JP6427991B2 - Dust core - Google Patents
Dust core Download PDFInfo
- Publication number
- JP6427991B2 JP6427991B2 JP2014132846A JP2014132846A JP6427991B2 JP 6427991 B2 JP6427991 B2 JP 6427991B2 JP 2014132846 A JP2014132846 A JP 2014132846A JP 2014132846 A JP2014132846 A JP 2014132846A JP 6427991 B2 JP6427991 B2 JP 6427991B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- aspect ratio
- coarse
- magnetic
- amorphous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、非晶質の軟磁性粉体を加圧成形した圧粉磁心に関する。 The present invention relates to a powder magnetic core obtained by pressure-molding amorphous soft magnetic powder.
鉄を主たる構成元素とする非晶質軟磁性合金は、鉄−シリコン合金よりもヒステリシス損失が小さく、センダストに代表される鉄−シリコン−アルミニウム合金よりも飽和磁束密度が高い特徴を持つことから、1k〜100kHzの周波数域における電源用磁気コアとしての用途が拡大している。軟磁性合金の粉体をバインダ材等と混合した後に成形して作られる圧粉磁心は、粉体同士の境界面が磁気ギャップとなり外部磁界に対する磁気抵抗を示す。このため圧粉磁心は軟磁性薄板材を積層したコアに比べて、外部磁界の変化に対する透磁率の変化が小さい、即ち直流重畳特性に優れる特徴を有する。一般的に圧粉磁心の直流重畳特性を高めるには、コア内部に含まれる軟磁性粉体の相対密度を増加することが有効である。鉄を主体とする非晶質軟磁性合金の場合も、粉体試料を高密度に加圧成形する技術が精力的に検討されている。 Amorphous soft magnetic alloy containing iron as a main constituent element has smaller hysteresis loss than iron-silicon alloy and has a higher saturation magnetic flux density than iron-silicon-aluminum alloys represented by Sendust. Applications as a magnetic core for power supply in a frequency range of 1 k to 100 kHz are expanding. A dust core formed by mixing a soft magnetic alloy powder with a binder material or the like forms a magnetic gap at the boundary surface between the powders and exhibits a magnetic resistance against an external magnetic field. For this reason, the dust core has a characteristic that the change in the magnetic permeability with respect to the change in the external magnetic field is small, that is, the direct current superposition characteristic is excellent, as compared with the core in which the soft magnetic thin plate materials are laminated. In general, it is effective to increase the relative density of the soft magnetic powder contained in the core in order to improve the DC superposition characteristics of the dust core. In the case of an amorphous soft magnetic alloy mainly composed of iron, a technique for pressing a powder sample at a high density has been energetically studied.
鉄を主体とする圧粉磁心の相対密度の増加には、結着性を高めるためのバインダ材の含有量を低下する、成形圧力を増加する、粉体粒度を調整する、等の手法が提案されている。ここで粉体粒度の相対密度への影響について考えると、比較的粗大な粉体と微細な粉体を混合して加圧成形することで、圧粉磁心の相対密度を増加させるアイデアが、特許文献1〜3に記載されている。粗大粉体と微細粉体の混合により、粉体の粒度分布は2つの山を有する構成となり、粗大粉体の隙間を微細粉体が充填することにより、単一の山で構成される分布と比べて相対密度が増加すると考えられる。一方で圧粉磁心の直流重畳特性には、相対密度の増加以外に、粉体の形状に由来する磁気的異方性も影響すると考えられている。 To increase the relative density of powder cores mainly composed of iron, methods such as lowering the binder content to increase the binding, increasing the molding pressure, and adjusting the powder particle size are proposed. Has been. Considering the influence of the powder particle size on the relative density, the idea of increasing the relative density of the powder magnetic core by mixing and pressing a relatively coarse powder and a fine powder is the patent. Documents 1-3. By mixing the coarse powder and the fine powder, the particle size distribution of the powder has a structure having two peaks, and by filling the gap between the coarse powder with the fine powder, It is thought that the relative density increases compared to the above. On the other hand, in addition to the increase in relative density, it is considered that the magnetic anisotropy derived from the shape of the powder affects the direct current superposition characteristics of the dust core.
しかしながら、圧粉磁心における相対密度増加と粉体形状の効果の両方の特性について、体系的な検討・考察を加えて、直流重畳特性の改善方法を見出した例はない。
本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、直流重畳特性を顕著に改善することができる圧粉磁心を提供することである。
However, there has been no example of finding a method for improving the DC superposition characteristics by systematically examining and considering the characteristics of both the relative density increase and the powder shape effect in the dust core.
This invention is made | formed in view of said point, The place made into the objective is to provide the powder magnetic core which can improve a direct current | flow superimposition characteristic notably.
本発明は、非晶質軟磁性粉体の粒径分布を制御することによる相対密度の増加と、粉体の形状制御による磁気異方性効果の両方の特性について、体系的に検討することで圧粉磁心の直流重畳特性を改善する技術を提案する。 The present invention systematically examines the characteristics of both the increase in relative density by controlling the particle size distribution of amorphous soft magnetic powder and the magnetic anisotropy effect by controlling the shape of the powder. A technique to improve the DC superposition characteristics of dust cores is proposed.
上記課題を解決する本発明の圧粉磁心は、平均粒径が50μm以上120μm以下でかつアスペクト比が1以上6以下の非晶質軟磁性粉体である粗大粉体と、平均粒径が1μm以上30μm以下でかつアスペクト比が4以上15以下の非晶質軟磁性粉体である微細粉体とを混合した混合粉体で構成されることを特徴とするものである。 The dust core of the present invention that solves the above problems is a coarse powder that is an amorphous soft magnetic powder having an average particle size of 50 μm to 120 μm and an aspect ratio of 1 to 6, and an average particle size of 1 μm. It is characterized by being composed of a mixed powder obtained by mixing fine powder which is an amorphous soft magnetic powder having an aspect ratio of 4 or more and 15 or less and having an aspect ratio of 30 μm or less.
本発明によれば、粗大粉体同士の隙間をアスペクト比の大きな微細粉体により緻密に充填することで、反磁界の効果を利用して直流重畳特性を顕著に改善することができる。したがって、直流重畳特性に優れた非晶質の圧粉磁心を得ることが可能となる。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, the gap between the coarse powders is densely filled with the fine powder having a large aspect ratio, so that the direct current superimposition characteristics can be remarkably improved using the effect of the demagnetizing field. Therefore, it is possible to obtain an amorphous powder magnetic core having excellent direct current superposition characteristics. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
圧粉磁心で重要になる磁気特性として、外部からのバイアス磁界を加えた場合に透磁率が安定して高い値を示すことが挙げられる。軟磁性コアの透磁率は、外部磁界が無い場合(ゼロバイアス時)に最も高く(初透磁率)、外部磁界が強まるにつれて透磁率は徐々に減少することが知られている。外部磁界を加えた際の圧粉磁心の透磁率の低下は、軟磁性粉体の種類、軟磁性粉体の相対密度、粉体粒子間の磁気抵抗の大きさ、等により様々に変化する。これらの圧粉磁心の構造を調整することで、大きな外部磁界を加えた場合の透磁率を出来るだけ高く保つことが、圧粉磁心に求められている重要な特性である。 An important magnetic characteristic of the dust core is that the magnetic permeability is stable and high when an external bias magnetic field is applied. It is known that the permeability of the soft magnetic core is highest when there is no external magnetic field (at zero bias) (initial permeability), and the permeability gradually decreases as the external magnetic field increases. The decrease in magnetic permeability of the dust core when an external magnetic field is applied varies depending on the type of soft magnetic powder, the relative density of the soft magnetic powder, the magnitude of the magnetic resistance between the powder particles, and the like. By adjusting the structure of these powder magnetic cores, maintaining the magnetic permeability as high as possible when a large external magnetic field is applied is an important characteristic required for the powder magnetic core.
本発明の圧粉磁心の特徴は、粗大粉体同士の隙間をアスペクト比が4以上の扁平な微細粉体で緻密に充填することであり、反磁界の効果を利用して直流重畳特性を改善することができる。 The feature of the powder magnetic core of the present invention is that the gaps between the coarse powders are densely filled with flat fine powder having an aspect ratio of 4 or more, and the DC superposition characteristics are improved by utilizing the effect of the demagnetizing field. can do.
扁平または針状の軟磁性粒子は、粉体内部に形成される反磁界の大きさが方向により異なる。粒子の長手方向に対して平行方向の反磁界は非常に小さく、反磁界係数は0に近い値を取るが、長手方向に対して垂直方向の反磁界は非常に大きく、反磁界係数は1に近い値を取る。一方で軟磁性粒子が球状である場合は、反磁界は等方的となり、粒子の全ての方向で反磁界係数は1/3となる。外部磁界に対して、扁平または針状の軟磁性粒子を長手方向が平行になるように配置した場合、発生する反磁界は非常に小さいが、粒子の長手方向を外部磁界に垂直に配置した場合は、反磁界による外部磁界への抵抗が高まる。 Flat or needle-like soft magnetic particles vary in the magnitude of the demagnetizing field formed in the powder depending on the direction. The demagnetizing field in the direction parallel to the longitudinal direction of the particles is very small and the demagnetizing factor takes a value close to 0, but the demagnetizing field in the direction perpendicular to the longitudinal direction is very large and the demagnetizing factor is 1. Take a close value. On the other hand, when the soft magnetic particles are spherical, the demagnetizing field is isotropic, and the demagnetizing factor is 1/3 in all directions of the particles. When flat or needle-shaped soft magnetic particles are arranged so that the longitudinal direction is parallel to the external magnetic field, the generated demagnetizing field is very small, but when the longitudinal direction of the particles is arranged perpendicular to the external magnetic field. Increases resistance to an external magnetic field due to a demagnetizing field.
圧粉磁心の相対密度が低い場合は、粗大粉体の隙間の間隔が広がるため、隙間を充填する扁平または針状の微細粉体の長手方向は基本的にはランダムな方向で分布する。図1に相対密度が低い圧粉磁心の断面における粉体分布の模式図を示す。図1の上下方向が成形時に加重が付加される方向に対応する。 When the relative density of the powder magnetic core is low, the gaps between the coarse powders increase, so that the longitudinal direction of the flat or needle-like fine powder filling the gaps is basically distributed in a random direction. FIG. 1 shows a schematic diagram of a powder distribution in a cross section of a dust core having a low relative density. The vertical direction in FIG. 1 corresponds to the direction in which a load is applied during molding.
一方で圧粉磁心の相対密度が増加した場合は、粗大粉体の隙間が狭まることで微細粉体の長手方向は粗大粉体の表面に対して平行に配置する傾向が高まる。図2に相対密度が高い圧粉磁心の断面における粉体分布の模式図を示す。図2の上下方向が成形時に加重が付加される方向に対応する。なお、本発明における「相対密度」は「圧粉磁心全体に占める非晶質合金粉体の割合(体積比)」を指す。非晶質合金粉体は、粗大粉体と微細粉体の和である。 On the other hand, when the relative density of the dust core increases, the gap between the coarse powders narrows, and the longitudinal direction of the fine powder tends to be arranged parallel to the surface of the coarse powder. FIG. 2 shows a schematic diagram of the powder distribution in the cross section of the dust core having a high relative density. The vertical direction in FIG. 2 corresponds to the direction in which a load is applied during molding. The “relative density” in the present invention refers to “a ratio (volume ratio) of amorphous alloy powder in the entire powder magnetic core”. Amorphous alloy powder is the sum of coarse powder and fine powder.
外部磁界方向に対して粗大粉体表面が垂直な部分では、異なる粗大粉体の隙間を充填する微細粉体の長手方向は、外部磁界に対して垂直に配置される。結果として粗大粉体の隙間における反磁界の効果が高まることで、圧粉磁心の磁気飽和が抑制され、直流重畳特性は改善される。 In the portion where the surface of the coarse powder is perpendicular to the external magnetic field direction, the longitudinal direction of the fine powder filling the gap between the different coarse powders is arranged perpendicular to the external magnetic field. As a result, the effect of the demagnetizing field in the gaps between the coarse powders is increased, so that the magnetic saturation of the dust core is suppressed and the DC superposition characteristics are improved.
微細粉体のアスペクト比が4以上になると、反磁界による磁気飽和の抑制効果が高まる。微細粉体の形状を円盤状の扁平楕円体と仮定すると、円盤の面に垂直な方向の反磁界係数とアスペクト比の関係は、Bozorth(Ferromagnetism、Nostrand、Princeton、 1951)のデータより、図3のグラフとして与えられる。図3ではアスペクト比が4に達すると、反磁界係数は0.7まで増加し、アスペクト比が4を超えると反磁界係数の増加は若干緩やかとなる。従って、微細粉体のアスペクト比は4以上が好ましい。一方で粗大粉体の形状に関してはアスペクト比の規定は特に必要は無い。 When the aspect ratio of the fine powder is 4 or more, the effect of suppressing magnetic saturation due to the demagnetizing field increases. Assuming that the shape of the fine powder is a disk-like flat ellipsoid, the relationship between the demagnetizing factor and the aspect ratio in the direction perpendicular to the disk surface is shown in Fig. 3 from the data of Bozorth (Ferromagnetism, Nostrand, Princeton, 1951). Is given as a graph. In FIG. 3, when the aspect ratio reaches 4, the demagnetizing factor increases to 0.7, and when the aspect ratio exceeds 4, the demagnetizing factor increases slightly moderately. Therefore, the aspect ratio of the fine powder is preferably 4 or more. On the other hand, the aspect ratio is not particularly required for the shape of the coarse powder.
非晶質な粗大粉体と微細粉体の製造方法についての制約は特に無い。粗大粉体の製造方法としては、高速回転ロールによる溶湯急冷法を用いて非晶質箔体を得た後に、振動ミル、ボールミル、ディスクミル等の機械的粉砕方法により粉体化することが可能である。また、冷却速度の高い水アトマイズ法によって得られた粉体を、篩分けする手法により得ることも出来る。 There are no particular restrictions on the method for producing amorphous coarse powder and fine powder. As a coarse powder manufacturing method, it is possible to obtain an amorphous foil body by using a molten metal quenching method with a high-speed rotating roll, and then pulverize it by a mechanical grinding method such as a vibration mill, a ball mill, or a disk mill. It is. Moreover, it can also obtain by the method of sieving the powder obtained by the water atomization method with a high cooling rate.
アスペクト比が4以上の扁平な微細粉体を得る方法としては、例えば非晶質箔体を機械的プロセスで粉砕する際に、粉砕条件を工夫することで、切削片として扁平な微小粉体が粗大粉体と同時に得られる。粉砕加工後の粉体をメッシュによる篩い分けを行うか、あるいはサイクロン分級機等により粗大粉と微細切削粉に分離することで、扁平な微細粉体を得ることが可能である。扁平な微細粉体のアスペクト比は4以上であることが好ましいが、機械的な粉砕を用いるプロセスではアスペクト比が15を超える粉体を得ることは、工業的に困難である。このため、扁平な微細粉体のアスペクト比は、4以上15以下の範囲にあることが好ましい。 As a method for obtaining a flat fine powder having an aspect ratio of 4 or more, for example, when an amorphous foil is pulverized by a mechanical process, a flat fine powder is obtained as a cutting piece by devising a pulverization condition. Obtained simultaneously with coarse powder. A flat fine powder can be obtained by sieving the powder after pulverization with a mesh, or by separating the powder into a coarse powder and a fine cutting powder with a cyclone classifier or the like. The aspect ratio of the flat fine powder is preferably 4 or more, but it is industrially difficult to obtain a powder having an aspect ratio exceeding 15 in a process using mechanical grinding. For this reason, the aspect ratio of the flat fine powder is preferably in the range of 4 or more and 15 or less.
粗大粉体のアスペクト比は製造プロセスにより異なるが、水アトマイズで製造される場合は1.0以上2.5以下、非晶質箔体を機械的に粉砕する場合には1.0以上6.0以下の範囲にアスペクト比はあることが好ましい。 The aspect ratio of the coarse powder varies depending on the production process, but is 1.0 to 2.5 when manufactured by water atomization, and 1.0 or more when mechanically pulverizing the amorphous foil. The aspect ratio is preferably in the range of 0 or less.
粗大粉体の粒子径は質量比で90%以上が40μm以上150μm以下の範囲に分布し、平均粒径(D50)は50μm以上120μm以下の範囲にあることが好ましい。粗大粉体が40μm未満の粒子を10%以上含む場合は、別途調整して混合する扁平な微細粉体の効果を阻害して、直流重畳特性の低下につながることから好ましくない。また150μmを超える粒子を10%以上含む場合は、成形性の低下による相対密度の低下と直流重畳特性の低下が生じることから好ましくない。粗大粉体の平均粒子径は、メッシュを用いた篩い分け法により粒度分布を評価する、あるいは、光学顕微鏡、電子顕微鏡により個々の粉体の寸法を直接観察することで、求めることが出来る。顕微鏡による観察時には、観察される個々の粉体の最大長さを粒子径として評価する。 As for the particle size of the coarse powder, 90% or more by mass ratio is distributed in the range of 40 μm to 150 μm, and the average particle size (D50) is preferably in the range of 50 μm to 120 μm. When the coarse powder contains particles of less than 40 μm in an amount of 10% or more, it is not preferable because the effect of the flat fine powder separately adjusted and mixed is hindered and the direct current superimposition characteristic is lowered. Further, when containing more than 10% of particles exceeding 150 μm, it is not preferable because a decrease in relative density and a decrease in DC superposition characteristics due to a decrease in moldability occur. The average particle size of the coarse powder can be determined by evaluating the particle size distribution by a sieving method using a mesh, or by directly observing the size of each powder with an optical microscope or an electron microscope. At the time of observation with a microscope, the maximum length of each observed powder is evaluated as the particle diameter.
アスペクト比が4以上の扁平な微細粉体の平均粒径(D50)は30μm以下、好ましくは20μm以下であることが好ましい。粒子径が30μmを上回ると粗大粉体間の隙間の充填が不十分となり、磁束密度の低下、直流重畳特性の低下が生じることから好ましくない。一方で平均粒径が1μm未満のアスペクト比が4以上の扁平粉末は、製造が工業的に困難であることから、扁平な微細粉体の平均粒径は、1μm以上であることが好ましい。微細粉体の平均粒子径の評価は、篩い分け法ではメッシュの目詰まりが生じる課題があることから、光学顕微鏡、電子顕微鏡により個々の粉体の寸法を直接観察することが好ましい。顕微鏡による観察時には、観察される個々の粉体の最大長さを粒子径として評価する。 The average particle size (D50) of a flat fine powder having an aspect ratio of 4 or more is preferably 30 μm or less, and more preferably 20 μm or less. When the particle diameter exceeds 30 μm, the gaps between the coarse powders are not sufficiently filled, and the magnetic flux density and the direct current superimposition characteristic are reduced. On the other hand, since a flat powder having an average particle size of less than 1 μm and an aspect ratio of 4 or more is industrially difficult to manufacture, the average particle size of the flat fine powder is preferably 1 μm or more. The evaluation of the average particle diameter of the fine powder has a problem that mesh clogging occurs in the sieving method. Therefore, it is preferable to directly observe the size of each powder using an optical microscope or an electron microscope. At the time of observation with a microscope, the maximum length of each observed powder is evaluated as the particle diameter.
扁平な微細粉体のアスペクト比を求める方法としては、厳密には個々の微細粉体の3次元形状を得た後に評価する必要がある。しかしながら、この方法は多数の微粉体に対して適用することは困難であることから、本発明では簡便な評価法として、粉体1g以上を樹脂に埋め込み、研磨を行って粉体断面を光学顕微鏡で観察して、粉体断面形状からアスペクト比を評価した。光学顕微鏡組織の個々の粉体断面において、粉体の最大長さと最小長さを測定し、最大長さを最小長さで割った値を個々の粉体のアスペクト比とした。埋め込み試料における観察領域を500μm×500μm以上の面積として、200個以上の個々の粉体についてのアスペクト比を測定し、その平均値を粉体のアスペクト比として採用した。 Strictly speaking, as a method for obtaining the aspect ratio of a flat fine powder, it is necessary to evaluate after obtaining a three-dimensional shape of each fine powder. However, since this method is difficult to apply to a large number of fine powders, in the present invention, as a simple evaluation method, 1 g or more of the powder is embedded in a resin, polished, and the cross section of the powder is observed with an optical microscope. The aspect ratio was evaluated from the cross-sectional shape of the powder. In each powder cross section of the optical microscope structure, the maximum length and the minimum length of the powder were measured, and the value obtained by dividing the maximum length by the minimum length was defined as the aspect ratio of each powder. The aspect ratio of 200 or more individual powders was measured by setting the observation area of the embedded sample to an area of 500 μm × 500 μm or more, and the average value was adopted as the aspect ratio of the powder.
圧粉磁心の原料となる非晶質軟磁性合金の化学組成は、Feを主体としB、Siを必須元素として含むことが好ましい。他の元素として質量比で5%以下のCr、Mn、Cを含む場合もあり、製造工程で混入する不可避不純物も含まれる。 The chemical composition of the amorphous soft magnetic alloy used as a raw material for the dust core preferably includes Fe as a main component and B and Si as essential elements. Other elements may contain 5% or less Cr, Mn, C by mass ratio, and inevitable impurities mixed in in the manufacturing process.
非晶質の粗大粉体と扁平な微細粉体を所定の比率で混合した後に、金型等を用いて加圧成形を行って軟磁性コアを得る。加圧成形の実施前には、非晶質軟磁性混合粉体に結着性を高めるためのバインダ材、金型との摩擦を低減するための潤滑剤等を必要に応じて添加することで、高密度かつ強度等の機械的性質に優れた圧粉磁心が得られる。バインダ、潤滑剤等を添加する前の非晶質混合粉体において、扁平な微細粉体が占める割合は、質量比で3〜50%の範囲とすることが好ましい。扁平な微細粉体の添加量が3%未満の場合は、粗大粉体境界における充填の不足、境界部の反磁界効果の不足から直流重畳特性が改善されないため好ましくない。扁平な微細粉体の添加量が50%を超える場合は、圧粉磁心の相対密度が低下することで直流重畳特性が低下するため好ましくない。 After mixing the amorphous coarse powder and the flat fine powder at a predetermined ratio, pressure molding is performed using a mold or the like to obtain a soft magnetic core. Before the pressure molding, a binder material for improving the binding property, a lubricant for reducing friction with the mold, etc. may be added to the amorphous soft magnetic mixed powder as necessary. Thus, a dust core having high density and excellent mechanical properties such as strength can be obtained. In the amorphous mixed powder before adding the binder, the lubricant, etc., the proportion of the flat fine powder is preferably in the range of 3 to 50% by mass ratio. When the addition amount of the flat fine powder is less than 3%, the DC superposition characteristics are not improved due to insufficient filling at the boundary of the coarse powder and the demagnetizing effect at the boundary, which is not preferable. When the addition amount of the flat fine powder exceeds 50%, the relative density of the powder magnetic core is lowered, and the direct current superimposition characteristic is lowered.
成形時の金型温度は室温でも可能であるが、金型をヒータにより100℃以上に加熱してバインダや潤滑剤を軟化させた条件で成形することで、相対密度をより増加することも可能である。金型を加熱して成形する際には、バインダ、潤滑剤の高温での軟化、気化等の変化を考慮した成形条件の適切な設定が必要である。300℃を超える高温まで金型を加熱保持して成形する場合は、非晶質粉体自体に軟化による塑性変形が生じて、粉体間の隙間がより緻密に充填されて相対密度は増加する。300℃を超える高温での成形には、バインダ材の気化による消失を防ぐために、耐熱性の高いバインダ材を選ぶ必要がある。 The mold temperature during molding can be room temperature, but the relative density can be increased further by molding the mold to 100 ° C or higher with a heater and softening the binder and lubricant. It is. When molding by heating the mold, it is necessary to appropriately set molding conditions in consideration of changes such as softening and vaporization of the binder and lubricant at high temperatures. When forming by heating and holding the mold to a high temperature exceeding 300 ° C, the amorphous powder itself undergoes plastic deformation due to softening, and the gaps between the powders are more densely filled and the relative density increases. . For molding at a high temperature exceeding 300 ° C., it is necessary to select a binder material with high heat resistance in order to prevent the binder material from disappearing due to vaporization.
成形後の圧粉磁心は、歪み除去を目的とした熱処理により、ヒステリシス損失を低減する。熱処理温度は一般に非晶質合金の結晶化が生じる温度よりも低温とし、その一方で出来るだけ高温で実施することが好ましい。金型を加熱して成形を行う場合には、熱処理温度は金型温度よりも高温で実施することが好ましい。熱処理後の圧粉磁心の相対密度は80%以上であることが、飽和磁束密度を高めると共にゼロバイアス時の透磁率を80以上と高く出来ることから好ましい。圧粉磁心の相対密度が80%未満の場合は、飽和磁束密度が低下すると共に、ゼロバイアス時の透磁率が80未満に低下することから好ましくない。 The dust core after molding reduces hysteresis loss by heat treatment for the purpose of strain removal. The heat treatment temperature is generally lower than the temperature at which crystallization of the amorphous alloy occurs, and on the other hand, it is preferable that the heat treatment be performed as high as possible. When the molding is performed by heating the mold, the heat treatment temperature is preferably higher than the mold temperature. The relative density of the dust core after the heat treatment is preferably 80% or more, since the saturation magnetic flux density can be increased and the magnetic permeability at zero bias can be increased to 80 or more. When the relative density of the dust core is less than 80%, the saturation magnetic flux density is lowered, and the permeability at zero bias is lowered to less than 80, which is not preferable.
本発明の圧粉磁心によれば、粗大粉体同士の隙間をアスペクト比が大きな微細粉体で緻密に充填することで、粗大粉体の隙間の磁気抵抗を高めることができ、従来の圧粉磁心に比べて直流重畳特性を顕著に改善することができる。
以下、実施例を通じて本発明の効果について説明する。
According to the dust core of the present invention, the gap between the coarse powders is densely filled with the fine powder having a large aspect ratio, so that the magnetic resistance of the gap between the coarse powders can be increased. Compared with the magnetic core, the direct current superposition characteristics can be remarkably improved.
The effects of the present invention will be described below through examples.
(実施例1)
非晶質軟磁性合金の試作では、Fe、B、Siを原料として質量比92Fe-5.5Si-2.5Bで配合し、真空溶解後に高速回転する銅製ロール表面に溶湯を落下、急冷して厚みが25μmの箔体合金を得た。続いて箔体合金を高エネルギーミルにより粉砕して粉体化した。粉砕粉の形態をSEM観察した一例を図4に示す。
(Example 1)
In the trial production of an amorphous soft magnetic alloy, Fe, B, and Si are used as raw materials and blended at a mass ratio of 92Fe-5.5Si-2.5B. A 25 μm foil alloy was obtained. Subsequently, the foil body alloy was pulverized by a high-energy mill. An example of SEM observation of the morphology of the pulverized powder is shown in FIG.
サイズが50μmを超える粗大な破砕粉の表面や周囲に、微細な切断片と推測される板状の扁平粒子が確認される。粉砕粉を溶液中で処理することで粗大な破砕粉体と扁平な微細粉体を分離して、乾燥後にメッシュによる篩分けをそれぞれに対して行い、平均粒径D50=63μmで粒径が40μmから120μmの範囲で分布する非晶質な粗大粉体と、平均粒径D50=12μmで粒径が25μm以下の範囲にある非晶質で扁平な微細粉体を得た。扁平な微細粉体について、樹脂埋め込みと断面研磨を実施して光顕観察を行った結果、断面のアスペクト比は平均で6.8であることを確認した。粗大粉体のアスペクト比は4.2であった。 Plate-like flat particles presumed to be fine cut pieces are confirmed on and around the surface of coarse crushed powder having a size exceeding 50 μm. By processing the pulverized powder in solution, coarse crushed powder and flat fine powder are separated, and after drying, sieving with mesh is performed on each, and the average particle diameter D50 = 63μm and the particle diameter is 40μm To 120 μm of amorphous coarse powder, and an amorphous and flat fine powder having an average particle diameter D50 = 12 μm and a particle diameter of 25 μm or less. The flat fine powder was subjected to resin embedding and cross-sectional polishing, and optical microscope observation was performed. As a result, it was confirmed that the average aspect ratio of the cross-section was 6.8. The aspect ratio of the coarse powder was 4.2.
上記の非晶質の粗大粉体と扁平微細粉体を質量比9:1、8:2、7:3でそれぞれ混合し、これらの非晶質混合粉体に対して、バインダ材のPEEK樹脂を体積比9:1で混合し、400℃付近に加熱しながら撹拌することで、非晶質金属粉体と樹脂との複合粉体を得た。これらの複合粉体1.6gをホットプレスを用いて400℃、1600MPaで成形を行い、外径13mm、内径8mmのリング形状の成形体(コア)を得た。リングコアは窒素雰囲気の400℃以上で1h(1時間)の熱処理を行い歪低減を行った後、銅線によりトロイダル巻線を行って交流B-H測定機による体積あたりの損失Pc(kW/m3、0.1T、10kHz)、及びLCRメータによる10kA/mのバイアス磁界を加えた場合の増分透磁率を評価した。 The above-mentioned amorphous coarse powder and flat fine powder are mixed at mass ratios of 9: 1, 8: 2, and 7: 3, respectively, and the binder material PEEK resin is mixed with these amorphous mixed powders. Were mixed at a volume ratio of 9: 1 and stirred while heating at around 400 ° C. to obtain a composite powder of amorphous metal powder and resin. 1.6 g of these composite powders were molded at 400 ° C. and 1600 MPa using a hot press to obtain a ring-shaped molded body (core) having an outer diameter of 13 mm and an inner diameter of 8 mm. The ring core was heat treated at 400 ° C or higher in a nitrogen atmosphere for 1 hour (1 hour) to reduce strain, and then toroidal wound with copper wire and loss per volume Pc (kW / m 3 , by AC BH measuring machine, 0.1 T, 10 kHz), and the incremental permeability when a 10 kA / m bias magnetic field was applied by an LCR meter.
表1に、圧粉磁心の相対密度、体積あたりの損失、増分透磁率の測定結果を示す。No.2〜8が本発明材、No.1及び9〜11が比較材である。バイアス磁界を加えない場合(ゼロバイアス時)の透磁率は、表1の全てのサンプルで80〜160以下の範囲の値を示した。 Table 1 shows the measurement results of the relative density, the loss per volume, and the incremental permeability of the dust core. Nos. 2 to 8 are the present invention materials, and Nos. 1 and 9 to 11 are comparative materials. The magnetic permeability when no bias magnetic field was applied (at zero bias) showed values in the range of 80 to 160 for all samples in Table 1.
表1のNo.1〜4には、PEEKバインダを添加する前の非晶質混合粉体において、微細扁平粉体の添加量が0、10、20、30質量%の場合の、圧粉磁心の相対密度、体積あたりの損失、増分透磁率の測定結果をそれぞれ示す。 Nos. 1 to 4 in Table 1 show the dust cores when the amount of fine flat powder added is 0, 10, 20, or 30% by mass in the amorphous mixed powder before the PEEK binder is added. The measurement results of relative density, loss per volume, and incremental permeability are shown.
微細扁平粉体を含まないNo.1(比較材)の相対密度は83.5%であり、微細粉体を含むNo.2、3、4(本発明材)では相対密度は1〜3%増加する。No.2、3、4では微細粉体が粗大粉体の隙間を充填することで、相対密度が増加したと考えられる。体積あたりの損失の値は、No.1とNo.2、3、4の間には顕著な違いは見られないが、10kA/m磁界印加時の増分透磁率の値は、No.1に比べてNo.2、3、4の方が6〜8程度大きな結果となった。本発明のNo.2、3、4は扁平な微細粉体を粗大粉体に添加することで、損失増加を伴うことなく増分透磁率を増加できることが示された。 The relative density of No. 1 (comparative material) that does not contain fine flat powder is 83.5%, and the relative density increases by 1 to 3% for No. 2, 3, and 4 (material of the present invention) that contain fine powder. . In Nos. 2, 3, and 4, it is considered that the relative density increased because the fine powder filled the gaps of the coarse powder. There is no significant difference in the value of loss per volume between No. 1 and No. 2, 3, and 4, but the value of incremental permeability when applying a 10 kA / m magnetic field is No. 1. Compared to No. 2, 3 and 4, the results were about 6-8. In Nos. 2, 3, and 4 of the present invention, it was shown that the incremental magnetic permeability can be increased without increasing the loss by adding a flat fine powder to the coarse powder.
次に、箔体合金を高エネルギーミルにより粉砕する際のプロセス条件を調整し、箔体表面から扁平形状の破片を連続的に剥離させることで、平均粒径D50=10μmで粒径が25μm以下であり、断面のアスペクト比が平均で4.8の微細な扁平状粒子を作製した。表1のNo.5〜7で4.8の微細な扁平粉体を粗大粉体中に10、20、30質量%だけ添加した場合の、圧粉磁心の評価結果を示す。 Next, by adjusting the process conditions when pulverizing the foil body alloy with a high energy mill, by continuously peeling flat pieces from the surface of the foil body, the average particle diameter D50 = 10 μm and the particle diameter is 25 μm or less Thus, fine flat particles having an average cross-sectional aspect ratio of 4.8 were produced. The evaluation results of the dust core when No. 5 to No. 7 in Table 1 and 4.8 fine flat powder of 4.8 are added to the coarse powder by 10, 20, and 30% by mass are shown.
No.5〜7の試料はそれぞれ、No.2〜4と同量の扁平微細粉体を添加している。No.5〜7の相対密度と損失値は、No.2〜4とほぼ同等であり、増分透磁率の値は僅かに低い程度の値を示す。この結果から、アスペクト比が4.8の微細粉体を粗大粉体に加えた場合も、No.1の粗大粉体のみの試料よりも直流重畳特性が改善されることが示された。 In each of the samples No. 5 to 7, the same amount of flat fine powder as No. 2 to 4 is added. The relative densities and loss values of Nos. 5 to 7 are almost the same as those of Nos. 2 to 4, and the value of the incremental magnetic permeability is slightly low. From this result, it was shown that when a fine powder having an aspect ratio of 4.8 was added to the coarse powder, the DC superposition characteristics were improved as compared with the sample containing only the No. 1 coarse powder.
表1の本発明材No.8では、アスペクト比が4.8の微細粉体を、粗大非晶質粉体と同量の50質量%添加した結果を示す。No.8の相対密度は、82.3%と表1の中で最も低く、増分透磁率も33.8と他の本発明材No.2〜7よりも低い結果となった。No.8は、微細粉体量が過剰となったことで、他の本発明材よりも相対密度及び磁束密度が低減し、増分透磁率の低下につながったと推測される。 Invention material No. 8 in Table 1 shows the result of adding 50% by mass of fine powder having an aspect ratio of 4.8 in the same amount as coarse amorphous powder. The relative density of No. 8 was 82.3%, the lowest in Table 1, and the incremental magnetic permeability was 33.8, which was lower than those of other inventive materials No. 2-7. In No. 8, it is presumed that the relative density and magnetic flux density were reduced as compared with other materials of the present invention due to the excessive amount of fine powder, leading to a decrease in incremental magnetic permeability.
前述の急冷により作製した箔体と同じ化学組成の素材を、水アトマイズプロセスを用いて微細粉化して、篩分けすることで、平均粒径D50=9μmで粒径が20μm以下の範囲にある微細な非晶質粉体を得た。本粉体を樹脂埋め込み、断面研磨して光顕観察した結果では、形状はアスペクト比が1.3の球状に近いことを確認した。このアスペクト比が1.3の微細な非晶質粒子を、No.1の粗大非晶質粉体に10、20、30 質量%添加した場合の圧粉磁心の評価結果を表1のNo.9〜11に示す。No.9〜11の相対密度と損失値はNo.2〜7とほぼ同等であるが、増分透磁率の値30〜32と本発明材よりも低い結果となった。アスペクト比が小さな球状に近い粒子を粗大粉体間の充填に用いた場合は、相対密度の増加には寄与するものの、直流重畳特性の改善効果は小さいことがわかった。低アスペクト比の球状に近い微細粒子を添加する場合は、高アスペクト比の微細粒子に比べて、反磁界の効果が低下することで、増分透磁率の増加が抑制されたと推測される。 The material with the same chemical composition as the foil body produced by the rapid cooling described above is finely ground using a water atomization process and sieved, so that the average particle size D50 is 9μm and the particle size is in the range of 20μm or less. Amorphous powder was obtained. The result of embedding this powder with resin, polishing the cross-section and observing it with an optical microscope confirmed that the shape was close to a sphere with an aspect ratio of 1.3. The evaluation results of the dust core when the fine amorphous particles having an aspect ratio of 1.3 are added to No. 1 coarse amorphous powder by 10, 20, or 30% by mass are shown in Table 1. Shown in 11. The relative densities and loss values of Nos. 9 to 11 were almost the same as those of Nos. 2 to 7, but the incremental permeability values were 30 to 32, which were lower than those of the present invention material. It was found that the effect of improving the DC superimposition characteristics was small when particles close to a sphere with a small aspect ratio were used for filling between coarse powders, although this contributed to an increase in relative density. When adding fine particles close to a sphere having a low aspect ratio, it is presumed that the increase in the incremental magnetic permeability is suppressed by reducing the effect of the demagnetizing field as compared with the fine particles having a high aspect ratio.
(実施例2)
実施例1で試作した厚みが25μmの非晶質箔体合金を素材として、高エネルギーミルにより粉砕する際のプロセス条件を調整することで、粒径が25μm以下であり、断面のアスペクト比が平均で8.9の微細な扁平状粒子を作製した。同じく実施例1で製造方法を記載した、平均粒径D50=63μmで粒径が40μmから120μmの範囲で分布する非晶質な粗大粉体中に、アスペクト比が平均で8.9の本微細粉末を20 質量%添加した後に、実施例1と同じ条件でホットプレス、熱処理を行ってリング状の圧粉磁心を得た。本試料を本発明材No.12とする。No.12の相対密度は86.2%であり、10kA/mのバイアス磁界を加えた場合の増分透磁率は39.7と最も高い値を示した。
(Example 2)
By adjusting the process conditions when grinding with a high energy mill using the amorphous foil body alloy with a thickness of 25 μm prototyped in Example 1 as a raw material, the particle size is 25 μm or less, and the aspect ratio of the cross section is average 8.9 fine flat particles were produced. The fine powder having an average aspect ratio of 8.9 in an amorphous coarse powder having an average particle diameter D50 = 63 μm and a particle diameter distributed in the range of 40 μm to 120 μm, also described in the production method of Example 1. After adding 20% by mass, hot pressing and heat treatment were performed under the same conditions as in Example 1 to obtain a ring-shaped dust core. This sample is designated as invention material No. 12. The relative density of No. 12 was 86.2%, and the incremental permeability when applying a bias magnetic field of 10 kA / m was the highest value of 39.7.
表1におけるNo.1、No.3及びNo.12のリングコアの磁気測定から得られた磁化曲線を図5に示す。図5の縦軸には磁束密度:B(T)、横軸には磁界H(A/m)でグラフをプロットした。No.1は扁平な微細粉は無添加である、No.3及びNo.12は扁平な微細粉体を20質量%含むが、微細粉体のアスペクト比が異なっている。粗大粉体のみでコアを形成したNo.1に比べて、扁平な微細粉体を含むNo.3及びNo.12では高磁界側でのグラフの傾きが大きく、透磁率の低下が抑制されていることがわかる。また微細粉体のアスペクト比が大きいNo.12の方が、No.3よりも高磁界側の透磁率が大きいことから、微細粉体のアスペクト比の増加が増分透磁率の改善に有効であることが確認できた。 FIG. 5 shows magnetization curves obtained from magnetic measurements of No. 1, No. 3 and No. 12 ring cores in Table 1. The graph is plotted with magnetic flux density B (T) on the vertical axis and magnetic field H (A / m) on the horizontal axis in FIG. No. 1 contains no flat fine powder, and No. 3 and No. 12 contain 20% by mass of flat fine powder, but the aspect ratio of the fine powder is different. Compared to No. 1 in which the core is formed only with coarse powder, No. 3 and No. 12 containing flat fine powder have a larger slope of the graph on the high magnetic field side, and the decrease in permeability is suppressed. I understand that. In addition, No. 12 with a larger aspect ratio of fine powder has a higher magnetic permeability on the higher magnetic field side than No. 3, so increasing the aspect ratio of fine powder is effective in improving incremental magnetic permeability. I was able to confirm.
以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
Claims (3)
前記混合粉体中に占める前記微細粉体の割合が質量比で10質量%以上30質量%以下の範囲であり、
前記非晶質軟磁性粉体の原料となる非晶質軟磁性合金は、Feを主体とし、B、Siを必須元素として含み、
前記粗大粉体は箔体合金の粉砕粉である
ことを特徴とする圧粉磁心。 A coarse powder which is an amorphous soft magnetic powder having an average particle size of 50 μm to 120 μm and an aspect ratio of 1 to 6; and an average particle size of 1 μm to 30 μm and an aspect ratio of 4 to 15 Consists of mixed powder mixed with fine powder which is amorphous soft magnetic powder,
The ratio of the fine powder occupying the mixed powder Ri 30 mass% or less der least 10 mass% in mass ratio,
The amorphous soft magnetic alloy used as a raw material for the amorphous soft magnetic powder is mainly composed of Fe, B, Si as essential elements,
The dust core according to claim 1, wherein the coarse powder is a pulverized powder of a foil body alloy .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014132846A JP6427991B2 (en) | 2014-06-27 | 2014-06-27 | Dust core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014132846A JP6427991B2 (en) | 2014-06-27 | 2014-06-27 | Dust core |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016012630A JP2016012630A (en) | 2016-01-21 |
JP6427991B2 true JP6427991B2 (en) | 2018-11-28 |
Family
ID=55229167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014132846A Active JP6427991B2 (en) | 2014-06-27 | 2014-06-27 | Dust core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6427991B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105590747B (en) * | 2016-02-29 | 2018-03-27 | 深圳顺络电子股份有限公司 | A kind of power-type component and preparation method thereof |
JP6931775B2 (en) * | 2018-02-15 | 2021-09-08 | パナソニックIpマネジメント株式会社 | Soft magnetic alloy powder, its manufacturing method, and powder magnetic core using it |
JP7087539B2 (en) * | 2018-03-26 | 2022-06-21 | Tdk株式会社 | Soft magnetic material and dust core |
JP2021034609A (en) * | 2019-08-27 | 2021-03-01 | パナソニック株式会社 | Powder-compact magnetic core and method for manufacturing the same |
JP2020077845A (en) * | 2018-11-01 | 2020-05-21 | パナソニック株式会社 | Powder magnetic core and manufacturing method of the same |
JP2023062495A (en) | 2021-10-21 | 2023-05-08 | Tdk株式会社 | Soft magnetic alloy powder, powder-compact magnetic core, and magnetic component |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002249802A (en) * | 2001-02-26 | 2002-09-06 | Alps Electric Co Ltd | Amorphous soft magnetic alloy compact, and dust core using it |
JP2002299114A (en) * | 2001-04-03 | 2002-10-11 | Daido Steel Co Ltd | Dust core |
JP4032709B2 (en) * | 2001-11-19 | 2008-01-16 | 大同特殊鋼株式会社 | Filter circuit |
JP2006210847A (en) * | 2005-01-31 | 2006-08-10 | Mitsubishi Materials Pmg Corp | Compressed powder magnetic core and manufacturing method thereof |
JP2008192897A (en) * | 2007-02-06 | 2008-08-21 | Hitachi Metals Ltd | Dust core and reactor |
JP4909312B2 (en) * | 2008-04-04 | 2012-04-04 | 株式会社神戸製鋼所 | Soft magnetic material for dust core and dust core |
WO2009139368A1 (en) * | 2008-05-16 | 2009-11-19 | 日立金属株式会社 | Powder magnetic core and choke |
JP5023041B2 (en) * | 2008-11-05 | 2012-09-12 | 株式会社タムラ製作所 | Powder magnetic core and manufacturing method thereof |
JP5208881B2 (en) * | 2009-08-07 | 2013-06-12 | 株式会社タムラ製作所 | Powder magnetic core and manufacturing method thereof |
KR20140123066A (en) * | 2012-01-18 | 2014-10-21 | 히타치 긴조쿠 가부시키가이샤 | Dust core, coil component, and method for producing dust core |
-
2014
- 2014-06-27 JP JP2014132846A patent/JP6427991B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016012630A (en) | 2016-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6427991B2 (en) | Dust core | |
JP5363881B2 (en) | SOFT MAGNETIC MATERIAL AND METHOD FOR PRODUCING ARTICLE COMPRISING THE SOFT MAGNETIC MATERIAL | |
WO2017022227A1 (en) | Method for producing soft magnetic dust core, and soft magnetic dust core | |
JP7132231B2 (en) | Powder magnetic core manufacturing method, powder magnetic core and inductor | |
JP6448799B2 (en) | Soft magnetic powder | |
JP6088192B2 (en) | Manufacturing method of dust core | |
KR101719496B1 (en) | Soft magnetic metal powder core | |
KR20160132937A (en) | Powder magnetic core manufacturing method, and powder magnetic core | |
JP2010209409A (en) | Method for producing amorphous soft magnetic alloy powder, amorphous soft magnetic alloy powder, and formed body using the same | |
JP2013165251A (en) | Soft magnetic iron-based powder and method of manufacturing the same | |
JP2008277374A (en) | Winding inductor and its manufacturing method | |
JP2016003366A (en) | Soft magnetic alloy powder, dust magnetic core using the powder and production method of the magnetic core | |
JP2012160726A (en) | Magnetic powder material, low-loss composite magnetic material containing magnetic powder material, and magnetic element containing low-loss composite magnetic material | |
KR101166963B1 (en) | Method for the production of magnet cores, magnet core and inductive component with a magnet core | |
JP5504832B2 (en) | Manufacturing method of nanocomposite magnet | |
JP2011243830A (en) | Powder magnetic core and method for manufacturing the same | |
JP6613730B2 (en) | Rare earth magnet manufacturing method | |
WO2014034616A1 (en) | Iron powder for powder magnetic core and process for producing powder magnetic core | |
JP6898057B2 (en) | Powder magnetic core | |
JP2006219714A (en) | Fe-Ni-(Nb, V, Ta) BASED FLAT METAL SOFT MAGNETIC POWDER AND MAGNETIC COMPOSITE MATERIAL COMPRISING THE SOFT MAGNETIC POWDER | |
CA2891206A1 (en) | Iron powder for dust cores | |
WO2020196608A1 (en) | Amorphous alloy thin strip, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core | |
JP2017054910A (en) | Soft magnetic metal powder compact core | |
KR101350768B1 (en) | Hard metal mold for manufacturing aspherical lens | |
KR101607483B1 (en) | Fe-based Amorphous Alloy Power And Fe-based Nano-Crystallization Amorphous Compressed Power Core Using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170131 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180206 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180406 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180821 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180914 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181002 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181015 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6427991 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |