JP6439870B2 - ダンパ装置 - Google Patents
ダンパ装置 Download PDFInfo
- Publication number
- JP6439870B2 JP6439870B2 JP2017523670A JP2017523670A JP6439870B2 JP 6439870 B2 JP6439870 B2 JP 6439870B2 JP 2017523670 A JP2017523670 A JP 2017523670A JP 2017523670 A JP2017523670 A JP 2017523670A JP 6439870 B2 JP6439870 B2 JP 6439870B2
- Authority
- JP
- Japan
- Prior art keywords
- spring
- damper device
- elastic body
- springs
- torque
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005540 biological transmission Effects 0.000 claims description 70
- 238000005452 bending Methods 0.000 claims description 11
- 239000012530 fluid Substances 0.000 claims description 11
- 101100365087 Arabidopsis thaliana SCRA gene Proteins 0.000 description 119
- 230000002093 peripheral effect Effects 0.000 description 89
- 230000008859 change Effects 0.000 description 27
- 239000002131 composite material Substances 0.000 description 22
- 238000013016 damping Methods 0.000 description 22
- 230000007423 decrease Effects 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 10
- 230000004308 accommodation Effects 0.000 description 9
- 230000004323 axial length Effects 0.000 description 9
- 238000002485 combustion reaction Methods 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000010720 hydraulic oil Substances 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 239000002783 friction material Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/10—Suppression of vibrations in rotating systems by making use of members moving with the system
- F16F15/12—Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
- F16F15/131—Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
- F16F15/133—Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses using springs as elastic members, e.g. metallic springs
- F16F15/134—Wound springs
- F16F15/13469—Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations
- F16F15/13476—Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations resulting in a staged spring characteristic, e.g. with multiple intermediate plates
- F16F15/13484—Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations resulting in a staged spring characteristic, e.g. with multiple intermediate plates acting on multiple sets of springs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/02—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions
- F16D3/12—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions specially adapted for accumulation of energy to absorb shocks or vibration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/10—Suppression of vibrations in rotating systems by making use of members moving with the system
- F16F15/12—Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
- F16F15/121—Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
- F16F15/123—Wound springs
- F16F15/12353—Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations
- F16F15/1236—Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations resulting in a staged spring characteristic, e.g. with multiple intermediate plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/10—Suppression of vibrations in rotating systems by making use of members moving with the system
- F16F15/12—Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
- F16F15/121—Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
- F16F15/123—Wound springs
- F16F15/12353—Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations
- F16F15/1236—Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations resulting in a staged spring characteristic, e.g. with multiple intermediate plates
- F16F15/12366—Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations resulting in a staged spring characteristic, e.g. with multiple intermediate plates acting on multiple sets of springs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/10—Suppression of vibrations in rotating systems by making use of members moving with the system
- F16F15/12—Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
- F16F15/131—Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
- F16F15/133—Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses using springs as elastic members, e.g. metallic springs
- F16F15/134—Wound springs
- F16F15/13469—Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations
- F16F15/13476—Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations resulting in a staged spring characteristic, e.g. with multiple intermediate plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H45/00—Combinations of fluid gearings for conveying rotary motion with couplings or clutches
- F16H45/02—Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H45/00—Combinations of fluid gearings for conveying rotary motion with couplings or clutches
- F16H45/02—Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
- F16H2045/0221—Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
- F16H2045/0226—Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers
- F16H2045/0231—Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers arranged in series
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Operated Clutches (AREA)
- Springs (AREA)
- Vibration Prevention Devices (AREA)
Description
本開示の発明は、エンジンからのトルクが伝達される入力要素と、出力要素とを有するダンパ装置に関する。
従来、この種のダンパ装置として、トルクコンバータに関連して使用されるダブルパスダンパが知られている(例えば、特許文献1参照)。このダンパ装置において、エンジンおよびロックアップクラッチから出力ハブまでの振動経路は、2つの平行な振動経路BおよびCに分割されており、2つの振動経路B,Cは、それぞれ一対のばねと、当該一対のばねの間に配置される別個の中間フランジを有する。また、トルクコンバータのタービンは、2つの振動経路の固有振動数を異ならせるために振動経路Bの中間フランジに結合されており、振動経路Bの中間フランジの固有振動数は、振動経路Cの中間フランジの固有振動数よりも小さい。かかるダンパ装置では、ロックアップクラッチが繋がれている場合、エンジンからの振動がダンパ装置の2つの振動経路B,Cに進入する。そして、ある周波数のエンジン振動がタービンに結合された中間フランジを含む振動経路Bに到達すると、振動経路Bの中間フランジから出力ハブまでの間における振動の位相が入力振動の位相に対して180度ずれる。この際、振動経路Cの中間フランジの固有振動数は振動経路Bの中間フランジの固有振動数よりも大きいことから、振動経路Cに進入した振動は、位相のシフト(ずれ)を生ずることなく出力ハブに伝達される。このように、振動経路Bから出力ハブに伝達される振動の位相と、振動経路Cから出力ハブに伝達される振動の位相とを180度ずらすことで、出力ハブでの振動を減衰させることができる。
上記特許文献1に記載されたダブルパスダンパの振動減衰性能を向上させるためには、各中間フランジの両側の弾性体のばね定数や各中間フランジの重量を調整して、振動経路BおよびCの固有振動数を適正に設定する必要がある。しかしながら、弾性体のばね定数を調整して振動経路BおよびCの固有振動数を適正化しようとすると、ダブルパスダンパ全体の剛性が大きく変動してしまう。また、中間フランジやそれに結合されるタービンの重量を調整して2つの固有振動数を適正化しようとすると、フランジやタービンの重量、ひいてはトルクコンバータ全体の重量が増加してしまう。従って、上記ダブルパスダンパにおいて、振動減衰性能が向上するように振動経路BおよびCの固有振動数を適正に設定するのは容易ではなく、減衰されるべき振動の周波数によっては、特許文献1に記載されたダンパ装置によっても当該振動を良好に減衰し得なくなる。
そこで、本開示の発明は、より高い振動減衰性能を有するダンパ装置の提供を主目的とする。
本開示のダンパ装置は、エンジンからのトルクが伝達される入力要素と、出力要素とを有するダンパ装置において、第1中間要素と、第2中間要素と、前記入力要素と前記第1中間要素との間でトルクを伝達する第1弾性体と、前記第1中間要素と前記出力要素との間でトルクを伝達する第2弾性体と、前記入力要素と前記第2中間要素との間でトルクを伝達する第3弾性体と、前記第2中間要素と前記出力要素との間でトルクを伝達する第4弾性体と、前記第1中間要素と前記第2中間要素との間でトルクを伝達する第5弾性体とを備え、前記第1から第5弾性体のすべてを介して前記入力要素から前記出力要素にトルクが伝達される際の前記第2中間要素の固有振動数が、前記第1から第5弾性体のすべてを介して前記入力要素から前記出力要素にトルクが伝達される際の前記第1中間要素の固有振動数よりも大きく、前記第3および第4弾性体の少なくとも何れか一方が、前記第1および第2弾性体の径方向外側に配置されるものである。
このダンパ装置では、第1から第5弾性体のすべての撓みが許容されている状態に対して、装置全体で2つの固有振動数を設定することができる。そして、本発明者らの研究・解析によれば、これらの第1から第5弾性体を含むダンパ装置の固有振動数は、第5弾性体の剛性が低下するにつれて小さくなることや、第5弾性体の剛性の変化に対するダンパ装置の等価剛性の変化は、第1から第4弾性体の剛性の変化に対する当該等価剛性の変化に比べて大幅に小さくなることが判明している。従って、本開示のダンパ装置では、第5弾性体の剛性を調整することで、ダンパ装置の等価剛性を適正に保つと共に第1および第2中間要素の重量(慣性モーメント)の増加を抑制しつつ、装置全体の2つの固有振動数を適正に設定することが可能となる。更に、固有振動数が大きい第2中間要素に対応した第3および第4弾性体の何れか一方を、固有振動数が小さい第1中間要素に対応した第1および第2弾性体の径方向外側に配置することで、ダンパ装置の等価剛性をより小さくすることができる。この結果、このダンパ装置では、振動減衰性能を良好に向上させることが可能となる。
次に、図面を参照しながら、本開示の発明を実施するための形態について説明する。
図1は、本開示のダンパ装置10を含む発進装置1を示す概略構成図であり、図2は、ダンパ装置10を示す断面図である。図1に示す発進装置1は、原動機としてのエンジン(本実施形態では、内燃機関)EGを備えた車両に搭載されるものであり、ダンパ装置10に加えて、エンジンEGのクランクシャフトに連結されるフロントカバー3や、フロントカバー3に固定されるポンプインペラ(入力側流体伝動要素)4、ポンプインペラ4と同軸に回転可能なタービンランナ(出力側流体伝動要素)5、ダンパ装置10に連結されると共に自動変速機(AT)、無段変速機(CVT)、デュアルクラッチトランスミッション(DCT)、ハイブリッドトランスミッション、あるいは減速機である変速機(動力伝達装置)TMの入力軸ISに固定される動力出力部材としてのダンパハブ7、ロックアップクラッチ8等を含む。
なお、以下の説明において、「軸方向」は、特に明記するものを除いて、基本的に、発進装置1やダンパ装置10の中心軸CA(軸心、図2参照)の延在方向を示す。また、「径方向」は、特に明記するものを除いて、基本的に、発進装置1やダンパ装置10、当該ダンパ装置10等の回転要素の径方向、すなわち発進装置1やダンパ装置10の中心軸CAから当該中心軸CAと直交する方向(半径方向)に延びる直線の延在方向を示す。更に、「周方向」は、特に明記するものを除いて、基本的に、発進装置1やダンパ装置10、当該ダンパ装置10等の回転要素の周方向、すなわち当該回転要素の回転方向に沿った方向を示す。
ポンプインペラ4は、フロントカバー3に密に固定される図示しないポンプシェルと、ポンプシェルの内面に配設された複数のポンプブレード(図示省略)とを有する。タービンランナ5は、タービンシェル50(図2参照)と、タービンシェル50の内面に配設された複数のタービンブレード(図示省略)とを有する。タービンシェル50の内周部は、複数のリベットを介して図示しないタービンハブに固定され、タービンハブは、ダンパハブ7により回転自在に支持される。
ポンプインペラ4とタービンランナ5とは、互いに対向し合い、両者の間には、タービンランナ5からポンプインペラ4への作動油(作動流体)の流れを整流するステータ6が同軸に配置される。ステータ6は、図示しない複数のステータブレードを有し、ステータ6の回転方向は、ワンウェイクラッチ61により一方向のみに設定される。これらのポンプインペラ4、タービンランナ5およびステータ6は、作動油を循環させるトーラス(環状流路)を形成し、トルク増幅機能をもったトルクコンバータ(流体伝動装置)として機能する。ただし、発進装置1において、ステータ6やワンウェイクラッチ61を省略し、ポンプインペラ4およびタービンランナ5を流体継手として機能させてもよい。
ロックアップクラッチ8は、ダンパ装置10を介してフロントカバー3とダンパハブ7とを連結するロックアップを実行すると共に当該ロックアップを解除するものである。本実施形態において、ロックアップクラッチ8は、単板油圧式クラッチとして構成されており、フロントカバー3の内部かつ当該フロントカバー3のエンジンEG側の内壁面近傍に配置されると共にダンパハブ7に対して軸方向に移動自在に嵌合されるロックアップピストン(動力入力部材)80を有する。ロックアップピストン80の外周側かつフロントカバー3側の面には、図示しない摩擦材が貼着され、ロックアップピストン80とフロントカバー3との間には、作動油供給路や入力軸ISに形成された油路を介して図示しない油圧制御装置に接続されるロックアップ室(図示省略)が画成される。
ロックアップクラッチ8のロックアップ室内には、入力軸ISに形成された油路等を介してポンプインペラ4およびタービンランナ5の軸心側(ワンウェイクラッチ61の周辺)から径方向外側に向けてポンプインペラ4およびタービンランナ5(トーラス)へと供給される油圧制御装置からの作動油が流入可能である。従って、フロントカバー3とポンプインペラ4のポンプシェルとにより画成される流体伝動室9内とロックアップ室内とが等圧に保たれれば、ロックアップピストン80は、フロントカバー3側に移動せず、ロックアップピストン80がフロントカバー3と摩擦係合することはない。これに対して、図示しない油圧制御装置により流体伝動室9内の油圧をロックアップ室89内の油圧よりも高くすれば、ロックアップピストン80は、圧力差によりフロントカバー3に向けて移動してフロントカバー3と摩擦係合する。これにより、フロントカバー3(エンジンEG)は、ロックアップピストン80やダンパ装置10を介してダンパハブ7に連結される。なお、ロックアップクラッチ8として、少なくとも1枚の摩擦係合プレート(複数の摩擦材)を含む多板油圧式クラッチが採用されてもよい。この場合、当該多板油圧式クラッチのクラッチドラムまたはクラッチハブが動力入力部材として機能することになる。
ダンパ装置10は、エンジンEGと変速機TMとの間で振動を減衰するものであり、図1に示すように、同軸に相対回転する回転要素(回転部材すなわち回転質量体)として、ドライブ部材(入力要素)11、第1中間部材(第1中間要素)12、第2中間部材(第2中間要素)14およびドリブン部材(出力要素)16を含む。更に、ダンパ装置10は、トルク伝達要素(トルク伝達弾性体)として、ドライブ部材11と第1中間部材12との間に配置されて回転トルク(回転方向のトルク)を伝達する複数(本実施形態では、例えば3個)の第1内側スプリング(第1弾性体)SP11、第1中間部材12とドリブン部材16との間に配置されて回転トルク(回転方向のトルク)を伝達する複数(本実施形態では、例えば3個)の第2内側スプリング(第2弾性体)SP12、ドライブ部材11と第2中間部材14との間に配置されて回転トルクを伝達する複数(本実施形態では、例えば2個)の第1外側スプリング(第3弾性体)SP21、第2中間部材14とドリブン部材16との間に配置されて回転トルクを伝達する複数(本実施形態では、例えば2個)の第2外側スプリング(第4弾性体)SP22、および第1中間部材12と第2中間部材14との間に配置されて回転トルクを伝達する複数(本実施形態では、例えば2個)の中間スプリング(第5弾性体)SPmを含む。
本実施形態では、第1および第2内側スプリングSP11,SP12、第1および第2外側スプリングSP21,SP22並びに中間スプリングSPmとして、荷重が加えられてないときに真っ直ぐに延びる軸心を有するように螺旋状に巻かれた金属材からなる直線型コイルスプリングが採用される。これにより、アークコイルスプリングを用いた場合に比べて、スプリングSP11〜SPmを軸心に沿ってより適正に伸縮させて、トルクを伝達するスプリングと回転要素との間で発生する摩擦力に起因したヒステリシス、すなわちドライブ部材11への入力トルクが増加していく際の出力トルクと、ドライブ部材11への入力トルクが減少していく際の出力トルクとの間の差を低減化することができる。ヒステリシスは、ドライブ部材11への入力トルクが増加する状態でダンパ装置10の捩れ角が所定角度になったときにドリブン部材16から出力されるトルクと、ドライブ部材11への入力トルクが減少する状態でダンパ装置10の捩れ角が上記所定角度になったときにドリブン部材16から出力されるトルクとの差分により定量化され得るものである。なお、スプリングSP11〜SPmの少なくとも何れか1つは、アークコイルスプリングであってもよい。なお、“スプリングの軸心”は、直線型コイルスプリングやアークコイルスプリングにおける螺旋状に巻回された金属材等の巻回中心を意味する。
また、本実施形態において、第1外側スプリングSP21、第2外側スプリングSP22および中間スプリングSPmは、例えば、SP21,SP22,SPm,SP21,SP22,SPmという順番でダンパ装置10(第2中間部材14)の周方向に沿って並ぶと共に発進装置1の外周に近接するように流体伝動室9内の外周側領域に配設される。このように、中間スプリングSPmを外周側の第1および第2外側スプリングSP21,SP22と周方向に沿って並ぶように配置することで、第1および第2外側スプリングSP21,SP22と、中間スプリングSPmとの捩れ角(ストローク)を良好に確保することが可能となる。これに対して、第1および第2側内スプリングSP11,SP22は、1個ずつ対をなす(直列に作用する)と共にダンパ装置10(第1中間部材12)の周方向に沿って交互に並ぶように第1および第2外側スプリングSP21,SP22並びに中間スプリングSPmの径方向内側に配設され、スプリングSP21,SP22,SPmにより包囲される。
これにより、ダンパ装置10では、第1および第2外側スプリングSP21,SP22の平均取付半径roが、第1および第2内側スプリングSP11,SP12の平均取付半径riよりも大きくなる。第1および第2外側スプリングSP21,SP22の平均取付半径roは、図3に示すように、ダンパ装置10の中心軸CAから第1外側スプリング(第3弾性体)SP21の軸心までの距離である当該第1外側スプリングSP21の取付半径rSP21と、中心軸CAから第2外側スプリング(第4弾性体)SP22の軸心までの距離である当該第2外側スプリングSP22の取付半径rSP22との平均値(=(rSP21+rSP22)/2)である。第1および第2内側スプリングSP11,SP12の平均取付半径riは、図3に示すように、中心軸CAから第1内側スプリング(第1弾性体)SP11の軸心までの距離である当該第1内側スプリングSP11の取付半径rSP11と、中心軸CAから第2内側スプリング(第2弾性体)SP12の軸心までの距離である当該第2内側スプリングSP12の取付半径rSP12との平均値(=(rSP11+rSP12)/2)である。なお、取付半径rSP11,rSP12,rSP21またはrSP22は、中心軸CAと、各スプリングSP11,SP12,SP21,SP22の軸心上の予め定められた点(例えば、軸方向における中央や端部)との距離であってもよい。
また、本実施形態において、第1および第2外側スプリングSP21,SP22(並びに中間スプリングSPm)は、取付半径rSP21と取付半径rSP22とが等しくなるように同一円周上に配列され、第1外側スプリングSP21の軸心と、第2外側スプリングSP22の軸心とは、中心軸CAに直交する一平面に含まれる。更に、本実施形態において、第1および第2内側スプリングSP11,SP12は、取付半径rSP11と取付半径rSP12とが等しくなるように同一円周上に配列され、第1内側スプリングSP11の軸心と、第2内側スプリングSP12の軸心とは、中心軸CAに直交する一平面に含まれる。加えて、ダンパ装置10では、第1および第2内側スプリングSP11,SP12が径方向からみて第1および第2外側スプリングSP21,SP22と軸方向に重なり合うように当該第1および第2外側スプリングSP21,SP22の径方向内側に配置される。これにより、ダンパ装置10を径方向にコンパクト化すると共に、当該ダンパ装置10の軸長をより短縮化することが可能となる。
ただし、図3に示すように、中心軸CAから第1外側スプリングSP21の軸心までの取付半径rSP21と、当該中心軸CAから第2外側スプリングSP22の軸心までの取付半径rSP22とは、異なっていてもよい。また、中心軸CAから第1内側スプリングSP11の軸心までの取付半径rSP11と、当該中心軸CAから第2内側スプリングSP12の軸心までの取付半径rSP12とは、異なっていてもよい。すなわち、第1および第2外側スプリングSP21,SP22の少なくとも何れか一方の取付半径rSP21,rSP22は、第1および第2内側スプリングSP11,SP12の少なくとも何れか一方の取付半径rSP11,rSP12よりも大きくてもよい。更に、第1外側スプリングSP21の軸心と、第2外側スプリングSP22の軸心とは、中心軸CAに直交する一平面に含まれていなくてもよい。また、第1内側スプリングSP11の軸心と、第2内側スプリングSP12の軸心とは、中心軸CAに直交する一平面に含まれていなくてもよい。また、スプリングSP11,SP12,SP21およびSP22の軸心が中心軸CAに直交する一平面に含まれてもよく、スプリングSP11,SP12,SP21およびSP22の少なくとも何れか1つの軸心が当該一平面に含まれていなくてもよい。
そして、本実施形態では、第1内側スプリングSP11の剛性すなわちばね定数を“k11”とし、第2内側スプリングSP12の剛性すなわちばね定数を“k12”とし、第1外側スプリングSP21の剛性すなわちばね定数を“k21”とし、第2外側スプリングSP22の剛性すなわちばね定数を“k22”としたときに、ばね定数k11,k12,k21およびk22が、k11≠k21、かつk11/k21≠k12/k22という関係を満たすように選択される。より詳細には、ばね定数k11,k12,k21,およびk22は、k11/k21<k12/k22、およびk11<k12<k22<k21という関係を満たす。すなわち、第1および第2内側スプリングSP11,SP12のばね定数k11,k12の小さい方(k11)は、第1および第2外側スプリングSP21,SP22のばね定数k21,k22の小さい方(k22)よりも小さくなる。更に、中間スプリングSPmの剛性すなわちばね定数を“km”としたときに、ばね定数k11,k12,k21,k22およびkmは、k11<km<k12<k22<k21という関係を満たす。
図2に示すように、ダンパ装置10のドライブ部材11は、ロックアップクラッチ8のロックアップピストン80に固定される環状の連結部材110と、例えばダンパハブ7により回転自在に支持(調心)されると共に連結部材110に一体に回転するように連結される環状の第1プレート部材(第1入力部材)111と、第1プレート部材111よりもタービンランナ5に近接するように配置されると共に複数のリベット(連結具)を介して第1プレート部材111に連結(固定)される環状の第2プレート部材(第2入力部材)112とを含む。これにより、ドライブ部材11すなわち第1および第2プレート部材111,112は、ロックアップピストン80と一体に回転し、ロックアップクラッチ8の係合によりフロントカバー3(エンジンEG)とダンパ装置10のドライブ部材11とが連結されることになる。なお、ロックアップクラッチ8が多板油圧式クラッチである場合には、連結部材110は、当該ロックアップクラッチ8のクラッチドラムとして構成されるとよい。
第1プレート部材111は、板状の環状部材として構成されており、第2プレート部材112よりもロックアップピストン80に近接するように配置される。第1プレート部材111は、複数(本実施形態では、例えば3個)の内側スプリング収容窓111wiと、複数(本実施形態では、例えば4個)の外側スプリング収容窓111woと、複数(本実施形態では、例えば3個)のスプリング支持部1111と、複数(本実施形態では、例えば3個)のスプリング支持部1112と、複数(本実施形態では、例えば4個)のスプリング支持部1113と、複数(本実施形態では、例えば4個)のスプリング支持部1114と、複数(本実施形態では、例えば3個)の内側スプリング当接部111ciと、複数(本実施形態では、例えば4個)の外側スプリング当接部111coとを有する。
複数の内側スプリング収容窓111wiは、それぞれ円弧状に延びると共に第1プレート部材111の内周部に周方向に間隔をおいて(等間隔に)配設されている。複数のスプリング支持部1111は、それぞれ対応する内側スプリング収容窓111wiの内周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並ぶ。複数のスプリング支持部1112は、それぞれ対応する内側スプリング収容窓111wiの外周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並んで対応するスプリング支持部1111と第1プレート部材111の径方向において対向する。また、内側スプリング当接部111ciは、周方向に沿って互いに隣り合う内側スプリング収容窓111wi(スプリング支持部1111,1112)の間に1個ずつ設けられる。
複数の外側スプリング収容窓111woは、それぞれ円弧状に延びると共に内側スプリング収容窓111wiよりも径方向外側に位置するように第1プレート部材111の外周部に周方向に間隔をおいて配設されている。複数のスプリング支持部1113は、それぞれ対応する外側スプリング収容窓111woの内周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並ぶ。複数のスプリング支持部1114は、それぞれ対応する外側スプリング収容窓111woの外周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並んで対応するスプリング支持部1113と第1プレート部材111の径方向において対向する。また、外側スプリング当接部111coは、周方向に沿って互いに隣り合う外側スプリング収容窓111wo(スプリング支持部1113,1114)の間に1個ずつ設けられる。
第2プレート部材112は、板状の環状部材として構成されており、第1プレート部材111よりもタービンランナ5に近接するように配置される。第2プレート部材112は、複数(本実施形態では、例えば3個)の内側スプリング収容窓112wiと、複数(本実施形態では、例えば4個)の外側スプリング収容窓112woと、複数(本実施形態では、例えば3個)のスプリング支持部1121と、複数(本実施形態では、例えば3個)のスプリング支持部1122と、複数(本実施形態では、例えば4個)のスプリング支持部1123と、複数(本実施形態では、例えば4個)のスプリング支持部1124と、複数(本実施形態では、例えば3個)の内側スプリング当接部112ciと、複数(本実施形態では、例えば4個)の外側スプリング当接部112coとを有する。
複数の内側スプリング収容窓112wiは、それぞれ円弧状に延びると共に第2プレート部材112の内周部に周方向に間隔をおいて(等間隔に)配設されている。複数のスプリング支持部1121は、それぞれ対応する内側スプリング収容窓112wiの内周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並ぶ。複数のスプリング支持部1122は、それぞれ対応する内側スプリング収容窓112wiの外周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並んで対応するスプリング支持部1121と第2プレート部材112の径方向において対向する。また、内側スプリング当接部112ciは、周方向に沿って互いに隣り合う内側スプリング収容窓112wi(スプリング支持部1121,1122)の間に1個ずつ設けられる。
複数の外側スプリング収容窓112woは、それぞれ円弧状に延びると共に内側スプリング収容窓112wiよりも径方向外側に位置するように第2プレート部材112の外周部に周方向に間隔をおいて配設されている。複数のスプリング支持部1123は、それぞれ対応する外側スプリング収容窓112woの内周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並ぶ。複数のスプリング支持部1124は、それぞれ対応する外側スプリング収容窓112woの外周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並んで対応するスプリング支持部1123と第2プレート部材112の径方向において対向する。また、外側スプリング当接部112coは、周方向に沿って互いに隣り合う外側スプリング収容窓112wo(スプリング支持部1123,1124)の間に1個ずつ設けられる。
第1中間部材12は、図2に示すように、ドライブ部材11の第1および第2プレート部材111,112の軸方向における間に配置されると共に例えばダンパハブ7により回転自在に支持(調心)される板状の環状部材121と、タービンランナ5に固定される連結部材122とを含む。第1中間部材12を構成する環状部材121は、複数(本実施形態では、例えば3個)のスプリング収容窓と、周方向に間隔をおいて配設された複数(本実施形態では、例えば3個)のスプリング当接部121cと、スプリング当接部121cよりも径方向外側で軸方向に延びる短尺筒状の支持部12sと、スプリング当接部121cから軸方向に離間するように支持部12sの先端から径方向外側に延出された複数(本実施形態では、例えば4個)の第2スプリング当接部121dとを有する。複数のスプリング当接部121cは、周方向に沿って互いに隣り合うスプリング収容窓の間に1個ずつ設けられる。第2スプリング当接部121dは、2個(一対)ずつ近接するように環状部材121の軸心に関して対称に形成され、互いに対をなす2個の第2スプリング当接部121dは、例えば中間スプリングSPmの自然長に応じた間隔をおいて周方向に並ぶ。
第1中間部材12を構成する連結部材122は、タービンランナ5のタービンシェル50に例えば溶接により固定される環状の固定部(環状部)と、当該固定部の外周部から周方向に間隔をおいて軸方向に延出された複数(本実施形態では、例えば120°間隔で3個)のスプリング当接部122cとを有する。連結部材122の各スプリング当接部122cは、図2に示すように、タービンランナ5側から第2プレート部材112の対応する内側スプリング収容窓112wi内に差し込まれると共に、環状部材121のスプリング当接部121cの端面(スプリングとの当接面)に形成された対応する凹部に嵌合される。これにより、環状部材121と、タービンランナ5に固定された連結部材122とが一体に回転するように連結される。
第2中間部材14は、板状の環状部材であり、第1中間部材12の環状部材121よりも小さい慣性モーメントを有する。図2に示すように、第2中間部材14は、環状の外周部から周方向に間隔をおいて径方向内側に延出された複数(本実施形態で、例えば180°間隔で2個)のスプリング当接部14cと、環状の外周部の隣り合うスプリング当接部14cの周方向における間から径方向内側に延出された複数(本実施形態では、例えば4個)の第2スプリング当接部14dとを有する。複数の第2スプリング当接部14dは、2個(一対)ずつ近接するように当該第2中間部材14の軸心に関して対称に形成され、互いに対をなす2個の第2スプリング当接部14dは、例えば中間スプリングSPmの自然長に応じた間隔をおいて周方向に並ぶ。第2中間部材14は、ドライブ部材11の第1および第2プレート部材111,112の軸方向における間に配置され、スプリング当接部14cおよび第2スプリング当接部14dの内周面は、上記環状部材121(第1中間部材12)の支持部12sの外周面により回転自在に支持(調心)される。
ドリブン部材16は、板状の環状部材として構成されており、図2に示すように、ドライブ部材11の第1プレート部材111と第2プレート部材112との軸方向における間に配置されると共にダンパハブ7に複数のリベットを介して固定される。これにより、ドリブン部材16は、ダンパハブ7と一体に回転することになる。ドリブン部材16は、それぞれ当該ドリブン部材16の内周縁に沿って円弧状に延びると共に周方向に間隔をおいて(等間隔に)配設された複数(本実施形態では、例えば3個)のスプリング収容窓と、周方向に間隔をおいて(等間隔に)配設された複数(本実施形態では、例えば3個)の内側スプリング当接部(内側当接部)16ciと、複数(本実施形態では、例えば4個)の外側スプリング当接部(外側当接部)16coとを有する。複数の内側スプリング当接部16ciは、周方向に沿って互いに隣り合うスプリング収容窓の間に1個ずつ設けられる。複数の外側スプリング当接部16coは、複数の内側スプリング当接部16ciよりも径方向外側で周方向に間隔をおいて並ぶと共に径方向に延在する。
第1および第2内側スプリングSP11,SP12は、1個ずつ対をなす(直列に作用する)と共に周方向(環状部材121の周方向)に交互に並ぶように、ドライブ部材11すなわち第1および第2プレート部材111,112の対応するスプリング支持部1111,1112,1121,1122により支持される。すなわち、第1プレート部材111の複数のスプリング支持部1111は、図2に示すように、それぞれ対応する第1および第2内側スプリングSP11,SP12(各1個)のロックアップピストン80側の側部を内周側から支持(ガイド)する。また、複数のスプリング支持部1112は、それぞれ対応する第1および第2内側スプリングSP11,SP12のロックアップピストン80側の側部を外周側から支持(ガイド)する。更に、第2プレート部材112の複数のスプリング支持部1121は、図2に示すように、それぞれ対応する第1および第2内側スプリングSP11,SP12(各1個)のタービンランナ5側の側部を内周側から支持(ガイド)する。また、複数のスプリング支持部1122は、それぞれ対応する第1および第2内側スプリングSP11,SP12のタービンランナ5側の側部を外周側から支持(ガイド)する。
更に、第1プレート部材111の各内側スプリング当接部111ciは、ダンパ装置10の取付状態において、互いに異なる内側スプリング収容窓111wi内に配置されて対をなさない(直列に作用しない)第1および第2内側スプリングSP11,SP12の間で両者の周方向の端部(撓み方向の端部、以下同様)と当接する。同様に、第2プレート部材112の各内側スプリング当接部112ciも、ダンパ装置10の取付状態において、互いに異なる内側スプリング収容窓112wi内に配置された(対をなさない)第1および第2内側スプリングSP11,SP12の間で両者の周方向の端部と当接する。また、第1中間部材12を構成する環状部材121の各スプリング当接部121cと、連結部材122の各スプリング当接部122cとは、互いに対をなす(直列に作用する)第1および第2内側スプリングSP11,SP12の間で両者の周方向の端部と当接する。
すなわち、ダンパ装置10の取付状態において、各第1内側スプリングSP11の一端部は、ドライブ部材11の対応する内側スプリング当接部111ci,112ciと当接し、各第1内側スプリングSP11の他端部は、第1中間部材12の対応するスプリング当接部121c,122cと当接する。更に、ダンパ装置10の取付状態において、各第2内側スプリングSP12の一端部は、第1中間部材12の対応するスプリング当接部121c,122cと当接し、各第2内側スプリングSP12の他端部は、ドライブ部材11の対応する内側スプリング当接部111ci,112ciと当接する。
一方、第1および第2外側スプリングSP21,SP22は、1個ずつ対をなす(直列に作用する)と共に周方向(第2中間部材14の周方向)に交互に並ぶように、ドライブ部材11すなわち第1および第2プレート部材111,112の対応するスプリング支持部1113,1114,1123,1124により支持される。すなわち、第1プレート部材111の複数のスプリング支持部1113は、図2に示すように、それぞれ対応する第1および第2外側スプリングSP21,SP22(各1個)のロックアップピストン80側の側部を内周側から支持(ガイド)する。また、複数のスプリング支持部1114は、それぞれ対応する第1および第2外側スプリングSP21,SP22のロックアップピストン80側の側部を外周側から支持(ガイド)する。更に、第2プレート部材112の複数のスプリング支持部1123は、図2に示すように、それぞれ対応する第1および第2外側スプリングSP21,SP22(各1個)のタービンランナ5側の側部を内周側から支持(ガイド)する。また、複数のスプリング支持部1124は、それぞれ対応する第1および第2外側スプリングSP21,SP22のタービンランナ5側の側部を外周側から支持(ガイド)する。
更に、第1プレート部材111の各外側スプリング当接部111coは、ダンパ装置10の取付状態において、互いに異なる内側スプリング収容窓111wi内に配置されて対をなさない(直列に作用しない)第1および第2外側スプリングSP21,SP22の間で両者の周方向の端部と当接する。同様に、第2プレート部材112の各外側スプリング当接部112coも、ダンパ装置10の取付状態において、互いに異なる内側スプリング収容窓112wi内に配置された(対をなさない)第1および第2外側スプリングSP21,SP22の間で両者の周方向の端部と当接する。また、第2中間部材14の各スプリング当接部14cは、互いに対をなす(直列に作用する)第1および第2外側スプリングSP21,SP22の間で両者の周方向の端部と当接する。
すなわち、ダンパ装置10の取付状態において、各第1外側スプリングSP21の一端部は、ドライブ部材11の対応する外側スプリング当接部111co,112coと当接し、各第1外側スプリングSP21の他端部は、第2中間部材14の対応するスプリング当接部14cと当接する。更に、ダンパ装置10の取付状態において、各第2外側スプリングSP22の一端部は、第2中間部材14の対応するスプリング当接部14cと当接し、各第2外側スプリングSP22の他端部は、ドライブ部材11の対応する外側スプリング当接部111co,112coと当接する。
また、ドリブン部材16の各内側スプリング当接部16ciは、ダンパ装置10の取付状態において、ドライブ部材11の内側スプリング当接部111ci,112ciと同様に、対をなさない(直列に作用しない)第1および第2内側スプリングSP11,SP12の間で両者の周方向の端部と当接する。更に、ドリブン部材16の各外側スプリング当接部16coは、ドライブ部材11の各外側スプリング当接部111co,112coと同様に、対をなさない(直列に作用しない)第1および第2外側スプリングSP21,SP22の間で両者の周方向の端部と当接する。
すなわち、ダンパ装置10の取付状態において、第1内側スプリングSP11の一端部と、当該第1内側スプリングSP11と対をなす第2内側スプリングSP12の他端部とは、それぞれドリブン部材16の対応する内側スプリング当接部16ciと当接し、第1外側スプリングSP21の一端部と、当該第1外側スプリングSP21と対をなす第2外側スプリングSP22の他端部とは、それぞれドリブン部材16の対応する外側スプリング当接部16coと当接する。この結果、ダンパ装置10の取付状態において、ドリブン部材16は、複数の第1内側スプリングSP11と、第1中間部材12(環状部材121および連結部材122)と、複数の第2内側スプリングSP12とを介してドライブ部材11に連結されると共に、複数の第1外側スプリングSP21と、第2中間部材14と、複数の第2外側スプリングSP22とを介してドライブ部材11に連結される。
そして、各中間スプリングSPmは、第1外側スプリングSP21および第2外側スプリングSP22と周方向に沿って並ぶように、ドライブ部材11すなわち第1および第2プレート部材111,112の対応するスプリング支持部1113,1114,1123,1124により支持される。ダンパ装置10の取付状態において、各中間スプリングSPmは、第1中間部材12(環状部材121)の一対の第2スプリング当接部121dにより周方向における両側から支持されると共に、第2中間部材14の一対の第2スプリング当接部14dにより周方向における両側から支持される。これにより、第1中間部材12と第2中間部材14とは、複数の中間スプリングSPmを介して互いに連結されることになる。なお、中間スプリングSPmの端部と第2スプリング当接部121d,14dとの間には、図1に示すように、スプリングシートSsが配置されてもよい。
更に、ダンパ装置10は、図1に示すように、第1中間部材12とドリブン部材16との相対回転および第2内側スプリングSP12の撓みを規制する第1ストッパ21と、第2中間部材14とドリブン部材16との相対回転および第2外側スプリングSP22の撓みを規制する第2ストッパ22と、ドライブ部材11とドリブン部材16との相対回転を規制する第3ストッパ23とを含む。第1および第2ストッパ21,22は、エンジンEGからドライブ部材11に伝達される入力トルクがダンパ装置10の最大捩れ角θmaxに対応したトルクT2(第2の閾値)よりも小さい予め定められたトルク(第1の閾値)T1に達した段階で概ね同時に対応する回転要素の相対回転およびスプリングの撓みを規制するように構成される。また、第3ストッパ23は、ドライブ部材11への入力トルクが最大捩れ角θmaxに対応したトルクT2に達した段階でドライブ部材11とドリブン部材16との相対回転を規制するように構成される。これにより、ダンパ装置10は、2段階(2ステージ)の減衰特性を有することになる。
上述のように、ダンパ装置10では、第1および第2内側スプリングSP11,SP12に比べて剛性が高い(ばね定数が大きい)第1および第2外側スプリングSP21,SP22の平均取付半径roが、第1および第2内側スプリングSP11,SP12の平均取付半径riよりも大きく定められている。すなわち、第1および第2内側スプリングSP21,SP22よりも大きいばね定数(剛性)を有する第1および第2外側スプリングSP11,SP12の軸心は、第1および第2内側スプリングSP21,SP22の軸心よりもダンパ装置10の径方向における外側に位置する。更に、ダンパ装置10において、第1および第2外側スプリングSP11,SP12は、それぞれの全体が第1および第2内側スプリングSP21,SP22よりも径方向外側に位置するように配置される。これにより、第1および第2外側スプリングSP21,SP22の捩れ角(ストローク)をより大きくすることが可能となるので、ドライブ部材11に対する大きなトルクの伝達を許容しつつ、第1および第2外側スプリングSP21,SP22を低剛性化することが可能となる。
また、ダンパ装置10では、第1中間部材12の環状部材121と、第2中間部材14と、ドリブン部材16とが、ドライブ部材11の第1および第2プレート部材111,112の軸方向における間に配置される。かかる構成を有するダンパ装置10では、第1および第2中間部材12,14のスプリング当接部121c,14cやドリブン部材16の内側および外側スプリング当接部16ci,16coの形状を工夫することで、特に遠心力に起因して第1および第2プレート部材111,112と各スプリングSP11,SP12,SP21,SP22との間で発生する摩擦力を小さくすることができる。この結果、ダンパ装置10全体のヒステリシスを良好に低下させることが可能となる。
更に、ダンパ装置10では、図2に示すように、ドライブ部材11の内側および外側スプリング当接部111ci,112ci,111co,112co、第1および第2中間部材12,14のスプリング当接部121c,14c、並びにドリブン部材16の内側および外側スプリング当接部16ci,16coが、それぞれダンパ装置10の径方向に延在することになる。従って、各スプリング当接部111ci,112ci,111co,112co,121c,14c,16ci,16coによって対応するスプリングSP11,SP12,SP21またはSP22を軸心に沿って適正に伸縮するように押圧することができる。加えて、ダンパ装置10では、第1および第2中間部材12,14の第2スプリング当接部121d,14dも、それぞれダンパ装置10の径方向に延在する。従って、各第2スプリング当接部121d,14dによって中間スプリングSPmを軸心に沿って適正に伸縮するように押圧することが可能となる。この結果、ダンパ装置10では、振動減衰性能をより向上させることができる。
また、ダンパ装置10では、図2に示すように、第1中間部材12(環状部材121)のスプリング当接部121cとドリブン部材16の内側スプリング当接部16ciとが径方向からみて軸方向に重なり合い、第1中間部材12(環状部材121)の第2スプリング当接部121dとドリブン部材16の外側スプリング当接部16coとが径方向からみて軸方向に重なり合う。加えて、第2中間部材14は、第1中間部材12の第2スプリング当接部121dおよびドリブン部材16の外側スプリング当接部16coと軸方向に並ぶように配置される。これにより、ダンパ装置10の軸長をより短縮化することが可能となる。
更に、ダンパ装置10は、タービンランナ5に固定されると共に互いに隣り合う第1および第2内側スプリングSP11,SP12の間で両者の周方向の端部に当接するスプリング当接部122cを有する連結部材122を含む。これにより、ダンパ装置10の軸長の増加を抑制しつつ、径方向内側に配置される第1および第2内側スプリングSP11,SP12の双方に第1中間部材12を連結すると共に当該第1中間部材12をタービンランナ5に連結することが可能となる。そして、タービンランナ5(およびタービンハブ)を第1中間部材12に連結することで、当該第1中間部材12の実質的な慣性モーメント(環状部材121、連結部材122およびタービンランナ5等の慣性モーメントの合計値)をより一層大きくすることができる。また、環状部材121のスプリング当接部121cと連結部材122のスプリング当接部122cとの双方を第1および第2外側スプリングSP21,SP22の端部に当接させることで、当該第1および第2外側スプリングSP21,SP22をスムースに伸縮させることが可能となる。
次に、ダンパ装置10の動作について説明する。発進装置1において、ロックアップクラッチ8によるロックアップが解除されている際には、例えば、エンジンEGからフロントカバー3に伝達された回転トルク(動力)が、ポンプインペラ4、タービンランナ5、第1中間部材12、第2内側スプリングSP12、ドリブン部材16、ダンパハブ7という経路や、ポンプインペラ4、タービンランナ5、第1中間部材12、中間スプリングSPm、第2中間部材14、第2外側スプリングSP22、ドリブン部材16、ダンパハブ7という経路を介して変速機TMの入力軸ISへと伝達される。これに対して、発進装置1のロックアップクラッチ8によりロックアップが実行されると、エンジンEGからフロントカバー3およびロックアップクラッチ8(ロックアップピストン80)を介してドライブ部材11に伝達された回転トルク(入力トルク)は、ドライブ部材11への入力トルクが上記トルクT1に達するまで、つまり、第1および第2内側スプリングSP11,SP12、第1および第2外側スプリングSP21,SP22並びに中間スプリングSPmのすべての撓みが許容されている間、スプリングSP11〜SPmのすべてを介してドリブン部材16およびダンパハブ7に伝達される。
すなわち、ロックアップの実行中に入力トルクがトルクT1に達するまでの間、第1内側スプリング(第1弾性体)SP11は、ドライブ部材11から第1中間部材12に回転トルクを伝達し、第2内側スプリング(第2弾性体)SP12は、第1中間部材12からドリブン部材16に回転トルクを伝達する。また、第1外側スプリング(第3弾性体)SP21は、ドライブ部材11から第2中間部材14に回転トルクを伝達し、第2外側スプリング(第4弾性体)SP22は、第2中間部材14からドリブン部材16に回転トルクを伝達する。従って、ダンパ装置10は、ドライブ部材11とドリブン部材16との間のトルク伝達経路として、図4に示すように、第1内側スプリングSP11、第1中間部材12および第2内側スプリングSP12を含む第1トルク伝達経路P1と、第1外側スプリングSP21、第2中間部材14および第2外側スプリングSP22を含む第2トルク伝達経路P2とを有することになる。
また、ダンパ装置10では、上述のように、第1および第2内側スプリングSP11,SP12並びに第1および第2外側スプリングSP21,SP22のばね定数k11,k12,k21およびk22が、k11<k12<k22<k21という関係を満たす。このため、ロックアップの実行中に入力トルクがトルクT1に達するまでの間にドライブ部材11にトルクが伝達されると、図4に示すように、第2中間部材14が第1中間部材12に対して回転方向(車両が前進する際の回転方向)における進行方向側(下流側)に(若干)捩れる。これにより、中間スプリングSPmは、第2中間部材14の互いに対をなす第2スプリング当接部14dの上記回転方向における進行方向側とは反対側の一方により、第1中間部材12の互いに対をなす第2スプリング当接部121dの回転方向における進行方向側の一方に向けて押圧される。すなわち、ロックアップの実行中に入力トルクがトルクT1に達するまでの間、中間スプリングSPmは、ドライブ部材11から第1外側スプリングSP21を介して第2中間部材14に伝達されたトルクの一部(平均トルクの一部)を第1中間部材12に伝達する。従って、ダンパ装置10は、第1外側スプリングSP21、第2中間部材14、中間スプリングSPm、第1中間部材12および第2内側スプリングSP12を含む第3トルク伝達経路P3を有することになる。
この結果、ロックアップの実行中にドライブ部材11への入力トルクが上記トルクT1に達するまでの間には、第1、第2および第3トルク伝達経路P1,P2,P3を介してドライブ部材11からドリブン部材16にトルクが伝達される。より詳細には、スプリングSP11〜SPmのすべての撓みが許容されている間、第2内側スプリングSP12には、第1内側スプリングSP11からの回転トルクと、第1外側スプリングSP21、第2中間部材14および中間スプリングSPmからの回転トルクとが伝達される。また、第2外側スプリングSP22には、第1外側スプリングSP21からの回転トルクが伝達される。そして、スプリングSP11〜SPmのすべての撓みが許容されている間には、スプリングSP11〜SPmによってドライブ部材11に伝達されるトルクの変動が減衰(吸収)される。これにより、ドライブ部材11に伝達される入力トルクが比較的小さく、当該ドライブ部材11の回転数が低いときのダンパ装置10の振動減衰性能を良好に向上させることが可能となる。
また、ドライブ部材11への入力トルクが上記トルクT1に達して第1および第2ストッパ21,22が作動すると、第1ストッパ21により第1中間部材12とドリブン部材16との相対回転および第2内側スプリングSP12の撓みが規制され、第2ストッパ22により第2中間部材14とドリブン部材16との相対回転および第2外側スプリングSP22の撓みが規制される。これにより、ドリブン部材16に対する第1および第2中間部材12,14の相対回転が規制されることで、中間スプリングSPmの撓みも規制される。従って、ドライブ部材11への入力トルクが上記トルクT1に達してから、当該入力トルクが上記トルクT2に達して第3ストッパ23が作動するまで、第1内側スプリングSP11と第1外側スプリングSP21とが並列に作用してドライブ部材11に伝達されるトルクの変動を減衰(吸収)する。
引き続き、ダンパ装置10の設計手順について説明する。
上述のように、ダンパ装置10では、第1および第2内側スプリングSP11,SP12、第1および第2外側スプリングSP21,SP22並びに中間スプリングSPmのすべての撓みが許容されている際に、ドライブ部材11とドリブン部材16との間でスプリングSP11〜SPmのすべてを介してトルク(平均トルク)が伝達される。本発明者らは、このように直列でも並列でもない複雑なトルクの伝達経路を有するダンパ装置10について鋭意研究・解析を行い、その結果、かかるダンパ装置10は、スプリングSP11〜SPmのすべての撓みが許容されている際に、装置全体で2つの固有振動数を有することを見出した。また、本発明者らの研究・解析によれば、ダンパ装置10においても、ドライブ部材11に伝達される振動の周波数に応じて2つの固有振動数の小さい方(低回転側(低周波側)の固有振動数)での共振(本実施形態では、第1および第2中間部材12,14が同位相で振動するときの第1中間部材12の共振)が発生すると、第2内側スプリングSP12からドリブン部材16に伝達される振動の位相と、第2外側スプリングSP22からドリブン部材16に伝達される振動の位相とがずれていく。このため、2つの固有振動数の小さい方での共振が発生した後にドライブ部材11の回転数が高まるのに伴って、第2内側スプリングSP12からドリブン部材16に伝達される振動および第2外側スプリングSP22からドリブン部材16に伝達される振動の一方が他方の少なくとも一部を打ち消すようになる。
かかる知見のもと、本発明者らは、ロックアップの実行によりエンジン(内燃機関)EGからドライブ部材11にトルクが伝達された状態にあるダンパ装置10を含む振動系について、次式(1)のような運動方程式を構築した。ただし、式(1)において、“J1”は、ドライブ部材11の慣性モーメントであり、“J21”は、第1中間部材12の慣性モーメントであり、J22”は、第2中間部材14の慣性モーメントであり、“J3”は、ドリブン部材16の慣性モーメントである。また、“θ1”は、ドライブ部材11の捩れ角であり、“θ21”は、第1中間部材12の捩れ角であり、“θ22”は、第2中間部材14の捩れ角であり、“θ3”は、ドリブン部材16の捩れ角である。更に、“k1”は、ドライブ部材11と第1中間部材12との間で並列に作用する複数の第1内側スプリングSP11の合成ばね定数であり、“k2”は、第1中間部材12とドリブン部材16との間で並列に作用する複数の第2内側スプリングSP12の合成ばね定数であり、k3”は、ドライブ部材11と第2中間部材14との間で並列に作用する複数の第1外側スプリングSP21の合成ばね定数であり、k4”は、第2中間部材14とドリブン部材16との間で並列に作用する複数の第2外側スプリングSP22の合成ばね定数であり、“k5”は、第1中間部材12と第2中間部材14との間で並列に作用する複数の中間スプリングSPmの合成ばね定数(剛性)であり、kR”は、ドリブン部材16から車両の車輪までの間に配置される変速機TMやドライブシャフト等における剛性すなわちばね定数であり、“T”は、エンジンEGからドライブ部材11に伝達される入力トルクである。
更に、本発明者らは、入力トルクTが次式(2)に示すように周期的に振動していると仮定すると共に、ドライブ部材11の捩れ角θ1、第1中間部材12の捩れ角θ21、第2中間部材14の捩れ角θ22、およびドリブン部材16の捩れ角θ3が次式(3)に示すように周期的に応答(振動)すると仮定した。ただし、式(2)および(3)における“ω”は、入力トルクTの周期的な変動(振動)における角振動数であり、式(3)において、“Θ1”は、エンジンEGからのトルクの伝達に伴って生じるドライブ部材11の振動の振幅(振動振幅、すなわち最大捩れ角)であり、“Θ21”は、ドライブ部材11にエンジンEGからのトルクが伝達されるのに伴って生じる第1中間部材12の振動の振幅(振動振幅)であり、“Θ22”は、ドライブ部材11にエンジンEGからのトルクが伝達されるのに伴って生じる第2中間部材14の振動の振幅(振動振幅)であり、“Θ3”は、ドライブ部材11にエンジンEGからのトルクが伝達されるのに伴って生じるドリブン部材16の振動の振幅(振動振幅)である。かかる仮定のもと、式(2)および(3)を式(1)に代入して両辺から“sinωt”を払うことで、次式(4)の恒等式を得ることができる。
そして、本発明者らは、式(4)におけるドリブン部材16の振動振幅Θ3がゼロになれば、ダンパ装置10によりエンジンEGからの振動が減衰されることでドリブン部材16よりも後段側の変速機TMやドライブシャフト等には理論上振動が伝達されなくなることに着目した。そこで、本発明者らは、かかる観点から、式(4)の恒等式を振動振幅Θ3について解くと共に、Θ3=0とすることで、次式(5)に示す条件式を得た。式(5)の関係が成立する場合、ドライブ部材11から第1、第2および第3トルク伝達経路P1,P2,P3を介してドリブン部材16に伝達されるエンジンEGからの振動が互いに打ち消し合い、ドリブン部材16の振動振幅Θ3が理論上ゼロになる。
かかる解析結果より、上述のような構成を有するダンパ装置10では、2つの固有振動数の小さい方での共振の発生により、第2内側スプリングSP12からドリブン部材16に伝達される振動の位相と第2外側スプリングSP22からドリブン部材16に伝達される振動の位相とが180度ずれて(反転して)両振動が互いに打ち消し合うようになることで、図5に示すように、ドリブン部材16の振動振幅Θ3(トルク変動)が理論上ゼロになる反共振点Aを設定し得ることが理解されよう。また、反共振点Aの振動数を“fa”として、上記式(5)に“ω=2πfa”を代入すれば、反共振点Aの振動数faは、次式(6)のように表される。なお、図5は、エンジンEGの回転数と、本開示のダンパ装置および中間スプリングSPmが省略されたダンパ装置(特許文献1に記載されたダンパ装置、以下、「比較例のダンパ装置」という)のドリブン部材における理論上(ヒステリシスが存在しないと仮定した場合)の振動振幅(トルク変動)との関係を例示するものである。
一方、ドライブ部材11の捩れ角θ1とドリブン部材16の捩れ角θ2とがゼロであってドライブ部材11およびドリブン部材16の変位が共にゼロであると仮定すれば、式(1)を次式(7)のように変形することができる。更に、第1および第2中間部材12,14が次式(8)に示すように調和振動すると仮定し、式(8)を式(7)に代入して両辺から“sinωt”を払うことで、次式(9)の恒等式を得ることができる。
第1および第2中間部材12,14が調和振動する場合に、振幅Θ21およびΘ22は共にゼロにならないことから、式(9)の左辺の正方行列の行列式はゼロとなり、次式(10)の条件式が成立しなければならない。かかる式(10)は、ダンパ装置10の2つの固有角振動数の二乗値ω2についての2次方程式である。従って、ダンパ装置10の2つの固有角振動数ω1,ω2は、次式(11)および(12)に示すように表され、ω1<ω2が成立する。この結果、共振点Aを生じさせる共振(共振点R1)の周波数、すなわち第1中間部材12の固有振動数を“f21”とし、反共振点Aよりも高回転側で発生する共振(共振点R2)の周波数、すなわち第2中間部材14の固有振動数を“f22”とすれば、低回転側(低周波側)の固有振動数f21は、次式(13)のように表され、高回転側(高周波側)の固有振動数f22(f22>f21)は、次式(14)のように表される。
また、第1および第2内側スプリングSP11,SP12、第1および第2外側スプリングSP21,SP22並びに中間スプリングSPmのすべての撓みが許容されている際のダンパ装置10の等価剛性keqは、次のようにして求めることができる。すなわち、ドライブ部材11にT=T0という一定の入力トルク(静的な外力)が伝達されていると仮定すると共に、次式(15)に示すような釣り合いの関係が成立していると仮定すれば、T=T0および式(15)を式(1)に代入することで、次式(16)の恒等式を得ることができる。
更に、トルクT0と、ダンパ装置10の等価剛性keqと、ドライブ部材11の振動振幅(捩れ角)Θ1と、ドリブン部材16の振動振幅(捩れ角)Θ3との間では、T0=keq・(Θ1−Θ3)という関係が成立する。更に、式(16)の恒等式を振動振幅(捩れ角)Θ1およびΘ3について解けば、“Θ1−Θ3”は、次式(17)のように表される。従って、T0=keq・(Θ1−Θ3)および式(17)より、ダンパ装置10の等価剛性keqは、次式(18)のように表されることになる。
上述のようにして得られるダンパ装置10の低回転側の固有振動数f21、反共振点Aの振動数faおよび等価剛性keqに対する本発明者らの解析結果を図6から図11に示す。図6から図11は、合成ばね定数k1,k2,k3,k4,k5や第1および第2中間部材12,14の慣性モーメントJ21,J22のうちの何れか1つ以外をそれぞれ一定値(固定値)としたまま、当該何れか1つのパラメータのみを変化させたときの固有振動数f21、反共振点Aの振動数faおよび等価剛性keqの変化態様をそれぞれ示すものである。
ダンパ装置10における合成ばね定数k2,k3,k4,k5および慣性モーメントJ21,J22をそれぞれ一定値としたまま、第1内側スプリング(第1弾性体)SP11の合成ばね定数(剛性)k1のみを変化させた場合、固有振動数f21および反共振点Aの振動数faは、図6に示すように、合成ばね定数k1が大きいほど大きくなり、合成ばね定数k1が小さくなるにつれて徐々に小さくなる。これに対して、等価剛性keqは、図6に示すように、合成ばね定数k1を予め適合された値から僅かに増加させると急増し、当該適合値から僅かに減少させると急減する。すなわち、第1内側スプリングSP11の合成ばね定数k1の変化に対する等価剛性keqの変化(変化勾配)は非常に大きい。
また、ダンパ装置10における合成ばね定数k1,k3,k4,k5および慣性モーメントJ21,J22をそれぞれ一定値としたまま、第2内側スプリング(第2弾性体)SP12の合成ばね定数(剛性)k2のみを変化させた場合も、固有振動数f21および反共振点Aの振動数faは、図7に示すように、合成ばね定数k2が大きいほど大きくなり、合成ばね定数k2が小さくなるにつれて徐々に小さくなる。更に、等価剛性keqは、図7に示すように、合成ばね定数k2を予め適合された値から僅かに増加させると急増し、当該適合値から僅かに減少させると急減する。すなわち、第2内側スプリングSP12の合成ばね定数k2の変化に対する等価剛性keqの変化(変化勾配)も非常に大きい。
一方、ダンパ装置10における合成ばね定数k1,k2,k4,k5および慣性モーメントJ21,J22をそれぞれ一定値としたまま、第1外側スプリング(第3弾性体)SP21の合成ばね定数(剛性)k3のみを変化させた場合、図8に示すように、固有振動数f21は、合成ばね定数k3が大きくなるにつれて僅かに大きくなり(概ね一定に保たれ)、反共振点Aの振動数faは、合成ばね定数k3が小さいほど大きくなり、合成ばね定数k3が大きくなるにつれて徐々に小さくなる。また、等価剛性keqは、図8に示すように、合成ばね定数k3を予め適合された値から僅かに減少させると急減し、当該適合値から僅かに増加させると急増する。すなわち、第1外側スプリングSP21の合成ばね定数k3の変化に対する等価剛性keqの変化(変化勾配)も非常に大きい。
更に、ダンパ装置10における合成ばね定数k1,k2,k3,k5および慣性モーメントJ21,J22をそれぞれ一定値としたまま、第2外側スプリング(第4弾性体)SP22の合成ばね定数(剛性)k4のみを変化させた場合も、図9に示すように、固有振動数f21は、合成ばね定数k4が大きくなるにつれて僅かに大きくなり(概ね一定に保たれ)、反共振点Aの振動数faは、合成ばね定数k4が小さいほど大きくなり、合成ばね定数k4が大きくなるにつれて徐々に小さくなる。また、等価剛性keqは、図9に示すように、合成ばね定数k4を予め適合された値から僅かに減少させると急減し、当該適合値から僅かに増加させると急増する。すなわち、第2外側スプリングSP22の合成ばね定数k4の変化に対する等価剛性keqの変化(変化勾配)も非常に大きい。
そして、ダンパ装置10における合成ばね定数k1,k2,k3,k4および慣性モーメントJ21,J22をそれぞれ一定値としたまま、中間スプリング(第5弾性体)SPmの合成ばね定数(剛性)k5のみを変化させた場合、固有振動数f21および反共振点Aの振動数faは、図10に示すように、合成ばね定数k5が大きいほど大きくなり、合成ばね定数k5が小さくなるにつれて徐々に小さくなる。また、ある合成ばね定数k5に対応した固有振動数f21と反共振点Aの振動数faとの差(fa−f21)は、図10に示すように、合成ばね定数k5が大きくなるにつれて徐々に大きくなる。更に、中間スプリングSPmの合成ばね定数k5のみを変化させた場合、等価剛性keqは、図10に示すように、合成ばね定数k5が大きいほど大きくなり、合成ばね定数k5が小さくなるにつれて徐々に小さくなる。すなわち、中間スプリングSPmの合成ばね定数(剛性)k5の変化に対する等価剛性keqの変化(変化勾配)は、合成ばね定数(剛性)k1,k2,k3,k4の変化に対する等価剛性keqの変化(変化勾配)に比べて大幅に小さくなる。
また、ダンパ装置10における合成ばね定数k1,k2,k3,k4,k5および第2中間部材14の慣性モーメントJ22をそれぞれ一定値としたまま、第1中間部材12の慣性モーメントJ21のみを変化させた場合、固有振動数f21および反共振点Aの振動数faは、図11に示すように、慣性モーメントJ21が小さいほど大きくなり、慣性モーメントJ21が大きくなるにつれて徐々に小さくなる。更に、第1中間部材12の慣性モーメントJ21のみを変化させても、図11に示すように、等価剛性keqは概ね一定に保たれる。なお、図示を省略するが、ダンパ装置10における合成ばね定数k1,k2,k3,k4,k5および第1中間部材12の慣性モーメントJ21をそれぞれ一定値としたまま、第2中間部材14の慣性モーメントJ22のみを変化させた場合も、第1中間部材12の慣性モーメントJ21のみを変化させた場合と同様の結果が得られた。
上述のような解析結果からわかるように、中間スプリングSPmの剛性を低下させる(ばね定数kmおよび合成ばね定数K5を小さくする)ことで、低回転側の固有振動数f21(式(13)参照)や反共振点Aの振動数fa(式(6)参照)をより小さくすることが可能となる。逆に、中間スプリングSPmの剛性を高める(ばね定数kmおよび合成ばね定数K5を大きくする)ことで、低回転側の固有振動数f21と反共振点Aの振動数faとの差(fa−f21)をより大きくすることもできる。更に、中間スプリングSPmの剛性を低下させても(ばね定数kmおよび合成ばね定数K5を小さくしても)、等価剛性keqが大幅に低下することはない。従って、ダンパ装置10では、中間スプリングSPmの剛性(ばね定数kmおよび合成ばね定数K5)を調整することで、ドライブ部材11への最大入力トルクに応じて等価剛性keqを適正に保つと共に第1および第2中間部材12,14の重量すなわち慣性モーメントJ21,J22の増加を抑制しつつ、低回転側の固有振動数f21および反共振点Aの振動数faを適正に設定することが可能となる。また、第1および第2内側スプリングSP11,SP12の剛性を低下させる(ばね定数k11,k12および合成ばね定数K1,K2を小さくする)ことで、低回転側の固有振動数f21や反共振点Aの振動数faをより小さくすることが可能となる。更に、第1および第2外側スプリングSP21,SP22の剛性を高める(ばね定数k21,k22および合成ばね定数K3,K4を大きくする)ことで、反共振点Aの振動数faをより小さくすることができる。
さて、走行用動力の発生源としてのエンジン(内燃機関)EGを搭載する車両では、ロックアップ回転数Nlupをより低下させて早期にエンジンEGからのトルクを変速機TMに機械的に伝達することで、エンジンEGと変速機TMとの間の動力伝達効率を向上させ、それによりエンジンEGの燃費をより向上させることができる。ただし、ロックアップ回転数Nlupの設定範囲となり得る500rpm〜1500rpm程度の低回転数域では、エンジンEGからロックアップクラッチを介してドライブ部材11に伝達される振動が大きくなり、特に3気筒あるいは4気筒エンジンといった省気筒エンジンを搭載した車両において振動レベルの増加が顕著となる。従って、ロックアップの実行時や実行直後に大きな振動が変速機TM等に伝達されないようにするためには、ロックアップが実行された状態でエンジンEGからのトルク(振動)を変速機TMへと伝達するダンパ装置10全体(ドリブン部材16)のロックアップ回転数Nlup付近の回転数域における振動レベルをより低下させる必要がある。
これを踏まえて、本発明者らは、ロックアップクラッチ8に対して定められたロックアップ回転数Nlupに基づいて、エンジンEGの回転数が500rpmから1500rpmの範囲(ロックアップ回転数Nlupの想定設定範囲)内にある際に上述の反共振点Aが形成されるようにダンパ装置10を構成することとした。反共振点Aの振動数faに対応したエンジンEGの回転数Neaは、“n”をエンジン(内燃機関)EGの気筒数とすれば、Nea=(120/n)・faと表される。従って、ダンパ装置10では、次式(19)を満たすように、複数の第1内側スプリングSP11の合成ばね定数k1、複数の第2内側スプリングSP12の合成ばね定数k2、複数の第1外側スプリングSP21の合成ばね定数k3、複数の第2外側スプリングSP22の合成ばね定数k4、複数の中間スプリングSPmの合成ばね定数k5、第1中間部材12の慣性モーメントJ21(一体回転するように連結されるタービンランナ5等の慣性モーメントを考慮(合算)したもの、以下同様)、および第2中間部材14の慣性モーメントJ22が選択・設定される。すなわち、ダンパ装置10では、反共振点Aの振動数fa(およびロックアップ回転数Nlup)に基づいて、スプリングSP11〜SPmのばね定数k11,k12,k21,k22,kmと、第1および第2中間部材12,14の慣性モーメントJ21,J22とが選択・設定される。
このように、ドリブン部材16の振動振幅Θ3を理論上ゼロにし得る(振動をより低下させ得る)反共振点Aを500rpmから1500rpmまでの低回転数域(ロックアップ回転数Nlupの想定設定範囲)内に設定することで、図5に示すように、反共振点Aを生じさせる共振(反共振点Aを形成するために生じさせざるを得ない共振、本実施形態では、第1中間部材12の共振、図5における共振点R1参照)をロックアップクラッチ8の非ロックアップ領域(図5における二点鎖線参照)に含まれるように、より低回転側(低周波側)にシフトさせることができる。すなわち、本実施形態において、第1中間部材12の共振(2つの固有振動数の小さい方での共振)は、ダンパ装置10が使用される回転数域において発生しない仮想的なものとなる。また、図5に示すように、ダンパ装置10の2つの固有振動数の小さい方(第1中間部材12の固有振動数)に対応した回転数は、ロックアップクラッチ8のロックアップ回転数Nlupよりも低くなり、ダンパ装置10の2つの固有振動数の大きい方(第2中間部材14の固有振動数)に対応した回転数は、ロックアップ回転数Nlupよりも高くなる。これにより、ロックアップクラッチ8によりロックアップが実行された時点から、第2内側スプリングSP12からドリブン部材16に伝達される振動および第2外側スプリングSP22からドリブン部材16に伝達される振動の一方により他方の少なくとも一部を打ち消すことが可能となる。
上記式(19)を満たすようにダンパ装置10を構成するに際しては、反共振点Aを生じさせる共振(図5における共振点R1参照)の振動数が当該反共振点Aの振動数faよりも小さく、かつできるだけ小さい値になるように、ばね定数k11,k12,k21,k22,km、慣性モーメントJ21およびJ22を選択・設定すると好ましい。このため、本実施形態のダンパ装置10では、上述のk11<km<k12<k22<k21という関係を満たすように、ばね定数k11,k12,k21,k22およびkmの値が定められる。
すなわち、ダンパ装置10では、低回転側の固有振動数f21と反共振点Aの振動数faとがより小さくなるように、中間スプリングSPmのばね定数kmや第1および第2内側スプリングSP11,SP12のばね定数k11,k12が小さく定められる。更に、低回転側の固有振動数f21がより小さくなるように、第1および第2外側スプリングSP21,22のばね定数k21,k22が大きく定められる。これにより、低回転側の固有振動数f21と反共振点Aの振動数faとをより小さくし、第2内側スプリングSP12からドリブン部材16に伝達される振動および第2外側スプリングSP22からドリブン部材16に伝達される振動の一方が他方の少なくとも一部を打ち消す回転数帯(周波数帯)の始点をより低回転側(低周波側)に設定することが可能となる。更に、当該回転数帯の始点を低回転側に設定することで、第2内側スプリングSP12からドリブン部材16に伝達される振動の位相と第2外側スプリングSP22からドリブン部材16に伝達される振動の位相とが180度ずれる回転数(周波数)をも低回転側に設定することができる。この結果、より一層低い回転数でのロックアップを許容すると共に、低回転数域における振動減衰性能をより一層向上させることが可能となる。
また、ダンパ装置10では、図5に示すように、反共振点A付近でドリブン部材16の振動の減衰ピークが発生してからエンジンEGの回転数がより高まると、2つの固有振動数の大きい方での共振(本実施形態では、第2中間部材14の共振、図5における共振点R2参照)が発生し、第2内側スプリングSP12からドリブン部材16に伝達される振動と第2外側スプリングSP22からドリブン部材16に伝達される振動とが同位相になる。すなわち、本実施形態のダンパ装置10では、上記2つの固有振動数の小さい方での共振(第1中間部材12の共振)が発生してから当該2つの固有振動数の大きい方での共振(第2中間部材14の共振)が発生するまでの間、第2内側スプリングSP12からドリブン部材16に伝達される振動および第2外側スプリングSP22からドリブン部材16に伝達される振動の一方により他方の少なくとも一部が打ち消される。従って、反共振点Aよりも高回転側(高周波側)で発生する共振の周波数がより大きくなるように、ばね定数(合成ばね定数)k1,k2,k3,k4,k5、慣性モーメントJ21およびJ22を選択・設定すると好ましい。これにより、当該共振(共振点R2)を振動が顕在化され難くなる高回転数域側で発生させることが可能となり、低回転数域におけるダンパ装置10の振動減衰性能をより一層向上させることができる。
更に、ダンパ装置10においてロックアップ回転数Nlup付近での振動減衰性能をより向上させるためには、当該ロックアップ回転数Nlupと共振点R2に対応したエンジンEGの回転数とをできるだけ離間させる必要がある。従って、式(19)を満たすようにダンパ装置10を構成するに際しては、Nlup≦(120/n)・fa(=Nea)を満たすように、ばね定数k1,k2,k3,k4,k5、慣性モーメントJ21およびJ22を選択・設定すると好ましい。これにより、変速機TMの入力軸ISへの振動の伝達を良好に抑制しながらロックアップクラッチ8によるロックアップを実行すると共に、ロックアップの実行直後に、エンジンEGからの振動をダンパ装置10により極めて良好に減衰することが可能となる。
上述のように、反共振点Aの振動数faに基づいてダンパ装置10を設計することにより、ダンパ装置10の振動減衰性能を極めて良好に向上させることが可能となる。そして、本発明者らの研究・解析によれば、ロックアップ回転数Nlupが例えば1000rpm前後の値に定められる場合、例えば900rpm≦(120/n)・fa≦1200rpmを満たすようにダンパ装置10を構成することで、実用上極めて良好な結果が得られることが確認されている。
また、式(13)および(14)からわかるように、ダンパ装置10の2つ固有振動数f21,f22は、第1および第2中間部材12,14の双方の慣性モーメントJ21,J22の影響を受ける。すなわち、ダンパ装置10では、第1中間部材12と第2中間部材14とが中間スプリングSPmを介して互いに連結されるので、第1および第2中間部材12,14の双方に中間スプリングSPmからの力(図4における白抜矢印参照)が作用することで、第1中間部材12の振動と第2中間部材14の振動とが連成する(両者の振動が相互に影響し合う)。このように第1中間部材12の振動と第2中間部材14の振動とが連成することで、固有振動数f21,f22は、第1および第2中間部材12,14の双方の慣性モーメントJ21,J22の影響を受けることになる。従って、ダンパ装置10では、第1および第2中間部材12,14の重量すなわち慣性モーメントJ21,J22の増加を抑制しつつ、2つの固有振動数f21,f22の小さい方での共振を容易に低回転側すなわち非ロックアップ領域にシフトさせ、ドライブ部材11の回転数がより低い状態でドリブン部材16での振動の打ち消し合いがより良好に生じるように固有振動数f21,f22と反共振点Aの振動数faとを容易かつ適正に設定することが可能となる。
更に、ダンパ装置10では、2つの固有振動数f21,f22が第1および第2中間部材12,14の双方の慣性モーメントJ21,J22の影響を受けることから、第1および第2中間部材12,14の慣性モーメントJ21,J22を調整することで、図5に示すように、反共振点Aの振動数faを比較例のダンパ装置の反共振点の振動数fa′と同程度の値としつつ、低回転側の固有振動数f21(共振点R1)を上記比較例のダンパ装置に比べて非ロックアップ領域のより低回転側に容易にシフトさせることができる。これにより、ダンパ装置10では、比較例のダンパ装置(図5における破線参照)に比べて、反共振点A付近での振動レベルをより低下させることが可能となる。このように、低回転側の固有振動数f21をより小さくして反共振点A付近での振動レベルをより低下させることで、気筒休止機能を有するエンジンEGの減筒運転の実行に伴って当該エンジンEGからの振動の次数が低下する場合であっても、ロックアップ回転数Nlupをより低く保つことが可能となる。
また、本発明者らの解析によれば、第1および第2中間部材12,14を中間スプリングSPmにより互いに連結して両者の振動を連成させることで、上記第1、第2および第3トルク伝達経路P1,P2,P3からドリブン部材16に伝達される振動が互いに打ち消し合いやすくなり、反共振点A付近でのドリブン部材16の実際の振動振幅をより小さくし得ることや、第2内側スプリングSP12と第2外側スプリングSP22との間のトルク振幅(トルク変動)の差を減らし得る(両者のトルク振幅をより近づけられる)ことが判明している。従って、ダンパ装置10では、より低い回転数でのロックアップ(エンジンEGとドライブ部材11との連結)を許容すると共に、エンジンEGからの振動が大きくなりがちな低回転数域における振動減衰性能をより向上させることが可能となる。
ここで、上記式(13)においてk5=0とすれば、中間スプリングSPmが省略された比較例のダンパ装置における第1中間部材の固有振動数f21′が次式(20)のように表され、上記式(14)においてk5=0とすれば、比較例のダンパ装置における第2中間部材の固有振動数f22′が次式(21)のように表される。式(20)および(21)からわかるように、比較例のダンパ装置では、第1中間部材の固有振動数f21′は第2中間部材の慣性モーメントJ22の影響を受けることはなく、第2中間部材の固有振動数f22′は第1中間部材の慣性モーメントJ21の影響を受けることはない。この点から、ダンパ装置10では、比較例のダンパ装置に比べて、第1および第2中間部材12,14の固有振動数f21,f22の設定の自由度を向上させ得ることが理解されよう。
また、上記式(6)においてk5=0とすれば、比較例のダンパ装置における反共振点の振動数fa′が次式(22)のように表される。式(6)と式(22)とを比較すれば、ばね定数k1,k2,k3,k4、慣性モーメントJ21およびJ22が同一である場合、比較例のダンパ装置における反共振点の振動数fa′は、ダンパ装置10における反共振点Aの振動数faよりも小さくなる。ただし、ダンパ装置10では、主に第1および第2中間部材12,14の慣性モーメントJ21,J22を適宜選択することで、比較例のダンパ装置(図5における破線参照)の反共振点の振動数fa′と同程度の値に容易に設定することができる。
そして、上述のダンパ装置10では、第1中間部材12よりも固有振動数が大きい第2中間部材14に対応した第1および第2外側スプリングSP21,SP22の平均取付半径roが、第1中間部材12に対応した第1および第2内側スプリングSP11,SP12の平均取付半径riよりも大きく定められている。すなわち、第1および第2内側スプリングSP21,SP22よりも大きいばね定数(剛性)を有する第1および第2外側スプリングSP11,SP12は、第1および第2内側スプリングSP21,SP22のダンパ装置10の径方向における外側に配置される。これにより、剛性が高い第1および第2外側スプリングSP21,SP22の捩れ角(ストローク)をより大きくすることが可能となり、ドライブ部材11に対する大きなトルクの伝達を許容しつつ、第1および第2外側スプリングSP21,SP22を低剛性化することができる。この結果、ダンパ装置10の等価剛性keqをより小さくすると共に、ダンパ装置10を含む振動系全体の共振、すなわちダンパ装置10全体と車両のドライブシャフトとの振動による共振(ドライブ部材とドライブシャフトとの間で発生する振動による共振)をより低回転側(低周波側)にシフトさせることが可能となる。従って、ダンパ装置10では、上記反共振点Aの振動数を当該振動系全体の共振の周波数により近づけることで、振動減衰性能を極めて良好に向上させることができる。
更に、本実施形態のダンパ装置10において、第1中間部材12(環状部材121のみ、あるいは環状部材121および連結部材122)は、慣性モーメントJ21が第2中間部材14の慣性モーメントJ22よりも大きくなるように構成され、更にタービンランナ5に一体回転するように連結される。これにより、低周波側の固有振動数f21をより一層小さくして、反共振点A付近における振動レベルをより低下させることが可能となる。また、第1中間部材12をタービンランナ5に一体回転するように連結すれば、当該第1中間部材12の実質的な慣性モーメントJ21(第1中間部材12やタービンランナ5等の慣性モーメントの合計値)をより大きくすることができる。これにより、低周波側の固有振動数f21をより一層小さくして、当該第1中間部材12の共振点をより低回転側(低周波側)に設定することが可能となる。
なお、上記ダンパ装置10において、第1外側スプリングSP21のばね定数K21は、第2外側スプリングSP22のばね定数K22も大きいが(k22<k21)、これに限られるものではない。すなわち、ダンパ装置10の設計を容易にするために、第1外側スプリングSP21のばね定数K21やコイル径、軸長といった諸元と、第2外側スプリングSP22のばね定数K22やコイル径、軸長といった諸元とを同一(k22=k21)にしてもよい。
更に、ダンパ装置10において、中間スプリングSPmのばね定数kmは、第1および第2内側スプリングSP11,SP12並びに第1および第2外側スプリングSP21,SP22のばね定数k11,k12,k21およびk22よりも小さく定められてもよい。すなわち、低回転側(低周波側)の固有振動数f21や反共振点Aの振動数faは、上述のように、中間スプリングSPmの合成ばね定数k5が小さくなるにつれて小さくなる(図10参照)。従って、中間スプリングSPmのばね定数(剛性)kmをばね定数k11,k12,k21およびk22よりも小さくすれば、固有振動数f21と振動数faとをより一層小さくすることができる。そして、かかる構成を採用しても、第2内側スプリングSP12からドリブン部材16に伝達される振動および第2外側スプリングSP22からドリブン部材16に伝達される振動の一方が他方の少なくとも一部を打ち消す回転数帯の始点をより低回転側に設定することが可能となる。加えて、当該回転数帯の始点を低回転側に設定することで、第2内側スプリングSP12からドリブン部材16に伝達される振動の位相と第2外側スプリングSP22からドリブン部材16に伝達される振動の位相とが180度ずれる回転数(周波数)をも低回転側(低周波側)に設定することができる。この場合、第1および第2内側スプリングSP11,SP12並びに第1および第2外側スプリングSP21,SP22のばね定数k11,k12,k21およびk22は、少なくとも、k11≠k21、かつk11/k21≠k12/k22という関係を満たすとよい。
また、ダンパ装置10において、中間スプリングSPmのばね定数kmは、第1および第2内側スプリングSP11,SP12並びに第1および第2外側スプリングSP21,SP22のばね定数k11,k12,k21およびk22よりも大きく定められてもよい。すなわち、低回転側(低周波側)の固有振動数f21と反共振点Aの振動数faとの差(fa−f21)は、上述のように、中間スプリングSPmの合成ばね定数k5が大きくなるにつれて大きくなる(図10参照)。従って、中間スプリングSPmのばね定数(剛性)kmをばね定数k11,k12,k21およびk22よりも大きくすれば、固有振動数f21と振動数faとの差(fa−f21)との差を大きくして、第2内側スプリングSP12からドリブン部材16に伝達される振動および第2外側スプリングSP22からドリブン部材16に伝達される振動の一方が他方の少なくとも一部を打ち消す回転数帯、すなわちドリブン部材16の振動レベルを良好に低下させ得る範囲をより広くすることが可能となる。
この場合には、固有振動数f21と反共振点Aの振動数faとがより小さくなり、かつ両者の差(fa−f21)がより大きくなるように、第1および第2内側スプリングSP11,SP12並びに第1および第2外側スプリングSP21,SP22のばね定数k11,k12,k21およびk22を調整するとよい。かかる構成は、固有振動数f21と反共振点Aの振動数faとをより小さくするためのばね定数k11,k12,k21およびk22の数値設定の容易性からみて、ドライブ部材11への最大入力トルクが比較的小さく、要求される等価剛性keqが比較的低いダンパ装置に適用されると有利である。この場合も、第1および第2内側スプリングSP11,SP12並びに第1および第2外側スプリングSP21,SP22のばね定数k11,k12,k21およびk22は、少なくとも、k11≠k21、かつk11/k21≠k12/k22という関係を満たすとよい。
更に、ダンパ装置10は、第1、第2および第3トルク伝達経路P1,P2,P3に加えて、例えば第1および第2トルク伝達経路P1,P2と並列に設けられる少なくとも1つのトルク伝達経路を更に含んでもよい。更に、ダンパ装置10の例えば第1および第2トルク伝達経路P1,P2の少なくとも何れか一方には、それぞれ少なくとも1組の中間部材およびスプリング(弾性体)が追設されてもよい。
また、発進装置1において、エンジンEGと変速機TMの入力軸(ドライブ部材11)との実スリップ速度(実回転速度差)を目標スリップ速度に一致させるスリップ制御が実行される場合には、上記反共振点Aの振動数faをスリップ制御が実行される際に発生するシャダーの周波数fsに一致させたり、当該シャダーの周波数fsの近傍の値に設定したりしてもよい。これにより、スリップ制御が実行される際に発生するシャダーをより低減化することが可能となる。なお、シャダーの周波数fsは、一体に回転するロックアップピストン80およびドライブ部材11の慣性モーメントを“Jpd”とすれば、当該慣性モーメントJpdおよびダンパ装置10の等価剛性keqを用いて、fs=1/2π・√(keq/Jpd)と表すことができる。
更に、上記ダンパ装置10では、中間スプリングSPmが第1および第2外側スプリングSP21,SP22と当該ダンパ装置10の周方向に沿って並ぶように配置されるが、これに限られるものではない。すなわち、ダンパ装置10において、各中間スプリングSPmは、第1および第2外側スプリングSP21,SP22と第1および第2内側スプリングSP11,SP12とのダンパ装置10の径方向における間に配置されてもよい。これにより、第1および第2外側スプリングSP21,SP22の捩れ角(ストローク)をより大きくすることが可能となる。
図12は、本開示の他のダンパ装置10Xを示す断面図である。なお、ダンパ装置10Xの構成要素のうち、上述のダンパ装置10と同一の要素については同一の符号を付し、重複する説明を省略する。
図12に示すダンパ装置10Xのドライブ部材11Xは、ロックアップクラッチのロックアップピストンに固定される環状の第1プレート部材(第1入力部材)111Xと、例えばダンパハブにより回転自在に支持(調心)されると共に第1プレート部材111Xに一体に回転するように連結される環状の第2プレート部材(第2入力部材)112Xと、第2プレート部材112Xよりもタービンランナ5に近接するように配置されると共に複数のリベットを介して第2プレート部材112Xに連結(固定)される環状の第3プレート部材(第3入力部材)113Xとを含む。これにより、ドライブ部材11X、すなわち第1、第2および第3プレート部材111X,112X,113Xは、ロックアップピストンと一体に回転し、ロックアップクラッチの係合によりフロントカバー(エンジン)とダンパ装置10Xのドライブ部材11Xとが連結されることになる。なお、ロックアップクラッチが多板油圧式クラッチである場合には、第1プレート部材111Xは、当該ロックアップクラッチのクラッチドラムとして構成されてもよい。
第1プレート部材111Xは、図12に示すように、ロックアップピストンに固定される環状の固定部111aと、固定部111aの外周部から軸方向に延出された筒状部111bと、筒状部111bの遊端部から周方向に間隔をおいて(等間隔に)径方向外側に延出されると共に固定部111aから離間するように軸方向に延びる複数(例えば4個)のスプリング当接部(外側当接部)111cと、筒状部111bの遊端部から周方向に間隔をおいて軸方向に延出された複数の係合凸部111eとを有する。
第2プレート部材112Xは、板状の環状部材として構成されており、それぞれ円弧状に延びると共に周方向に間隔をおいて(等間隔に)配設された複数(例えば3個)のスプリング収容窓112wと、それぞれ対応するスプリング収容窓112wの内周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並ぶ複数(例えば3個)のスプリング支持部1121と、それぞれ対応するスプリング収容窓112wの外周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並んで対応するスプリング支持部1121と第2プレート部材112Xの径方向において対向する複数(例えば3個)のスプリング支持部1122と、複数(例えば3個)のスプリング当接部(内側当接部)112cとを有する。複数のスプリング当接部112cは、周方向に沿って互いに隣り合うスプリング収容窓112w(スプリング支持部1121,1122)の間に1個ずつ設けられる。更に、第2プレート部材112Xの外周部には、複数の係合凹部が周方向に間隔をおいて形成されており、各係合凹部には、第1プレート部材111Xの対応する係合凸部111eが径方向のガタをもって嵌合される。係合凸部111eを当該係合凹部に嵌合することで、第1および第2プレート部材111X,112Xは、径方向に相対移動可能となる。
第3プレート部材113Xも、板状の環状部材として構成されている。第3プレート部材113Xは、それぞれ円弧状に延びると共に周方向に間隔をおいて(等間隔に)配設された複数(例えば3個)のスプリング収容窓113wと、それぞれ対応するスプリング収容窓113wの内周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並ぶ複数(例えば3個)のスプリング支持部1131と、それぞれ対応するスプリング収容窓の外周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並んで対応するスプリング支持部1131と第3プレート部材113Xの径方向において対向する複数(例えば3個)のスプリング支持部1132と、複数(例えば3個)のスプリング当接部(第3当接部)113cとを有する。複数のスプリング当接部113cは、周方向に沿って互いに隣り合うスプリング支持部1131,1132(スプリング収容窓)の間に1個ずつ設けられる。
ダンパ装置10Xの第1中間部材12Xは、例えば複数のリベットを介してタービンハブに固定されてタービンランナ5に一体回転するように連結される環状部材である。図12に示すように、第1中間部材12Xは、内周部から周方向に間隔をおいて(等間隔に)軸方向に延出された複数(例えば3個)のスプリング当接部12cと、外周部から周方向に間隔をおいて軸方向に延出された複数(例えば4個)の第2スプリング当接部12dとを有する。第2スプリング当接部12dは、2個(一対)ずつ近接するように第1中間部材12Xの軸心に関して対称に形成され、互いに対をなす2個の第2スプリング当接部12dは、例えば中間スプリングSPmの自然長に応じた間隔をおいて周方向に並ぶ。
ダンパ装置10Xの第2中間部材14Xは、第1および第2外側スプリングSP21,SP22並びに中間スプリングSPmの外周部やロックアップピストン側(エンジンEG側)の側部(図12における右側の側部)、タービンランナ5側(変速機TM側)の側部の外周側を支持(ガイド)するように環状に形成されている。第2中間部材14Xは、ドライブ部材11Xの第1プレート部材111Xの筒状部111bにより回転自在に支持(調心)され、流体伝動室9内の外周側領域に配置される。そして、第2中間部材14Xは、第1中間部材12Xのものよりも大きい固有振動数および第1中間部材12Xのものよりも小さい慣性モーメントを有する。
また、第2中間部材14Xは、周方向に間隔をおいて配設された複数(例えば180°間隔で2個)のスプリング当接部14caと、周方向に間隔をおいて配設された複数(例えば180°間隔で2個)のスプリング当接部14cbとを有する。図12に示すように、各スプリング当接部14caは、第2中間部材14Xのロックアップピストン側(図12における右側)の側部からタービンランナ5側に軸方向に延出され、各スプリング当接部14cbは、対応するスプリング当接部14caと軸方向に対向するように、第2中間部材14Xのタービンランナ5側の周縁部から斜め内側に延出されている。
更に、第2中間部材14Xは、ロックアップピストン側の側部の隣り合うスプリング当接部14caの周方向における間からタービンランナ5側に軸方向に延出された複数(例えば4個)の第2スプリング当接部14daと、タービンランナ5側の周縁部の隣り合うスプリング当接部14cbの周方向における間から斜め内側に延出された複数(例えば4個)の第2スプリング当接部14dbとを有する。第2スプリング当接部14daは、2個(一対)ずつ近接するように第2中間部材14Xの軸心に関して対称に形成され、互いに対をなす2個の第2スプリング当接部14daは、例えば中間スプリングSPmの自然長に応じた間隔をおいて周方向に並ぶ。第2スプリング当接部14dbは、2個(一対)ずつ近接するように第2中間部材14Xの軸心に関して対称に形成され、互いに対をなす2個の第2スプリング当接部14dbは、対応する2個の第2スプリング当接部14daと軸方向に対向するように、例えば中間スプリングSPmの自然長に応じた間隔をおいて周方向に並ぶ。
ダンパ装置10Xのドリブン部材16Xは、板状の環状部材として構成されており、図12に示すように、ドライブ部材11Xの第2プレート部材112Xと第3プレート部材113Xとの軸方向における間に配置されると共にダンパハブにリベットを介して固定される。ドリブン部材16は、それぞれ円弧状に延びると共に周方向に間隔をおいて(等間隔に)配設された複数(例えば3個)のスプリング収容窓と、当該ドリブン部材16の内周縁に近接するように周方向に間隔をおいて(等間隔に)形成された複数(例えば3個)の内側スプリング当接部(内側当接部)16ciと、複数の内側スプリング当接部16ciよりも径方向外側で周方向に間隔をおいて並ぶと共にタービンランナ5側からロックアップピストン80側に軸方向に延びる複数(例えば4個)の外側スプリング当接部(外側当接部)16coとを有する。複数の内側スプリング当接部16ciは、周方向に沿って互いに隣り合うスプリング収容窓の間に1個ずつ設けられる。
第1および第2内側スプリングSP11,SP12は、1個ずつ対をなす(直列に作用する)と共に周方向(環状部材121の周方向)に交互に並ぶように、ドライブ部材11Xすなわち第2および第3プレート部材112X,113Xの対応するスプリング支持部1121,1122,1131,1132により支持される。更に、第2プレート部材112Xの各スプリング当接部112cは、ダンパ装置10Xの取付状態において、互いに異なるスプリング収容窓112w内に配置されて対をなさない(直列に作用しない)第1および第2内側スプリングSP11,SP12の間で両者の周方向の端部と当接する。同様に、第3プレート部材113Xの各スプリング当接部113cも、ダンパ装置10Xの取付状態において、互いに異なるスプリング収容窓113w内に配置された(対をなさない)第1および第2内側スプリングSP11,SP12の間で両者の周方向の端部と当接する。
また、第1中間部材12Xの各スプリング当接部12cは、タービンランナ5側から第3プレート部材113Xの対応するスプリング収容窓113w内に差し込まれると共に、互いに対をなす(直列に作用する)第1および第2内側スプリングSP11,SP12の間で両者の周方向の端部と当接する。更に、ドリブン部材16Xの各内側スプリング当接部16ciは、ダンパ装置10Xの取付状態において、ドライブ部材11Xのスプリング当接部112c,113cと同様に、対をなさない(直列に作用しない)第1および第2内側スプリングSP11,SP12の間で両者の周方向の端部と当接する。
一方、第1および第2外側スプリングSP21,SP22は、第2中間部材14Xにより、1個ずつ対をなす(直列に作用する)と共に当該第2中間部材14Xの周方向に沿って交互に並ぶように支持される。また、ドライブ部材11Xの第1プレート部材111Xのスプリング当接部111cは、ダンパ装置10Xの取付状態において、対をなさない(直列に作用しない)第1および第2外側スプリングSP21,SP22の間で両者の周方向の端部と当接する。更に、第2中間部材14Xの各スプリング当接部14ca,14cbは、互いに対をなす(直列に作用する)第1および第2外側スプリングSP21,SP22の間で両者の周方向の端部と当接する。また、ドリブン部材16Xの各外側スプリング当接部16coは、ドライブ部材11Xの各スプリング当接部111cと同様に、対をなさない(直列に作用しない)第1および第2外側スプリングSP21,SP22の間で両者の周方向の端部と当接する。
そして、各中間スプリングSPmは、第1外側スプリングSP21および第2外側スプリングSP22と周方向に沿って並ぶように、第2中間部材14Xにより支持される。各中間スプリングSPmは、ダンパ装置10Xの取付状態において、第1中間部材12Xの一対の第2スプリング当接部12dにより周方向における両側から支持されると共に、第2中間部材14Xの一対の第2スプリング当接部14daと一対の第2スプリング当接部14dbとにより周方向における両側から支持される。これにより、第1中間部材12Xと第2中間部材14Xとは、複数の中間スプリングSPmを介して互いに連結されることになる。なお、中間スプリングSPmの端部と第2スプリング当接部12d,14da,14dbとの間には、スプリングシートが配置されてもよい。
上述のように構成されるダンパ装置10Xにおいても、第1中間部材12Xよりも固有振動数が大きい第2中間部材14Xに対応した第1および第2外側スプリングSP21,SP22の平均取付半径roが、第1中間部材12に対応した第1および第2内側スプリングSP11,SP12の平均取付半径riよりも大きくなっている。すなわち、第1および第2外側スプリングSP21,SP22の軸心は、第1および第2内側スプリングSP11,SP12の軸心よりもダンパ装置10Xの径方向における外側に位置する。更に、ダンパ装置10Xにおいても、第1および第2外側スプリングSP21,SP22は、それぞれの全体が第1および第2内側スプリングSP11,SP12よりも径方向外側に位置するように配置される。これにより、剛性が高い第1および第2外側スプリングSP21,SP22の捩れ角(ストローク)をより大きくすることが可能となり、ドライブ部材11Xに対する大きなトルクの伝達を許容しつつ、第1および第2外側スプリングSP21,SP22を低剛性化することができる。この結果、ダンパ装置10Xの等価剛性keqをより小さくすると共に、ダンパ装置10Xを含む振動系全体の共振をより低回転側(低周波側)にシフトさせることが可能となる。従って、ダンパ装置10Xにおいても、上記反共振点Aの振動数を当該振動系全体の共振の周波数により近づけることで、振動減衰性能を極めて良好に向上させることができる。
また、第2中間部材14Xに第1および第2外側スプリングSP21,SP22を支持させることで、ドライブ部材11Xやドリブン部材16Xに対する第2中間部材14Xの捩れ角に応じて撓む第1および第2外側スプリングSP21,SP22と、当該第2中間部材14Xとの相対速度を小さくすることが可能となる。従って、第2中間部材14Xと第1および第2外側スプリングSP21,SP22との間で発生する摩擦力を小さくすることができるので、ダンパ装置10X全体のヒステリシスを低下させることが可能となる。更に、ダンパ装置10Xの第1中間部材12Xは、タービンランナ5に固定されると共に互いに隣り合う第1および第2内側スプリングSP11,SP12の間で両者の周方向の端部に当接するように軸方向に延びる複数のスプリング当接部12cを有する。これにより、ダンパ装置10Xの軸長の増加を抑制しつつ、径方向内側に配置される第1および第2内側スプリングSP11,SP12の双方に第1中間部材12Xを連結すると共に当該第1中間部材12Xをタービンランナ5に連結することが可能となる。
図13は、本開示の更に他のダンパ装置10Yを示す断面図である。なお、ダンパ装置10Yの構成要素のうち、上述のダンパ装置10,10Xと同一の要素については同一の符号を付し、重複する説明を省略する。
図13に示すダンパ装置10Yのドライブ部材11Yは、上述の第1プレート部材111Xと同様の構造を有する第1プレート部材111Y(第1入力部材)と、当該第1プレート部材111Yに一体に回転するように連結される環状の第2プレート部材(第2入力部材)112Yとを含む。第1プレート部材111Yは、第1外側スプリングSP21の周方向の端部に当接するスプリング当接部(外側当接部)111cを有する。また、第2プレート部材112Yは、複数(例えば3個)のスプリング収容窓と、複数(例えば3個)のスプリング当接部112cとを有する。複数のスプリング当接部112cは、周方向に沿って互いに隣り合うスプリング収容窓の間に1個ずつ設けられる。第1および第2プレート部材111Y,112Yは、上述の第1プレート部材111Xおよび第2プレート部材112Xと同様に構成された嵌合部を介して互いに連結される。
ダンパ装置10Yの第1中間部材12Yは、上記ダンパ装置10の第1中間部材12のものと同様に構成された環状部材121Yおよび連結部材122Yを有する。ダンパ装置10Yの第2中間部材14Yは、上記ダンパ装置10Xの第1中間部材12Xと同様に構成されている。第2中間部材14Yは、ドライブ部材11Yの第1プレート部材111Yにより回転自在に支持(調心)されると共に、それぞれ複数の第1外側スプリングSP21、第2外側スプリングSP22および中間スプリングSPmを周方向に沿って並ぶように支持する。そして、第2中間部材14Yも、第1中間部材12Yのものよりも大きい固有振動数および第1中間部材12Yのものよりも小さい慣性モーメントを有する。
ダンパ装置10Yのドリブン部材16Yは、第1出力プレート(第1出力部材)161Yと、第1出力プレート161Yよりもタービンランナ5に近接するように配置されると共に複数のリベットを介して当該第1出力プレート161Yに連結(固定)される環状の第2出力プレート(第2出力部材)162Yとを含む。第1出力プレート161Yは、板状の環状部材として構成されており、周方向に間隔をおいて(等間隔に)配設された複数(例えば3個)のスプリング収容窓161wと、それぞれ対応するスプリング収容窓161wの内周縁に沿って延びる複数(例えば3個)のスプリング支持部161aと、それぞれ対応するスプリング収容窓161wの外周縁に沿って延びる複数(例えば3個)のスプリング支持部161bと、複数(例えば3個)のスプリング当接部161cとを有する。複数のスプリング当接部161cは、周方向に沿って互いに隣り合うスプリング収容窓161w(スプリング支持部161a,161b)の間に1個ずつ設けられる。
ドリブン部材16Yの第2出力プレート162Yは、板状の環状部材として構成されており、周方向に間隔をおいて(等間隔に)配設された複数(例えば3個)のスプリング収容窓162wと、それぞれ対応するスプリング収容窓162wの内周縁に沿って延びる複数(例えば3個)のスプリング支持部162aと、それぞれ対応するスプリング収容窓162wの外周縁に沿って延びる複数(例えば3個)のスプリング支持部162bと、複数(例えば3個)の内側スプリング当接部162ciと、複数(例えば4個)の外側スプリング当接部162coとを有する。複数の外側スプリング当接部162coは、複数の内側スプリング当接部162ciよりも径方向外側で周方向に間隔をおいて並ぶ。
第1および第2内側スプリングSP11,SP12は、1個ずつ対をなす(直列に作用する)と共に周方向(環状部材121の周方向)に交互に並ぶように、ドリブン部材16Yすなわち第1および第2出力プレート161Y,162Yの対応するスプリング支持部161a,161b,162a,162bにより支持される。また、ドライブ部材11Yの第2プレート部材112Yの各スプリング当接部112cは、ダンパ装置10Yの取付状態において、対をなさない(直列に作用しない)第1および第2内側スプリングSP11,SP12の間で両者の周方向の端部と当接する。更に、第1中間部材12Yのスプリング当接部121c,122cは、互いに対をなす(直列に作用する)第1および第2内側スプリングSP11,SP12の間で両者の周方向の端部と当接する。また、ドリブン部材16Yのスプリング当接部161cおよび内側スプリング当接部162ciは、ダンパ装置10の取付状態において、ドライブ部材11Yのスプリング当接部112cと同様に、対をなさない(直列に作用しない)第1および第2内側スプリングSP11,SP12の間で両者の周方向の端部と当接する。
一方、第1および第2外側スプリングSP21,SP22は、第2中間部材14Yにより、1個ずつ対をなす(直列に作用する)と共に当該第2中間部材14Yの周方向に沿って交互に並ぶように支持される。また、ドライブ部材11Yの第1プレート部材111Yのスプリング当接部111cは、ダンパ装置10の取付状態において、対をなさない(直列に作用しない)第1および第2外側スプリングSP21,SP22の間で両者の周方向の端部と当接する。更に、第2中間部材14Yの各スプリング当接部14ca,14cbは、互いに対をなす(直列に作用する)第1および第2外側スプリングSP21,SP22の間で両者の周方向の端部と当接する。また、ドリブン部材16Yの各外側スプリング当接部162coは、ドライブ部材11Yの各スプリング当接部111cと同様に、対をなさない(直列に作用しない)第1および第2外側スプリングSP21,SP22の間で両者の周方向の端部と当接する。
そして、各中間スプリングSPmは、第1外側スプリングSP21および第2外側スプリングSP22と周方向に沿って並ぶように、第2中間部材14Yにより支持される。各中間スプリングSPmは、ダンパ装置10の取付状態において、第1中間部材12Yの一対の第2スプリング当接部121dにより周方向における両側から支持されると共に、第2中間部材14Yの一対の第2スプリング当接部14daと一対の第2スプリング当接部14dbとにより周方向における両側から支持される。これにより、第1中間部材12Yと第2中間部材14Yとは、複数の中間スプリングSPmを介して互いに連結されることになる。なお、中間スプリングSPmの端部と第2スプリング当接部121d,14da,14dbとの間には、スプリングシートが配置されてもよい。
上述のように構成されるダンパ装置10Yにおいても、第1中間部材12Yよりも固有振動数が大きい第2中間部材14Yに対応した第1および第2外側スプリングSP21,SP22の平均取付半径roが、第1中間部材12に対応した第1および第2内側スプリングSP11,SP12の平均取付半径riよりも大きくなっている。すなわち、第1および第2外側スプリングSP21,SP22の軸心は、第1および第2内側スプリングSP11,SP12の軸心よりもダンパ装置10Yの径方向における外側に位置する。更に、ダンパ装置10Yにおいても、第1および第2外側スプリングSP21,S22は、それぞれの全体が第1および第2内側スプリングSP11,SP12よりも径方向外側に位置するように配置される。これにより、剛性が高い第1および第2外側スプリングSP21,SP22の捩れ角(ストローク)をより大きくすることが可能となり、ドライブ部材11Yに対する大きなトルクの伝達を許容しつつ、第1および第2外側スプリングSP21,SP22を低剛性化することができる。この結果、ダンパ装置10Yの等価剛性keqをより小さくすると共に、ダンパ装置10Yを含む振動系全体の共振をより低回転側(低周波側)にシフトさせることが可能となる。従って、ダンパ装置10Yにおいても、上記反共振点Aの振動数を当該振動系全体の共振の周波数により近づけることで、振動減衰性能を極めて良好に向上させることができる。
また、第2中間部材14Yに第1および第2外側スプリングSP21,SP22を支持させることで、ドライブ部材11Yやドリブン部材16Yに対する第2中間部材14Yの捩れ角に応じて撓む第1および第2外側スプリングSP21,SP22と、当該第2中間部材14Yとの相対速度を小さくすることが可能となる。従って、第2中間部材14Yと第1および第2外側スプリングSP21,SP22との間で発生する摩擦力を小さくすることができるので、ダンパ装置10Y全体のヒステリシスを低下させることが可能となる。更に、ダンパ装置10Yの第1中間部材12Yは、タービンランナ5に固定されると共に互いに隣り合う第1および第2内側スプリングSP11,SP12の間で両者の周方向の端部に当接するスプリング当接部122cを有する連結部材122Yを含む。これにより、ダンパ装置10Yの軸長の増加を抑制しつつ、径方向内側に配置される第1および第2内側スプリングSP11,SP12の双方に第1中間部材12Yを連結すると共に当該第1中間部材12Yをタービンランナ5に連結することが可能となる。
図14は、本開示の他のダンパ装置10Zを示す断面図である。なお、ダンパ装置10Yの構成要素のうち、上述のダンパ装置10から10Yと同一の要素については同一の符号を付し、重複する説明を省略する。
図14に示すダンパ装置10Zのドライブ部材11Zは、図13に示すダンパ装置10Yのドライブ部材11Yと基本的に同一のものであり、第1および第2プレート部材111Z,112Zを含む。更に、ドリブン部材16Zは、ダンパ装置10Yのドリブン部材16Yと基本的に同一のものであり、第1および第2出力プレート161Z,162Zを含む。また、第1中間部材12Zの連結部材122Zは、ダンパ装置10Yの連結部材122Yと基本的に同一のものである。これに対して、第1中間部材12Zの環状部材121Zは、第2スプリング当接部121dを有していない点でダンパ装置10Yの環状部材121Yと相違している。更に、ダンパ装置10Zの第2中間部材14Zは、タービンランナ5により回転自在に支持(調心)され、それぞれ複数の第1外側スプリングSP21および第2外側スプリングSP22を周方向に沿って並ぶように支持するものである。第2中間部材14Xも、第1中間部材12Zのものよりも大きい固有振動数および第1中間部材12Zのものよりも小さい慣性モーメントを有する。
タービンランナ5のタービンシェル50には、第1および第2内側スプリングSP11,SP12と、第1および第2外側スプリングSP21,SP22とのダンパ装置10Zの径方向における間に位置するように環状の支持部50sが固定されている。当該支持部50sからは、複数(例えば4個)のスプリング当接部50dが周方向に間隔をおいて径方向に延出されている。スプリング当接部50dは、2個(一対)ずつ近接するようにタービンランナ5の軸心に関して対称に形成され、互いに対をなす2個のスプリング当接部50dは、例えば中間スプリングSPmの自然長に応じた間隔をおいて周方向に並ぶ。また、第2中間部材14Zには、支持部50sにより径方向に支持される被支持部14sが形成されている。更に、第2中間部材14Zからは、複数(例えば4個)の第2スプリング当接部14dが周方向に間隔をおいて径方向に延出されている。第2スプリング当接部14dは、2個(一対)ずつ近接するようにタービンランナ5の軸心に関して対称に形成され、互いに対をなす2個の第2スプリング当接部14dは、例えば中間スプリングSPmの自然長に応じた間隔をおいて周方向に並ぶ。
複数の中間スプリングSPmは、それぞれタービンランナ5の支持部50sにより径方向に支持される。また、ダンパ装置10Zの取付状態において、各中間スプリングSPmは、タービンランナ5の一対のスプリング当接部50dにより周方向における両側から支持されると共に、第2中間部材14Zの一対の第2スプリング当接部14dにより周方向における両側から支持される。これにより、タービンランナ5と一体に回転する第1中間部材12Zと、第2中間部材14Zとは、複数の中間スプリングSPmを介して互いに連結されることになる。そして、中間スプリングSPmは、第1および第2外側スプリングSP21,SP22と第1および第2内側スプリングSP11,SP12とのダンパ装置10Zの径方向における間に配置される。また、ダンパ装置10Zにおいて、中間スプリングSPmは、ダンパ装置10Zの径方向からみて第1および第2外側スプリングSP21,SP22の少なくとも何れか一方および第1および第2内側スプリングSP11,SP12の少なくとも何れか一方と軸方向に部分的に重なる。なお、中間スプリングSPmの端部とスプリング当接部50dおよび第2スプリング当接部14dとの間には、スプリングシートが配置されてもよい。
上述のように構成されるダンパ装置10Zにおいても、第1中間部材12Zよりも固有振動数が大きい第2中間部材14Zに対応した第1および第2外側スプリングSP21,SP22の平均取付半径roが、第1中間部材12に対応した第1および第2内側スプリングSP11,SP12の平均取付半径riよりも大きくなっている。すなわち、第1および第2外側スプリングSP21,SP22の軸心は、第1および第2内側スプリングSP11,SP12の軸心よりもダンパ装置10Zの径方向における外側に位置する。更に、ダンパ装置10Zにおいても、第1および第2外側スプリングSP21,SP22は、それぞれの全体が第1および第2内側スプリングSP11,SP12よりも径方向外側に位置するように配置される。これにより、剛性が高い第1および第2外側スプリングSP21,SP22の捩れ角(ストローク)をより大きくすることが可能となり、ドライブ部材11Zに対する大きなトルクの伝達を許容しつつ、第1および第2外側スプリングSP21,SP22を低剛性化することができる。この結果、ダンパ装置10Zの等価剛性keqをより小さくすると共に、ダンパ装置10Zを含む振動系全体の共振をより低回転側(低周波側)にシフトさせることが可能となる。従って、ダンパ装置10Zにおいても、上記反共振点Aの振動数を当該振動系全体の共振の周波数により近づけることで、振動減衰性能を極めて良好に向上させることができる。
また、第2中間部材14Zに第1および第2外側スプリングSP21,SP22を支持させることで、ドライブ部材11Zやドリブン部材16Zに対する第2中間部材14Zの捩れ角に応じて撓む第1および第2外側スプリングSP21,SP22と、当該第2中間部材14Zとの相対速度を小さくすることが可能となる。従って、第2中間部材14Zと第1および第2外側スプリングSP21,SP22との間で発生する摩擦力を小さくすることができるので、ダンパ装置10Z全体のヒステリシスを低下させることが可能となる。更に、ダンパ装置10Zの第1中間部材12Zも、タービンランナ5に固定されると共に互いに隣り合う第1および第2内側スプリングSP11,SP12の間で両者の周方向の端部に当接するスプリング当接部122cを有する連結部材122Zを含む。これにより、ダンパ装置10Zの軸長の増加を抑制しつつ、径方向外側に配置される第1および第2内側スプリングSP11,SP12の双方に第1中間部材12Zを連結すると共に当該第1中間部材12Zをタービンランナ5に連結することが可能となる。また、中間スプリングSPmを第1および第2外側スプリングSP21,SP22と第1および第2内側スプリングSP11,SP12とのダンパ装置10Zの径方向における間に配置することで、スプリングSP11〜SPmの捩れ角(ストローク)を良好に確保することが可能となる。
なお、ダンパ装置10Zにおいて、各中間スプリングSPmは、第1中間部材12Z(例えば連結部材122)により径方向に支持されてもよい。この場合、中間スプリングSPmを周方向における両側から支持する複数の第2スプリング当接部が第1中間部材12Zに設けられてもよい。
図15は、本開示の更に他のダンパ装置10Vを示す断面図である。なお、ダンパ装置10Vの構成要素のうち、上述のダンパ装置10から10Zと同一の要素については同一の符号を付し、重複する説明を省略する。
図15に示すダンパ装置10Vは、ドライブ部材11Vと第1中間部材12Vとの間に配置されて回転トルクを伝達する複数の第1スプリング(第1弾性体)SP1、第1中間部材12Vとドリブン部材16Vとの間に配置されて回転トルクを伝達する複数の第2スプリング(第2弾性体)SP2、ドライブ部材11Vと第2中間部材14Vとの間に配置されて回転トルクを伝達する複数の第3スプリング(第3弾性体)SP3、第2中間部材14Vとドリブン部材16Vとの間に配置されて回転トルクを伝達する複数の第4スプリング(第4弾性体)SP4、および第1中間部材12Vと第2中間部材14Vとの間に配置されて回転トルクを伝達する複数の中間スプリング(第5弾性体)SPmを含む。
また、ダンパ装置10Vでは、第1スプリングSP1の剛性すなわちばね定数を“k11”とし、第2スプリングSP2の剛性すなわちばね定数を“k12”とし、第3スプリングSP3の剛性すなわちばね定数を“k21”とし、第4スプリングSP4の剛性すなわちばね定数を“k22”としたときに、ばね定数k11,k12,k21およびk22が、k11≠k21、かつk11/k21≠k12/k22という関係を満たすように選択される。ばね定数k11,k12,k21およびk22が、k11≠k21、かつk11/k21≠k12/k22という関係を満たすように選択される。より詳細には、ばね定数k11,k12,k21,およびk22は、k11/k21<k12/k22、およびk11<k12<k22<k21という関係を満たす。すなわち、第3および第4スプリングSP3,SP4のばね定数k21,k22の大きい方(k21)は、第1および第2スプリングSP1,SP2のばね定数k11,k12の大きい方(k12)よりも大きくなる。更に、中間スプリングSPmの剛性すなわちばね定数を“km”としたときに、ばね定数k11,k12,k21,k22およびkmは、k11<km<k12<k22<k21という関係を満たす。
図15に示すダンパ装置10Vのドライブ部材11Vは、単板式のロックアップクラッチのロックアップピストンまたは多板式のロックアップクラッチのクラッチドラムと一体に回転するように連結されるものであり、複数の第1のスプリング当接部111cと、複数の第2のスプリング当接部112cとを有する。ドライブ部材11Vの外周部は、ロックアップピストンまたクラッチドラムと係合する。また、複数の第1のスプリング当接部111cは、ドライブ部材11Vの外周部からダンパ装置10Vの径方向における内側に延出されている。更に、ダンパ装置10Vにおいて、複数の第2のスプリング当接部112cは、ドライブ部材11Vの外周部からタービンランナ5に向けてダンパ装置10Vの軸方向に延出されると共にダンパ装置10Vの径方向における内側に延出されている。これにより、第1および第2のスプリング当接部111cおよび112cは、ダンパ装置10Vの軸方向において互いに離間する。
ダンパ装置10Vの第1中間部材12Vは、第2中間部材14Vに近接するように配置される第1プレート部材121Vと、当該第1プレート部材121Vよりもダンパ装置10Vの軸方向における図示しないフロントカバー側に配置される第2プレート部材122Vと、第1プレート部材121Vよりも第2中間部材14V側に配置される第3プレート部材123Vとを含む。第1から第3プレート部材121V,122V,123Vは、それぞれ環状に形成されており、複数のリベットを介して互いに連結される。図示するように、第1プレート部材121Vは、複数の内側スプリング収容窓121wiと、複数の外側スプリング収容窓121woと、それぞれ複数のスプリング支持部1211,1212,1214と、複数の内側スプリング当接部121ciと、複数の外側スプリング当接部121coとを有する。
複数の内側スプリング収容窓121wiは、それぞれ円弧状に延びると共に第1プレート部材121Vの内周部に周方向に間隔をおいて(等間隔に)配設されている。複数のスプリング支持部1211は、それぞれ対応する内側スプリング収容窓121wiの内周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並ぶ。複数のスプリング支持部1212は、それぞれ対応する内側スプリング収容窓121wiの外周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並んで対応するスプリング支持部1211と第1プレート部材121Vの径方向において対向する。また、内側スプリング当接部121ciは、周方向に沿って互いに隣り合う内側スプリング収容窓121wi(スプリング支持部1211,1212)の間に1個ずつ設けられる。複数の外側スプリング収容窓121woは、それぞれ円弧状に延びると共に内側スプリング収容窓121wiよりも径方向外側に位置するように第1プレート部材121Vの外周部に周方向に間隔をおいて配設されている。複数のスプリング支持部1214は、それぞれ対応する外側スプリング収容窓121woの外周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並ぶ。また、外側スプリング当接部121coは、周方向に沿って互いに隣り合う外側スプリング収容窓121wo(スプリング支持部1214)の間に1個ずつ設けられる。
第2プレート部材122Vは、複数の内側スプリング収容窓122wiと、複数の外側スプリング収容窓122woと、それぞれ複数のスプリング支持部1221,1222,1223,1224と、複数の内側スプリング当接部122ciと、複数の外側スプリング当接部122coとを有する。複数の内側スプリング収容窓122wiは、それぞれ円弧状に延びると共に第2プレート部材122Vの内周部に周方向に間隔をおいて(等間隔に)配設されている。複数のスプリング支持部1221は、それぞれ対応する内側スプリング収容窓122wiの内周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並ぶ。複数のスプリング支持部1222は、それぞれ対応する内側スプリング収容窓122wiの外周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並んで対応するスプリング支持部1221と第2プレート部材122Vの径方向において対向する。また、内側スプリング当接部122ciは、周方向に沿って互いに隣り合う内側スプリング収容窓122wi(スプリング支持部1221,1222)の間に1個ずつ設けられる。
複数の外側スプリング収容窓122woは、それぞれ円弧状に延びると共に内側スプリング収容窓122wiよりも径方向外側に位置するように第2プレート部材122Vの外周部に周方向に間隔をおいて配設されている。複数のスプリング支持部1223は、それぞれ対応する外側スプリング収容窓122woの内周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並ぶ。複数のスプリング支持部1224は、それぞれ対応する外側スプリング収容窓122woの外周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並んで対応するスプリング支持部1223と第2プレート部材122Vの径方向において対向する。また、外側スプリング当接部122coは、周方向に沿って互いに隣り合う外側スプリング収容窓122wo(スプリング支持部1223,1224)の間に1個ずつ設けられる。
第3プレート部材123Vは、複数のスプリング当接部123dを有する。スプリング当接部123dは、2個(一対)ずつ近接するように第3プレート部材123Vの軸心に関して対称に形成され、互いに対をなす2個のスプリング当接部123dは、例えば中間スプリングSPmの自然長に応じた間隔をおいて周方向に並ぶ。図15に示すように、第3プレート部材123Vの内周部は、スプリング支持部1212と外側スプリング当接部121coとの径方向における間で第2中間部材14V側に突出するように、複数のリベットを介して第1および第2プレート部材121V,122Vに連結(固定)される。
ダンパ装置10Vの第2中間部材14Vは、タービンランナ5に近接するように配置される第1プレート部材141Vと、当該第1プレート部材141Vよりも図示しないフロントカバーすなわちエンジン側(図中右側)に配置される第2プレート部材142Vと、当該第2プレート部材142Vよりもフロントカバー側に配置される第3プレート部材143Vとを含む。第1から第3プレート部材141V,142V,124Vは、それぞれ環状に形成されており、複数のリベットを介して互いに連結される。
第1プレート部材141Vは、それぞれ円弧状に延びると共に周方向に間隔をおいて(等間隔に)配設された複数のスプリング収容窓141wと、それぞれ対応するスプリング収容窓141wの内周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並ぶ複数のスプリング支持部1411と、それぞれ対応するスプリング収容窓141wの外周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並んで対応するスプリング支持部1411と第1プレート部材141Vの径方向において対向する複数のスプリング支持部1412と、複数の内側スプリング当接部141ciと、複数のスプリング支持部1412よりも径方向外側に形成された環状のスプリング支持部1413と、複数のスプリング支持部1412よりも径方向外側に形成された複数の外側スプリング当接部141coとを有する。
第1プレート部材141Vの複数の内側スプリング当接部141ciは、周方向に沿って互いに隣り合うスプリング収容窓141w(スプリング支持部1411,1412)の間に1個ずつ設けられる。また、環状のスプリング支持部1413は、複数の第3スプリングSP3の外周部やタービンランナ5側(変速機側)の側部(図15における左側の側部)および当該側部の内周側、フロントカバー側の側部の外周側(肩部)を支持(ガイド)するように形成されている。更に、複数の外側スプリング当接部141coは、環状のスプリング支持部1413内に突出するように周方向に間隔をおいて形成されている。
第2プレート部材142Vは、それぞれ円弧状に延びると共に周方向に間隔をおいて(等間隔に)配設された複数のスプリング収容窓142wと、それぞれ対応するスプリング収容窓142wの内周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並ぶ複数のスプリング支持部1421と、それぞれ対応するスプリング収容窓142wの外周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並んで対応するスプリング支持部1421と第2プレート部材142Vの径方向において対向する複数のスプリング支持部1422と、複数の内側スプリング当接部142ciと、複数のスプリング支持部1242よりも径方向外側に形成された複数の外側スプリング当接部142coとを有する。第2プレート部材142Vの複数の内側スプリング当接部142ciは、周方向に沿って互いに隣り合うスプリング収容窓142w(スプリング支持部1421,1422)の間に1個ずつ設けられる。また、複数の外側スプリング当接部142coは、ダンパ装置10Vの径方向に突出するように周方向に間隔をおいて形成されている。
第3プレート部材143Vは、環状のスプリング支持部1431と、複数のスプリング当接部143dとを有する。スプリング支持部1431は、複数の中間スプリングSPmの外周部やタービンランナ5側(変速機側)の側部(図15における左側の側部)、フロントカバー側の側部の外周側(肩部)を支持(ガイド)するように形成されている。スプリング当接部143dは、2個(一対)ずつ近接するように第3プレート部材143Vの軸心に関して対称に形成され、互いに対をなす2個のスプリング当接部143dは、例えば中間スプリングSPmの自然長に応じた間隔をおいて周方向に並ぶ。図15に示すように、第3プレート部材143Vの内周部は、スプリング支持部1422と外側スプリング当接部142coとの径方向における間で図示しないフロントカバー側(第1中間部材12V側)に突出するように、複数のリベットを介して第1および第2プレート部材141V,142Vに連結(固定)される。
ダンパ装置10Vのドリブン部材16Vの内周部は、タービンランナ5と共に図示しないダンパハブにリベットを介して固定される。図示するように、ドリブン部材16Vは、複数の第1のスプリング当接部161cと、複数の第2のスプリング当接部162cとを有する。ダンパ装置10Vにおいて、複数の第1のスプリング当接部161cは、ドリブン部材16Vの内周部からダンパ装置10Vの径方向における外側に延出されている。また、複数の第2のスプリング当接部162cは、ドリブン部材16Vの内周部からタービンランナ5に向けてダンパ装置10Vの軸方向に延出されると共にダンパ装置10Vの径方向における外側に延出されている。これにより、第1および第2のスプリング当接部161cおよび162cも、ダンパ装置10Vの軸方向において互いに離間する。
図15に示すように、第1中間部材12Vの第1および第2プレート部材121V,122Vは、スプリング支持部1211〜1214が対応するスプリング当接部1221〜1224と対向するように連結される。また、ダンパ装置10Vにおいて、第1中間部材12Vは、第2中間部材14Vから軸方向に離間して当該第2中間部材14Vよりも図示しないフロントカバー側に位置すると共に、その最外周部が第2中間部材14Vの最外周部よりも径方向内側に位置するように配置される。更に、第1プレート部材121Vのスプリング支持部1211,1212および第2プレート部材122Vのスプリング支持部1221,1222は、対応する第2スプリングSP2を支持(ガイド)する。すなわち、複数の第4スプリングSP4は、周方向に間隔をおいて並ぶように第1および第2プレート部材141V,142Vにより支持される。第1プレート部材121Vのスプリング支持部1214および第2プレート部材122Vのスプリング支持部1223,1224は、対応する第1スプリングSP1を支持(ガイド)する。すなわち、複数の第1スプリングSP1は、複数の第2スプリングSP2よりも径方向外側で周方向に間隔をおいて並ぶように第1および第2プレート部材141V,142Vにより支持される。そして、第1および第2プレート部材121V,122Vの軸方向における間には、ドライブ部材11Vの第1のスプリング当接部111cが径方向外側から差し込まれると共に、ドリブン部材16Vの第1のスプリング当接部161cが径方向内側から差し込まれる。
ドライブ部材11Vの第1のスプリング当接部111cは、ダンパ装置10Vの取付状態において、互いに隣り合う第1スプリングSP1の間で両者の周方向の端部と当接する。また、第1中間部材12Vの外側スプリング当接部121co,122coは、ダンパ装置10Vの取付状態において、互いに隣り合う第1スプリングSP1のドライブ部材11Vのスプリング当接部111cと当接していない周方向の端部と当接する。更に、第1中間部材12Vの内側スプリング当接部121ci,122ciは、ダンパ装置10Vの取付状態において、互いに隣り合う第2スプリングSP2の間で両者の周方向の端部と当接する。また、ドリブン部材16Vの第1のスプリング当接部161cは、ダンパ装置10Vの取付状態において、互いに隣り合う第2スプリングSP2の第1中間部材12Vの内側スプリング当接部121ci,122ciと当接していない周方向の端部と当接する。これにより、ドライブ部材11Vと第1中間部材12Vとが並列に作用する複数の第1スプリングSP1を介して連結されると共に、第1中間部材12Vとドリブン部材16Vとが並列に作用する複数の第2スプリングSP2を介して連結される。従って、ドライブ部材11Vおよびドリブン部材16Vは、複数の第1スプリングSP1、第1中間部材12Vおよび複数の第2スプリングSP2を介して連結される。
図15に示すように、第2中間部材14Vの第1および第2プレート部材141V,142Vは、対応するスプリング支持部1411および1421同士が互いに対向すると共に、対応するスプリング支持部1412および1422同士が互いに対向するように連結される。また、第2中間部材14Vの第1プレート部材141Vのスプリング支持部1413は、複数の第3スプリングSP3を周方向に間隔をおいて並ぶように支持する。更に、第1プレート部材141Vのスプリング支持部1411,1412および第2プレート部材142Vのスプリング支持部1421,1422は、対応する第4スプリングSP4を支持(ガイド)する。すなわち、複数の第4スプリングSP4は、複数の第3スプリングSP3よりも径方向内側で周方向に間隔をおいて並ぶように第1および第2プレート部材141V,142Vにより支持される。更に、第1および第2プレート部材141V,142Vの軸方向における間には、ドライブ部材11Vの第2のスプリング当接部112cが径方向外側から差し込まれると共に、ドリブン部材16Vの第2のスプリング当接部162cが径方向内側から差し込まれる。
ドライブ部材11Vの第2のスプリング当接部112cは、ダンパ装置10Vの取付状態において、互いに隣り合う第3スプリングSP3の間で両者の周方向の端部と当接する。また、第2中間部材14Vの外側スプリング当接部141co,142coは、ダンパ装置10Vの取付状態において、互いに隣り合う第3スプリングSP3のドライブ部材11Vのスプリング当接部112cと当接していない周方向の端部と当接する。更に、第2中間部材14Vの内側スプリング当接部141ci,142ciは、ダンパ装置10Vの取付状態において、互いに隣り合う第4スプリングSP4の間で両者の周方向の端部と当接する。また、ドリブン部材16Vの第2のスプリング当接部162cは、ダンパ装置10Vの取付状態において、互いに隣り合う第4スプリングSP4の第2中間部材14Vの内側スプリング当接部141ci,142ciと当接していない周方向の端部と当接する。これにより、ドライブ部材11Vと第2中間部材14Vとが並列に作用する複数の第3スプリングSP3を介して連結されると共に、第2中間部材14Vとドリブン部材16Vとが並列に作用する複数の第4スプリングSP4を介して連結される。従って、ドライブ部材11Vおよびドリブン部材16Vは、複数の第3スプリングSP3、第2中間部材14Vおよび複数の第4スプリングSP4を介して連結される。
また、各中間スプリングSPmは、それぞれ第2中間部材14Vの第3プレート部材143Vのスプリング支持部1431により支持され、第1および第2スプリングSP1,SP2と第3および第4スプリングSP3,SP4との軸方向における間で、当該軸方向からみて第1スプリングSP1および第3スプリングSP3と径方向に部分的に重なり合う。更に、ダンパ装置10Vの取付状態において、第1中間部材12Vに含まれる第3プレート部材123Vの一対のスプリング当接部123dは、それぞれ中間スプリングSPmの対応する周方向の端部と当接する。また、第2中間部材14Vに含まれる第3プレート部材143Vの一対のスプリング当接部143dも、それぞれ中間スプリングSPmの対応する周方向の端部と当接する。これにより、ダンパ装置10Vの取付状態において、各中間スプリングSPmは、第1中間部材12Vすなわち第3プレート部材123Vの一対のスプリング当接部123dにより周方向における両側から支持されると共に、第2中間部材14Vすなわち第3プレート部材143Vの一対のスプリング当接部143dにより周方向における両側から支持される。従って、第1中間部材12Vと第2中間部材14Vとは、複数の中間スプリングSPmを介して互いに連結されることになる。なお、中間スプリングSPmの端部とスプリング当接部123d,143dとの間には、スプリングシートが配置されてもよい。
上述のダンパ装置10Vにおいて、第3スプリングSP3の取付半径rSP3は、第1、第2および第4スプリングSP1,SP2,SP4の取付半径rSP1,rSP2,rSP4よりも大きく定められている。また、第1スプリングSP1の取付半径rSP1は、第2および第4スプリングSP2,SP4の取付半径rSP2,rSP4よりも大きく定められている。更に、第4スプリングSP4の取付半径rSP4は、第2スプリングSP2の取付半径rSP2よりも大きく定められている。そして、ダンパ装置10Vにおいても、第2中間部材14Vの固有振動数(f22)は、第1中間部材12Vの固有振動数(f21)よりも大きく、第1中間部材12Vよりも固有振動数が大きい第2中間部材14Vに対応した第3および第4スプリングSP3,SP4の平均取付半径roが、第1中間部材12に対応した第1および第2スプリングSP1,SP2の平均取付半径riよりも大きくなっている。すなわち、第1から第4スプリングSP1〜SP4のうち、最も大きいばね定数(剛性)を有する第3スプリングSP3の軸心は、第1および第2スプリングSP1,SP2(並びに第4スプリングSP4)の軸心よりもダンパ装置10Vの径方向における外側に位置する。また、ダンパ装置10Vにおいて、第3スプリングSP3は、軸方向からみて第1スプリングSP1と径方向に部分的に重なり合うように、第1および第2スプリングSP1,SP2(並びに第4スプリングSP4)の径方向外側に配置されることになる。
これにより、剛性が高い第3スプリングSP3の捩れ角(ストローク)をより大きくすることが可能となり、ドライブ部材11Vに対する大きなトルクの伝達を許容しつつ、第3スプリングSP3を低剛性化することができる。この結果、ダンパ装置10Vの等価剛性keqをより小さくすると共に、ダンパ装置10Vを含む振動系全体の共振をより低回転側(低周波側)にシフトさせることが可能となる。従って、ダンパ装置10Vにおいても、上記反共振点Aの振動数を当該振動系全体の共振の周波数により近づけることで、振動減衰性能を極めて良好に向上させることができる。また、第2中間部材14Vに第3スプリングSP3を支持させることで、ドライブ部材11Vやドリブン部材16Vに対する第2中間部材14Vの捩れ角に応じて撓む第3スプリングSP3と、当該第2中間部材14Vとの相対速度を小さくすることが可能となる。従って、第2中間部材14Vと第3スプリングSP3との間で発生する摩擦力を小さくすることができるので、ダンパ装置10V全体のヒステリシスを低下させることが可能となる。
更に、第3スプリングSP3は、第4スプリングSP4のダンパ装置10Vの径方向における外側に配置され、第1および第2スプリングSP1,SP2は、第3および第4スプリングSP3,SP4からダンパ装置10Vの軸方向に離間するように配置され、第1スプリングSP1は、第2スプリングSP2の当該径方向における外側に配置される。これにより、第1から第4スプリングSP1〜SP4のばね定数(剛性)や配置数、捩れ角(ストローク)等の設定の自由度を高くすることが可能となる。また、ダンパ装置10Vにおいて、第3スプリングSP3の軸心と、第4スプリングSP4の軸心とは、中心軸CAに直交する第1の平面に含まれる。更に、第1スプリングSP1の軸心と、第2スプリングSP2の軸心とは、中心軸CAに直交すると共に上記第1の平面からダンパ装置10Vの軸方向に離間した第2の平面に含まれる。これにより、ダンパ装置10Vの軸長の増加を抑制することが可能となる。更に、中間スプリングSPmを第1および第2スプリングSP1,SP2と第3および第4スプリングSP3,SP4との軸方向における間に配置することで、中間スプリングSPmの剛性や配置数、捩れ角(ストローク)等の設定の自由度を高くすることができる。
なお、第3および第4スプリングSP3,SP4の軸心は、中心軸CAに直交する上記第1の平面に含まれていなくてもよく、第1および第2スプリングSP1,SP2の軸心は、中心軸CAに直交する上記第2の平面に含まれていなくてもよい。また、ダンパ装置10Vにおいて、各中間スプリングSPmは、第1中間部材12V(例えば第3プレート123V)により支持されてもよい。
図16は、本開示の他のダンパ装置10Wを示す断面図である。なお、ダンパ装置10Wの構成要素のうち、上述のダンパ装置10から10Vと同一の要素については同一の符号を付し、重複する説明を省略する。
図16に示すダンパ装置10Wのドライブ部材11Wは、単板式のロックアップクラッチのロックアップピストンまたは多板式のロックアップクラッチのクラッチドラムと一体に回転するように連結されるものであり、それぞれ環状に形成された第1プレート部材111Wおよび第2プレート部材112Wを含む。第1プレート部材111Wは、それぞれダンパ装置10Wの径方向に延在するように周方向に間隔をおいて形成された複数のスプリング当接部111cを有し、当該第1プレート部材111Wの外周部は、ロックアップピストンまたクラッチドラムと係合する。第2プレート部材112Wは、それぞれダンパ装置10Wの径方向に延在するように周方向に間隔をおいて形成された複数のスプリング当接部112cを有し、第1プレート部材111Wに一体に回転するように連結される。第1および第2プレート部材111W,112Wが互いに連結された際、複数のスプリング当接部111cと複数のスプリング当接部112cとは、ダンパ装置10Wの軸方向および径方向において互いに離間する。
ダンパ装置10Wの第1中間部材12Wは、環状のスプリング支持部12bと、複数の内側スプリング当接部12cと、当該内側スプリング当接部12cよりも径方向外側に形成された複数の外側スプリング当接部12dとを有する。スプリング支持部12bは、複数の中間スプリングSPmの外周部やフロントカバー側(変速機側)の側部(図16における右側の側部)、タービンランナ側の側部の外周側(肩部)を支持(ガイド)するように形成されている。複数の内側スプリング当接部12cは、スプリング支持部12bの内周部から周方向に間隔をおいて径方向内側に突出するように形成されている。外側スプリング当接部12dは、2個(一対)ずつ近接するように第1中間部材12Wの軸心に関して対称に形成され、互いに対をなす2個の外側スプリング当接部12dは、例えば中間スプリングSPmの自然長に応じた間隔をおいて周方向に並ぶ。
ダンパ装置10Wの第2中間部材14Wは、図示しないタービンランナに近接するように配置される第1プレート部材141Wと、当該第1プレート部材141Wよりも図示しないフロントカバーすなわちエンジン側(図中右側)に配置される第2プレート部材142Wと、当該第2プレート部材142Wよりもフロントカバー側に配置される第3プレート部材143Wとを含む。第1から第3プレート部材141W,142W,143Wは、それぞれ環状に形成されており、複数のリベットを介して互いに連結される。
第1プレート部材141Wは、複数の内側スプリング収容窓141wiと、複数の外側スプリング収容窓141woと、それぞれ複数のスプリング支持部1411,1412,1413,1414と、複数の内側スプリング当接部141ciと、複数の外側スプリング当接部141coとを有する。複数の内側スプリング収容窓141wiは、それぞれ円弧状に延びると共に第1プレート部材141Wの内周部に周方向に間隔をおいて(等間隔に)配設されている。複数のスプリング支持部1411は、それぞれ対応する内側スプリング収容窓141wiの内周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並ぶ。複数のスプリング支持部1412は、それぞれ対応する内側スプリング収容窓141wiの外周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並んで対応するスプリング支持部1411と第1プレート部材141Wの径方向において対向する。また、内側スプリング当接部141ciは、周方向に沿って互いに隣り合う内側スプリング収容窓141wi(スプリング支持部1411,1412)の間に1個ずつ設けられる。
複数の外側スプリング収容窓141woは、それぞれ円弧状に延びると共に内側スプリング収容窓141wiよりも径方向外側に位置するように第1プレート部材141Wの外周部に周方向に間隔をおいて配設されている。複数のスプリング支持部1413は、それぞれ対応する外側スプリング収容窓141woの内周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並ぶ。複数のスプリング支持部1414は、それぞれ対応する外側スプリング収容窓141woの外周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並んで対応するスプリング支持部1413と第1プレート部材141Wの径方向において対向する。更に、外側スプリング当接部141coは、周方向に沿って互いに隣り合う外側スプリング収容窓141wo(スプリング支持部1413,1414)の間に1個ずつ設けられる。
第2プレート部材142Wは、複数の内側スプリング収容窓142wiと、複数の外側スプリング収容窓142woと、それぞれ複数のスプリング支持部1421,1422,1423,1424と、複数の内側スプリング当接部142ciと、複数の外側スプリング当接部142coとを有する。複数の内側スプリング収容窓142wiは、それぞれ円弧状に延びると共に第2プレート部材142Wの内周部に周方向に間隔をおいて(等間隔に)配設されている。複数のスプリング支持部1421は、それぞれ対応する内側スプリング収容窓142wiの内周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並ぶ。複数のスプリング支持部1422は、それぞれ対応する内側スプリング収容窓142wiの外周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並んで対応するスプリング支持部1421と第2プレート部材142Wの径方向において対向する。また、内側スプリング当接部142ciは、周方向に沿って互いに隣り合う内側スプリング収容窓142wi(スプリング支持部1421,1422)の間に1個ずつ設けられる。
複数の外側スプリング収容窓142woは、それぞれ円弧状に延びると共に内側スプリング収容窓142wiよりも径方向外側に位置するように第2プレート部材142Wの外周部に周方向に間隔をおいて配設されている。複数のスプリング支持部1423は、それぞれ対応する外側スプリング収容窓142woの内周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並ぶ。複数のスプリング支持部1424は、それぞれ対応する外側スプリング収容窓142woの外周縁に沿って延びると共に周方向に間隔をおいて(等間隔に)並んで対応するスプリング支持部1423と第2プレート部材142Wの径方向において対向する。また、外側スプリング当接部142coは、周方向に沿って互いに隣り合う外側スプリング収容窓142wo(スプリング支持部1423,1424)の間に1個ずつ設けられる。
第3プレート部材143Wは、それぞれダンパ装置10Wの軸方向に延在する複数のスプリング当接部143dを有する。スプリング当接部143dは、2個(一対)ずつ近接するように第3プレート部材143Wの軸心に関して対称に形成され、互いに対をなす2個のスプリング当接部143dは、例えば中間スプリングSPmの自然長に応じた間隔をおいて周方向に並ぶ。図16に示すように、第3プレート部材143Wの複数のスプリング当接部143dとは反対側の端部は、スプリング支持部1424の径方向外側で複数のリベットを介して第1および第2プレート部材141W,142Wに連結(固定)される。これにより、複数のスプリング当接部143dは、フロントカバー側(図中右側)に突出する。
ダンパ装置10Wのドリブン部材16Wは、それぞれ環状に形成された第1プレート部材161W、第2プレート部材162Wおよび第3プレート部材163Wを含む。第1プレート部材161Wは、内周部からそれぞれ径方向外側に延在するように周方向に間隔をおいて形成された複数のスプリング当接部161cを有し、当該第1プレート部材161Wの内周部は、複数のリベットを介して図示しないタービンハブに固定される。第2プレート部材162Wは、周方向に間隔をおいて(等間隔に)配設された複数のスプリング収容窓162wと、それぞれ対応するスプリング収容窓162wの内周縁に沿って延びる複数のスプリング支持部1621と、それぞれ対応するスプリング収容窓162wの外周縁に沿って延びる複数のスプリング支持部1622と、複数のスプリング当接部162cとを有する。複数のスプリング当接部162cは、周方向に沿って互いに隣り合うスプリング収容窓162w(スプリング支持部1621,1622)の間に1個ずつ設けられる。第2プレート部材162Wは、第1プレート部材161Wに一体に回転するように連結され、両者が互いに連結された際、複数のスプリング当接部161cと複数のスプリング当接部162cとは、ダンパ装置10Wの軸方向および径方向において互いに離間する。
第3プレート部材163Wは、周方向に間隔をおいて(等間隔に)配設された複数(例えば3個)のスプリング収容窓163wと、それぞれ対応するスプリング収容窓163wの内周縁に沿って延びる複数のスプリング支持部1631と、それぞれ対応するスプリング収容窓163wの外周縁に沿って延びる複数のスプリング支持部1632と、複数のスプリング当接部163cとを有する。複数のスプリング当接部163cは、周方向に沿って互いに隣り合うスプリング収容窓163w(スプリング支持部1631,1632)の間に1個ずつ設けられる。図16に示すように、第3プレート部材163Wは、スプリング支持部1631,1632が第2プレート部材162Wの対応するスプリング支持部1621,1622と対向するように、複数のリベットを介して当該第2プレート部材162Wに連結(固定)される。
図16に示すように、第2中間部材14Wの第1および第2プレート部材141W,142Wは、対応するスプリング支持部1411〜1414とスプリング支持部1421〜1424とが互いに対向するように連結される。また、第1プレート部材141Wのスプリング支持部1413,1414および第2プレート部材142Wのスプリング支持部1423,1424は、対応する第3スプリングSP3を支持(ガイド)する。更に、第1プレート部材141Wのスプリング支持部1411,1412および第2プレート部材142Wのスプリング支持部1421,1422は、対応する第2スプリングSP2を支持(ガイド)する。これにより、複数の第3スプリングSP3は、ダンパ装置10Wの外周側で周方向に間隔をおいて並ぶように第1および第2プレート部材141W,142Wにより支持される。また、複数の第4スプリングSP4は、複数の第3スプリングSP3よりも径方向内側で周方向に間隔をおいて並ぶように第1および第2プレート部材141W,142Wにより支持される。更に、第1および第2プレート部材141W,142Wの外側スプリング当接部141co,142coの軸方向における間には、ドライブ部材11Wの第1プレート部材111Wが配置される。また、第1および第2プレート部材141W,142Wの内側スプリング当接部141ci,142ciの軸方向における間には、ドリブン部材16Wの第1プレート部材161Wが配置される。
ドライブ部材11Wの第1プレート部材111Wのスプリング当接部111cは、ダンパ装置10Wの取付状態において、互いに隣り合う第3スプリングSP3の間で両者の周方向の端部と当接する。また、第2中間部材14Wの外側スプリング当接部141co,142coは、ダンパ装置10Wの取付状態において、互いに隣り合う第3スプリングSP3のドライブ部材11Wのスプリング当接部111cと当接していない周方向の端部と当接する。更に、第2中間部材14Wの内側スプリング当接部141ci,142ciは、ダンパ装置10Wの取付状態において、互いに隣り合う第4スプリングSP4の間で両者の周方向の端部と当接する。また、ドリブン部材16Wの第1プレート部材161Wのスプリング当接部161cは、ダンパ装置10Wの取付状態において、互いに隣り合う第4スプリングSP4の第2中間部材14Wの内側スプリング当接部141ci,142ciと当接していない周方向の端部と当接する。これにより、ドライブ部材11Wと第2中間部材14Wとが並列に作用する複数の第3スプリングSP3を介して連結されると共に、第2中間部材14Wとドリブン部材16Wとが並列に作用する複数の第4スプリングSP4を介して連結される。従って、ドライブ部材11Wおよびドリブン部材16Wは、複数の第3スプリングSP3、第2中間部材14Wおよび複数の第4スプリングSP4を介して連結される。
図16に示すように、ドリブン部材16Wの第2および第3プレート部材162W,13Wの軸方向における間には、ドライブ部材11Wの第2プレート部材112Wのスプリング当接部112cと、第1中間部材12Wの内側スプリング当接部12cとが配置される。また、第1および第2スプリングSP1,SP2は、1個ずつ対をなす(直列に作用する)と共に周方向(第1中間部材12Wの周方向)に交互に並ぶように、ドリブン部材16Wすなわち第2および第3プレート部材162W,163Wの対応するスプリング支持部1621,1622,1631,1632により支持される。更に、ドライブ部材11Wの第2プレート部材112Wの各スプリング当接部112cは、ダンパ装置10Wの取付状態において、対をなさない(直列に作用しない)第1および第2スプリングSP1,SP2の間で両者の周方向の端部と当接する。また、第1中間部材12Wの内側スプリング当接部12cは、第2および第3プレート部材161W,162Wの軸方向における間で、互いに対をなす(直列に作用する)第1および第2スプリングSP1,SP2の間で両者の周方向の端部と当接する。更に、ドリブン部材16Wのスプリング当接部162c,163cは、ダンパ装置10Wの取付状態において、ドライブ部材11Wのスプリング当接部112cと同様に、対をなさない(直列に作用しない)第1および第2スプリングSP1,SP2の間で両者の周方向の端部と当接する。これにより、ドライブ部材11Wおよびドリブン部材16Wは、複数の第1スプリングSP1、第1中間部材12Wおよび複数の第2スプリングSP2を介して連結される。
また、各中間スプリングSPmは、それぞれ第1中間部材12Wのスプリング支持部12bにより支持され、第1および第2スプリングSP1,SP2の径方向外側で、径方向からみて第1および第2スプリングSP1,SP2と軸方向に重なり合うと共に、軸方向からみて第3スプリングSP3と径方向に部分的に重なり合う。更に、第1中間部材12Wの一対の外側スプリング当接部12dは、それぞれ中間スプリングSPmの対応する周方向の端部と当接する。また、ダンパ装置10Wの取付状態において、第2中間部材14Wに含まれる第3プレート部材143Wの一対のスプリング当接部143dは、それぞれ中間スプリングSPmの対応する周方向の端部と当接する。これにより、ダンパ装置10Wの取付状態において、各中間スプリングSPmは、第1中間部材12Wの一対の外側スプリング当接部12dにより周方向における両側から支持されると共に、第2中間部材14Wすなわち第3プレート部材143Wの一対のスプリング当接部143dにより周方向における両側から支持される。従って、第1中間部材12Wと第2中間部材14Wとは、複数の中間スプリングSPmを介して互いに連結されることになる。なお、中間スプリングSPmの端部とスプリング当接部12d,143dとの間には、スプリングシートが配置されてもよい。
上述のダンパ装置10Wにおいて、第3スプリングSP3の取付半径rSP3は、第1、第2および第4スプリングSP1,SP2,SP4の取付半径rSP1,rSP2,rSP4よりも大きく定められており、第1および第2スプリングSP1,SP2の取付半径rSP1,rSP2は、互いに同一かつ第4スプリングSP4の取付半径rSP4よりも大きく定められている。そして、ダンパ装置10Wにおいても、第2中間部材14Wの固有振動数(f22)は、第1中間部材12Wの固有振動数(f21)よりも大きく、第1中間部材12Wよりも固有振動数が大きい第2中間部材14Wに対応した第3および第4スプリングSP3,SP4の平均取付半径roが、第1中間部材12に対応した第1および第2スプリングSP1,SP2の平均取付半径riよりも大きくなっている。すなわち、第1から第4スプリングSP1〜SP4のうち、最も大きいばね定数(剛性)を有する第3スプリングSP3の軸心は、第1および第2スプリングSP1,SP2(並びに第4スプリングSP4)の軸心よりもダンパ装置10Wの径方向における外側に位置する。また、ダンパ装置10Wにおいて、第3スプリングSP3は、軸方向からみて第1および第2スプリングSP1,SP2と径方向に部分的に重なり合うように、第1および第2スプリングSP1,SP2(並びに第4スプリングSP4)の径方向外側に配置されることになる。
これにより、剛性が高い第3スプリングSP3の捩れ角(ストローク)をより大きくすることが可能となり、ドライブ部材11Wに対する大きなトルクの伝達を許容しつつ、第3スプリングSP3を低剛性化することができる。この結果、ダンパ装置10Wの等価剛性keqをより小さくすると共に、ダンパ装置10Wを含む振動系全体の共振をより低回転側(低周波側)にシフトさせることが可能となる。従って、ダンパ装置10Vにおいても、上記反共振点Aの振動数を当該振動系全体の共振の周波数により近づけることで、振動減衰性能を極めて良好に向上させることができる。また、第2中間部材14Wに第3スプリングSP3を支持させることで、ドライブ部材11Wやドリブン部材16Wに対する第2中間部材14Wの捩れ角に応じて撓む第3スプリングSP3と、当該第2中間部材14Wとの相対速度を小さくすることが可能となる。従って、第2中間部材14Wと第3スプリングSP3との間で発生する摩擦力を小さくすることができるので、ダンパ装置10W全体のヒステリシスを低下させることが可能となる。
更に、第3スプリングSP3は、第4スプリングSP4のダンパ装置10Wの径方向における外側に配置され、第1および第2スプリングSP1,SP2は、第3および第4スプリングSP3,SP4からダンパ装置10Wの軸方向に離間するように配置され、第1および第2スプリングSP1,SP2は、同一円周上には配列される。これにより、特に第3および第4スプリングSP3,SP4のばね定数(剛性)や配置数、捩れ角(ストローク)等の設定の自由度を高くすることが可能となる。また、ダンパ装置10Wにおいて、第3スプリングSP3の軸心と、第4スプリングSP4の軸心とは、中心軸CAに直交する第1の平面に含まれる。また、第1スプリングSP1の軸心と、第2スプリングSP2の軸心とは、中心軸CAに直交すると共に上記第1の平面からダンパ装置10Wの軸方向に離間した第2の平面に含まれる。これにより、ダンパ装置10Wの軸長の増加を抑制することが可能となる。更に、中間スプリングSPmを上述のように配置することで、中間スプリングSPmの剛性や配置数、捩れ角(ストローク)等の設定の自由度を高くすることができる。ただし、第3および第4スプリングSP3,SP4の軸心は、中心軸CAに直交する上記第1の平面に含まれていなくてもよく、第1および第2スプリングSP1,SP2の軸心は、中心軸CAに直交する上記第2の平面に含まれていなくてもよい。
以上説明したように、本開示のダンパ装置は、エンジン(EG)からのトルクが伝達される入力要素(11,11V,11W,11X,11Y,11Z)と、出力要素(16,16V,16W,16X,16Y,16Z)とを有するダンパ装置(10,10V,10W,10X,10Y,10Z)において、第1中間要素(12,12V,12W、12X,12Y,12Z)と、第2中間要素(14,14V,14W,14X,14Y,14Z)と、前記入力要素(11,11V,11W,11X,11Y,11Z)と前記第1中間要素(12,12V,12W,12X,12Y,12Z)との間でトルクを伝達する第1弾性体(SP11,SP1)と、前記第1中間要素(12,12V,12W,12X,12Y,12Z)と前記出力要素(16,16V,16W,16X,16Y,16Z)との間でトルクを伝達する第2弾性体(SP12,SP2)と、前記入力要素(11,11V,11W,11X,11Y,11Z)と前記第2中間要素(14,14V,14W,14X,14Y,14Z)との間でトルクを伝達する第3弾性体(SP21,SP3)と、前記第2中間要素(14,14V,14W,14X,14Y,14Z)と前記出力要素(16,16V,16W,16X,16Y,16Z)との間でトルクを伝達する第4弾性体(SP22,SP4)と、前記第1中間要素(12,12V,12W,12X,12Y,12Z)と前記第2中間要素(14,14V,14W,14X,14Y,14Z)との間でトルクを伝達する第5弾性体(SPm)とを備え、前記第1から第5弾性体のすべてを介して前記入力要素から前記出力要素にトルクが伝達される際の前記第2中間要素の固有振動数(f22)が、前記第1から第5弾性体のすべてを介して前記入力要素から前記出力要素にトルクが伝達される際の前記第1中間要素の固有振動数(f21)よりも大きく、前記第3および第4弾性体(SP21,SP3,SP22,SP4)の少なくとも何れか一方が、前記第1および第2弾性体(SP11,SP1,SP12,SP2)の径方向外側に配置されるものである。
本開示のダンパ装置では、第1から第5弾性体のすべての撓みが許容されている状態に対して、装置全体で2つの固有振動数を設定することができる。そして、本発明者らの研究・解析によれば、これらの第1からp第5弾性体を含むダンパ装置の固有振動数は、第5弾性体の剛性が低下するにつれて小さくなることや、第5弾性体の剛性の変化に対するダンパ装置の等価剛性の変化は、第1から第4弾性体の剛性の変化に対する当該等価剛性の変化に比べて大幅に小さくなることが判明している。従って、本開示のダンパ装置では、第5弾性体の剛性を調整することで、ダンパ装置の等価剛性を適正に保つと共に第1および第2中間要素の重量(慣性モーメント)の増加を抑制しつつ、装置全体の2つの固有振動数を適正に設定することが可能となる。更に、固有振動数が大きい第2中間要素に対応した第3および第4弾性体の何れか一方を、固有振動数が小さい第1中間要素に対応した第1および第2弾性体の径方向外側に配置することで、ダンパ装置の等価剛性をより小さくすることができる。この結果、本開示のダンパ装置では、振動減衰性能を良好に向上させることが可能となる。
より詳細には、本開示のダンパ装置では、入力要素と出力要素との間に、第1中間要素、第1および第2弾性体によって第1のトルク伝達経路が形成されると共に、第2中間要素、第3および第4弾性体によって第2のトルク伝達経路が形成される。また、本開示のダンパ装置は、第1から第4弾性体に加えて第5弾性体を含み、当該第5弾性体により第1中間要素と第2中間要素との間でトルクが伝達される。かかるダンパ装置では、第1から第5弾性体のすべての撓みが許容されている状態に対して、装置全体で2つの固有振動数を設定することができる。このように装置全体で2つの固有振動数が設定される場合、入力要素に伝達される振動の周波数に応じて当該2つの固有振動数の小さい方での共振が一旦発生すると、第2弾性体から出力要素に伝達される振動の位相と、第4弾性体から出力要素に伝達される振動の位相とがずれていく。このため、2つの固有振動数の小さい方での共振が発生した後に入力要素の回転数が高まるのに伴って、第2弾性体から出力要素に伝達される振動および第4弾性体から出力要素に伝達される振動の一方は、前記第2弾性体から前記出力要素に伝達される振動および前記第4弾性体から前記出力要素に伝達される振動の他方の少なくとも一部を打ち消すようになる。そして、第2弾性体から出力要素に伝達される振動の位相と第4弾性体から出力要素に伝達される振動の位相とが180度ずれて両振動が互いに打ち消し合うようになることで、出力要素の振動振幅が理論上ゼロになる反共振点を設定することが可能となる。
更に、本発明者らの研究・解析によれば、低回転側(低周波側)の固有振動数や反共振点の振動数は、第5弾性体の剛性が低下するにつれて小さくなることや、低回転側の固有振動数と反共振点の振動数との差は、第5弾性体の剛性が高まるにつれて大きくなることも判明している。従って、本開示のダンパ装置では、第5弾性体の剛性を調整することで、入力要素への最大入力トルクに応じて等価剛性を適正に保つと共に第1および第2中間要素の重量(慣性モーメント)の増加を抑制しつつ、低回転側の固有振動数および反共振点の振動数を適正に設定することができる。すなわち、第5弾性体の剛性の調整により低回転側の固有振動数と反共振点の振動数とをより小さくすることで、第2弾性体から出力要素に伝達される振動および第4弾性体から出力要素に伝達される振動の一方が他方の少なくとも一部を打ち消す回転数帯(周波数帯)の始点をより低回転側に設定し、第2弾性体から出力要素に伝達される振動の位相と第4弾性体から出力要素に伝達される振動の位相とが180度ずれる回転数(周波数)をより低回転側に設定することが可能となる。また、第5弾性体の剛性の調整により低回転側の固有振動数と反共振点の振動数との差を大きくすることで、第2弾性体から出力要素に伝達される振動および第4弾性体から出力要素に伝達される振動の一方が他方の少なくとも一部を打ち消す回転数帯をより広くすることもできる。更に、固有振動数が大きい第2中間要素に対応した第3および第4弾性体の何れか一方を、固有振動数が小さい第1中間要素に対応した第1および第2弾性体の径方向外側に配置することで、少なくとも第3および第4弾性体の何れか一方の捩れ角をより大きくすることが可能となる。これにより、入力要素に対する大きなトルクの伝達を許容しつつ、少なくとも第3および第4弾性体の何れか一方をより低剛性化することができるので、ダンパ装置の等価剛性をより小さくすると共に、ダンパ装置を含む振動系全体の共振をより低回転側(低周波側)にシフトさせることが可能となる。この結果、本開示のダンパ装置では、上記反共振点の振動数を当該ダンパ装置により減衰すべき振動(共振)の周波数により近づけることで、振動減衰性能を良好に向上させることができる。
また、前記第3および第4弾性体(SP21,SP3,SP22,SP4)の少なくとも何れか一方の軸心は、前記第1および第2弾性体(SP11,SP1,SP12,SP2)の軸心よりも径方向外側に位置してもよい。すなわち、第3および第4弾性体の少なくとも何れか一方は、軸方向からみて第1および第2弾性体の少なくとも何れか一方と径方向に部分的に重なるように配置されてもよい。
更に、前記第3弾性体(SP21,SP3)の剛性と前記第4弾性体(SP22,SP4)の剛性との大きい方は、前記第1弾性体(S11,SP1)の剛性と前記第2弾性体(SP12,SP2)の剛性との大きい方よりも大きくてもよく、前記第3および第4弾性体(SP21,SP3)のうちの剛性の大きい一方は、前記第1および第2弾性体(SP11,SP1,SP12,SP2)の径方向外側に配置されてもよい。これにより、ダンパ装置の等価剛性をより小さくすることが可能となる。
また、前記第3および4弾性体(SP21,SP3,SP22,SP4)の剛性は、前記第1および第2弾性体(SP11,SP1,SP12,SP2)の剛性よりも大きくてもよく、前記第3および第4弾性体(SP21,SP3)は、前記第1および第2弾性体(S11,SP1,SP12,SP2)の径方向外側に配置されてもよい。これにより、入力要素に対するより大きなトルクの伝達を許容しつつ、第3および第4弾性体を低剛性化することが可能となる。
また、前記第1から第4弾性体(SP11,SP1,SP12,SP2,SP21,SP3,SP22,SP4)の剛性k11,k12,k21およびk22は、k11<k12<k22≦k21を満たすように選択されてもよい。このように構成されるダンパ装置では、第1から第5弾性体のすべての撓みが許容されている際に、上記第1および第2のトルク伝達経路に加えて、第3弾性体、第2中間要素、第5弾性体、第1中間要素および第2弾性体を含む第3のトルク伝達経路を介して入力要素と出力要素との間でトルクが伝達されることになる。これにより、第1弾性体のトルク分担を減らして当該第1弾性体の剛性をより低下させることが可能となる。加えて、k11<k12<k22≦k21を満たすように剛性k11,k12,k21およびk22を選択することで、第1弾性体の剛性k11をより低下させると共に、更に第2弾性体の剛性k12をも低下させることができる。従って、低剛性に伴う第1および第2弾性体の軽量化によって当該第1および第2弾性体と回転要素との間で発生する摩擦力すなわちヒステリシスをより小さくすると共に、第1中間要素の固有振動数をより一層小さくして、第1中間要素の共振による第2または第4弾性体から出力要素に伝達される振動の位相反転を速やかに完了させることが可能となる。この結果、第2弾性体から出力要素に伝達される振動の位相が第4弾性体から出力要素に伝達される振動の位相に対して180度ずれる周波数のヒステリシスに起因した高周波側へのずれを良好に低減化し、ダンパ装置の振動減衰性能をより良好に向上させることができる。
また、前記第5弾性体(SPm)の剛性を“km”としたときに、前記第1から第5弾性体(SP11,SP1,SP12,SP2,SP21,SP3,SP22,SP4,SPm)の剛性k11,k12,k21,k22およびkmは、k11<km<k12<k22≦k21を満たすように選択されてもよい。これにより、第5弾性体を介して第2中間要素から第1中間要素にトルクを適正に伝達して、ダンパ装置の振動減衰性能を極めて良好に向上させることが可能となる。
ただし、前記第5弾性体(SPm)の剛性(km)は、前記第1から第4弾性体(SP11,SP1,SP12,SP2,SP21,SP3,SP22,SP4)の剛性(k11,k12,k21およびk22)よりも大きくてもよい。すなわち、低回転側の固有振動数と反共振点の振動数との差は、上述のように、第5弾性体の剛性が高まるにつれて大きくなる。従って、第5弾性体の剛性を第1から第4弾性体の剛性よりも大きくすれば、第1中間要素の固有振動数と反共振点の振動数との差を大きくして、第2弾性体から出力要素に伝達される振動および第4弾性体から出力要素に伝達される振動の一方が他方の少なくとも一部を打ち消す回転数帯、すなわち出力要素の振動レベルを良好に低下させ得る範囲をより広くすることが可能となる。また、前記第5弾性体(SPm)の剛性(km)は、前記第1から第4弾性体(SP11,SP1,SP12,SP2,SP21,SP3,SP22,SP4)の剛性(k11,k12,k21およびk22)よりも小さくてもよい。すなわち、低回転側(低周波側)の固有振動数や反共振点の振動数は、上述のように、第5弾性体の剛性が低下するにつれて小さくなる。従って、第5弾性体の剛性を第1から第4弾性体の剛性よりも低下させれば、第1中間要素の固有振動数と反共振点の振動数とをより小さくして、第2弾性体から出力要素に伝達される振動および第4弾性体から出力要素に伝達される振動の一方が他方の少なくとも一部を打ち消す回転数帯(周波数帯)の始点をより低回転側に設定し、両振動の位相が180度ずれる回転数(周波数)をより低回転側に設定することが可能となる。
更に、前記第3および第4弾性体(SP21,SP3,SP22,SP4)は、周方向に沿って並ぶように配置されてもよい。これにより、ダンパ装置を径方向にコンパクト化することが可能となる。
また、前記第3弾性体(SP3)は、前記第4弾性体(SP4)の径方向外側に配置され、前記第1および第2弾性体(SP1,SP2)は、前記第3および第4弾性体(SP3,SP4)から軸方向に離間するように配置されてもよい。これにより、第3および第4弾性体の剛性や配置数、捩れ角(ストローク)等の設定の自由度を高くすることが可能となる。
更に、前記第1および第2弾性体(SP11,SP1,SP12,SP2)は、周方向に沿って並ぶように配置されてもよい。これにより、ダンパ装置を径方向にコンパクト化することが可能となる。
また、前記第5弾性体(SPm)は、前記第3および第4弾性体(SP21,SP22)と周方向に沿って並ぶように配置されてもよい。
更に、前記第5弾性体(SPm)は、前記第3および第4弾性体(SP21,SP22)と、前記第1および第2弾性体(SP11,SP12)との径方向における間に配置されてもよい。これにより、第1から第5弾性体の捩れ角(ストローク)を良好に確保することが可能となる。この場合、第5弾性体は、ダンパ装置の径方向からみて、第1および第2弾性体並びに第3および第4弾性体と当該ダンパ装置の軸方向に少なくとも部分的に重なるように配置されてもよい。
また、前記第5弾性体(SPm)は、前記第1および第2弾性体(SP1,SP2)と、前記第3および第4弾性体(SP3,SP4)との前記軸方向における間に配置されてもよい。これにより、中間スプリングSPmの剛性や配置数、捩れ角(ストローク)等の設定の自由度を高くすることができる。
更に、前記第5弾性体(SPm)は、前記第1および第2弾性体(SP1,SP2)の径方向外側に配置されてもよい。これにより、中間スプリングSPmの剛性や配置数、捩れ角(ストローク)等の設定の自由度を高くすることができる。
また、前記入力要素(11,11V,11W,11X,11Y,11Z)は、前記第1弾性体(SP11,SP1)の周方向の端部と当接する当接部(111ci,112ci,111c,112c,113c)と、前記第3弾性体(SP21)の周方向の端部と当接する当接部(111co,112co,111c,112c)とを有してもよく、前記出力要素(16,16V,16W,16X,16Y,16Z)は、前記第2弾性体(SP12,SP2)の周方向の端部と当接する当接部(16ci,161c,162ci,162c,163c)と、前記第4弾性体(SP22)の周方向の端部と当接する当接部(16co,162co,162c)とを有してもよく、前記第1中間要素(12,12V,12W,12X,12Y,12Z)は、前記第1弾性体(SP11,SP1)の周方向の端部と当接する当接部(121c,122c,12c,121co,122co)と、前記第2弾性体(SP12,SP2)の周方向の端部と当接する当接部(121c,122c,12c,121ci,122ci)と、前記第5弾性体(SPm)の周方向の一端部と当接する当接部(121d,12d,123d)と、前記第5弾性体(SPm)の周方向の他端部と当接する当接部(121d,12d,50d,123d)とを有してもよく、前記第2中間要素(14,14V,14W,14X,14Y,14Z)は、前記第3弾性体(SP21,SP3)の周方向の端部と当接する当接部(14c,14ca,14cb,141co,142co)と、前記第4弾性体(SP22,SP4)の周方向の端部と当接する当接部(14c,14ca,14cb,141ci,142c)と、前記第5弾性体(SPm)の周方向の一端部と当接する当接部(14d,143d)と、前記第5弾性体(SPm)の周方向の他端部と当接する当接部(14d,14da,14db,143d)とを有してもよい。
更に、前記第1中間要素(12,12V,12W,12X,12Y,12Z)の慣性モーメント(J21)は、前記第2中間要素(14,14V,14W,14X,14Y,14Z)の慣性モーメント(J22)よりも大きくてもよい。これにより、第1中間要素の固有振動数をより小さくして、反共振点付近における振動レベルをより低下させることが可能となる。
また、前記第1中間要素(12,12V,12W,12X,12Y,12Z)は、流体伝動装置のタービンランナ(5)に一体回転するように連結されてもよい。これにより、第1中間要素の実質的な慣性モーメント(慣性モーメントの合計値)をより大きくすることができるので、第1中間要素の固有振動数をより一層小さくすることが可能となる。
更に、前記入力要素(11,11V,11W,11X,11Y,11Z)には、ロックアップクラッチ(8)を介して前記エンジン(EG)からのトルクが伝達されてもよく、前記ロックアップクラッチ(8)のロックアップ回転数(Nlup)は、前記第1から第5弾性体(SP11,SP1,SP12,SP2,SP21,SP3,SP22,SP4,SPm)のすべてを介して前記入力要素(11,11V,11W,11X,11Y,11Z)から前記出力要素(16,16V,16W,16X,16Y,16Z)にトルクが伝達される際の前記第1中間要素(12,12V,12W,12X,12Y,12Z)の固有振動数(f21)に対応した回転数よりも高く、前記第2中間要素(14,14V,14W,14X,14Y,14Z)の固有振動数(f22)に対応した回転数よりも低くてもよい。このように、第1中間要素の固有振動数に対応した回転数がロックアップクラッチの非ロックアップ領域に含まれるようにすることで、ロックアップクラッチによりロックアップが実行された時点から、第2弾性体から出力要素に伝達される振動および第4弾性体から出力要素に伝達される振動の一方により他方の少なくとも一部を打ち消すことが可能となる。
また、前記入力要素(11,11V,11W,11X,11Y,11Z)に伝達されるトルク(T)が予め定められた閾値(T1)以上になるまで、前記第1から第5弾性体(SP11,SP1,SP12,SP2,SP21,SP3,SP22,SP4,SPm)の撓みが許容されてもよい。これにより、入力要素に伝達されるトルクが比較的小さく、当該入力要素の回転数が低いときのダンパ装置の振動減衰性能を良好に向上させることが可能となる。
更に、前記出力要素(16,16V,16W,16X,16Y,16Z)は、変速機(TM)の入力軸(IS)に作用的(直接的または間接的に)連結されてもよく、前記入力要素(11,11V,11W,11X,11Y,11Z)は、内燃機関(EG)の出力軸に作用的(直接的または間接的に)連結されてもよい。
そして、本開示の発明は上記実施形態に何ら限定されるものではなく、本開示の外延の範囲内において様々な変更をなし得ることはいうまでもない。更に、上記実施形態は、あくまで発明の概要の欄に記載された発明の具体的な一形態に過ぎず、発明の概要の欄に記載された発明の要素を限定するものではない。
本開示の発明は、ダンパ装置の製造分野等において利用可能である。
Claims (19)
- エンジンからのトルクが伝達される入力要素と、出力要素とを有するダンパ装置において、
第1中間要素と、
第2中間要素と、
前記入力要素と前記第1中間要素との間でトルクを伝達する第1弾性体と、
前記第1中間要素と前記出力要素との間でトルクを伝達する第2弾性体と、
前記入力要素と前記第2中間要素との間でトルクを伝達する第3弾性体と、
前記第2中間要素と前記出力要素との間でトルクを伝達する第4弾性体と、
前記第1中間要素と前記第2中間要素との間でトルクを伝達する第5弾性体とを備え、
前記第1から第5弾性体のすべてを介して前記入力要素から前記出力要素にトルクが伝達される際の前記第2中間要素の固有振動数は、前記第1から第5弾性体のすべてを介して前記入力要素から前記出力要素にトルクが伝達される際の前記第1中間要素の固有振動数よりも大きく、
前記第3および第4弾性体の少なくとも何れか一方は、前記第1および第2弾性体の径方向外側に配置されるダンパ装置。 - 請求項1に記載のダンパ装置において、
前記第3および第4弾性体の少なくとも何れか一方の軸心は、前記第1および第2弾性体の軸心よりも径方向外側に位置するダンパ装置。 - 請求項1または2に記載のダンパ装置において、
前記第3弾性体の剛性と前記第4弾性体の剛性との大きい方は、前記第1弾性体の剛性と前記第2弾性体の剛性との大きい方よりも大きく、前記第3および第4弾性体のうちの剛性の大きい一方は、前記第1および第2弾性体の径方向外側に配置されるダンパ装置。 - 請求項1から3の何れか一方に記載のダンパ装置において、
前記第3および4弾性体の剛性は、前記第1および第2弾性体の剛性よりも大きく、前記第3および第4弾性体は、前記第1および第2弾性体の径方向外側に配置されるダンパ装置。 - 請求項1から4の何れか一項に記載のダンパ装置において、
前記第1から第4弾性体の剛性k11,k12,k21およびk22は、k11<k12<k22≦k21を満たすように選択されるダンパ装置。 - 請求項1から5の何れか一項に記載のダンパ装置において、
前記第5弾性体の剛性を“km”としたときに、前記第1から第5弾性体の剛性k11,k12,k21,k22およびkmは、k11<km<k12<k22≦k21を満たすように選択されるダンパ装置。 - 請求項1から6の何れか一項に記載のダンパ装置において、前記第3および第4弾性体は、周方向に沿って並ぶように配置されるダンパ装置。
- 請求項1から6の何れか一項に記載のダンパ装置において、
前記第3弾性体は、前記第4弾性体の径方向外側に配置され、前記第1および第2弾性体は、前記第3および第4弾性体から軸方向に離間するように配置されるダンパ装置。 - 請求項1から8の何れか一項に記載のダンパ装置において、前記第1および第2弾性体は、周方向に沿って並ぶように配置されるダンパ装置。
- 請求項1から7の何れか一項に記載のダンパ装置において、
前記第5弾性体は、前記第3および第4弾性体と周方向に沿って並ぶように配置されるダンパ装置。 - 請求項8に記載のダンパ装置において、
前記第5弾性体は、前記第3および第4弾性体と、前記第1および第2弾性体との径方向における間に配置されるダンパ装置。 - 請求項8に記載のダンパ装置において、
前記第5弾性体は、前記第1および第2弾性体と、前記第3および第4弾性体との前記軸方向における間に配置されるダンパ装置。 - 請求項8に記載のダンパ装置において、前記第5弾性体は、前記第1および第2弾性体の径方向外側に配置されるダンパ装置。
- 請求項1から13の何れか一項に記載のダンパ装置において、
前記入力要素は、前記第1弾性体の周方向の端部と当接する当接部と、前記第3弾性体の周方向の端部と当接する当接部とを有し、
前記出力要素は、前記第2弾性体の周方向の端部と当接する当接部と、前記第4弾性体の周方向の端部と当接する当接部とを有し、
前記第1中間要素は、前記第1弾性体の周方向の端部と当接する当接部と、前記第2弾性体の周方向の端部と当接する当接部と、前記第5弾性体の周方向の一端部に当接する当接部と、該第5弾性体の周方向の他端部に当接する当接部とを有し、
前記第2中間要素は、前記第3弾性体の周方向の端部と当接する当接部と、前記第4弾性体の周方向の端部と当接する当接部と、前記第5弾性体の周方向の一端部に当接する当接部と、該第5弾性体の周方向の他端部に当接する当接部とを有するダンパ装置。 - 請求項1から14の何れか一項に記載のダンパ装置において、
前記第1中間要素の慣性モーメントは、前記第2中間要素の慣性モーメントよりも大きいダンパ装置。 - 請求項1から15の何れか一項に記載のダンパ装置において、
前記第1中間要素は、流体伝動装置のタービンランナに一体回転するように連結されるダンパ装置。 - 請求項1から16の何れか一項に記載のダンパ装置において、
前記入力要素には、ロックアップクラッチを介して前記エンジンからのトルクが伝達され、
前記ロックアップクラッチのロックアップ回転数は、前記第1から第5弾性体のすべてを介して前記入力要素から前記出力要素にトルクが伝達される際の前記第1中間要素の固有振動数に対応した回転数よりも高く、前記第2中間要素の固有振動数に対応した回転数よりも低いダンパ装置。 - 請求項1から17の何れか一項に記載のダンパ装置において、
前記入力要素に伝達されるトルクが予め定められた閾値以上になるまで、前記第1から第5弾性体の撓みが許容されるダンパ装置。 - 請求項1から18の何れか一項に記載のダンパ装置において、前記出力要素は、変速機の入力軸に作用的に連結されるダンパ装置。
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015115845 | 2015-06-08 | ||
JP2015115845 | 2015-06-08 | ||
JP2015147598 | 2015-07-27 | ||
JP2015147598 | 2015-07-27 | ||
JP2015233741 | 2015-11-30 | ||
JP2015233741 | 2015-11-30 | ||
PCT/JP2016/067038 WO2016199806A1 (ja) | 2015-06-08 | 2016-06-08 | ダンパ装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2016199806A1 JPWO2016199806A1 (ja) | 2018-01-18 |
JP6439870B2 true JP6439870B2 (ja) | 2018-12-19 |
Family
ID=57504157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017523670A Expired - Fee Related JP6439870B2 (ja) | 2015-06-08 | 2016-06-08 | ダンパ装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10364864B2 (ja) |
EP (1) | EP3276208B1 (ja) |
JP (1) | JP6439870B2 (ja) |
KR (1) | KR101994575B1 (ja) |
CN (1) | CN107614935B (ja) |
WO (1) | WO2016199806A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10309483B2 (en) * | 2014-09-12 | 2019-06-04 | Aisin Aw Co., Ltd. | Damper device |
WO2016159325A1 (ja) * | 2015-03-31 | 2016-10-06 | アイシン・エィ・ダブリュ株式会社 | ダンパ装置 |
CN107614935B (zh) | 2015-06-08 | 2020-03-31 | 爱信艾达株式会社 | 减振装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112009005514C5 (de) | 2008-10-17 | 2022-02-17 | Schaeffler Technologies AG & Co. KG | Zweiweg-Torsionsdämpfer |
DE102009013965A1 (de) * | 2009-03-19 | 2010-09-23 | Daimler Ag | Dämpfungseinrichtung |
JP5344471B2 (ja) * | 2009-03-30 | 2013-11-20 | アイシン・エィ・ダブリュ工業株式会社 | ロックアップダンパ装置 |
JP5667031B2 (ja) * | 2011-11-04 | 2015-02-12 | アイシン・エィ・ダブリュ株式会社 | 発進装置 |
DE102011086982A1 (de) * | 2011-11-23 | 2013-05-23 | Zf Friedrichshafen Ag | Drehschwingungsdämpfungsanordnung, insbesondere für den Antriebsstrang eines Fahrzeugs |
US10358937B2 (en) | 2012-04-26 | 2019-07-23 | Aisin Aw Co., Ltd. | Starting device |
US10309483B2 (en) * | 2014-09-12 | 2019-06-04 | Aisin Aw Co., Ltd. | Damper device |
WO2016159325A1 (ja) * | 2015-03-31 | 2016-10-06 | アイシン・エィ・ダブリュ株式会社 | ダンパ装置 |
CN107614935B (zh) | 2015-06-08 | 2020-03-31 | 爱信艾达株式会社 | 减振装置 |
-
2016
- 2016-06-08 CN CN201680030431.XA patent/CN107614935B/zh active Active
- 2016-06-08 WO PCT/JP2016/067038 patent/WO2016199806A1/ja active Application Filing
- 2016-06-08 EP EP16807512.5A patent/EP3276208B1/en active Active
- 2016-06-08 KR KR1020177030923A patent/KR101994575B1/ko active IP Right Grant
- 2016-06-08 JP JP2017523670A patent/JP6439870B2/ja not_active Expired - Fee Related
- 2016-06-08 US US15/562,761 patent/US10364864B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP3276208B1 (en) | 2019-01-02 |
KR20170131845A (ko) | 2017-11-30 |
JPWO2016199806A1 (ja) | 2018-01-18 |
KR101994575B1 (ko) | 2019-06-28 |
US10364864B2 (en) | 2019-07-30 |
WO2016199806A1 (ja) | 2016-12-15 |
EP3276208A4 (en) | 2018-01-31 |
EP3276208A1 (en) | 2018-01-31 |
US20180080524A1 (en) | 2018-03-22 |
CN107614935B (zh) | 2020-03-31 |
CN107614935A (zh) | 2018-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6350742B2 (ja) | ダンパ装置 | |
JP6269847B2 (ja) | ダンパ装置 | |
JP6781791B2 (ja) | ダンパ装置 | |
JP6311792B2 (ja) | ダンパ装置 | |
JP6426287B2 (ja) | ダンパ装置 | |
JP6341286B2 (ja) | ダンパ装置 | |
JP2019049361A (ja) | ダンパ装置 | |
JP6439870B2 (ja) | ダンパ装置 | |
JP6399094B2 (ja) | ダンパ装置 | |
WO2017159776A1 (ja) | ダンパ装置 | |
WO2018061467A1 (ja) | ダンパ装置 | |
JP6512364B2 (ja) | ダンパ装置および発進装置 | |
JP6531865B2 (ja) | ダンパ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170911 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181023 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181105 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6439870 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |