等の含フッ素アニソール化合物等が挙げられる。
非水系電解液中におけるこれらの過充電防止剤の含有量は、特に限定されないが、通常0.1質量%以上、好ましくは0.2質量%以上、より好ましくは0.3質量%以上、更
に好ましくは0.5質量%以上であり、また、通常5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下である。上記の範囲内であると、ガス発生が抑制できるなど電池特性が特に向上するため好ましい。非水系電解液に過充電防止剤を含有させることによって、過充電による非水系電解液二次電池の破裂・発火を抑制することができ、非水系電解液二次電池の安全性が向上するので好ましい。
他の助剤としては、エリスリタンカーボネート、スピロ−ビス−ジメチレンカーボネート、メトキシエチル−メチルカーボネート、メトキシエチル−エチルカーボネート、エトキシエチル−メチルカーボネート、エトキシエチル−エチルカーボネート等のカーボネート化合物;コハク酸ジメチル、コハク酸ジエチル、コハク酸ジアリル、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジアリル、マレイン酸ジプロピル、マレイン酸ジブチル、マレイン酸ビス(トリフルオロメチル)、マレイン酸ビス(ペンタフルオロエチル)、マレイン酸ビス(2,2,2−トリフルオロエチル)等のジカルボン酸ジエステル化合物;2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ジビニル−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン等のスピロ化合物;エチレンサルファイト、プロピレンサルファイト、1,3−プロパンスルトン、1,4−ブタンスルトン、1,3−プロペンスルトン、1,4−ブテンスルトン、メチルメタンスルホネート、エチルメタンスルホネート、メチル−メトキシメタンスルホネート、メチル−2−メトキシエタンスルホネート、ブスルファン、ジエチレングリコールジメタンスルホネート、1,2−エタンジオールビス(2,2,2−トリフルオロエタンスルホネート)、1,4−ブタンジオールビス(2,2,2−トリフルオロエタンスルホネート)、スルホラン、3−スルホレン、2−スルホレン、ジメチルスルホン、ジエチルスルホン、ジビニルスルホン、ジフェニルスルホン、ビス(メチルスルホニル)メタン、ビス(メチルスルホニル)エタン、ビス(エチルスルホニル)メタン、ビス(エチルスルホニル)エタン、ビス(ビニルスルホニル)メタン、ビス(ビニルスルホニル)エタン、等の含硫黄化合物;1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン及びN−メチルスクシイミド等の含窒素化合物;ヘプタン、オクタン、ノナン、デカン、シクロヘプタン、メチルシクロヘキサン、エチルシクロヘキサン、プロピルシクロヘキサン、n−ブチルシクロヘキサン、t−ブチルシクロヘキサン、ジシクロヘキシル等の炭化水素化合物;メチルジメチルホスフィネート、エチルジメチルホスフィネート、エチルジエチルホスフィネート、トリメチルホスホノフォルメート、トリエチルホスホノフォルメート、トリメチルホスホノアセテート、トリエチルホスホノアセテート、トリメチル−3−ホスホノプロピオネート、トリエチル−3−ホスホノプロピオネート等の含リン化合物等が挙げられる。これらの中で、高温保存後の電池特性向上の点からエチレンサルファイト、1,3−プロパンスルトン、1,4−ブタンスルトン、1,3−プロペンスルトン、1,4−ブテンスルトン、ブスルファン、1,4−ブタンジオールビス(2,2,2−トリフルオロエタンスルホネート)等の含硫黄化合物が好ましい。これらは2種以上併用して用いてもよい。
非水系電解液中におけるこれらの助剤の含有量は、特に限定されないが、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.2質量%以上であり、また、通常8質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは2質量%以下である。これらの助剤を添加することは、高温保存後の容量維持特性やサイクル特性を向上させる点で好ましい。この濃度が上記範囲にあることにより、助剤の効果が発現しやすくなり、ガス発生が抑制でき、内部抵抗が低減できるなど電池特性が特に向上するため好ましい。
以上に記載してきた非水系電解液は、本発明に記載の非水系電解液電池の内部に存在するものも含まれる。具体的には、リチウム塩や溶媒、助剤等の非水系電解液の構成要素を別途合成し、実質的に単離されたものから非水系電解液を調整し、下記に記載する方法に
て別途組み立てた電池内に注液して得た非水系電解液電池内の非水系電解液である場合や、本発明の非水系電解液の構成要素を個別に電池内に入れておき、電池内にて混合させることにより本発明の非水系電解液と同じ組成を得る場合、更には、本発明の非水系電解液を構成する化合物を該非水系電解液電池内で発生させて、本発明の非水系電解液と同じ組成を得る場合も含まれるものとする。
〔2.非水系電解液二次電池〕
本発明の非水系電解液二次電池はイオンを吸蔵及び放出し得る負極及び正極と前記の本発明非水電解液とを備えるものである。
〔2−1.電池構成〕
本発明の非水系電解液二次電池は、負極及び非水系電解液以外の構成については、従来公知の非水系電解液二次電池と同様であり、通常は、本発明の非水系電解液が含浸されている多孔膜(セパレータ)を介して正極と負極とが積層され、これらがケース(外装体)に収納された形態を有する。従って、本発明の非水系電解液二次電池の形状は特に制限されるものではなく、円筒型、角形、ラミネート型、コイン型、大型等の何れであってもよい。
〔2−2.非水系電解液〕
非水系電解液としては、上述の本発明の非水系電解液を用いる。なお、本発明の趣旨を逸脱しない範囲において、本発明の非水系電解液に対し、その他の非水系電解液を配合して用いることも可能である。
〔2−3.負極〕
以下に負極に使用される負極活物質について述べる。負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、特に制限はない。具体例としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。これらは1種を単独で用いてもよく、また2種以上を任意に組み合わせて併用してもよい。
<負極活物質>
負極活物質としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。
炭素質材料としては、(1)天然黒鉛、(2)人造黒鉛、(3)非晶質炭素、(4)炭素被覆黒鉛、(5)黒鉛被覆黒鉛、(6)樹脂被覆黒鉛等が挙げられる。
(1)天然黒鉛としては、鱗状黒鉛、鱗片状黒鉛、土壌黒鉛及び/又はこれらの黒鉛を原料に球形化や緻密化等の処理を施した黒鉛粒子等が挙げられる。これらの中でも、粒子の充填性や充放電レート特性の観点から、球形化処理を施した球状もしくは楕円体状の黒鉛が特に好ましい。
球形化処理に用いる装置としては、例えば、衝撃力を主体に粒子の相互作用も含めた圧縮、摩擦、せん断力等の機械的作用を繰り返し粒子に与える装置を用いることができる。具体的には、ケーシング内部に多数のブレードを設置したローターを有し、そのローターが高速回転することによって、内部に導入された炭素材に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、球形化処理を行なう装置が好ましい。また、炭素材を循環させることによって機械的作用を繰り返して与える機構を有するものであるのが好ましい。
例えば前述の装置を用いて球形化処理する場合は、回転するローターの周速度を30〜100m/秒にするのが好ましく、40〜100m/秒にするのがより好ましく、50〜100m/秒にするのが更に好ましい。また、処理は、単に炭素質物を通過させるだけでも可能であるが、30秒以上装置内を循環又は滞留させて処理するのが好ましく、1分以
上装置内を循環又は滞留させて処理するのがより好ましい。
(2)人造黒鉛としては、コールタールピッチ、石炭系重質油、常圧残油、石油系重質油、芳香族炭化水素、窒素含有環状化合物、硫黄含有環状化合物、ポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリアクリロニトリル、ポリビニルブチラール、天然高分子、ポリフェニレンサイルファイド、ポリフェニレンオキシド、フルフリルアルコール樹脂、フェノール−ホルムアルデヒド樹脂、イミド樹脂などの有機化合物を、通常2500℃以上、通常3200℃以下の範囲の温度で黒鉛化し、必要に応じて粉砕及び/又は分級して製造されたものが挙げられる。この際、珪素含有化合物やホウ素含有化合物などを黒鉛化触媒として用いることもできる。また、ピッチの熱処理過程で分離したメソカーボンマイクロビーズを黒鉛化して得た人造黒鉛が挙げられる。更に一次粒子からなる造粒粒子の人造黒鉛も挙げられる。例えば、メソカーボンマイクロビーズや、コークス等の黒鉛化可能な炭素質材料粉体とタール、ピッチ等の黒鉛化可能なバインダーと黒鉛化触媒を混合し、黒鉛化し、必要に応じて粉砕することで得られる、扁平状の粒子を複数、配向面が非平行となるように集合又は結合した黒鉛粒子が挙げられる。
(3)非晶質炭素としては、タール、ピッチ等の易黒鉛化性炭素前駆体を原料に用い、黒鉛化しない温度領域(400〜2200℃の範囲)で1回以上熱処理した非晶質炭素粒子や、樹脂などの難黒鉛化性炭素前駆体を原料に用いて熱処理した非晶質炭素粒子が挙げられる。
(4)炭素被覆黒鉛としては、天然黒鉛及び/又は人造黒鉛と、タール、ピッチや樹脂等の有機化合物である炭素前駆体を混合し、400〜2300℃の範囲で1回以上熱処理し得られる天然黒鉛及び/又は人造黒鉛を核黒鉛とし、非晶質炭素が核黒鉛を被覆している炭素黒鉛複合体が挙げられる。複合の形態は、表面全体または一部を被覆しても、複数の一次粒子を前記炭素前駆体起源の炭素をバインダーとして複合させたものであってもよい。また、天然黒鉛及び/又は人造黒鉛にベンゼン、トルエン、メタン、プロパン、芳香族系の揮発分等の炭化水素系ガス等を高温で反応させ、黒鉛表面に炭素を堆積(CVD)さ
せることでも炭素黒鉛複合体を得ることもできる。
(5)黒鉛被覆黒鉛としては、天然黒鉛及び/又は人造黒鉛と、タール、ピッチや樹脂等の易黒鉛化性の有機化合物の炭素前駆体を混合し、2400〜3200℃程度の範囲で1回以上熱処理し得られる天然黒鉛及び/又は人造黒鉛を核黒鉛とし、黒鉛化物が核黒鉛の表面全体または一部を被覆している黒鉛被覆黒鉛が挙げられる。
(6)樹脂被覆黒鉛としては、天然黒鉛及び/又は人造黒鉛と、樹脂等を混合、400℃以下の温度で乾燥し得られる天然黒鉛及び/又は人造黒鉛を核黒鉛とし、樹脂等が核黒鉛を被覆している樹脂被覆黒鉛が挙げられる。
また、(1)〜(6)の炭素質材料は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記(2)〜(5)に用いられるタール、ピッチや樹脂等の有機化合物としては、石炭系重質油、直流系重質油、分解系石油重質油、芳香族炭化水素、N環化合物、S環化合物、ポリフェニレン、有機合成高分子、天然高分子、熱可塑性樹脂及び熱硬化性樹脂からなる群より選ばれた炭化可能な有機化合物などが挙げられる。また、原料有機化合物は混合時の粘度を調整するため、低分子有機溶媒に溶解させて用いてもよい。
また、核黒鉛の原料となる天然黒鉛及び/又は人造黒鉛としては、球形化処理を施した天然黒鉛が好ましい。
負極活物質として用いられる合金系材料としては、リチウムを吸蔵・放出可能であれば、リチウム単体、リチウム合金を形成する単体金属及び合金、又はそれらの酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の化合物のいずれであってもよく、特
に制限されない。リチウム合金を形成する単体金属及び合金としては、13族及び14族の金属・半金属元素(即ち炭素を除く)を含む材料であることが好ましく、より好ましくはアルミニウム、ケイ素及びスズの単体金属及びこれら原子を含む合金又は化合物である。これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
<炭素質材料の物性>
負極活物質として炭素質材料を用いる場合、以下の物性を有するものであることが望ましい。
(X線パラメータ)
炭素質材料の学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が、通常0.335nm以上であり、また、通常0.360nm以下であり、0.350nm以下が好ましく、0.345nm以下がさらに好ましい。また、学振法によるX線回折で求めた炭素質材料の結晶子サイズ(Lc)は、1.0nm以上であることが好ましく、中でも1.5nm以上であることがさらに好ましい。
(体積基準平均粒径)
炭素質材料の体積基準平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)であり、通常1μm以上であり、3μm以上が好ましく、5μm以上がさらに好ましく、7μm以上が特に好ましく、また、通常100μm以下であり、50μm以下が好ましく、40μm以下がより好ましく、30μm以下がさらに好ましく、25μm以下が特に好ましい。
体積基準平均粒径が上記範囲を下回ると、不可逆容量が増大して、初期の電池容量の損失を招くことになる場合がある。また、上記範囲を上回ると、塗布により電極を作製する際に、不均一な塗面になりやすく、電池製作工程上望ましくない場合がある。
体積基準平均粒径の測定は、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約10mL)に炭素粉末を分散させて、レーザー回折・散乱式粒度分布計(例えば、堀場製作所社製LA−700)を用いて行なう。該測定で求められるメジアン径を、本発明の炭素質材料の体積基準平均粒径と定義する。
(ラマンR値)
炭素質材料のラマンR値は、レーザーラマンスペクトル法を用いて測定した値であり、通常0.01以上であり、0.03以上が好ましく、0.1以上がさらに好ましく、また、通常1.5以下であり、1.2以下が好ましく、1以下がさらに好ましく、0.5以下が特に好ましい。
ラマンR値が上記範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってLiが層間に入るサイトが少なくなる場合がある。即ち、充電受入性が低下する場合がある。また、集電体に塗布した後、プレスすることによって負極を高密度化した場合に電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く場合がある。
一方、上記範囲を上回ると、粒子表面の結晶性が低下し、非水系電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。
ラマンスペクトルの測定は、ラマン分光器(例えば、日本分光社製ラマン分光器)を用いて、試料を測定セル内へ自然落下させて充填し、セル内のサンプル表面にアルゴンイオンレーザー光(若しくは半導体レーザー光)を照射しながら、セルをレーザー光と垂直な面内で回転させることにより行なう。得られるラマンスペクトルについて、1580cm−1付近のピークPの強度Iと、1360cm−1付近のピークPの強度Iとを測定し、その強度比R(R=I/I)を算出する。該測定で算出されるラマンR値を
、本発明の炭素質材料のラマンR値と定義する。
また、上記のラマン測定条件は、次の通りである。
・レーザー波長 :Arイオンレーザー514.5nm(半導体レーザー532nm)
・測定範囲 :1100cm−1〜1730cm−1
・ラマンR値:バックグラウンド処理、
・スムージング処理 :単純平均、コンボリューション5ポイント
(BET比表面積)
炭素質材料のBET比表面積は、BET法を用いて測定した比表面積の値であり、通常0.1m・g−1以上であり、0.7m・g−1以上が好ましく、1.0m・g−1以上がさらに好ましく、1.5m・g−1以上が特に好ましく、また、通常100m・g−1以下であり、25m・g−1以下が好ましく、15m・g−1以下がさらに好ましく、10m・g−1以下が特に好ましい。
BET比表面積の値がこの範囲を下回ると、負極材料として用いた場合の充電時にリチウムの受け入れ性が悪くなりやすく、リチウムが電極表面で析出しやすくなり、安定性が低下する可能性がある。一方、この範囲を上回ると、負極材料として用いた時に非水系電解液との反応性が増加し、ガス発生が多くなりやすく、好ましい電池が得られにくい場合がある。
BET法による比表面積の測定は、表面積計(例えば、大倉理研製全自動表面積測定装置)を用いて、試料に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって行なう。
(円形度)
炭素質材料の球形の程度として円形度を測定した場合、以下の範囲に収まることが好ましい。なお、円形度は、「円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)」で定義され、円形度が1のときに理論的真球となる。
炭素質材料の粒径が3〜40μmの範囲にある粒子の円形度は1に近いほど望ましく、また、0.1以上が好ましく、中でも0.5以上が好ましく、0.8以上がより好ましく、0.85以上がさらに好ましく、0.9以上が特に好ましい。高電流密度充放電特性は、円形度が大きいほど向上する。従って、円形度が上記範囲を下回ると、負極活物質の充填性が低下し、粒子間の抵抗が増大して、短時間高電流密度充放電特性が低下する場合がある。
円形度の測定は、フロー式粒子像分析装置(例えば、シスメックス社製FPIA)を用いて行う。試料約0.2gを、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約50mL)に分散させ、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6〜400μmに指定し、粒径が3〜40μmの範囲の粒子について測定する。
円形度を向上させる方法は、特に制限されないが、球形化処理を施して球形にしたものが、電極体にしたときの粒子間空隙の形状が整うので好ましい。球形化処理の例としては、せん断力、圧縮力を与えることによって機械的に球形に近づける方法、複数の微粒子をバインダーもしくは、粒子自身の有する付着力によって造粒する機械的・物理的処理方法等が挙げられる。
(タップ密度)
炭素質材料のタップ密度は、通常0.1g・cm−3以上であり、0.5g・cm−3以上が好ましく、0.7g・cm−3以上がさらに好ましく、1g・cm−3以上が特に好ましく、また、2g・cm−3以下が好ましく、1.8g・cm−3以下がさらに好ましく、1.6g・cm−3以下が特に好ましい。タップ密度が、上記範囲を下回ると、負極として用いた場合に充填密度が上がり難く、高容量の電池を得ることができない場合がある。また、上記範囲を上回ると、電極中の粒子間の空隙が少なくなり過ぎ、粒子間の導電性が確保され難くなり、好ましい電池特性が得られにくい場合がある。
タップ密度の測定は、目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセルの上端面まで試料を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量からタップ密度を算出する。
(配向比)
炭素質材料の配向比は、通常0.005以上であり、0.01以上が好ましく、0.015以上がさらに好ましく、また、通常0.67以下である。配向比が、上記範囲を下回ると、高密度充放電特性が低下する場合がある。なお、上記範囲の上限は、炭素質材料の配向比の理論上限値である。
配向比は、試料を加圧成型してからX線回折により測定する。試料0.47gを直径17mmの成型機に充填し58.8MN・m−2で圧縮して得た成型体を、粘土を用いて測定用試料ホルダーの面と同一面になるようにセットしてX線回折を測定する。得られた炭素の(110)回折と(004)回折のピーク強度から、(110)回折ピーク強度/(004)回折ピーク強度で表わされる比を算出する。
X線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット:
発散スリット=0.5度
受光スリット=0.15mm
散乱スリット=0.5度
・測定範囲及びステップ角度/計測時間:
(110)面:75度≦2θ≦80度 1度/60秒
(004)面:52度≦2θ≦57度 1度/60秒
(アスペクト比(粉))
炭素質材料のアスペクト比は、通常1以上、また、通常10以下であり、8以下が好ましく、5以下がさらに好ましい。アスペクト比が、上記範囲を上回ると、極板化時にスジ引きや、均一な塗布面が得られず、高電流密度充放電特性が低下する場合がある。なお、上記範囲の下限は、炭素質材料のアスペクト比の理論下限値である。
アスペクト比の測定は、炭素質材料の粒子を走査型電子顕微鏡で拡大観察して行う。厚さ50μm以下の金属の端面に固定した任意の50個の黒鉛粒子を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、3次元的に観察した時の炭素質材料粒子の最長となる径Aと、それと直交する最短となる径Bを測定し、A/Bの平均値を求める。
<負極の構成と作製法>
電極の製造は、本発明の効果を著しく損なわない限り、公知のいずれの方法を用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることに
よって形成することができる。
また、合金系材料を用いる場合には、蒸着法、スパッタ法、メッキ法等の手法により、上述の負極活物質を含有する薄膜層(負極活物質層)を形成する方法も用いられる。
(電極密度)
負極活物質を電極化した際の電極構造は特に制限されないが、集電体上に存在している負極活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上がさらに好ましく、1.3g・cm−3以上が特に好ましく、また、2.2g・cm−3以下が好ましく、2.1g・cm−3以下がより好ましく、2.0g・cm−3以下がさらに好ましく、1.9g・cm−3以下が特に好ましい。集電体上に存在している負極活物質の密度が、上記範囲を上回ると、負極活物質粒子が破壊され、初期不可逆容量の増加や、集電体/負極活物質界面付近への非水系電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また、上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
〔2−4.正極〕
<正極活物質>
以下に正極に使用される正極活物質(リチウム遷移金属系化合物)について述べる。
<リチウム遷移金属系化合物>
リチウム遷移金属系化合物とは、Liイオンを脱離、挿入することが可能な構造を有する化合物であり、例えば、硫化物やリン酸塩化合物、リチウム遷移金属複合酸化物などが挙げられる。硫化物としては、TiSやMoSなどの二次元層状構造をもつ化合物や、一般式MeMo(MeはPb,Ag,Cuをはじめとする各種遷移金属)で表される強固な三次元骨格構造を有するシュブレル化合物などが挙げられる。リン酸塩化合物としては、オリビン構造に属するものが挙げられ、一般的にはLiMePO(Meは少なくとも1種以上の遷移金属)で表され、具体的にはLiFePO、LiCoPO、LiNiPO、LiMnPOなどが挙げられる。リチウム遷移金属複合酸化物としては、三次元的拡散が可能なスピネル構造や、リチウムイオンの二次元的拡散を可能にする層状構造に属するものが挙げられる。スピネル構造を有するものは、一般的にLiMe(Meは少なくとも1種以上の遷移金属)と表され、具体的にはLiMn、LiCoMnO、LiNi0.5Mn1.5、LiCoVOなどが挙げられる。層状構造を有するものは、一般的にLiMeO(Meは少なくとも1種以上の遷移金属)と表される。具体的にはLiCoO、LiNiO、LiNi1−xCo、LiNi1−x−yCoMn、LiNi0.5Mn0.5、Li1.2Cr0.4Mn0.4、Li1.2Cr0.4Ti0.4、LiMnOなどが挙げられる。
(組成)
また、リチウム含有遷移金属化合物は、例えば、下記組成式(A)または(B)で示されるリチウム遷移金属系化合物であることが挙げられる。
1)下記組成式(A)で示されるリチウム遷移金属系化合物である場合
Li1+xMO ・・・(A)
ただし、xは通常0以上、0.5以下である。Mは、Ni及びMn、或いは、Ni、Mn及びCoから構成される元素であり、Mn/Niモル比は通常0.1以上、5以下である。Ni/Mモル比は通常0以上、0.5以下である。Co/Mモル比は通常0以上、0.5以下である。なお、xで表されるLiのリッチ分は、遷移金属サイトMに置換している場合もある。
なお、上記組成式(A)においては、酸素量の原子比は便宜上2と記載しているが、多少の不定比性があってもよい。また、上記組成式中のxは、リチウム遷移金属系化合物の
製造段階での仕込み組成である。通常、市場に出回る電池は、電池を組み立てた後に、エージングを行っている。そのため、充放電に伴い、正極のLi量は欠損している場合がある。その場合、組成分析上、3Vまで放電した場合のxが−0.65以上、1以下に測定されることがある。
また、リチウム遷移金属系化合物は、正極活物質の結晶性を高めるために酸素含有ガス雰囲気下で高温焼成を行って焼成されたものが電池特性に優れる。
さらに、組成式(A)で示されるリチウム遷移金属系化合物は、以下一般式(A’)のとおり、213層と呼ばれるLiMOとの固溶体であってもよい。
αLiMO・(1−α)LiM’O・・・(A’)
一般式中、αは、0<α<1を満たす数である。
Mは、平均酸化数が4である少なくとも一種の金属元素であり、具体的には、Mn、Zr、Ti、Ru、Re及びPtからなる群より選択される少なくとも一種の金属元素である。
M’は、平均酸化数が3である少なくとも一種の金属元素であり、好ましくは、V、Mn、Fe、Co及びNiからなる群より選択される少なくとも一種の金属元素であり、より好ましくは、Mn、Co及びNiからなる群より選択される少なくとも一種の金属元素である。
2)下記一般式(B)で表されるリチウム遷移金属系化合物である場合。
Li[LiMn2−b−a]O4+δ・・・(B)
ただし、Mは、Ni、Cr、Fe、Co、Cu、Zr、AlおよびMgから選ばれる遷移金属のうちの少なくとも1種から構成される元素である。
bの値は通常0.4以上、0.6以下である。
bの値がこの範囲であれば、リチウム遷移金属系化合物における単位重量当たりのエネルギー密度が高い。
また、aの値は通常0以上、0.3以下である。また、上記組成式中のaは、リチウム遷移金属系化合物の製造段階での仕込み組成である。通常、市場に出回る電池は、電池を組み立てた後に、エージングを行っている。そのため、充放電に伴い、正極のLi量は欠損している場合がある。その場合、組成分析上、3Vまで放電した場合のaが−0.65以上、1以下に測定されることがある。
aの値がこの範囲であれば、リチウム遷移金属系化合物における単位重量当たりのエネルギー密度を大きく損なわず、かつ、良好な負荷特性が得られる。
さらに、δの値は通常±0.5の範囲である。
δの値がこの範囲であれば、結晶構造としての安定性が高く、このリチウム遷移金属系化合物を用いて作製した電極を有する電池のサイクル特性や高温保存が良好である。
ここでリチウム遷移金属系化合物の組成であるリチウムニッケルマンガン系複合酸化物におけるリチウム組成の化学的な意味について、以下により詳細に説明する。
上記リチウム遷移金属系化合物の組成式のa,bを求めるには、各遷移金属とリチウムを誘導結合プラズマ発光分光分析装置(ICP−AES)で分析して、Li/Ni/Mnの比を求める事で計算される。
構造的視点では、aに係るリチウムは、同じ遷移金属サイトに置換されて入っていると考えられる。ここで、aに係るリチウムによって、電荷中性の原理によりMとマンガンの平均価数が3.5価より大きくなる。
また、上記リチウム遷移金属系化合物は、フッ素置換されていてもよく、LiMn
4‐x2xと表記される。
(ブレンド)
上記の組成のリチウム遷移金属系化合物の具体例としては、例えば、Li1+xNi0.5Mn0.5、Li1+xNi0.85Co0.10Al0.05、Li1+xNi0.33Mn0.33Co0.33、Li1+xNi0.45Mn0.45Co0.1、Li1+xMn1.8Al0.2、Li1+xMn1.5Ni0.5等が挙げられる。これらのリチウム遷移金属系化合物は、一種を単独で用いてもよく、二種以上をブレンドして用いてもよい。
(異元素導入)
また、リチウム遷移金属系化合物は、異元素が導入されてもよい。異元素としては、B,Na,Mg,Al,K,Ca,Ti,V,Cr,Fe,Cu,Zn,Sr,Y,Zr,Nb,Ru,Rh,Pd,Ag,In,Sb,Te,Ba,Ta,Mo,W,Re,Os,Ir,Pt,Au,Pb,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Bi,N,F,S,Cl,Br,I,As,Ge,P,Pb,Sb,SiおよびSnの何れか1種以上の中から選択される。これらの異元素は、リチウム遷移金属系化合物の結晶構造内に取り込まれていてもよく、あるいは、リチウム遷移金属系化合物の結晶構造内に取り込まれず、その粒子表面や結晶粒界などに単体もしくは化合物として偏在していてもよい。
<リチウム二次電池用正極の構成と作製法>
リチウム二次電池用正極は、上述のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体及び結着剤を含有する正極活物質層を集電体上に形成してなるものである。
正極活物質層は、通常、正極材料と結着剤と更に必要に応じて用いられる導電材及び増粘剤等を、乾式で混合してシート状にしたものを正極集電体に圧着するか、或いはこれらの材料を液体媒体中に溶解又は分散させてスラリー状にして、正極集電体に塗布、乾燥することにより作製される。
正極集電体の材質としては、通常、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料や、カーボンクロス、カーボンペーパー等の炭素材料が用いられる。また、形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。なお、薄膜は適宜メッシュ状に形成してもよい。
正極集電体として薄膜を使用する場合、その厚さは任意であるが、通常1μm以上、100mm以下の範囲が好適である。上記範囲よりも薄いと、集電体として必要な強度が不足する可能性がある一方で、上記範囲よりも厚いと、取り扱い性が損なわれる可能性がある。
正極活物質層の製造に用いる結着剤としては、特に限定されず、塗布法の場合は、電極製造時に用いる液体媒体に対して安定な材料であればよいが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子、SBR(スチレン・ブタジエンゴム)、NBR(アクリロニトリル・ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子、スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレンスチレンブロック共重合体及びその水素添加物等の熱可塑性エラストマー状高分子、シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン
・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子、アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用してもよい。
正極活物質層中の結着剤の割合は、通常0.1質量%以上、80質量%以下である。結着剤の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう可能性がある一方で、高すぎると、電池容量や導電性の低下につながる可能性がある。
正極活物質層には、通常、導電性を高めるために導電材を含有させる。その種類に特に制限はないが、具体例としては、銅、ニッケル等の金属材料や、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等の炭素材料などを挙げることができる。なお、これらの物質は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用してもよい。正極活物質層中の導電材の割合は、通常0.01質量%以上、50質量%以下である。導電材の割合が低すぎると導電性が不十分になることがあり、逆に高すぎると電池容量が低下することがある。
スラリーを形成するための液体媒体としては、正極材料であるリチウム遷移金属系化合物粉体、結着剤、並びに必要に応じて使用される導電材及び増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。水系溶媒の例としては水、アルコールなどが挙げられ、有機系溶媒の例としてはN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン(THF)、トルエン、アセトン、ジメチルエーテル、ジメチルアセタミド、ヘキサメチルホスファルアミド、ジメチルスルホキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等を挙げることができる。特に水系溶媒を用いる場合、増粘剤に併せて分散剤を加え、SBR等のラテックスを用いてスラリー化する。なお、これらの溶媒は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用してもよい。
正極活物質層中の正極材料としてのリチウム遷移金属系化合物粉体の含有割合は、通常10質量%以上、99.9質量%以下である。正極活物質層中のリチウム遷移金属系化合物粉体の割合が多すぎると正極の強度が不足する傾向にあり、少なすぎると容量の面で不十分となることがある。
また、正極活物質層の厚さは、通常10〜200μm程度である。
正極のプレス後の電極密度としては、通常、2.2g/cm以上、4.2g/cm以下である。
なお、塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ローラープレス等により圧密化することが好ましい。
〔2−5.セパレータ〕
正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。この場合、本発明の非水系電解液は、通常はこのセパレータに含浸させて用いる。
セパレータの材料や形状については特に制限されず、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。中でも、本発明の非水系電解液に対し
安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、芳香族ポリアミド、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。中でも好ましくはガラスフィルター、ポリオレフィンであり、さらに好ましくはポリオレフィンである。これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
セパレータの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、10μm以上がさらに好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下がさらに好ましい。セパレータが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲より厚過ぎると、レート特性等の電池性能が低下する場合があるばかりでなく、非水系電解液二次電池全体としてのエネルギー密度が低下する場合がある。
さらに、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%以上がさらに好ましく、また、通常90%以下であり、85%以下が好ましく、75%以下がさらに好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレータの機械的強度が低下し、絶縁性が低下する傾向にある。
また、セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。
一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物、窒化アルミや窒化ケイ素等の窒化物、硫酸バリウムや硫酸カルシウム等の硫酸塩が用いられ、粒子形状もしくは繊維形状のものが用いられる。
形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01〜1μm、厚さが5〜50μmのものが好適に用いられる。上記の独立した薄膜形状以外に、樹脂製の結着材を用いて上記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着材として多孔層を形成させることが挙げられる。
セパレータの非電解液二次電池における特性を、ガーレ値で把握することができる。ガーレ値とは、フィルム厚さ方向の空気の通り抜け難さを示し、100mlの空気が該フィルムを通過するのに必要な秒数で表されるため、数値が小さい方が通り抜け易く、数値が大きい方が通り抜け難いことを意味する。すなわち、その数値が小さい方がフィルムの厚さ方向の連通性が良いことを意味し、その数値が大きい方がフィルムの厚さ方向の連通性が悪いことを意味する。連通性とは、フィルム厚さ方向の孔のつながり度合いである。本発明のセパレータのガーレ値が低ければ、様々な用途に使用することが出来る。例えば非水系リチウム二次電池のセパレータとして使用した場合、ガーレ値が低いということは、リチウムイオンの移動が容易であることを意味し、電池性能に優れるため好ましい。セパレータのガーレ値は、任意ではあるが、好ましくは10〜1000秒/100mlであり、より好ましくは15〜800秒/100mlであり、更に好ましくは20〜500秒/100mlである。ガーレ値が1000秒/100ml以下であれば、実質的には電気抵抗が低く、セパレータとしては好ましい。
〔2−6.電池設計〕
<電極群>
電極群は、上記の正極板と負極板とを上記のセパレータを介してなる積層構造のもの、及び上記の正極板と負極板とを上記のセパレータを介して渦巻き状に捲回した構造のもののいずれでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。
電極群占有率が、上記範囲を下回ると、電池容量が小さくなる。また、上記範囲を上回ると空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、さらには、内部圧力を外に逃がすガス放出弁が作動する場合がある。
<外装ケース>
外装ケースの材質は用いられる非水系電解液に対して安定な物質であれば特に制限されない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して上記金属類を用いてかしめ構造とするものが挙げられる。上記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、上記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。
<保護素子>
保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC(Positive Temperature Coefficient)、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等を使用することができる。上記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
<外装体>
本発明の非水系電解質二次電池は、通常、上記の非水系電解液、負極、正極、セパレータ等を外装体内に収納して構成される。この外装体は、特に制限されず、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。具体的に、外装体の材質は任意であるが、通常は、例えばニッケルメッキを施した鉄、ステンレス、アルミウム又はその合金、ニッケル、チタン等が用いられる。
また、外装体の形状も任意であり、例えば円筒型、角形、ラミネート型、コイン型、大型等のいずれであってもよい。
以下、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要
旨を超えない限り、これらの実施例に限定されるものではない。
<非水系電解液の調製>
[実施例1]
乾燥アルゴン雰囲気下、エチレンカーボネート(以降、ECとする)、エチルメチルカーボネート(以降、EMCとする)とジエチルカーボネート(以降、DECとする)をEC:EMC:DEC=30:40:30の体積比率で混合し、十分に乾燥したLiPFを1.2mol/Lとなるように加え、ビニレンカーボネート(以降、VCとする)を2質量%加えた(これを基準電解液と呼ぶ)。基準電解液全体に対してピルビン酸エチルを0.3質量%、ヘキサメチレンジイソシアネートを0.3質量%となるように加えて電解液を調製した。
[比較例1]
基準電解液を電解液としてそのまま用いた。
[比較例2]
基準液電解液全体に対して、ピルビン酸エチルを0.3質量%となるように加えて電解液を調製した。
[比較例3]
基準液電解液全体に対して、ヘキサメチレンジイソシアネートを0.3質量%となるように加えて電解液を調製した。
<負極の作製>
負極活物質として黒鉛粉末98質量部に、増粘剤、バインダーとしてそれぞれ、カルボキシメチルセルロースナトリウムの水性ディスパージョン1質量部、及び、スチレン−ブタジエンゴムの水性ディスパージョン1質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを銅箔の片面に塗布して乾燥、プレスして負極を作成した。作製した負極は60℃で12時間減圧乾燥して用いた。
<正極の作製>
正極活物質としてコバルト酸リチウム96.8質量部に、導電助剤1.6質量部、バインダー(pVDF)1.6質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーをアルミニウム箔の両面に塗布して乾燥、プレスして正極を作成した。作製した正極は80℃で12時間減圧乾燥して用いた。
<電池の作製>
上記の正極、負極、及びポリエチレン製のセパレータを、負極、セパレータ、正極、セパレータ、負極の順に積層して電池要素を作製した。この電池要素をアルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正・負極の端子を突設させながら挿入した後、非水系電解液を袋内に0.4mL注入し、真空封止を行ない、シート状電池を作製した。更に、電極間の密着性を高めるために、ガラス板でシート状電池を挟んで加圧した。
<特性評価試験>
上記のように作製した電池を、25℃において、4.35Vまで充電し、3Vまで放電し、容量が安定するまでコンディショニングを行った。その後、4.35Vに充電した状態で電池の抵抗値を測定した。また、4.35Vに充電した状態で60℃において14日間電池を保存し、その時に発生したガス量を測定した。実験の結果を表1に示す(比較例1の値を100とした相対値を示す)。
Figure 0006464656
表1から次のことが言える。基準電解液を用いた比較例1に対し、一般式(1)で表される化合物として、ピルビン酸エチルを使用した比較例2は抵抗値も増加し、ガス発生量も増加した。
一方、ヘキサメチレンジイソシアネートを使用した比較例3に対し、一般式(1)で表される化合物として、ピルビン酸エチルおよび、ヘキサメチレンジイソシアネートを使用した本発明の電解液を用いた実施例1は抵抗値もガス発生量も減少した。これは、ピルビン酸エチルおよび、ヘキサメチレンジイソシアネートそれぞれが単独では現れない効果であり、特異的な効果であると言える。
これらの特異的な効果が発現される理由は必ずしも明確ではないが、一般式(1)で表される化合物が負極表面で反応するときに、組み合わせる化合物が同時、または追随して反応することで、良好な性質を有する皮膜を形成するためであると考えられる。
[実施例2]
乾燥アルゴン雰囲気下、EC、EMCとDMCをEC:EMC:DMC=30:30:40の体積比率で混合し、十分に乾燥したLiPFを1.4mol/Lとなるように加え、VCを1質量%加えた(これを基準電解液と呼ぶ)。基準電解液全体に対してピルビン酸メチルを0.3質量%、ジフルオロ燐酸リチウムを1.0質量%、モノフルオロエチレンカーボネート(以下、FECと記載することがある)を4.0質量%となるように加えて電解液を調製した。
[比較例4]
基準電解液全体に対してジフルオロ燐酸リチウムを1.0質量%、モノフルオロエチレンカーボネートを4.0質量%となるように加えて電解液を調製した。
[比較例5]
基準電解液全体に対してピルビン酸メチルを0.3質量%となるように加えて電解液を調製した。
[比較例6]
基準電解液を電解液としてそのまま用いた。
<負極の作製>
負極活物質として黒鉛粉末98質量部に、増粘剤、バインダーとしてそれぞれ、カルボ
キシメチルセルロースナトリウムの水性ディスパージョン1質量部、及び、スチレン−ブタジエンゴムの水性ディスパージョン1質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを銅箔の片面に塗布して乾燥、プレスして負極を作成した。作製した負極は60℃で12時間減圧乾燥して用いた。
<正極の作製>
正極活物質としてニッケルを含有する金属酸リチウム96.8質量部に、導電助剤1.6質量部、バインダー(pVDF)1.6質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーをアルミニウム箔の両面に塗布して乾燥、プレスして正極を作成した。作製した正極は80℃で12時間減圧乾燥して用いた。
<電池の作製>
上記の正極、負極、及びポリエチレン製のセパレータを、負極、セパレータ、正極、セパレータ、負極の順に積層して電池要素を作製した。この電池要素をアルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正・負極の端子を突設させながら挿入した後、非水系電解液を袋内に0.25mL注入し、真空封止を行ない、シート状電池を作製した。更に、電極間の密着性を高めるために、ガラス板でシート状電池を挟んで加圧した。
<特性評価試験>
上記のように作製した電池を、25℃において、4.2Vまで充電し、2.5Vまで放電し、容量が安定するまでコンディショニングを行った。その後、4.2Vに充電した状態で電池の抵抗値を測定した。実験の結果を表2に示す(比較例6の値を100.0とした相対値を示す)。
Figure 0006464656
表2から次のことが言える。基準電解液を用いた比較例6に対し、一般式(1)で表される化合物として、ピルビン酸メチルを使用した比較例5は抵抗値が増加した。
一方、ジフルオロ燐酸リチウムとモノフルオロエチレンカーボネートを使用した比較例4に対し、一般式(1)で表される化合物としてピルビン酸メチル、および、ジフルオロ燐酸リチウムとモノフルオロエチレンカーボネートを使用した本発明の電解液を用いた実施例2は抵抗値が減少した。これは、単独使用では抵抗値が上昇するピルビン酸エチルを、ジフルオロ燐酸リチウムとモノフルオロエチレンカーボネートと併用すると、抵抗値が一層減少するという相乗効果であり、それぞれ単独で使用する際には奏されない、特異的な効果であると言える。
これらの特異的な効果が発現される理由は必ずしも明確ではないが、一般式(1)で表される化合物が負極表面で反応するときに、組み合わせる化合物が同時、または追随して反応することで、良好な性質を有する皮膜を形成するためであると考えられる。
これらの実験結果より、本発明の非水系電解液を用いることで、ガス発生抑制や低抵抗などの特性に優れた電池が得られるといえる。
本発明の非水系電解液によれば、非水系電解液二次電池の電解液の分解を抑制し、電池を高温環境下で使用した際にガス発生及び電池の劣化を抑制すると共に高エネルギー密度の非水系電解液二次電池を製造することができる。従って、非水系電解液二次電池が用いられる電子機器等の各種の分野において好適に利用できる。
本発明の非水系電解質二次電池の用途は特に限定されず、公知の各種の用途に用いることが可能である。具体例としては、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、自動車、バイク、原動機付自転車、自転車、照明器具、玩具、ゲーム機器、時計、電動工具、ストロボ、カメラ、家庭用大型蓄電池等を挙げることができる。また、非水系電解液を用いるリチウムイオンキャパシタにおいても好適に利用できる。

Claims (6)

  1. 金属イオンを吸蔵・放出しうる正極活物質を有する正極と、金属イオンを吸蔵・放出し
    うる負極活物質を有する負極とを備える非水系電解液二次電池に用いられる非水系電解液
    であって、
    下記一般式(1)で表される化合物を含有し、
    さらに、イソシアネート化合物及びジフルオロ燐酸塩からなる群より選ばれた少なくと
    も1種の化合物を含有する事を特徴とする非水系電解液。
    Figure 0006464656
    (R、Rは、それぞれ独立にアルキル基、フッ素化アルキル基、アルケニル基、アル
    キニル基、又は、アリール基を表す。)
  2. 前記イソシアネート化合物が、イソシアナト基を2以上有する化合物であることを特徴
    とする請求項1に記載の非水系電解液。
  3. 記ジフルオロ燐酸塩が、リチウム塩であることを特徴とする請求項1又は2に記載の
    非水系電解液。
  4. 前記一般式(1)で表される化合物の含有量が、非水系電解液全量に対し、0.01質
    量%以上、10質量%以下であることを特徴とする、請求項1乃至の何れか一項に記載
    の非水系電解液。
  5. 前記一般式(1)で表される化合物が、以下の一般式(2)で表されることを特徴とす
    る請求項1乃至の何れか一項に記載の非水系電解液。
    Figure 0006464656
    (Rは、アルキル基、フッ素化アルキル基、又は、アリール基を表し、Rは、アルキ
    ル基、フッ素化アルキル基、アルケニル基、アルキニル基、又は、アリール基を表す。)
  6. 金属イオンを吸蔵・放出しうる正極活物質を有する正極と、金属イオンを吸蔵・放出し
    うる負極活物質を有する負極とを備える非水系電解液二次電池であって、請求項1乃至
    の何れか一項に記載の非水系電解液を用いることを特徴とする非水系電解液二次電池。
JP2014215735A 2013-11-05 2014-10-22 非水系電解質、およびそれを用いた非水系電解質二次電池 Active JP6464656B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014215735A JP6464656B2 (ja) 2013-11-05 2014-10-22 非水系電解質、およびそれを用いた非水系電解質二次電池

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013229411 2013-11-05
JP2013229411 2013-11-05
JP2014215735A JP6464656B2 (ja) 2013-11-05 2014-10-22 非水系電解質、およびそれを用いた非水系電解質二次電池

Publications (2)

Publication Number Publication Date
JP2015111557A JP2015111557A (ja) 2015-06-18
JP6464656B2 true JP6464656B2 (ja) 2019-02-06

Family

ID=53526233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014215735A Active JP6464656B2 (ja) 2013-11-05 2014-10-22 非水系電解質、およびそれを用いた非水系電解質二次電池

Country Status (1)

Country Link
JP (1) JP6464656B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104979588A (zh) * 2015-07-09 2015-10-14 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
JP6538500B2 (ja) 2015-09-16 2019-07-03 株式会社東芝 非水電解質電池、電池パック、及び車
CN110247114A (zh) * 2015-12-18 2019-09-17 深圳新宙邦科技股份有限公司 一种锂离子电池用电解液及锂离子电池
CN110383557B (zh) * 2017-03-30 2022-03-08 松下知识产权经营株式会社 非水电解液和非水电解液二次电池
CN113206295A (zh) * 2021-04-30 2021-08-03 宁德新能源科技有限公司 电化学装置和包含其的电子设备
CN114824474B (zh) * 2022-03-30 2023-10-31 大连中比动力电池有限公司 一种可用于钠离子电池的添加剂和电解液

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5018089B2 (ja) * 2004-12-27 2012-09-05 宇部興産株式会社 非水電解液及びそれを用いたリチウム二次電池
JP5217400B2 (ja) * 2007-06-28 2013-06-19 三菱化学株式会社 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP5593982B2 (ja) * 2010-09-03 2014-09-24 日産自動車株式会社 非水電解質組成物及び非水電解質二次電池
JP6035776B2 (ja) * 2012-02-24 2016-11-30 三菱化学株式会社 非水系電解液及びそれを用いたリチウム二次電池
JP6019663B2 (ja) * 2012-03-28 2016-11-02 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液電池

Also Published As

Publication number Publication date
JP2015111557A (ja) 2015-06-18

Similar Documents

Publication Publication Date Title
JP6364812B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6056223B2 (ja) 非水系電解質、およびそれを用いた非水系電解質二次電池
JP6507677B2 (ja) 非水系電解液、及びそれを用いた非水系電解液二次電池
WO2014133107A1 (ja) 非水系電解液及びそれを用いた非水系電解液電池
WO2014024990A1 (ja) 非水系電解液、およびそれを用いた非水系電解液二次電池
JP6413294B2 (ja) 非水系電解液、それを用いた電池
JP6658551B2 (ja) 非水系電解液、及びそれを用いた非水系電解液二次電池
JP6464656B2 (ja) 非水系電解質、およびそれを用いた非水系電解質二次電池
JP6319024B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP6035776B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
JP2016143536A (ja) 非水系電解質、及びそれを用いた非水系電解質二次電池
JP2020038834A (ja) 非水系電解液、及びそれを用いた非水系電解液二次電池
JP6019663B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP2015056312A (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP5834771B2 (ja) 非水系電解液、それを用いた電池
JP5903931B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6089487B2 (ja) 非水系電解質、およびそれを用いた非水系電解質二次電池
JP2013211224A (ja) 非水系電解液及びそれを用いたリチウム二次電池
JP2015195201A (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6361232B2 (ja) 非水系電解液、およびそれを用いた非水系電解液二次電池
JP2013211223A (ja) 非水系電解液、それを用いた電池
JP6760445B2 (ja) 非水系電解液、及びそれを用いた非水系電解液二次電池
JP2014183009A (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP2017103225A (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP2015179670A (ja) 非水系電解質、およびそれを用いた非水系電解質二次電池

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170418

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181224

R151 Written notification of patent or utility model registration

Ref document number: 6464656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350