JP6419261B2 - 座標測定装置を動作させる方法 - Google Patents

座標測定装置を動作させる方法 Download PDF

Info

Publication number
JP6419261B2
JP6419261B2 JP2017114033A JP2017114033A JP6419261B2 JP 6419261 B2 JP6419261 B2 JP 6419261B2 JP 2017114033 A JP2017114033 A JP 2017114033A JP 2017114033 A JP2017114033 A JP 2017114033A JP 6419261 B2 JP6419261 B2 JP 6419261B2
Authority
JP
Japan
Prior art keywords
probe
measurement
operating
trigger signal
cmm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017114033A
Other languages
English (en)
Other versions
JP2017227629A (ja
Inventor
エリス ヘミングス スコット
エリス ヘミングス スコット
パッツウォルド アンドリュー
パッツウォルド アンドリュー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Publication of JP2017227629A publication Critical patent/JP2017227629A/ja
Application granted granted Critical
Publication of JP6419261B2 publication Critical patent/JP6419261B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/004Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points
    • G01B5/008Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points using coordinate measuring machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/045Correction of measurements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

本開示は、精密計量に関し、より詳細には、座標測定装置で使用されるプローブ内の信号に関する。
座標測定装置(CMM)は、検査されるワークピースの測定値を取得することができる。参照によりその全体が本明細書に組み込まれる米国特許第8,438,746号( '746特許)に記載されている1つの例示的な従来技術のCMMは、ワークピースを測定するためのプローブ、プローブを移動させるための移動機構、及びその移動を制御する制御装置を備えている。機械的接触プローブを使用するCMMは、また、米国特許第6,971,183号及び第6,487,785号にも記載されている。なお、これらの全体も、参照により本明細書に組み込まれる。表面走査プローブを含むCMMは、米国特許第7,652,275号に記載されている。これも、参照によりその全体が本明細書に組み込まれる。そこに開示されているように、機械的接触プローブまたは非接触光学プローブのような走査プローブは、ワークピース表面を走査することができる。
走査プローブを使用する様々なCMMにおいて、測定同期トリガー信号は、走査プローブからのローカルな表面測定値をトリガーするのと同様に、装置座標系内の走査プローブの全体的な位置及び向き(例えば、走査プローブのベース位置)を追跡するCMMスケールまたはエンコーダ(例えば、リニア及びロータリスケールまたはエンコーダ)からの測定値をトリガーする。走査プローブ測定は、走査プローブベースを参照する(またはそれに対して測定される)ローカルな座標系で行われる。測定同期トリガー信号がCMMスケールをラッチする時間と、走査プローブの信号サンプル期間またはタイミングに関連する時間との間に遅延または偏差が存在することが知られている。この偏差は、信号取得の遅延、信号処理の遅延(アナログからデジタルへの変換を含む)、及び信号送信の遅延などから生じることがある。このようなタイミングのずれが存在する場合、CMMスケールの測定データと走査プローブの測定データとを組み合わせて正確な測定とすることはできない。その全体が参照により本明細書に組み込まれる米国特許第8,438,746号( '746特許)は、この問題及び様々な先行技術の解決法を詳細に説明する1つの先行技術文献である。 '746特許に記載されているように、先行技術の解決法は、CMMのすべてのサブシステムにグローバルトリガー信号を送信すること、及び/又は様々なサブシステムにおける様々な遅延を正確に検出及び較正すること、及び/又は様々なサブシステムからの測定データを「時間スタンピング」及び/又は調整すること、を含んでいる。 '746特許はまた、様々なサブシステムがローカルなデジタル電子機器及び処理を含む場合、典型的なCMMシステムで利用可能な配線の数が限られているため、それぞれの所望のタイミング信号に対して専用のラインまたはチャネルを提供できない可能性があることを記載している。したがって、信号伝送及び/又は復号の複雑さ及び/又はコストは、増加する可能性がある。 '746特許は、前述の問題のすべてが解決された後でさえも、様々なデジタルサブシステムにおけるローカルなクロックの位相が、クロック期間内で一致しない可能性を記載している。 '746特許は、測定トリガー信号に加えて同期信号を提供することを開示している。その同期信号は、様々なローカルなクロックを位相同期させるために使用される。トリガー信号は、様々なサブシステムによる測定値取得をトリガーする瞬間を定義し、サブシステムでは時間定量化された方法で測定値を取得する。しかしながら、例えば新しいプローブのための、システムの改造互換性、例えば、関節プローブ接続ジョイントでの、走査プローブの限定された電気的接続、及び「スマートプローブ」の処理オプションに関する欠点は、CMMにおける測定同期の他の従来技術の方法と同様に、 '746特許で開示された方法でも未解決の状態である。CMM走査プローブの測定データの同期化のためのさらなる改良及び代替が望まれている。
この要約は、以下の「発明を実施するため形態」でさらに説明するいくつかの概念の抜粋を簡略化した形で紹介するために提供される。この要約は、特許請求される主題の重要な特徴を特定することを意図するものではなく、特許請求される主題の範囲を決定する助けとして使用されることも意図していない。
ローカルな信号処理を備える走査プローブ(「スマートプローブ」として特徴付けることができる)は、プローブ内に設けられた調整可能なノイズフィルタ及び/又は測定平均化機能などを備えることができる。関連するパラメータは、CMM及び/又はプローブを制御するために使用されるプログラム命令によって調整することができる。それらのパラメータは、例えば、特定の特徴を測定するために要求される精度に応じて、ワークピースの検査手順の実行中の任意の時点で変更する(例えば、プローブにダウンロードする)ことができる。これらのパラメータが変更されると、先に概説した遅延またはタイミング偏差は本質的に影響を受ける。一般に、スマートプローブの特徴を予期せず、それゆえに、使用する上で柔軟かつ容易に、そのようなパラメータを調整する、及び/又は、そのように頻繁に変化するタイミング偏差を補償する能力を欠く、より古いホストシステムは、このようなスマートプローブで改装されることが望ましい場合がある。さらに、ホストシステムは、 '746特許等に開示されているタイプの同期信号などをサポートすることができる信号線及び/又はデータ伝送プロトコルを欠くおそれもある。したがって、本明細書に開示される原理によれば、ホストであるCMMに容易に追加されるプローブ測定タイミングサブシステムにおいて、意図的なパラメータ変更から生じるタイミング偏差を含むそのようなタイミング偏差を補償することが望ましい場合がある。いくつかの実施形態では、プローブ測定タイミングサブシステムの動作は、プローブ内部の回路とプローブに接続された外部の回路とに分けられてもよい。他の実施形態では、プローブ測定タイミングサブシステムの動作は、プローブの内部の回路内で全て実現されてもよい。このようなシステム及び方法の簡単な概要は以下の通りである。
CMM制御システム(CMM control system)と、プローブワークピース測定値(probe workpiece measurements)を出力することによってワークピース表面を測定する表面走査プローブと、プローブ測定タイミングサブシステム(probe measurement timing subsystem)とを備える座標測定装置(CMM)を動作させる方法が開示される。この方法は、予測可能な時間(predictable times)に測定同期トリガー信号(measurement synchronization trigger signal)を出力するように前記CMM制御システムを動作させるステップと、前記予測可能な時間を決定し、前記表面走査プローブがその出力されるプローブワークピース測定値のうちの単一のインスタンス(instance)に対応付けられた測定データを取得する期間であるプローブワークピース測定値のサンプル期間(probe workpiece measurement sample period)の現在の持続時間(current duration)を決定するように、前記プローブ測定タイミングサブシステムを動作させるステップと、前記プローブワークピース測定値のサンプル期間の前記現在の持続時間の一部であるプレトリガーリード時間(pre-trigger lead time)を決定するように、前記プローブ測定タイミングサブシステムを動作させるステップと、前記測定同期トリガー信号の次の予測可能な時間である前記測定同期トリガー信号の発生した後の次に来る測定同期トリガー信号の発生する時間の前の前記プレトリガーリード時間に前記プローブワークピース測定値のサンプル期間の現在のインスタンスを開始し、前記現在のインスタンスを決定するように、前記プローブ測定タイミングサブシステムを動作させるステップと、前記次の予測可能な時間に現在の測定同期トリガー信号を出力し、前記現在の測定同期トリガー信号に対応付けられたCMM位置座標値(CMM position coordinate values)の現在のセットをラッチするように、前記CMM制御システムを動作させるステップと、前記CMM制御システムが前記プローブワークピース測定値の前記現在のインスタンスをCMM位置座標値の前記現在のセットに対応付けるように、前記現在の測定同期トリガー信号に対応付けられた時間に前記プローブワークピース測定値の前記現在のインスタンスを出力するように、前記表面走査プローブを動作させるステップと、を含む。
CMMの様々な典型的な構成要素を示す図である。 CMMに接続される表面走査プローブの様々な要素を示し、X、Y及びZ位置信号を提供するブロック図である。 CMMの様々な要素を示すブロック図である。 図3のCMMの動作を示すタイミング図である。 CMMを動作させる方法を示すフロー図である。
図1は、CMM100の様々な典型的な構成要素を示す図である。CMM100は、CMM制御システム110及び表面走査プローブ120を備える。CMM制御システム110は、操作ユニット111と、CMM100の動きを制御するモーションコントローラ112と、ホストコンピュータ113と、を備える。操作ユニット111は、モーションコントローラ112に接続され、CMM100を手動で操作するためのジョイスティック114を備えている。ホストコンピュータ113は、モーションコントローラ112に接続され、CMM100を動作させ、ワークピースWの測定値を処理する。ホストコンピュータ113は、例えば測定条件を入力するための入力手段116(例えば、キーボード等)と、例えば測定結果を出力する出力手段117(例えば、ディスプレイやプリンタ等)と、を備えている。
CMM100は、定盤180上に配置された駆動機構170と、駆動機構170に表面走査プローブ120を取り付けるための取り付け部124と、を備える。駆動機構170は、表面走査プローブ120を3次元的に移動させるための、x軸、y軸、及びz軸スライド機構172、171、173をそれぞれ、備えている。表面走査プローブ120の端部に取り付けられるスタイラス125は、接触部126を有する。スタイラス125は、表面走査プローブ120のスタイラス懸架部に取り付けられている。ここで、接触部126がワークピースWの表面の測定経路に沿って移動する際には、スタイラス懸架部により、接触部126は3方向でその位置を自在に変化可能となっている。
図2は、取り付け部224によってCMM200に接続される表面走査プローブ220の様々な要素を示し、X、Y及びZ位置信号を提供するブロック図である。CMM200は、CMM制御システム210を備える。表面走査プローブ220は、スタイラス懸架部207を組み込むプローブ本体202と、スタイラス位置検出部211と、プローブ信号処理及び制御部270と、を備える。スタイラス懸架部207は、スタイラス接続部242と、スタイラス移動機構209と、を備える。スタイラス接続部242は、スタイラス226に堅固に接続される。スタイラス移動機構209は、軸方向に沿ってスタイラス接続部242及び取り付けられたスタイラス226の軸方向への移動を可能とし、且つ回転中心に対するスタイラス接続部242及び取り付けられたスタイラス226の回転移動を可能とするように構成されている。図2に示す実施形態では、表面走査プローブ220は、スタイラス226の偏差の変化量を感知する接触型表面走査プローブである。
図2に示すように、スタイラス位置検出部211は、光源構成体217と、回転位置検出構成体213と、軸方向位置検出構成体225と、を備える。回転位置検出構成体213は、光源構成体217から光を受光し、X及びY位置信号を出力する。軸方向位置検出構成体225は、光源構成体217から光を受光し、Z位置信号を出力する。プローブ信号処理及び制御部270は、X、Y及びZ位置信号を受信し、信号220SをCMM制御システム210に出力するように構成されている。なお、CMM制御システム210は、測定されるワークピースWの表面に沿って接触部が移動すると、スタイラス接続部242及び/又は取り付けられたスタイラス226の接触部の3D位置を示すようにされている。いくつかの実施形態では、プローブワークピース測定値を含む信号220SをCMM制御システム210に提供するために、プローブ信号処理及び制御部270は、アナログX、Y及びZ位置信号をデジタル値に変換し、X、Y及びZ位置値の複数のサンプルを平均するように構成することができる。プローブ信号処理及び制御部270は、また、X、Y及びZ位置信号をどのように処理するかについてCMM制御システム210から指令を受け取るように構成されていてもよい。
いくつかの実施形態では、スタイラス位置検出部211は、米国特許出願第14/973,431号に開示されているスタイラス位置検出部と同様であってもよい。なお、その出願は、その全体が参照により本明細書に組み込まれている。スタイラス位置検出部211が光検出構成体を備えることは高く評価されるべきである。しかしながら、代替のタイプの検出構成体を使用するスタイラス検出部が、本明細書で開示された原理に従って構成され動作するCMMに適した表面走査プローブに組み込まれていてもよい。例えば、スタイラス検出部には、電磁偏向センサ(例えば、線形可変差動トランスセンサ)または歪みゲージを使用することができる。
図3は、CMM300の様々な要素を示すブロック図である。CMM300は、CMM制御システム310と、プローブワークピース測定値321を出力することによってワークピース表面を測定する表面走査プローブ320と、プローブ測定タイミングサブシステム330と、CMMスケール340と、回転ジョイントエンコーダ350と、を備える。CMM制御システムは、予測可能な時間に測定同期トリガー信号311を出力するように動作可能である。プローブ測定タイミングサブシステム330は、その予測可能な時間を決定し、表面走査プローブ320がその出力されるプローブワークピース測定値321のうちの単一のインスタンスに対応付けられた測定データを取得する期間であるプローブワークピース測定値のサンプル期間の現在の持続時間を決定するように動作可能である。プローブ測定タイミングサブシステム330は、そのプローブワークピース測定値のサンプル期間の現在の持続時間の一部であるプレトリガーリード時間を決定するように動作可能である。プローブ測定タイミングサブシステム330は、測定同期トリガー信号311の次の予測可能な時間の前に、プレトリガーリード時間にプローブワークピース測定値のサンプル期間の現在のインスタンスを開始し、そのプローブワークピース測定値321の対応付けられた現在のインスタンスを決定するように動作可能である。より具体的には、プローブ測定タイミングサブシステム330は、プレトリガー信号331を表面走査プローブ320に出力することによって、プローブワークピース測定値のサンプル期間の現在のインスタンスを開始する。CMM制御システム310は、次の予測可能な時間に現在の測定同期トリガー信号311を出力し、その現在の測定同期トリガー信号に対応付けられたCMM位置座標値360の現在のセットをラッチするように動作可能である。CMM位置座標値360の各セットは、CMMスケール340からのCMMスケール値361と、回転ジョイントエンコーダ350からの回転ジョイントエンコーダ値362と、を含む。CMM制御システム310がプローブワークピース測定値321の現在のインスタンスをCMM位置座標値360の現在のセットに対応付けるように、表面走査プローブ320は、現在の測定同期トリガー信号に対応付けられた時間にプローブワークピース測定値321の現在のインスタンスを出力するように動作可能である。
サンプル期間が測定同期トリガー信号311のインスタンスと同時に開始された場合には、プローブワークピース測定値321の対応するインスタンスは、表面走査プローブ320がサンプル期間の最初から移動した距離に起因する誤差成分を含むこととなる。したがって、本明細書に記載のCMM300の構成及び動作方法は、プレトリガーリード時間に従ってプローブワークピース測定値のサンプル期間の現在のインスタンスを開始することによってこの誤差成分を軽減するのに特に適している。
いくつかの実施形態では、プローブ測定タイミングサブシステム330は、表面走査プローブ320内に全部または一部が配置されてもよい。いくつかの実施形態では、プローブ測定タイミングサブシステム330の全部または一部が、CMM制御システム310に近接して配置されてもよい。いくつかの実施形態では、プローブ測定タイミングサブシステム330は、CMM制御システム310に接続された交換可能なカード内に配置されてもよい。その交換可能なカードは、例えば、複数の表面走査プローブ320の間で互いに識別可能とするプローブIDを有する表面走査プローブ320のタイプまたはモデルを示すことができる。つまり、表面走査プローブの1つのモデル(タイプと称してもよい)は、例えば、複数の表面走査プローブから構成することができる。プローブ測定タイミングサブシステム330は、CMM制御システム310が同じモデルの表面走査プローブを互いに区別できるように、特定の表面走査プローブ320を示すことも可能とされている。よって、いくつかの実施形態では、その交換可能なカードは、特に表面走査プローブ320、または特に表面走査プローブ320のモデルの内の、少なくとも1つに具体的に対応付けられていてもよい。
図4は、CMM300の動作を示すタイミング図400である。図4に示すように、CMM制御システム310は、トリガー期間(トリガー周波数)tsyncで繰り返される測定同期トリガー信号311を含む信号310Sを出力する。いくつかの実施形態では、トリガー期間tsyncは200μs〜1,000μsの範囲内にあり得る。図3に関して先に説明したように、プローブ測定タイミングサブシステム330は、双方向信号通信330Sを介して表面走査プローブ320にプレトリガー信号331を出力することによって、プローブワークピース測定値のサンプル期間(例えば、サンプル期間322Aまたはサンプル期間322B)の現在のインスタンスを開始する。表面走査プローブ320は、プレトリガー信号331に応答して開始されるプローブワークピース測定値のサンプル期間中に、アナログ/デジタル変換(ADC)トリガー322を含む信号320S1を生成する。表面走査プローブ320は、プローブワークピース測定値のサンプル期間中にサンプリングされたデータに基づいて、CMM制御システム310にプローブワークピース測定値321を含む信号320S2を出力する。より具体的に説明すると、表面走査プローブ320は、アナログX、Y、及びZ位置信号のセットをサンプリングするたびに、それらを平均化する。平均化されたデータは測定データとされ、表面走査プローブ320は、測定データをデジタル値に変換する。そして、表面走査プローブ320は、プローブワークピース測定値321のインスタンスをCMM制御システム310に出力し、プローブワークピース測定値321が信号320S2によって送信される。図4では、プローブワークピース測定値321の2つのインスタンスが示されている。つまり、インスタンスは、例えば、実態とされ、本実施形態では、適宜実体的な測定値、実態的な期間、あるいは実体的な信号とされてもよい。プローブ測定タイミングサブシステム330はまた、双方向信号通信330Sを介してCMM制御システム310に、プローブワークピース測定値321に対応するデータクロック信号332を出力するように構成されている。先に概説したように、プローブ測定タイミングサブシステム330は、表面走査プローブ320内に全部または一部に存在してもよい。様々な実施形態では、双方向信号通信330Sについて示されたタイミング信号またはクロック信号は、表面走査プローブ320の内側または外側のいずれかに配置されたプローブ測定タイミングサブシステム330の一部に由来することができる。
なお、図3及び図4の測定同期トリガー信号311は、CMM制御システム310から常にトリガー期間tsyncで繰り返し出力される。これにより、プローブ測定タイミングサブシステム330は、次の測定同期トリガー信号がいつ発生するかを予測することができる。即ち、「予測可能な時間に測定同期トリガー信号311を出力する」ということは、「繰り返されるトリガー期間tsyncに測定同期トリガー信号311を出力する」ということである。つまり、「予測可能な時間」は、例えば、繰り返される測定同期トリガー信号311の「トリガー期間tsync」とすることができる。これにより、プローブ測定タイミングサブシステム330が「トリガー期間tsync」を知っていれば、CMM制御システム310から1つの測定同期トリガー信号311を受信すると、次の測定同期トリガー信号311がいつ発生するかを予測することができる。なお、「予測可能な時間」は、例えば、プローブ測定タイミングサブシステム330の動作(プレトリガー信号331の発生タイミングなど)に対する特定のタイミングを含んでもよい。
また、持続時間は、例えば、表面走査プローブ320がX、Y及びZ位置信号をサンプリングする時間の長さ(サンプル期間)とされている。図4では、持続時間はサンプル期間tsampとされている。
いくつかの実施態様では、予測可能な時間を決定するためにプローブ測定タイミングサブシステム330を動作させるステップは、トリガー期間tsyncで繰り返される測定同期トリガー信号311をプローブ測定タイミングサブシステム330に入力するステップと、測定同期トリガー信号311のタイミングを決定するステップとを含んでもよい。いくつかの実施形態では、測定同期トリガー信号311の次の予測可能な時間の前に、プレトリガーリード時間にプローブワークピース測定値のサンプル期間の現在のインスタンスを開始するためにプローブ測定タイミングサブシステム330を動作させるステップは、測定同期トリガー信号311の次の予測可能な時間の前に、プレトリガーリード時間に対応する以前の測定同期トリガー信号311の後の時間にプローブワークピース測定値のサンプル期間の現在のインスタンスを開始するステップを含んでもよい。
図4に示すように、表面走査プローブ320は、プローブワークピース測定値のサンプル期間tsampの間に出力されるプローブワークピース測定値のうちの単一のインスタンスに対応付けられた測定データを取得する。いくつかの実施形態では、プローブ測定タイミングサブシステムは、プローブワークピース測定値のサンプル期間tsampの現在の持続時間の約半分であるプレトリガーリード時間tleadを決定するように動作されてもよい。これにより、サンプル期間(例えば、サンプル期間322Aまたはサンプル期間322B)のほぼ中央にある測定同期トリガー信号311が得られる。
プレトリガーリード時間tleadは、以下のようにして決定することができる。プローブ測定タイミングサブシステム330は、測定同期トリガー信号311の次の予測可能な時間の前に、プレトリガーリード時間tleadに表面走査プローブ320へプレトリガー信号331を出力することによって、プローブワークピース測定値のサンプル期間の現在のインスタンスを開始することができる。単一のプローブワークピース測定値のサンプル期間(例えば、サンプル期間322Aまたはサンプル期間322B)中に、表面走査プローブ320は、サンプルタイミング間隔tcycでn個のサンプルを取得することができる。図4に示す実施形態では、nは8である。表面走査プローブ320は、プレトリガー信号331のインスタンスの後に、総システム待ち時間tlatでプローブワークピース測定値のサンプル期間のインスタンスを開始することができる。その際、プレトリガーリード時間tleadは、次の式によって決定される。
lead =((n/2)−1)tcyc +tlat +(tcyc /2) 式(1)
いくつかの実施形態では、サンプルタイミング間隔tcycは5μs〜7μsの範囲内であり、総システム待ち時間tlatは1μs〜2μsの範囲内であり得る。プレトリガーリード時間tleadは、1μs〜200μsの範囲であり得る。
図4に示されている実施形態では、CMM制御システム310は、対応する測定同期トリガー信号311の後に、データ遅延tdatdelayを有するプローブワークピース測定値321を受信する。表面走査プローブ320は、プレトリガー信号331のインスタンスの後に、遅延tdelayに対応する時間にプローブワークピース測定値の出力を開始する。プレトリガー信号331の各インスタンスは、プレトリガー信号331のインスタンスの幅であるトリガー幅ttrigwidに対応している。表面走査プローブ320は、プローブワークピース測定値321を送信時間tidにわたってCMM制御システム310に出力する。その際に、データ遅延tdatdelayは、次の式によって決定される。
datdelay = ttrigwid +tdelay +tid −tlead 式(2)
いくつかの実施形態では、トリガー幅ttrigwidは200ns〜300nsの範囲内であり、遅延tdelayは5μs〜350μsの範囲内であり、送信時間tidは25μs〜35μsの範囲内であり得る。
図5は、CMMを動作させる方法を示すフロー図500である。CMMは、CMM制御システム、プローブワークピース測定値を出力することでワークピース表面を測定する表面走査プローブ、及びプローブ測定タイミングサブシステムを備える。
ブロック510において、CMM制御システムは、予測可能な時間に測定同期トリガー信号を出力するように動作される。
ブロック520において、プローブ測定タイミングサブシステムは、その予測可能な時間を決定し、表面走査プローブが出力されるプローブワークピース測定値のうちのただ一つに対応付けられた測定データを取得する期間であるそのプローブワークピース測定値のサンプル期間の現在の持続時間を決定するように動作される。
ブロック530において、プローブ測定タイミングサブシステムは、そのプローブワークピース測定値のサンプル期間の現在の持続時間の一部であるプレトリガーリード時間を決定するように動作される。
ブロック540において、プローブ測定タイミングサブシステムは、測定同期トリガー信号の次の予測可能な時間の前に、プレトリガーリード時間にプローブワークピース測定値のサンプル期間の現在のインスタンスを開始し、そのプローブワークピース測定値の対応付けられた現在のインスタンスを決定するように動作される。
ブロック550において、CMM制御システムは、次の予測可能な時間に現在の測定同期トリガー信号を出力し、その現在の測定同期トリガー信号に対応付けられたCMM位置座標値の現在のセットをラッチするように動作される。
ブロック560において、CMM制御システムがプローブワークピース測定値の現在のインスタンスをCMM位置座標値の現在のセットに対応付けるように、表面走査プローブは、現在の測定同期トリガー信号に対応付けられた時間にプローブワークピース測定値の現在のインスタンスを出力するように動作される。
本開示の好ましい実施形態が図示され説明されてきたが、図示され記載された特徴構成及び動作シーケンスにおける多数の変形は、本開示に基づくことで当業者には明らかであろう。様々な代替形態が、本明細書に開示された原理を実施するために使用されてもよい。加えて、上記の様々な実施形態を組み合わせて、さらなる実施形態を提供することができる。本明細書で参照される全ての米国特許および米国特許出願は、その全体が参照により本明細書に組み込まれている。必要に応じて、さらなる実施形態を提供するために様々な特許および出願の概念を採用するために、実施形態の態様を変更することができる。
これらの変更および他の変更は、上記の詳細な説明に照らして実施形態に対して行うことができる。一般に、以下の特許請求の範囲において、使用される用語は、明細書および特許請求の範囲に開示された特定の実施形態で特許請求の範囲を限定すると解釈されるべきではなく、そのような特許請求の範囲が持ちうる等価なすべての範囲に沿うすべての可能な実施形態を含むと解釈されるべきである。

Claims (10)

  1. CMM制御システムと、プローブワークピース測定値を出力することによってワークピース表面を測定する表面走査プローブと、プローブ測定タイミングサブシステムとを備える座標測定装置を動作させる方法であって、
    予測可能な時間に測定同期トリガー信号を出力するように前記CMM制御システムを動作させるステップと、
    前記予測可能な時間を決定し、前記表面走査プローブがその出力されるプローブワークピース測定値のうちの単一のインスタンスに対応付けられた測定データを取得する期間であるプローブワークピース測定値のサンプル期間の現在の持続時間を決定するように、前記プローブ測定タイミングサブシステムを動作させるステップと、
    前記プローブワークピース測定値のサンプル期間の前記現在の持続時間の一部であるプレトリガーリード時間を決定するように、前記プローブ測定タイミングサブシステムを動作させるステップと、
    前記測定同期トリガー信号の次の予測可能な時間である前記測定同期トリガー信号の発生した後の次に来る測定同期トリガー信号の発生する時間の前の前記プレトリガーリード時間に前記プローブワークピース測定値のサンプル期間の現在のインスタンスを開始し、前記現在のインスタンスを決定するように、前記プローブ測定タイミングサブシステムを動作させるステップと、
    前記次の予測可能な時間に現在の測定同期トリガー信号を出力し、前記現在の測定同期トリガー信号に対応付けられたCMM位置座標値の現在のセットをラッチするように、前記CMM制御システムを動作させるステップと、
    前記CMM制御システムが前記プローブワークピース測定値の前記現在のインスタンスをCMM位置座標値の前記現在のセットに対応付けるように、前記現在の測定同期トリガー信号に対応付けられた時間に前記プローブワークピース測定値の前記現在のインスタンスを出力するように、前記表面走査プローブを動作させるステップと、を含むことを特徴とする座標測定装置を動作させる方法。
  2. 請求項1において、前記プレトリガーリード時間を決定するために前記プローブ測定タイミングサブシステムを動作させるステップは、前記プローブワークピース測定値のサンプル期間の前記現在の持続時間の約半分であるプレトリガーリード時間を決定するステップを含むことを特徴とする座標測定装置を動作させる方法。
  3. 請求項1において、前記CMM制御システムは、トリガー周波数で繰り返される測定同期トリガー信号を出力し、前記予測可能な時間を決定するために前記プローブ測定タイミングサブシステムを動作させるステップは、前記トリガー周波数で前記繰り返される測定同期トリガー信号を前記プローブ測定タイミングサブシステムに入力するステップと、前記繰り返される測定同期トリガー信号のタイミングを決定するステップと、を含むことを特徴とする座標測定装置を動作させる方法。
  4. 請求項3において、前記測定同期トリガー信号の前記次の予測可能な時間の前に、前記プレトリガーリード時間に前記プローブワークピース測定値のサンプル期間の現在のインスタンスを開始するために前記プローブ測定タイミングサブシステムを動作させるステップは、前記測定同期トリガー信号の前記次の予測可能な時間の前に、前記プレトリガーリード時間に対応する以前の測定同期トリガー信号の後の時間に前記プローブワークピース測定値のサンプル期間の前記現在のインスタンスを開始するステップを含むことを特徴とする座標測定装置を動作させる方法。
  5. 請求項1において、前記プローブ測定タイミングサブシステムは、前記表面走査プローブに配置されていることを特徴とする座標測定装置を動作させる方法。
  6. 請求項1において、前記プローブ測定タイミングサブシステムは、前記CMM制御システムに配置されていることを特徴とする座標測定装置を動作させる方法。
  7. 請求項6において、前記プローブ測定タイミングサブシステムは、前記CMM制御システム内の交換可能なカードに配置されていることを特徴とする座標測定装置を動作させる方法。
  8. 請求項7において、前記交換可能なカードは、特に前記表面走査プローブまたは特に表面走査プローブのモデルのうちの少なくとも1つに具体的に対応付けられていることを特徴とする座標測定装置を動作させる方法。
  9. 請求項1において、前記表面走査プローブは、スタイラスの偏差の変位量を感知する接触型表面走査プローブであることを特徴とする座標測定装置を動作させる方法。
  10. 請求項1において、
    前記プローブ測定タイミングサブシステムは、前記測定同期トリガー信号の前記次の予測可能な時間の前に、プレトリガーリード時間tleadに前記表面走査プローブへプレトリガー信号を出力することによって、前記プローブワークピース測定値のサンプル期間の前記現在のインスタンスを開始し、
    単一のプローブワークピース測定値のサンプル期間中に、前記表面走査プローブはサンプルタイミング間隔tcycでn個のサンプルを取得し、
    前記CMM制御システムは、総システム待ち時間tlatに前記表面走査プローブからデータを受信し、そして、
    前記プレトリガーリード時間tleadは、次の式によって決定されることを特徴とする座標測定装置を動作させる方法。
    lead =((n/2)−1)tcyc +tlat +(tcyc /2)
JP2017114033A 2016-06-24 2017-06-09 座標測定装置を動作させる方法 Active JP6419261B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/192,799 2016-06-24
US15/192,799 US9970744B2 (en) 2016-06-24 2016-06-24 Method for operating a coordinate measuring machine

Publications (2)

Publication Number Publication Date
JP2017227629A JP2017227629A (ja) 2017-12-28
JP6419261B2 true JP6419261B2 (ja) 2018-11-07

Family

ID=59061935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017114033A Active JP6419261B2 (ja) 2016-06-24 2017-06-09 座標測定装置を動作させる方法

Country Status (4)

Country Link
US (1) US9970744B2 (ja)
EP (1) EP3260812B1 (ja)
JP (1) JP6419261B2 (ja)
CN (2) CN112902899B (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6630535B2 (ja) * 2015-10-22 2020-01-15 株式会社ミツトヨ 形状測定装置の制御方法
US10215547B2 (en) * 2016-06-24 2019-02-26 Mitutoyo Corporation Method for operating a coordinate measuring machine
GB201615307D0 (en) * 2016-09-09 2016-10-26 Renishaw Plc Measurement method and apparatus
US10866080B2 (en) 2018-11-01 2020-12-15 Mitutoyo Corporation Inductive position detection configuration for indicating a measurement device stylus position
WO2019169184A1 (en) * 2018-02-28 2019-09-06 DWFritz Automation, Inc. Metrology system
US10914570B2 (en) 2018-11-01 2021-02-09 Mitutoyo Corporation Inductive position detection configuration for indicating a measurement device stylus position
US11740064B2 (en) 2018-11-01 2023-08-29 Mitutoyo Corporation Inductive position detection configuration for indicating a measurement device stylus position
US11543899B2 (en) 2018-11-01 2023-01-03 Mitutoyo Corporation Inductive position detection configuration for indicating a measurement device stylus position and including coil misalignment compensation
US11644298B2 (en) 2018-11-01 2023-05-09 Mitutoyo Corporation Inductive position detection configuration for indicating a measurement device stylus position
CN113167575A (zh) * 2018-12-06 2021-07-23 海克斯康测量技术有限公司 使用多模态进行测量的系统和方法
DE102019122655A1 (de) 2019-08-22 2021-02-25 M & H Inprocess Messtechnik Gmbh Messsystem
US11644299B2 (en) 2020-12-31 2023-05-09 Mitutoyo Corporation Inductive position sensor signal gain control for coordinate measuring machine probe
US11713956B2 (en) 2021-12-22 2023-08-01 Mitutoyo Corporation Shielding for sensor configuration and alignment of coordinate measuring machine probe
US11733021B2 (en) 2021-12-22 2023-08-22 Mitutoyo Corporation Modular configuration for coordinate measuring machine probe

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780961A (en) * 1986-11-10 1988-11-01 Shelton Russell S Probe assembly and circuit for measuring machine
GB8920447D0 (en) 1989-09-09 1989-10-25 Renishaw Plc Method and apparatus of datuming a coordinate positioning machine
FR2674659A1 (fr) 1991-03-29 1992-10-02 Renishan Metrology Ltd Dispositif de transmission de signaux pour sonde a declenchement.
US6131301A (en) * 1997-07-18 2000-10-17 Renishaw Plc Method of and apparatus for measuring workpieces using a coordinate positioning machine
DE19929557B4 (de) 1999-06-18 2006-01-19 Dr. Johannes Heidenhain Gmbh Verfahren und Schaltkreis zur Einstellung einer Schaltschwelle eines Tastschalters
JP4417114B2 (ja) 2002-02-28 2010-02-17 カール ツァイス インドゥストリーレ メステクニーク ゲーエムベーハー 座標測定器用プローブヘッド
GB0229763D0 (en) 2002-12-23 2003-01-29 Renishaw Plc Signal transmission system for a trigger probe
GB0400144D0 (en) 2004-01-06 2004-02-11 Renishaw Plc Inspection system
CN100483070C (zh) * 2004-05-27 2009-04-29 约翰尼斯海登海恩博士股份有限公司 用于坐标测量的装置和方法
JP4782990B2 (ja) * 2004-05-31 2011-09-28 株式会社ミツトヨ 表面倣い測定装置、表面倣い測定方法、表面倣い測定プログラムおよび記録媒体
US7478256B2 (en) 2006-01-24 2009-01-13 National Instruments Corporation Coordinating data synchronous triggers on multiple devices
US7652275B2 (en) 2006-07-28 2010-01-26 Mitutoyo Corporation Non-contact probe control interface
GB0703423D0 (en) * 2007-02-22 2007-04-04 Renishaw Plc Calibration method and apparatus
GB0900878D0 (en) * 2009-01-20 2009-03-04 Renishaw Plc Method for optimising a measurement cycle
JP5276488B2 (ja) * 2009-03-20 2013-08-28 株式会社森精機製作所 工作機械における工作物測定装置およびその方法
US8630314B2 (en) * 2010-01-11 2014-01-14 Faro Technologies, Inc. Method and apparatus for synchronizing measurements taken by multiple metrology devices
JP5410317B2 (ja) 2010-02-05 2014-02-05 株式会社ミツトヨ 三次元測定機
US8392740B2 (en) 2010-04-02 2013-03-05 National Instruments Corporation Synchronization of converters having varying group-delays in a measurement system
EP2533022A1 (de) * 2011-06-10 2012-12-12 Hexagon Technology Center GmbH Hochpräzise synchronisierte Messwerterfassung
JP2014153223A (ja) * 2013-02-08 2014-08-25 Canon Inc 計測装置
US9803972B2 (en) * 2015-12-17 2017-10-31 Mitutoyo Corporation Optical configuration for measurement device
US10215547B2 (en) * 2016-06-24 2019-02-26 Mitutoyo Corporation Method for operating a coordinate measuring machine

Also Published As

Publication number Publication date
US20170370688A1 (en) 2017-12-28
JP2017227629A (ja) 2017-12-28
CN112902899B (zh) 2022-08-02
US9970744B2 (en) 2018-05-15
EP3260812B1 (en) 2022-02-09
EP3260812A1 (en) 2017-12-27
CN112902899A (zh) 2021-06-04
CN107543519A (zh) 2018-01-05

Similar Documents

Publication Publication Date Title
JP6419261B2 (ja) 座標測定装置を動作させる方法
US10215547B2 (en) Method for operating a coordinate measuring machine
JP6058109B2 (ja) 較正の方法および装置
EP1579168B2 (en) Workpiece inspection method and apparatus
JP6622216B2 (ja) 測定プローブの較正
JP5192283B2 (ja) 三次元測定機
EP2013571B1 (en) Method of error correction
JP5523995B2 (ja) 測定装置
US6912476B2 (en) Position measuring device and method for determining a position
CN101140161A (zh) 表面形状测定装置
JP2019512095A (ja) 走査プローブを較正するための方法及び装置
JP7363006B2 (ja) 校正対象エンコーダの校正値生成方法、及び校正対象エンコーダの校正値生成システム
JP4884091B2 (ja) 形状測定機
KR100941970B1 (ko) 서로 다른 두면에 형성된 구멍 크기 및 수직거리 측정장치
JP6629376B2 (ja) 座標測定装置を動作させる方法
JP2020197503A (ja) 座標測定機、及び座標測定プログラム
JP3820357B2 (ja) 計測方法および計測装置
JP6388384B2 (ja) 計測装置、および処理装置
JP2003254784A (ja) 変位校正方法及び装置
KR20100045816A (ko) 구멍 크기 및 간격 측정장치
Liu et al. Characteristic evaluation and experimental analysis of the ultrahigh precision three-dimensional scanning probe
Dontsov et al. Measurements of Three-Dimensional Freeform and Aspheric Geometries
ITMI990127A1 (it) Procedimento ed apparecchiatura per misurare pezzi di lavoro impiegando una macchina a posizionamento a coordinate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181009

R150 Certificate of patent or registration of utility model

Ref document number: 6419261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250