JP6451330B2 - Parts supply device - Google Patents

Parts supply device Download PDF

Info

Publication number
JP6451330B2
JP6451330B2 JP2015003158A JP2015003158A JP6451330B2 JP 6451330 B2 JP6451330 B2 JP 6451330B2 JP 2015003158 A JP2015003158 A JP 2015003158A JP 2015003158 A JP2015003158 A JP 2015003158A JP 6451330 B2 JP6451330 B2 JP 6451330B2
Authority
JP
Japan
Prior art keywords
component
passage
fluid
conveyance
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015003158A
Other languages
Japanese (ja)
Other versions
JP2016128346A (en
Inventor
慎一郎 廣瀬
慎一郎 廣瀬
穂刈 守
守 穂刈
貴之 安部
貴之 安部
西山 陽二
陽二 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2015003158A priority Critical patent/JP6451330B2/en
Publication of JP2016128346A publication Critical patent/JP2016128346A/en
Application granted granted Critical
Publication of JP6451330B2 publication Critical patent/JP6451330B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Feeding Of Articles To Conveyors (AREA)

Description

本願の開示する技術は、部品供給装置に関する。   The technology disclosed in the present application relates to a component supply apparatus.

従来、複数の部品を収容する容器と、容器内と連通する整列溝と、容器内に空気を噴射する噴射部とを備える部品供給装置がある。この部品供給装置では、噴射部から容器内に空気が噴射されると、容器内で複数の部品が搬送され、この複数の部品のうち正姿勢の部品が整列溝に流入し整列される。   2. Description of the Related Art Conventionally, there is a component supply device that includes a container that houses a plurality of components, an alignment groove that communicates with the inside of the container, and an injection unit that injects air into the container. In this component supply device, when air is injected into the container from the injection unit, a plurality of components are transported in the container, and components in the normal posture out of the plurality of components flow into the alignment groove and are aligned.

特開2001−002229号公報JP 2001-002229 A 実公平7−020090号公報No. 7-020090

上述の部品供給装置は、微小ではなく一般に通常の大きさとされる部品を搬送対象とするものであり、複雑な機構及び構造を有している。従って、この部品供給装置では、微小部品を搬送対象とする場合、複雑な機構及び構造を微小部品に対応させてそのまま小型化させることが難しいと考えられる。   The above-described component supply apparatus is intended to convey components that are generally small but not of a small size, and has a complicated mechanism and structure. Therefore, in this component supply apparatus, it is considered difficult to reduce the size of the complicated mechanism and structure in correspondence with the minute component when the minute component is to be conveyed.

本願の開示する技術は、一つの側面として、構造を簡素化しつつ複数の微小部品を正姿勢で整列させることができる部品供給装置を提供することを目的とする。   An object of the technology disclosed by the present application is to provide a component supply device capable of aligning a plurality of micro components in a normal posture while simplifying the structure.

上記目的を達成するために、本願の開示する技術の部品供給装置は、部品搬送部材と、流体噴射部とを備える。部品搬送部材は、複数の微小部品が搬送される部品搬送通路と、前記部品搬送通路から分岐され前記部品搬送通路を搬送される前記複数の微小部品のうち正姿勢の微小部品が流入し整列される部品整列通路とを有する。この部品搬送部材は、前記部品搬送通路及び前記部品整列通路を形成する複数の部材を積層して形成された積層体である。流体噴射部は、前記部品搬送部材に形成され前記部品搬送通路に合流された流体供給通路を通じて前記部品搬送通路内に流体を噴射し、前記複数の微小部品を搬送させる。前記部品整列通路の天面は、前記部品搬送通路の天面よりも低い位置にあり、前記流体供給通路における前記部品搬送通路との接続口は、前記部品整列通路よりも高い位置にある。 In order to achieve the above object, a component supply apparatus according to a technique disclosed in the present application includes a component conveying member and a fluid ejecting unit. The component conveying member is aligned with a component conveying passage through which a plurality of minute components are conveyed and a minute component in a positive posture out of the plurality of minute components branched from the component conveying passage and conveyed through the component conveying passage. And a component alignment passage. This component conveying member is a laminate formed by laminating a plurality of members forming the component conveying passage and the component aligning passage. The fluid ejecting unit ejects fluid into the component transport passage through a fluid supply passage formed in the component transport member and joined to the component transport passage, thereby transporting the plurality of micro components. The top surface of the component alignment passage is at a position lower than the top surface of the component conveyance passage, and the connection port with the component conveyance passage in the fluid supply passage is at a position higher than the component alignment passage.

本願の開示する技術の部品供給装置によれば、構造を簡素化しつつ複数の微小部品を正姿勢で整列させることができる。   According to the component supply device of the technology disclosed in the present application, it is possible to align a plurality of minute components in a normal posture while simplifying the structure.

部品供給装置の構成を示す図である。It is a figure which shows the structure of a components supply apparatus. 微小ネジの正面図である。It is a front view of a micro screw. 部品搬送部材を図1のF3−F3線で切断した断面図である。It is sectional drawing which cut | disconnected the component conveyance member by the F3-F3 line | wire of FIG. 部品搬送部材を図3のF4−F4線で切断した断面図である。It is sectional drawing which cut | disconnected the component conveyance member by the F4-F4 line | wire of FIG. 部品搬送部材の分解図である。It is an exploded view of a component conveyance member. 図5のF6−F6線断面図である。FIG. 6 is a cross-sectional view taken along line F6-F6 of FIG. 図5のF7−F7線断面図である。FIG. 6 is a cross-sectional view taken along line F7-F7 in FIG. 図4のF8−F8線断面図である。FIG. 5 is a cross-sectional view taken along line F8-F8 in FIG. 図4のF9−F9線断面図であって、微小ネジが正姿勢で部品搬送通路を搬送される様子を示す図である。FIG. 5 is a cross-sectional view taken along line F9-F9 in FIG. 4 and shows a state in which a micro screw is transported through a component transport path in a normal posture. 微小ネジが正姿勢で部品整列通路に流入する様子を示す斜視図である。It is a perspective view which shows a mode that a microscrew flows into a components alignment channel | path with a normal attitude | position. 微小ネジが誤姿勢で部品搬送通路を搬送される様子を示す図9と対応する断面図である。It is sectional drawing corresponding to FIG. 9 which shows a mode that a micro screw | thread is conveyed in a components conveyance path | route with an incorrect attitude | position. 部品搬送部材(第三板材)の変形例を示す平面図である。It is a top view which shows the modification of a components conveyance member (3rd board | plate material). 変形例に係る部品搬送部材で微小ネジが搬送される様子を示す断面図である。It is sectional drawing which shows a mode that a micro screw is conveyed by the components conveyance member which concerns on a modification.

以下、本願の開示する技術の一実施形態を説明する。   Hereinafter, an embodiment of the technology disclosed in the present application will be described.

図1に示される本実施形態の部品供給装置10は、微小ネジ100を整列させて供給先に供給するためのものである。この部品供給装置10によって供給される微小ネジ100は、「部品」及び「締結部品」の一例であり、図2に示されるように、頭部101及び胴部102を有する。本実施形態において搬送対象とされる微小ネジ100は、一例として、微小ネジ100の軸長Lが頭部101の直径Dと略同一のものである。このような微小ネジ100は、例えば、M1.0のネジである。   A component supply apparatus 10 of the present embodiment shown in FIG. 1 is for aligning micro screws 100 and supplying them to a supply destination. The micro screw 100 supplied by the component supply apparatus 10 is an example of “component” and “fastening component”, and has a head portion 101 and a trunk portion 102 as shown in FIG. As an example, the micro screw 100 to be transported in the present embodiment has an axial length L of the micro screw 100 that is substantially the same as the diameter D of the head 101. Such a micro screw 100 is, for example, an M1.0 screw.

図1に示されるように、この微小ネジ100を搬送対象とする部品供給装置10は、部品搬送部材12と、ガス噴射部14とを備える。   As shown in FIG. 1, the component supply device 10 that targets the micro screw 100 includes a component transport member 12 and a gas injection unit 14.

部品搬送部材12は、複数の部材を積層して形成された積層体とされている。この部品搬送部材12は、板状の蓋材20、第一板材30、第二板材40、及び、第三板材50によって形成されている。この蓋材20、第一板材30、第二板材40、及び、第三板材50は、いずれも平面視にて四角形に形成されており、部品搬送部材12の高さ方向の上側から下側へ順に配置されている。   The component conveying member 12 is a laminated body formed by laminating a plurality of members. The component conveying member 12 is formed by a plate-shaped lid member 20, a first plate member 30, a second plate member 40, and a third plate member 50. The lid member 20, the first plate member 30, the second plate member 40, and the third plate member 50 are all formed in a square shape in plan view, and from the upper side to the lower side in the height direction of the component conveying member 12. Arranged in order.

図5には、蓋材20、第一板材30、第二板材40、及び、第三板材50が平面状に並べられて示されている。この図5に示されるように、蓋材20は、部品供給口21、部品取出穴22、及び、ガス供給穴23を有する。部品供給口21、部品取出穴22、及び、ガス供給穴23は、いずれも平面視にて円形に形成されており、蓋材20の板厚方向に貫通されている。この部品供給口21、部品取出穴22、及び、ガス供給穴23は、平面視にて四角形状に形成された蓋材20のうち三つの角隅部にそれぞれ配置されている。   FIG. 5 shows the lid member 20, the first plate member 30, the second plate member 40, and the third plate member 50 arranged in a plane. As shown in FIG. 5, the lid member 20 has a component supply port 21, a component extraction hole 22, and a gas supply hole 23. The component supply port 21, the component extraction hole 22, and the gas supply hole 23 are all formed in a circular shape in plan view, and are penetrated in the plate thickness direction of the lid member 20. The component supply port 21, the component extraction hole 22, and the gas supply hole 23 are respectively arranged at three corners of the lid member 20 formed in a quadrangular shape in plan view.

また、蓋材20の下面には、円柱部24が一体に形成されている(図3も参照)。この円柱部24は、蓋材20の中央部に位置されており、蓋材20の下面から蓋材20の下方に突出されている。   Moreover, the cylindrical part 24 is integrally formed in the lower surface of the cover material 20 (refer also FIG. 3). The cylindrical portion 24 is located at the center of the lid member 20 and projects downward from the lower surface of the lid member 20.

第一板材30は、蓋材20の下側に積層されるものであり、部品取出穴32及びガス供給穴33を有する。この部品取出穴32及びガス供給穴33は、いずれも平面視にて円形に形成されており、第一板材30の板厚方向に貫通されている。この部品取出穴32及びガス供給穴33は、上述の蓋材20に形成された部品取出穴22及びガス供給穴23と整合する位置に形成されている。   The first plate member 30 is laminated on the lower side of the lid member 20 and has a component extraction hole 32 and a gas supply hole 33. Both the component take-out hole 32 and the gas supply hole 33 are formed in a circular shape in plan view, and are penetrated in the thickness direction of the first plate member 30. The component take-out hole 32 and the gas supply hole 33 are formed at positions aligned with the component take-out hole 22 and the gas supply hole 23 formed in the lid member 20 described above.

さらに、第一板材30は、平面視にて円形に形成された第一穴34と、平面視にて直線状の部品供給溝35とを有する。第一穴34は、第一板材30の中央部に形成されており、第一板材30の板厚方向に貫通されている。この第一穴34は、上述の円柱部24よりも若干大径に形成されており、円柱部24と同心状に形成されている。図5では、第一穴34及び後述する第二穴44、第三穴54と、これらの穴に挿入される円柱部24との配置関係の明確化のために、第一板材30、第二板材40、第三板材50における円柱部24の配置位置が想像線24A(二点鎖線)で示されている。   Furthermore, the first plate member 30 has a first hole 34 formed in a circular shape in a plan view and a linear component supply groove 35 in a plan view. The first hole 34 is formed in the central portion of the first plate member 30 and penetrates in the plate thickness direction of the first plate member 30. The first hole 34 has a slightly larger diameter than the above-described cylindrical portion 24 and is formed concentrically with the cylindrical portion 24. In FIG. 5, the first plate material 30, the second hole 44 and the second hole 44, which will be described later, and the third hole 54, which will be described later, and the columnar portion 24 inserted into these holes are clarified. The arrangement position of the cylindrical portion 24 in the plate material 40 and the third plate material 50 is indicated by an imaginary line 24A (two-dot chain line).

部品供給溝35は、第一穴34の接線方向に延びている。この部品供給溝35は、第一板材30の板厚方向に貫通されている(図6も参照)。部品供給溝35の一端(始端)は、上述の部品供給口21と対応する位置に位置されており、部品供給溝35の他端(終端)は、第一穴34に連通されている。   The component supply groove 35 extends in the tangential direction of the first hole 34. This component supply groove 35 is penetrated in the plate | board thickness direction of the 1st board | plate material 30 (refer also FIG. 6). One end (starting end) of the component supply groove 35 is located at a position corresponding to the above-described component supply port 21, and the other end (terminal) of the component supply groove 35 is communicated with the first hole 34.

第二板材40は、第一板材30の下側に積層されるものであり、部品取出穴42を有する。この部品取出穴42は、平面視にて円形に形成されており、第二板材40の板厚方向に貫通されている。この部品取出穴42は、上述の蓋材20及び第一板材30に形成された部品取出穴22,32と整合する位置に形成されている。   The second plate member 40 is laminated on the lower side of the first plate member 30 and has a component extraction hole 42. The component extraction hole 42 is formed in a circular shape in plan view, and penetrates in the thickness direction of the second plate material 40. The component extraction hole 42 is formed at a position aligned with the component extraction holes 22 and 32 formed in the lid member 20 and the first plate member 30 described above.

さらに、第二板材40は、平面視にて円形に形成された第二穴44と、いずれも平面視にて直線状の部品供給溝45、ガス供給通路46、及び、一対のガス排出通路47,48とを有する。第二穴44は、第二板材40の中央部に形成されており、第二板材40の板厚方向に貫通されている。この第二穴44は、上述の第一穴34と同様の直径を有しており、上述の第一穴34と同軸上に形成されている。   Further, the second plate member 40 includes a second hole 44 formed in a circular shape in plan view, a linear component supply groove 45, a gas supply passage 46, and a pair of gas discharge passages 47, all in a plan view. , 48. The second hole 44 is formed in the central portion of the second plate member 40 and penetrates in the plate thickness direction of the second plate member 40. The second hole 44 has the same diameter as the first hole 34 described above, and is formed coaxially with the first hole 34 described above.

部品供給溝45、ガス供給通路46、及び、一対のガス排出通路47,48は、いずれも第二穴44の接線方向に延びている。この部品供給溝45、ガス供給通路46、及び、一対のガス排出通路47,48は、いずれも第二板材40の板厚方向に貫通されている。部品供給溝45は、上述の第一板材30に形成された部品供給溝35と同じ位置及び形状で形成されている。部品供給溝45の一端(始端)は、上述の部品供給口21と対応する位置に位置されており、部品供給溝45の他端(終端)は、第二穴44に連通されている。   The component supply groove 45, the gas supply passage 46, and the pair of gas discharge passages 47 and 48 all extend in the tangential direction of the second hole 44. The component supply groove 45, the gas supply passage 46, and the pair of gas discharge passages 47 and 48 are all penetrated in the thickness direction of the second plate member 40. The component supply groove 45 is formed in the same position and shape as the component supply groove 35 formed in the first plate member 30 described above. One end (start end) of the component supply groove 45 is located at a position corresponding to the above-described component supply port 21, and the other end (termination) of the component supply groove 45 is communicated with the second hole 44.

また、ガス供給通路46の一端(始端)は、上述のガス供給穴23,33と対応する位置に位置されており、ガス供給通路46の他端(終端)は、第二穴44に連通されている。一方のガス排出通路47の一端(始端)は、第二穴44に連通されており、このガス排出通路47の他端(終端)は、第二板材40の側面に開口されている。同様に、他方のガス排出通路48の一端(始端)は、第二穴44に連通されており、このガス排出通路48の他端(終端)は、第二板材40の側面に開口されている。上述のガス供給通路46は、「流体供給通路」の一例であり、一対のガス排出通路47,48は、「一対の流体排出通路」の一例である。   One end (start end) of the gas supply passage 46 is located at a position corresponding to the gas supply holes 23 and 33 described above, and the other end (termination) of the gas supply passage 46 is communicated with the second hole 44. ing. One end (starting end) of one gas discharge passage 47 communicates with the second hole 44, and the other end (termination end) of the gas discharge passage 47 is opened on the side surface of the second plate member 40. Similarly, one end (starting end) of the other gas discharge passage 48 is communicated with the second hole 44, and the other end (end) of the gas discharge passage 48 is opened on the side surface of the second plate member 40. . The gas supply passage 46 described above is an example of a “fluid supply passage”, and the pair of gas discharge passages 47 and 48 is an example of a “pair of fluid discharge passages”.

第三板材50は、第二板材40の下側に積層されるものであり、平面視にて円形に形成された第三穴54と、いずれも平面視にて直線状の部品供給溝55及び部品整列通路59とを有する。第三穴54は、第三板材50の中央部に形成されており、第三板材50の板厚方向の一方側(第二板材40が配置される側であって上側)に開口する凹状に形成されている。第三板材50は、凹状に形成された第三穴54の底面54Aを有している。第三穴54は、上述の第一穴34及び第二穴44と同様の直径を有しており、上述の第一穴34及び第二穴44と同軸上に形成されている。   The third plate member 50 is laminated on the lower side of the second plate member 40, and includes a third hole 54 formed in a circular shape in a plan view, and a linear component supply groove 55 and a straight line in the plan view. And a part alignment passage 59. The third hole 54 is formed in the center of the third plate member 50 and has a concave shape that opens to one side in the plate thickness direction of the third plate member 50 (on the side where the second plate member 40 is disposed and on the upper side). Is formed. The third plate member 50 has a bottom surface 54A of a third hole 54 formed in a concave shape. The third hole 54 has the same diameter as the first hole 34 and the second hole 44 described above, and is formed coaxially with the first hole 34 and the second hole 44 described above.

部品供給溝55及び部品整列通路59は、いずれも第三穴54の接線方向に延びている。部品供給溝55は、上述の第一板材30及び第二板材40に形成された部品供給溝35,45と同じ位置及び同じ平面形状で形成されている。部品供給溝55の一端(始端)は、上述の部品供給口21と対応する位置に位置されており、部品供給溝55の他端(終端)は、第三穴54に連通されている。また、部品整列通路59の一端(始端)は、第三穴54に連通されており、部品整列通路59の他端(終端)は、上述の部品取出穴22,32,42と対応する位置に位置されている。   Both the component supply groove 55 and the component alignment passage 59 extend in the tangential direction of the third hole 54. The component supply groove 55 is formed in the same position and the same planar shape as the component supply grooves 35 and 45 formed in the first plate member 30 and the second plate member 40 described above. One end (start end) of the component supply groove 55 is located at a position corresponding to the above-described component supply port 21, and the other end (termination) of the component supply groove 55 is communicated with the third hole 54. In addition, one end (starting end) of the component alignment passage 59 is communicated with the third hole 54, and the other end (end) of the component alignment passage 59 is at a position corresponding to the above-described component extraction holes 22, 32, 42. Is located.

部品整列通路59は、図7に示されるように、微小ネジ100と対応する断面T字状に形成されており、頭部101と対応する幅広の上溝61と、胴部102と対応する幅狭の下溝62とを有する。図5に示される部品供給溝55も、部品整列通路59と同様の断面形状とされており、幅広の上溝61と、上溝61よりも幅狭の下溝62(図7参照)とを有する。   As shown in FIG. 7, the component alignment passage 59 is formed in a T-shaped cross section corresponding to the micro screw 100, and has a wide upper groove 61 corresponding to the head 101 and a narrow width corresponding to the trunk portion 102. And a lower groove 62. The component supply groove 55 shown in FIG. 5 also has a cross-sectional shape similar to that of the component alignment passage 59, and has a wide upper groove 61 and a lower groove 62 (see FIG. 7) narrower than the upper groove 61.

図7に示されるように、下溝62の幅方向両側には、一対の段部63,64が形成されている。図5に示されるように、一方の段部63は、部品供給溝55の始端から第三穴54の外周に沿って延び部品整列通路59の終端に至っている。これに対し、他方の段部64は、部品供給溝55の始端から終端に亘って形成されている。部品整列通路59の他方の段部64も、部品供給溝55の他方の段部64と同様に、部品整列通路59の始端から終端に亘って形成されている。   As shown in FIG. 7, a pair of step portions 63 and 64 are formed on both sides in the width direction of the lower groove 62. As shown in FIG. 5, one step 63 extends from the start end of the component supply groove 55 along the outer periphery of the third hole 54 and reaches the end of the component alignment passage 59. On the other hand, the other stepped portion 64 is formed from the start end to the end of the component supply groove 55. Similarly to the other step portion 64 of the component supply groove 55, the other step portion 64 of the component alignment passage 59 is also formed from the beginning to the end of the component alignment passage 59.

なお、上述の部品搬送部材12を形成する複数の部材のうち、貫通穴を有する第一板材30及び第二板材40は、例えば、打抜き加工、切削加工、レーザ加工等により製造される。また、凹凸を有する蓋材20及び第三板材50は、例えば、切削加工等により製造される。   Of the plurality of members forming the component conveying member 12 described above, the first plate member 30 and the second plate member 40 having through holes are manufactured, for example, by punching, cutting, laser processing, or the like. Moreover, the lid | cover material 20 and the 3rd board | plate material 50 which have an unevenness | corrugation are manufactured by cutting etc., for example.

そして、上記各構造とされた蓋材20、第一板材30、第二板材40、及び、第三板材50は、部品搬送部材12の高さ方向に積層される(図1,図3参照)。この蓋材20から第三板材50までが積層された状態(以下、適宜、図1,図4,図5参照)では、蓋材20、第一板材30、及び、第二板材40に形成された部品取出穴22,32,42によって部品取出口72が形成される。また、蓋材20及び第一板材30に形成されたガス供給穴23,33によってガス供給口73が形成される。   And the cover material 20, the 1st board | plate material 30, the 2nd board | plate material 40, and the 3rd board | plate material 50 which were each said structure are laminated | stacked on the height direction of the components conveyance member 12 (refer FIG. 1, FIG. 3). . In a state in which the cover member 20 to the third plate member 50 are laminated (hereinafter, refer to FIGS. 1, 4 and 5 as appropriate), the cover member 20, the first plate member 30, and the second plate member 40 are formed. A component outlet 72 is formed by the component extraction holes 22, 32 and 42. A gas supply port 73 is formed by the gas supply holes 23 and 33 formed in the lid member 20 and the first plate member 30.

また、蓋材20から第三板材50までが積層された状態では、第一穴34、第二穴44、第三穴54の内側に円柱部24が遊挿され、円柱部24の先端(下端)は、第三穴54の底面54Aに当接される。また、蓋材20から第三板材50までが積層されて部品搬送部材12が形成された状態では、この部品搬送部材12に、以下の如く、部品搬送通路74、及び、部品供給通路75が形成される(以下、適宜、図4,図5を参照)。   Further, in a state where the cover member 20 to the third plate member 50 are stacked, the cylindrical portion 24 is loosely inserted inside the first hole 34, the second hole 44, and the third hole 54, and the tip (lower end) of the cylindrical portion 24 is inserted. ) Is in contact with the bottom surface 54 </ b> A of the third hole 54. Further, in the state where the parts 20 to the third plate member 50 are laminated and the component conveying member 12 is formed, a component conveying passage 74 and a component supply passage 75 are formed in the component conveying member 12 as follows. (See FIGS. 4 and 5 as appropriate).

つまり、部品搬送通路74は、第一穴34、第二穴44、及び、第三穴54の内周面と、円柱部24の外周面との間の円環状の空間により形成されている。この部品搬送通路74の上部は、第一穴34によって形成され、部品搬送通路74の高さ方向の中央部は、第二穴44によって形成され、部品搬送通路74の下部は、第三穴54によって形成されている。この部品搬送通路74の天面74A(図8参照)は、蓋材20の下面によって形成されている。また、図4に示されるように、部品搬送通路74の外周面74Bは、第一穴34、第二穴44、及び、第三穴54の内周面によって形成され、部品搬送通路74の内周面74Cは、円柱部24の外周面によって形成されている。   That is, the component conveyance path 74 is formed by an annular space between the inner peripheral surface of the first hole 34, the second hole 44, and the third hole 54 and the outer peripheral surface of the cylindrical portion 24. The upper part of the component conveying path 74 is formed by the first hole 34, the central part in the height direction of the component conveying path 74 is formed by the second hole 44, and the lower part of the component conveying path 74 is formed by the third hole 54. Is formed by. A top surface 74 </ b> A (see FIG. 8) of the component conveying passage 74 is formed by the lower surface of the lid member 20. As shown in FIG. 4, the outer peripheral surface 74 </ b> B of the component transport passage 74 is formed by the inner peripheral surfaces of the first hole 34, the second hole 44, and the third hole 54. The peripheral surface 74 </ b> C is formed by the outer peripheral surface of the cylindrical portion 24.

この部品搬送通路74内では、後述する如く、部品供給通路75から供給された微小ネジ100が一定方向(矢印R方向)へ搬送される。この部品搬送通路74は、微小ネジ100の軸長及び頭部101の直径のうちいずれか大きい方よりも大きな寸法の高さ及び幅を有しており、部品搬送通路74では、後述する如く複数の微小ネジ100がその姿勢にかかわらず搬送される(図8参照)。   In the component conveyance path 74, as will be described later, the micro screw 100 supplied from the component supply path 75 is conveyed in a certain direction (arrow R direction). The component transport passage 74 has a height and width that are larger than the larger one of the axial length of the micro screw 100 and the diameter of the head portion 101. The micro screw 100 is conveyed regardless of its posture (see FIG. 8).

部品供給通路75は、上述の第一板材30、第二板材40、及び、第三板材50に形成された部品供給溝35,45,55によって形成されている。この部品供給通路75の天面は、部品搬送通路74の天面と同様に、蓋材20の下面によって形成されている。   The component supply passage 75 is formed by component supply grooves 35, 45, and 55 formed in the first plate member 30, the second plate member 40, and the third plate member 50 described above. The top surface of the component supply passage 75 is formed by the bottom surface of the lid member 20, similarly to the top surface of the component conveyance passage 74.

また、蓋材20から第三板材50までが積層された状態において、ガス供給通路46の天面、及び、一対のガス排出通路47,48の天面は、いずれも第一板材30の下面によって形成される。また、ガス供給通路46の底面、及び、一対のガス排出通路47,48の底面は、いずれも第三板材50の上面によって形成される。   Further, in the state where the cover member 20 to the third plate member 50 are laminated, the top surface of the gas supply passage 46 and the top surface of the pair of gas discharge passages 47 and 48 are both formed by the bottom surface of the first plate member 30. It is formed. Further, the bottom surface of the gas supply passage 46 and the bottom surfaces of the pair of gas discharge passages 47 and 48 are both formed by the top surface of the third plate member 50.

さらに、図8に示されるように、蓋材20から第三板材50までが積層された状態において、部品整列通路59の天面59Aは、第二板材40の下面によって形成される。この部品整列通路59の天面59Aは、第二板材40の下面に形成されることにより、蓋材20の下面に形成された部品搬送通路74の天面74Aよりも低い位置にある。また、ガス供給通路46における部品搬送通路74との接続口86は、第二板材40に形成されており、第三板材50に形成された部品整列通路59よりも高い位置にある。   Further, as shown in FIG. 8, the top surface 59 </ b> A of the component alignment passage 59 is formed by the lower surface of the second plate member 40 in a state where the cover member 20 to the third plate member 50 are laminated. The top surface 59 </ b> A of the component alignment passage 59 is formed at the lower surface of the second plate member 40, so that it is lower than the top surface 74 </ b> A of the component conveyance passage 74 formed on the lower surface of the lid member 20. Further, the connection port 86 of the gas supply passage 46 with the component conveyance passage 74 is formed in the second plate member 40 and is located at a position higher than the component alignment passage 59 formed in the third plate member 50.

図4に示されるように、上述の部品供給通路75及びガス供給通路46は、部品搬送通路74に合流され、一対のガス排出通路47,48及び部品整列通路59は、部品搬送通路74から分岐されている。部品供給通路75及びガス供給通路46における部品搬送通路74との接続口85,86は、いずれも部品搬送通路74における複数の微小ネジ100の搬送方向、すなわち、矢印R方向を向いて開口されている。一方、一対のガス排出通路47,48及び部品整列通路59における部品搬送通路74との接続口87,88,89は、いずれも矢印R方向とは反対の方向を向いて開口されている。   As shown in FIG. 4, the component supply passage 75 and the gas supply passage 46 described above are joined to the component conveyance passage 74, and the pair of gas discharge passages 47 and 48 and the component alignment passage 59 are branched from the component conveyance passage 74. Has been. Both the connection ports 85 and 86 of the component supply passage 75 and the gas supply passage 46 with the component conveyance passage 74 are opened in the conveyance direction of the plurality of micro screws 100 in the component conveyance passage 74, that is, in the direction of the arrow R. Yes. On the other hand, the connection ports 87, 88, and 89 of the pair of gas discharge passages 47 and 48 and the component alignment passage 59 with the component conveyance passage 74 are all open in the direction opposite to the arrow R direction.

また、上述の矢印R方向において、ガス供給通路46における部品搬送通路74との接続口86と、部品供給通路75における部品搬送通路74との接続口85との間には、一方のガス排出通路47における部品搬送通路74との接続口87が配置されている。同様に、矢印R方向において、部品供給通路75における部品搬送通路74との接続口85と、ガス供給通路46における部品搬送通路74との接続口86との間には、他方のガス排出通路48における部品搬送通路74との接続口88が配置されている。   Further, in the direction of the arrow R described above, one gas discharge passage is provided between the connection port 86 of the gas supply passage 46 with the component conveyance passage 74 and the connection port 85 of the component supply passage 75 with the component conveyance passage 74. A connection port 87 to the component conveyance passage 74 in 47 is arranged. Similarly, in the direction of arrow R, the other gas discharge passage 48 is provided between the connection port 85 of the component supply passage 75 with the component conveyance passage 74 and the connection port 86 of the gas supply passage 46 with the component conveyance passage 74. The connection port 88 with the parts conveyance path 74 is disposed.

つまり、本実施形態では、部品供給通路75の接続口85、他方のガス排出通路48の接続口88、ガス供給通路46の接続口86、部品整列通路59の接続口89、及び、一方のガス排出通路47の接続口87が矢印R方向に順に配置されている。また、図4に示される如く部品搬送部材12の平断面視において、部品整列通路59及び一方のガス排出通路47は、ガス供給通路46の中心軸線の延長線90を挟んだ両側に配置されている。すなわち、部品整列通路59は、延長線90に対する一方側に配置され、一方のガス排出通路47は、延長線90に対する他方側に配置されている。   That is, in this embodiment, the connection port 85 of the component supply passage 75, the connection port 88 of the other gas discharge passage 48, the connection port 86 of the gas supply passage 46, the connection port 89 of the component alignment passage 59, and one gas The connection ports 87 of the discharge passage 47 are arranged in order in the arrow R direction. Further, as shown in FIG. 4, in a plan sectional view of the component conveying member 12, the component alignment passage 59 and one gas discharge passage 47 are arranged on both sides of the extension line 90 of the central axis of the gas supply passage 46. Yes. That is, the part alignment passage 59 is disposed on one side with respect to the extension line 90, and one gas discharge passage 47 is disposed on the other side with respect to the extension line 90.

図1に示されるガス噴射部14は、「流体噴射部」の一例である。このガス噴射部14は、「流体」の一例であるガスを噴射する。ガス噴射部14の噴射口は、図示しない配管等を介して上述のガス供給口73及び部品供給口21に接続されている。   The gas injection unit 14 illustrated in FIG. 1 is an example of a “fluid injection unit”. The gas injection unit 14 injects gas which is an example of “fluid”. The injection port of the gas injection unit 14 is connected to the gas supply port 73 and the component supply port 21 described above via a pipe (not shown).

次に、上述の部品供給装置10の動作について説明する。   Next, the operation of the above-described component supply apparatus 10 will be described.

ガス噴射部14からガス110が噴射されると、このガス110は、部品供給口21及びガス供給口73から部品供給通路75及びガス供給通路46を通じて部品搬送通路74内に噴射される。また、部品供給通路75内には、部品供給口21から複数の微小ネジ100が投入される。この部品供給通路75内に投入された複数の微小ネジ100は、ガス噴射部14から噴射されたガス110によって部品搬送通路74内に供給される。そして、この部品搬送通路74では、ガス噴射部14から噴射されたガス110によって複数の微小ネジ100が搬送される。このときの複数の微小ネジ100の搬送方向は、矢印R方向で示される方向とされる。   When the gas 110 is injected from the gas injection unit 14, the gas 110 is injected from the component supply port 21 and the gas supply port 73 into the component transport passage 74 through the component supply passage 75 and the gas supply passage 46. A plurality of micro screws 100 are introduced into the component supply passage 75 from the component supply port 21. The plurality of micro screws 100 introduced into the component supply passage 75 are supplied into the component conveyance passage 74 by the gas 110 injected from the gas injection unit 14. In the component conveyance path 74, the plurality of micro screws 100 are conveyed by the gas 110 injected from the gas injection unit 14. At this time, the conveying direction of the plurality of micro screws 100 is the direction indicated by the arrow R direction.

部品搬送通路74は、上述の如く、微小ネジ100の軸長及び頭部101の直径のうちいずれか大きい方よりも大きな寸法の高さ及び幅を有する。従って、部品搬送通路74では、図8に示される如く、複数の微小ネジ100がその姿勢にかかわらず搬送される(姿勢を変えながら搬送される)。   As described above, the component conveyance passage 74 has a height and a width that are larger than the larger one of the axial length of the micro screw 100 and the diameter of the head 101. Accordingly, as shown in FIG. 8, the plurality of micro screws 100 are transported in the component transport path 74 regardless of the posture (conveyed while changing the posture).

そして、部品搬送通路74を搬送される微小ネジ100は、部品整列通路59における部品搬送通路74との接続口89に差し掛かるときに、正姿勢及び誤姿勢のいずれかとされる。この場合の微小ネジ100の正姿勢とは、図9に示される如く、頭部101を上にして起立されている姿勢である。微小ネジ100が正姿勢であり且つ自重により降下し部品搬送通路74の幅方向中央部に位置されている状態では、この正姿勢にある微小ネジ100が部品整列通路59に流入し整列される(図10も参照)。部品整列通路59に整列された複数の微小ネジ100のうち先頭の微小ネジ100は、図1に示される部品取出口72から取出される。   Then, when the micro screw 100 transported through the component transport passage 74 reaches the connection port 89 of the component alignment passage 59 with the component transport passage 74, the micro screw 100 is in either a correct posture or an incorrect posture. The normal posture of the micro screw 100 in this case is a posture in which the head 101 is erected as shown in FIG. In a state where the micro screw 100 is in the normal posture and is lowered by its own weight and is positioned at the center in the width direction of the component transport passage 74, the micro screw 100 in the normal posture flows into the component alignment passage 59 and is aligned ( (See also FIG. 10). The first micro screw 100 among the plurality of micro screws 100 aligned in the component aligning passage 59 is taken out from the component outlet 72 shown in FIG.

一方、図11に示されるように、部品搬送通路74を搬送される微小ネジ100が、部品整列通路59における部品搬送通路74との接続口89に差し掛かったときに、正姿勢以外の誤姿勢である場合がある。この誤姿勢の微小ネジ100は、部品整列通路59に流入できず、部品整列通路59に流入するまで部品搬送通路74を周回する。   On the other hand, as shown in FIG. 11, when the micro screw 100 conveyed through the component conveyance path 74 reaches the connection port 89 of the component alignment path 59 with the component conveyance path 74, the posture is incorrect. There may be. The micro screw 100 in the wrong posture cannot flow into the component alignment passage 59 and goes around the component conveyance passage 74 until it flows into the component alignment passage 59.

次に、本実施形態の作用及び効果について説明する。   Next, the operation and effect of this embodiment will be described.

以上詳述したように、本実施形態の部品供給装置10によれば、部品搬送部材12は、部品搬送通路74及び部品整列通路59を形成する複数の部材を積層して形成された積層体とされている。従って、微小ネジ100に対応して部品搬送通路74及び部品整列通路59の断面積を微小とする場合でも、この部品搬送通路74及び部品整列通路59を複数の部材に分けて形成する等により、部品搬送通路74及び部品整列通路59を容易に形成できる。これにより、搬送対象が複数の微小ネジ100である場合でも、この複数の微小ネジ100を正姿勢で整列させることが可能になる。   As described above in detail, according to the component supply apparatus 10 of the present embodiment, the component conveying member 12 includes a laminate formed by laminating a plurality of members that form the component conveying passage 74 and the component alignment passage 59. Has been. Therefore, even when the cross-sectional areas of the component conveying passage 74 and the component aligning passage 59 are made minute corresponding to the minute screw 100, the component conveying passage 74 and the component aligning passage 59 are formed by dividing them into a plurality of members. The component conveyance passage 74 and the component alignment passage 59 can be easily formed. Thereby, even when the conveyance target is a plurality of micro screws 100, the plurality of micro screws 100 can be aligned in a normal posture.

しかも、部品搬送部材12は、複数の部材を積層して形成された積層体とされているので、構造が簡素化される。また、部品供給装置10では、微小ネジ100を搬送するためにガス噴射部14が用いられている。従って、例えば、ロボットを用いるピッキング方式や、ホッパーを用いる撹拌方式等と比較して、部品供給装置10全体の構造も簡素化できる。   In addition, since the component conveying member 12 is a laminated body formed by laminating a plurality of members, the structure is simplified. In the component supply apparatus 10, the gas injection unit 14 is used to convey the micro screw 100. Therefore, for example, the entire structure of the component supply apparatus 10 can be simplified as compared with a picking method using a robot, a stirring method using a hopper, and the like.

このように、本実施形態の部品供給装置10によれば、構造を簡素化しつつ複数の微小ネジ100を正姿勢で整列させることが可能になる。   Thus, according to the component supply apparatus 10 of the present embodiment, it is possible to align the plurality of micro screws 100 in a normal posture while simplifying the structure.

また、本実施形態の部品供給装置10によれば、構造を簡素化できるので、部品供給装置10の低コスト化を図ることができる。   Moreover, according to the component supply apparatus 10 of this embodiment, since a structure can be simplified, the cost reduction of the component supply apparatus 10 can be achieved.

また、微小ネジ100に対応して部品搬送通路74及び部品整列通路59の断面を微小とする場合でも、この部品搬送通路74及び部品整列通路59を複数の部材に分けて形成する等により、部品搬送通路74及び部品整列通路59を適切な形状に形成できる。これにより、微小ネジ100の滞留や詰まり等を抑制することができる。   Even when the cross section of the component conveying passage 74 and the component aligning passage 59 is made minute corresponding to the minute screw 100, the component conveying passage 74 and the component aligning passage 59 are formed by dividing them into a plurality of members. The conveyance path 74 and the part alignment path 59 can be formed in appropriate shapes. Thereby, retention, clogging, etc. of the micro screw 100 can be suppressed.

また、図4に示されるように、部品搬送通路74における複数の微小ネジ100の搬送方向において、ガス供給通路46の接続口86と、部品供給通路75の接続口85との間には、一方のガス排出通路47の接続口87が配置されている。従って、ガス供給通路46から噴射されたガスの一部を一方のガス排出通路47を通じて外部に排出させることができる。これにより、部品供給通路75の接続口85から噴射されたガスと、ガス供給通路46の接続口86から噴射されたガスとが干渉して乱流が生じることを抑制することができる。   Further, as shown in FIG. 4, in the conveyance direction of the plurality of micro screws 100 in the component conveyance passage 74, there is one between the connection port 86 of the gas supply passage 46 and the connection port 85 of the component supply passage 75. A connection port 87 of the gas discharge passage 47 is arranged. Accordingly, a part of the gas injected from the gas supply passage 46 can be discharged to the outside through the one gas discharge passage 47. Thereby, it is possible to suppress the occurrence of turbulent flow due to interference between the gas injected from the connection port 85 of the component supply passage 75 and the gas injected from the connection port 86 of the gas supply passage 46.

同様に、部品搬送通路74における複数の微小ネジ100の搬送方向において、部品供給通路75の接続口85と、ガス供給通路46の接続口86との間には、他方のガス排出通路48の接続口88が配置されている。従って、部品供給通路75から噴射されたガスの一部を他方のガス排出通路48を通じて外部に排出させることができる。これにより、部品供給通路75の接続口85から噴射されたガスと、ガス供給通路46の接続口86から噴射されたガスとが干渉して乱流が生じることを抑制することができる。   Similarly, the other gas discharge passage 48 is connected between the connection port 85 of the component supply passage 75 and the connection port 86 of the gas supply passage 46 in the conveyance direction of the plurality of micro screws 100 in the component conveyance passage 74. A mouth 88 is disposed. Therefore, part of the gas injected from the component supply passage 75 can be discharged to the outside through the other gas discharge passage 48. Thereby, it is possible to suppress the occurrence of turbulent flow due to interference between the gas injected from the connection port 85 of the component supply passage 75 and the gas injected from the connection port 86 of the gas supply passage 46.

このように、ガスの干渉による乱流を抑制することができるので、部品搬送通路74内において複数の微小ネジ100を円滑に搬送することができ、微小ネジ100の滞留や詰まり等を抑制することができる。   As described above, since turbulent flow due to gas interference can be suppressed, a plurality of micro screws 100 can be smoothly transferred in the component transfer passage 74, and retention or clogging of the micro screws 100 can be suppressed. Can do.

また、図8に示されるように、ガス供給通路46の接続口86は、第二板材40に形成されており、第三板材50に形成された部品整列通路59よりも高い位置にある。従って、ガス供給通路46の接続口86からガス110が噴射されることにより、部品搬送通路74内の微小ネジ100を積極的に降下させることができる。これにより、部品搬送通路74の天面74Aよりも天面59Aが低い位置にある部品整列通路59に微小ネジ100を円滑に流入させることができる。   Further, as shown in FIG. 8, the connection port 86 of the gas supply passage 46 is formed in the second plate member 40 and is located higher than the component alignment passage 59 formed in the third plate member 50. Therefore, by ejecting the gas 110 from the connection port 86 of the gas supply passage 46, the micro screw 100 in the component conveyance passage 74 can be positively lowered. Thereby, the micro screw 100 can smoothly flow into the component alignment passage 59 in which the top surface 59A is lower than the top surface 74A of the component transport passage 74.

また、図4に示される如く部品搬送部材12の平断面視において、部品整列通路59及び一方のガス排出通路47は、ガス供給通路46の中心軸線の延長線90を挟んだ両側に配置されている。従って、ガス供給通路46の接続口86から噴射されたガスを部品整列通路59側と一方のガス排出通路47側に振り分けることができる。これにより、微小ネジ100が正姿勢である場合には、この正姿勢の微小ネジ100を部品整列通路59に流入させることができる。また、微小ネジ100が誤姿勢である場合には、この誤姿勢の微小ネジ100を一方のガス排出通路47側に流すことができ、この誤姿勢の微小ネジ100を部品搬送通路74内において円滑に周回させることができる。   Further, as shown in FIG. 4, in a plan sectional view of the component conveying member 12, the component alignment passage 59 and one gas discharge passage 47 are arranged on both sides of the extension line 90 of the central axis of the gas supply passage 46. Yes. Therefore, the gas injected from the connection port 86 of the gas supply passage 46 can be distributed to the component alignment passage 59 side and the one gas discharge passage 47 side. Thereby, when the micro screw 100 is in the normal posture, the micro screw 100 in the normal posture can be caused to flow into the component alignment passage 59. If the micro screw 100 is in the wrong posture, the micro screw 100 in the wrong posture can be caused to flow toward the one gas discharge passage 47, and the micro screw 100 in the wrong posture can be smoothly moved in the component conveying passage 74. Can be circulated.

次に、本実施形態の変形例について説明する。   Next, a modification of this embodiment will be described.

上記実施形態において、部品供給装置10の搬送対象は、微小ネジ100とされているが、微小ネジ100以外の微小部品(例えば、M1.0のネジと同等の大きさの部品)とされても良い。また、部品供給装置10が微小ネジ100以外の微小部品を搬送対象とする場合に、この微小部品に対応して部品整列通路59は、種々の断面形状に変更されても良い。   In the above-described embodiment, the conveyance target of the component supply apparatus 10 is the micro screw 100, but may be a micro component other than the micro screw 100 (for example, a component having a size equivalent to an M1.0 screw). good. In addition, when the component supply apparatus 10 targets a micro component other than the micro screw 100, the component alignment passage 59 may be changed to various cross-sectional shapes corresponding to the micro component.

また、部品供給装置10は、「締結部品」の一例として、微小ネジ100を搬送対象としているが、頭部及び胴部を有する例えばリベット等の締結部品を搬送対象としても良い。   In addition, although the component supply apparatus 10 uses the micro screw 100 as a conveyance target as an example of the “fastening component”, a fastening component such as a rivet having a head portion and a trunk portion may be the conveyance target.

また、部品搬送部材12は、一例として、蓋材20、第一板材30、第二板材40、及び、第三板材50が積層されることにより形成されているが、その他の構造の複数の部材が積層されることにより形成されても良い。   Moreover, although the component conveyance member 12 is formed by laminating | stacking the cover material 20, the 1st board | plate material 30, the 2nd board | plate material 40, and the 3rd board | plate material 50 as an example, it is a several member of another structure May be formed by laminating.

また、部品供給装置10は、「流体噴射部」の一例として、ガス噴射部14を備えるが、ガス以外の流体(例えばオイル等の液体)を噴射する流体噴射部を備えていても良い。   Further, the component supply device 10 includes the gas injection unit 14 as an example of the “fluid injection unit”, but may include a fluid injection unit that injects a fluid other than gas (for example, a liquid such as oil).

また、円柱部24は、蓋材20に形成されているが、第三板材50に形成されても良く、また、蓋材20と第三板材50の両方に形成されても良い。   In addition, the cylindrical portion 24 is formed on the lid member 20, but may be formed on the third plate member 50, or may be formed on both the lid member 20 and the third plate member 50.

また、部品搬送部材12は、「複数の部材」の一例として、蓋材20、第一板材30、第二板材40、及び、第三板材50を有するが、それ以外の複数の部材を積層して形成された積層体とされても良い。また、第三板材50は、一つの構造体とされているが、板厚方向に分割された複数の部材で形成されても良い。   In addition, the component conveying member 12 includes the lid member 20, the first plate member 30, the second plate member 40, and the third plate member 50 as an example of “a plurality of members”, but a plurality of other members are stacked. It may be a laminated body formed as described above. Moreover, although the 3rd board | plate material 50 is made into one structure, you may form with the several member divided | segmented in the plate | board thickness direction.

また、部品搬送通路74は、円環状に形成されているが、楕円環状に形成されても良い。また、部品搬送通路74は、環状に形成される以外に、直線状や曲線状に形成されても良い。   Moreover, although the component conveyance path 74 is formed in an annular shape, it may be formed in an elliptical shape. Further, the component conveyance path 74 may be formed in a linear shape or a curved shape in addition to the annular shape.

また、図12に示されるように、第三板材50は、「流体吸込口」の一例として、部品搬送通路74の底面74Dに開口するガス吸込口65を有していても良い。そして、このガス吸込口65から部品搬送通路74内のガスが吸い込まれても良い。ガス吸込口65からのガスの吸込みは、吸引装置によるものでも良いし、部品搬送通路74内のガスが単に排出されるのでも良い。   As shown in FIG. 12, the third plate member 50 may have a gas suction port 65 that opens to the bottom surface 74 </ b> D of the component transport passage 74 as an example of a “fluid suction port”. Then, the gas in the component conveyance passage 74 may be sucked from the gas suction port 65. The suction of the gas from the gas suction port 65 may be performed by a suction device, or the gas in the component transport passage 74 may be simply discharged.

このようにガス吸込口65が設けられていると、図13に示されるように、微小ネジ100を部品搬送通路74の下方に吸い寄せることができると共に、この微小ネジ100を起立した正姿勢にすることが可能になる。これにより、微小ネジ100を上述の部品整列通路59(図9,図10等参照)に円滑に流入させることが可能になる。   When the gas suction port 65 is provided as described above, the micro screw 100 can be sucked below the component conveying passage 74 as shown in FIG. It becomes possible to do. As a result, the micro screw 100 can be smoothly flowed into the component alignment passage 59 (see FIGS. 9 and 10).

また、上述の複数の変形例は、適宜、組み合わされて実施されても良い。   In addition, the plurality of modifications described above may be implemented in combination as appropriate.

以上、本願の開示する技術の一実施形態について説明したが、本願の開示する技術は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。   As mentioned above, although one embodiment of the technique disclosed in the present application has been described, the technique disclosed in the present application is not limited to the above, and various modifications may be made without departing from the spirit of the present invention. Of course, it is possible.

なお、上述の本願の開示する技術の一実施形態に関し、更に以下の付記を開示する。   In addition, the following additional remark is disclosed regarding one Embodiment of the technique which the above-mentioned this application discloses.

(付記1)
複数の微小部品が搬送される部品搬送通路と、前記部品搬送通路から分岐され前記部品搬送通路を搬送される前記複数の微小部品のうち正姿勢の微小部品が流入し整列される部品整列通路とを有すると共に、前記部品搬送通路及び前記部品整列通路を形成する複数の部材を積層して形成された積層体である部品搬送部材と、
前記部品搬送通路内に流体を噴射し、前記複数の微小部品を搬送させる流体噴射部と、
を備える部品供給装置。
(付記2)
前記部品搬送部材は、
前記部品搬送通路に合流され、前記部品搬送通路に前記複数の微小部品を供給する部品供給通路と、
前記部品搬送通路に合流された流体供給通路と、
前記部品搬送通路から分岐された一対の流体排出通路と、
をさらに有し、
前記流体噴射部は、前記部品供給通路及び前記流体供給通路を通じて前記部品搬送通路内に流体を噴射し、
前記部品搬送通路における前記複数の微小部品の搬送方向において、前記流体供給通路における前記部品搬送通路との接続口と、前記部品供給通路における前記部品搬送通路との接続口との間には、一方の前記流体排出通路における前記部品搬送通路との接続口が配置され、
前記部品搬送通路における前記複数の微小部品の搬送方向において、前記部品供給通路における前記部品搬送通路との接続口と、前記流体供給通路における前記部品搬送通路との接続口との間には、他方の前記流体排出通路における前記部品搬送通路との接続口が配置されている、
付記1に記載の部品供給装置。
(付記3)
前記部品整列通路の天面は、前記部品搬送通路の天面よりも低い位置にあり、
前記流体噴射部は、前記部品搬送部材に形成され前記部品搬送通路に合流された流体供給通路を通じて前記部品搬送通路内に流体を噴射し、
前記流体供給通路における前記部品搬送通路との接続口は、前記部品整列通路よりも高い位置にある、
付記1又は付記2に記載の部品供給装置。
(付記4)
前記部品搬送通路は、環状に形成され、
前記部品搬送部材は、前記部品搬送通路に合流された流体供給通路と、前記部品搬送通路から分岐された流体排出通路とをさらに有し、
前記流体供給通路、前記部品整列通路、及び、前記流体排出通路は、いずれも前記部品搬送通路の接線方向に延び、
前記流体供給通路における前記部品搬送通路との接続口、前記部品整列通路における前記部品搬送通路との接続口、及び、前記流体排出通路における前記部品搬送通路との接続口は、前記部品搬送通路における前記複数の微小部品の搬送方向に順に配置され、
前記部品搬送部材の平断面視において、前記部品整列通路及び前記流体排出通路は、前記流体供給通路の中心軸線の延長線を挟んだ両側に配置されている、
付記1〜付記3のいずれか一項に記載の部品供給装置。
(付記5)
前記部品搬送通路の天面は、前記部品整列通路の天面よりも低い位置にあり、
前記部品搬送部材は、前記部品搬送通路の底面に開口し、前記部品搬送通路内の流体を吸い込む流体吸込口をさらに有する、
付記1〜付記4のいずれか一項に記載の部品供給装置。
(付記6)
前記複数の部材は、
前記部品搬送通路の天面が形成された蓋材と、
前記蓋材の下側に積層されると共に、前記部品搬送通路の上部を形成する第一穴が形成された第一板材と、
前記第一板材の下側に積層されると共に、前記部品搬送通路の高さ方向の中央部を形成する第二穴と、前記部品整列通路の天面とが形成された第二板材と、
前記第二板材の下側に積層されると共に、前記部品搬送通路の下部を形成する第三穴と、前記部品整列通路とが形成された第三板材と、
を含む、
付記1〜付記5のいずれか一項に記載の部品供給装置。
(付記7)
前記第一穴、前記第二穴、及び、前記第三穴は、平面視にて円形に形成され、
前記蓋材及び第三板材の少なくとも一方は、前記第一穴、前記第二穴、及び、前記第三穴の内側に遊挿された円柱部を有し、
前記部品搬送通路の外周面は、前記第一穴、前記第二穴、及び、前記第三穴の内周面によって形成され、
前記部品搬送通路の内周面は、前記円柱部の外周面によって形成されている、
付記6に記載の部品供給装置。
(付記8)
前記部品搬送通路は、環状に形成され、
前記部品搬送部材は、
前記部品搬送通路に合流され、前記部品搬送通路に前記複数の微小部品を供給する部品供給通路と、
前記部品搬送通路に合流された流体供給通路と、
前記部品搬送通路から分岐された一対の流体排出通路と、
をさらに有し、
前記部品供給通路、前記部品整列通路、前記流体供給通路、及び、前記一対の流体排出通路は、いずれも前記部品搬送通路の接線方向に延び、
前記部品供給通路及び前記流体供給通路における前記部品搬送通路との接続口は、いずれも前記部品搬送通路における前記複数の微小部品の搬送方向を向いて開口され、
前記一対の流体排出通路 及び前記部品整列通路における前記部品搬送通路との接続口は、いずれも前記部品搬送通路における前記複数の微小部品の搬送方向とは反対の方向を向いて開口されている、
付記1〜付記7のいずれか一項に記載の部品供給装置。
(付記9)
前記部品搬送通路は、環状に形成され、
前記流体噴射部は、前記複数の微小部品を一定方向へ搬送させる、
付記1〜付記8のいずれか一項に記載の部品供給装置。
(付記10)
前記流体噴射部は、前記流体としてのガスを噴射する、
付記1〜付記9のいずれか一項に記載の部品供給装置。
(付記11)
前記微小部品は、頭部及び胴部を有する締結部品である、
付記1〜付記10のいずれか一項に記載の部品供給装置。
(付記12)
前記部品搬送通路は、前記締結部品の軸長及び前記頭部の直径のうちいずれか大きい方よりも大きな寸法の高さ及び幅を有する、
付記1〜付記11のいずれか一項に記載の部品供給装置。
(付記13)
前記部品整列通路は、前記締結部品と対応する断面T字状に形成されている、
付記1〜付記12のいずれか一項に記載の部品供給装置。
(Appendix 1)
A parts transport path through which a plurality of micro parts are transported, and a parts alignment path from which the micro parts in a normal posture flow in and are aligned among the plurality of micro parts branched from the parts transport path and transported through the parts transport path A component conveying member that is a laminate formed by laminating a plurality of members that form the component conveying passage and the component alignment passage;
A fluid ejecting unit that ejects fluid into the component transport passage and transports the plurality of micro components;
A component supply apparatus comprising:
(Appendix 2)
The component conveying member is
A component supply passage that is joined to the component conveyance passage and supplies the plurality of minute components to the component conveyance passage;
A fluid supply passage joined to the component conveyance passage;
A pair of fluid discharge passages branched from the component conveying passage;
Further comprising
The fluid ejecting unit ejects fluid into the component transport passage through the component supply passage and the fluid supply passage,
Between the connection port of the fluid supply passage with the component transfer passage and the connection port of the component supply passage with the component transfer passage in the transfer direction of the plurality of micro components in the component transfer passage, A connection port with the component conveying passage in the fluid discharge passage is disposed,
Between the connection port of the component supply passage with the component transfer passage and the connection port of the fluid supply passage with the component transfer passage in the transfer direction of the plurality of micro parts in the component transfer passage, the other The connection port with the component conveyance passage in the fluid discharge passage is disposed.
The component supply apparatus according to appendix 1.
(Appendix 3)
The top surface of the component alignment passage is at a position lower than the top surface of the component conveyance passage,
The fluid ejecting unit ejects fluid into the component transport passage through a fluid supply passage formed in the component transport member and joined to the component transport passage.
The connection port of the fluid supply passage with the component conveyance passage is at a position higher than the component alignment passage.
The component supply apparatus according to Supplementary Note 1 or Supplementary Note 2.
(Appendix 4)
The component conveying passage is formed in an annular shape,
The component conveying member further includes a fluid supply passage joined to the component conveying passage, and a fluid discharge passage branched from the component conveying passage,
The fluid supply passage, the component alignment passage, and the fluid discharge passage all extend in a tangential direction of the component conveyance passage,
A connection port with the component conveyance passage in the fluid supply channel, a connection port with the component conveyance channel in the component alignment channel, and a connection port with the component conveyance channel in the fluid discharge channel are in the component conveyance channel. Arranged sequentially in the conveying direction of the plurality of microparts,
In a cross-sectional view of the component conveying member, the component alignment passage and the fluid discharge passage are disposed on both sides of an extension line of the central axis of the fluid supply passage.
The component supply apparatus according to any one of Supplementary Notes 1 to 3.
(Appendix 5)
The top surface of the component transport passage is at a position lower than the top surface of the component alignment passage,
The component conveying member further has a fluid suction port that opens to a bottom surface of the component conveying passage and sucks fluid in the component conveying passage.
The component supply apparatus according to any one of Supplementary Note 1 to Supplementary Note 4.
(Appendix 6)
The plurality of members are:
A lid member on which the top surface of the component conveyance path is formed;
A first plate member that is laminated on the lower side of the lid member and has a first hole that forms an upper portion of the component conveyance path;
A second plate formed on the lower side of the first plate member, and formed with a second hole that forms a central portion in the height direction of the component conveying passage, and a top surface of the component alignment passage;
A third plate which is laminated on the lower side of the second plate and has a third hole which forms a lower portion of the component conveying passage, and the component alignment passage;
including,
The component supply apparatus according to any one of appendix 1 to appendix 5.
(Appendix 7)
The first hole, the second hole, and the third hole are formed in a circular shape in plan view,
At least one of the lid member and the third plate member has a cylindrical portion loosely inserted inside the first hole, the second hole, and the third hole,
The outer peripheral surface of the component conveying path is formed by the inner peripheral surface of the first hole, the second hole, and the third hole,
The inner peripheral surface of the component conveyance path is formed by the outer peripheral surface of the cylindrical portion.
The component supply apparatus according to appendix 6.
(Appendix 8)
The component conveying passage is formed in an annular shape,
The component conveying member is
A component supply passage that is joined to the component conveyance passage and supplies the plurality of minute components to the component conveyance passage;
A fluid supply passage joined to the component conveyance passage;
A pair of fluid discharge passages branched from the component conveying passage;
Further comprising
The component supply passage, the component alignment passage, the fluid supply passage, and the pair of fluid discharge passages all extend in a tangential direction of the component conveyance passage,
The connection ports of the component supply passage and the fluid supply passage to the component conveyance passage are all open in the conveyance direction of the plurality of micro components in the component conveyance passage,
The connection ports of the pair of fluid discharge passages and the component conveying passages in the component alignment passages are all opened in a direction opposite to the conveying direction of the plurality of micro components in the component conveying passage.
The component supply apparatus according to any one of appendix 1 to appendix 7.
(Appendix 9)
The component conveying passage is formed in an annular shape,
The fluid ejecting unit conveys the plurality of micro parts in a certain direction.
The component supply apparatus according to any one of Supplementary Note 1 to Supplementary Note 8.
(Appendix 10)
The fluid ejecting unit ejects gas as the fluid.
The component supply apparatus according to any one of Appendix 1 to Appendix 9.
(Appendix 11)
The micro component is a fastening component having a head portion and a trunk portion.
The component supply apparatus according to any one of Appendix 1 to Appendix 10.
(Appendix 12)
The component conveyance path has a height and a width that are larger than the larger one of the axial length of the fastening component and the diameter of the head.
The component supply apparatus according to any one of Appendix 1 to Appendix 11.
(Appendix 13)
The part alignment passage is formed in a T-shaped cross section corresponding to the fastening part.
The component supply apparatus according to any one of Supplementary Note 1 to Supplementary Note 12.

10 部品供給装置
12 部品搬送部材
14 ガス噴射部(流体噴射部の一例)
20 蓋材
21 部品供給口
24 円柱部
30 第一板材
34 第一穴
40 第二板材
44 第二穴
46 ガス供給通路(流体供給通路の一例)
47,48 ガス排出通路(流体排出通路の一例)
50 第三板材
54 第三穴
59 部品整列通路
65 ガス吸込口(流体吸込口の一例)
72 部品取出口
73 ガス供給口(流体供給口の一例)
74 部品搬送通路
75 部品供給通路
90 延長線
100 微小ネジ
DESCRIPTION OF SYMBOLS 10 Component supply apparatus 12 Component conveyance member 14 Gas injection part (an example of a fluid injection part)
20 Lid material 21 Component supply port 24 Column 30 First plate material 34 First hole 40 Second plate material 44 Second hole 46 Gas supply passage (an example of fluid supply passage)
47, 48 Gas discharge passage (an example of fluid discharge passage)
50 Third plate material 54 Third hole 59 Parts alignment passage 65 Gas suction port (an example of fluid suction port)
72 Component outlet 73 Gas supply port (an example of fluid supply port)
74 Parts transport passage 75 Parts supply passage 90 Extension line 100 Micro screw

Claims (4)

複数の微小部品が搬送される部品搬送通路と、前記部品搬送通路から分岐され前記部品搬送通路を搬送される前記複数の微小部品のうち正姿勢の微小部品が流入し整列される部品整列通路とを有すると共に、前記部品搬送通路及び前記部品整列通路を形成する複数の部材を積層して形成された積層体である部品搬送部材と、
前記部品搬送部材に形成され前記部品搬送通路に合流された流体供給通路を通じて前記部品搬送通路内に流体を噴射し、前記複数の微小部品を搬送させる流体噴射部と、
を備え
前記部品整列通路の天面は、前記部品搬送通路の天面よりも低い位置にあり、
前記流体供給通路における前記部品搬送通路との接続口は、前記部品整列通路よりも高い位置にある
部品供給装置。
A parts transport path through which a plurality of micro parts are transported, and a parts alignment path from which the micro parts in a normal posture flow in and are aligned among the plurality of micro parts branched from the parts transport path and transported through the parts transport path A component conveying member that is a laminate formed by laminating a plurality of members that form the component conveying passage and the component alignment passage;
A fluid ejecting unit configured to eject a fluid into the component transport passage through a fluid supply passage formed in the component transport member and joined to the component transport passage, and transport the plurality of micro components;
Equipped with a,
The top surface of the component alignment passage is at a position lower than the top surface of the component conveyance passage,
The connection port of the fluid supply passage with the component conveyance passage is at a position higher than the component alignment passage .
Parts supply device.
前記部品搬送部材は、
前記部品搬送通路に合流され、前記部品搬送通路に前記複数の微小部品を供給する部品供給通路と
前記部品搬送通路から分岐された一対の流体排出通路と、
をさらに有し、
前記流体噴射部は、前記部品供給通路及び前記流体供給通路を通じて前記部品搬送通路内に流体を噴射し、
前記部品搬送通路における前記複数の微小部品の搬送方向において、前記流体供給通路における前記部品搬送通路との接続口と、前記部品供給通路における前記部品搬送通路との接続口との間には、一方の前記流体排出通路における前記部品搬送通路との接続口が配置され、
前記部品搬送通路における前記複数の微小部品の搬送方向において、前記部品供給通路における前記部品搬送通路との接続口と、前記流体供給通路における前記部品搬送通路との接続口との間には、他方の前記流体排出通路における前記部品搬送通路との接続口が配置されている、
請求項1に記載の部品供給装置。
The component conveying member is
A component supply passage that is joined to the component conveyance passage and supplies the plurality of minute components to the component conveyance passage ;
A pair of fluid discharge passages branched from the component conveying passage;
Further comprising
The fluid ejecting unit ejects fluid into the component transport passage through the component supply passage and the fluid supply passage,
Between the connection port of the fluid supply passage with the component transfer passage and the connection port of the component supply passage with the component transfer passage in the transfer direction of the plurality of micro components in the component transfer passage, A connection port with the component conveying passage in the fluid discharge passage is disposed,
Between the connection port of the component supply passage with the component transfer passage and the connection port of the fluid supply passage with the component transfer passage in the transfer direction of the plurality of micro parts in the component transfer passage, the other The connection port with the component conveyance passage in the fluid discharge passage is disposed.
The component supply apparatus according to claim 1.
前記部品搬送通路は、環状に形成され、
前記部品搬送部材は、前記部品搬送通路から分岐された流体排出通路をさらに有し、
前記流体供給通路、前記部品整列通路、及び、前記流体排出通路は、いずれも前記部品搬送通路の接線方向に延び、
前記流体供給通路における前記部品搬送通路との接続口、前記部品整列通路における前記部品搬送通路との接続口、及び、前記流体排出通路における前記部品搬送通路との接続口は、前記部品搬送通路における前記複数の微小部品の搬送方向に順に配置され、
前記部品搬送部材の平断面視において、前記部品整列通路及び前記流体排出通路は、前記流体供給通路の中心軸線の延長線を挟んだ両側に配置されている、
請求項1又は請求項2に記載の部品供給装置。
The component conveying passage is formed in an annular shape,
The component conveying member further has a fluid discharge passage branched from the component conveying passage,
The fluid supply passage, the component alignment passage, and the fluid discharge passage all extend in a tangential direction of the component conveyance passage,
A connection port with the component conveyance passage in the fluid supply channel, a connection port with the component conveyance channel in the component alignment channel, and a connection port with the component conveyance channel in the fluid discharge channel are in the component conveyance channel. Arranged sequentially in the conveying direction of the plurality of microparts,
In a cross-sectional view of the component conveying member, the component alignment passage and the fluid discharge passage are disposed on both sides of an extension line of the central axis of the fluid supply passage.
The component supply apparatus according to claim 1 or 2.
前記部品搬送部材は、前記部品搬送通路の底面に開口し、前記部品搬送通路内の流体を吸い込む流体吸込口をさらに有する、
請求項1〜請求項3のいずれか一項に記載の部品供給装置。
The component conveying member further has a fluid suction port that opens to a bottom surface of the component conveying passage and sucks fluid in the component conveying passage.
The component supply apparatus as described in any one of Claims 1-3.
JP2015003158A 2015-01-09 2015-01-09 Parts supply device Expired - Fee Related JP6451330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015003158A JP6451330B2 (en) 2015-01-09 2015-01-09 Parts supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015003158A JP6451330B2 (en) 2015-01-09 2015-01-09 Parts supply device

Publications (2)

Publication Number Publication Date
JP2016128346A JP2016128346A (en) 2016-07-14
JP6451330B2 true JP6451330B2 (en) 2019-01-16

Family

ID=56384053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015003158A Expired - Fee Related JP6451330B2 (en) 2015-01-09 2015-01-09 Parts supply device

Country Status (1)

Country Link
JP (1) JP6451330B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108177980A (en) * 2018-02-26 2018-06-19 厦门攸信信息技术有限公司 Sealing ring transmitting device and system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332893A (en) * 2000-05-23 2001-11-30 Ntn Corp Micro part supplying device
JP4617244B2 (en) * 2005-11-08 2011-01-19 富士通株式会社 Component supply apparatus and component supply method

Also Published As

Publication number Publication date
JP2016128346A (en) 2016-07-14

Similar Documents

Publication Publication Date Title
TW201002596A (en) Swirl flow forming body and non-contact conveying device
JP5921323B2 (en) Transport holding tool and transport holding device
JP2009507735A (en) Starwheel conveyor or multiple conveyors for multiple empty plastic bottles
JP5465595B2 (en) Non-contact transfer device
KR102428108B1 (en) Transfer device and sucking device
JP2011147939A (en) Adhesive application head
JP2007042698A (en) Bulk feeder and electronic component packaging equipment
TWI576299B (en) To attract the disk and have its transfer device
JP6451330B2 (en) Parts supply device
JP2000118712A (en) Gas blowing structure for floating transfer device
WO2013121634A1 (en) Float transportation device and float transportation method
JP5740394B2 (en) Swirl flow forming body and non-contact transfer device
TW201639765A (en) Transportation jig for transporting a flat plate
JP2010131519A (en) Screw classifying device
CN111747065B (en) Parts feeder and air ejection device for parts feeder
JP2010052051A (en) Bernoulli chuck, and suck-to-hold hand
KR102497944B1 (en) Manufacturing method of glass plate and manufacturing apparatus therefor
EP2410135B1 (en) Exhaust plenum flow splitter
JP2009040598A (en) Air floatation transportation device, air floatation unit, and air floatation transportation method
JP5422680B2 (en) Substrate holding device
TWI660450B (en) Cyclone forming body and suction device
JP5168622B2 (en) Parts supply device
WO2016208390A1 (en) Part loader and part loading method
JP2015218063A (en) Levitation transportation device
JP2015100876A (en) Conveyance tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181126

R150 Certificate of patent or registration of utility model

Ref document number: 6451330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees