JP6410931B2 - 高高度航空カメラシステム - Google Patents

高高度航空カメラシステム Download PDF

Info

Publication number
JP6410931B2
JP6410931B2 JP2017518383A JP2017518383A JP6410931B2 JP 6410931 B2 JP6410931 B2 JP 6410931B2 JP 2017518383 A JP2017518383 A JP 2017518383A JP 2017518383 A JP2017518383 A JP 2017518383A JP 6410931 B2 JP6410931 B2 JP 6410931B2
Authority
JP
Japan
Prior art keywords
camera
detail
view
aircraft
overview
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017518383A
Other languages
English (en)
Other versions
JP2017527819A (ja
Inventor
ポール ラプストン
ポール ラプストン
マーク ハロルド ターリントン
マーク ハロルド ターリントン
デイヴィッド アーノルド ブリーズ
デイヴィッド アーノルド ブリーズ
Original Assignee
ニアマップ オーストレイリア ピーティーワイ リミテッド
ニアマップ オーストレイリア ピーティーワイ リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/310,523 external-priority patent/US9046759B1/en
Application filed by ニアマップ オーストレイリア ピーティーワイ リミテッド, ニアマップ オーストレイリア ピーティーワイ リミテッド filed Critical ニアマップ オーストレイリア ピーティーワイ リミテッド
Publication of JP2017527819A publication Critical patent/JP2017527819A/ja
Application granted granted Critical
Publication of JP6410931B2 publication Critical patent/JP6410931B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/006Apparatus mounted on flying objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/698Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/02Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B37/00Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
    • G03B37/04Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe with cameras or projectors providing touching or overlapping fields of view
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4038Image mosaicing, e.g. composing plane images from plane sub-images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/181Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Studio Devices (AREA)

Description

本発明は、効率的な航空カメラシステム、および、航空写真からモザイク写真を作成するための効率的な方法に関する。
正射写真の精確に地理参照されたモザイク写真は、航空写真から自動的に作成できるため、かつ、地上で実際に有用な詳細を示すため、従来の絵地図に代わって普及している。
航空写真からの精確なモザイク写真の作成については、例えば、Elements of Photogrammetry with Application in GIS、第4版(Wolfら)、および、Manual of Photogrammetry、第6版(American Society for Photogrammetry and Remote Sensing(ASPRS))といった文献に明確に記載されている。
モザイク写真の作成は、関心領域を確実に完全な被写域とするために、かつ、写真の精確なバンドル調整、正射投影化、および位置合わせを可能にする形象において確実に十分な冗長性があるように、関心領域の航空写真を重複させるように系統的に撮ることを必要とする。
バンドル調整は、接地点およびカメラ姿勢の冗長的な予測が改良されることによるプロセスである。最新のバンドル調整は、「Bundle Adjustment−A Modern Synthesis」(Triggsら)に詳細に記載されている。
バンドル調整は、手動で特定される接地点の位置で、または、多くなっているが、重複する写真の間で自動的に適合される自動特定地表特徴の位置で行うことができる。
重複する航空写真は通常は、関心領域にわたって蛇行パターンで測量機を操縦することによって撮られる。測量機は、航空カメラシステムを運搬し、蛇行飛行パターンは、カメラシステムによって撮られた写真が飛行パターンの範囲内の飛行経路に沿って、かつ、隣接した飛行経路間で確実に重複するようにする。
精確なバンドル調整のための十分な冗長性は通常は、少なくとも60%の、すなわち、飛行経路に沿った連続する写真の間の縦方向(順方向)の重複、および、少なくとも40%の、すなわち、隣接した飛行経路における写真の間の横方向(側方)の重複の選択を決定づける。これは、60/40重複と言及されることが多い。
選択された重複は、必要とされる飛行時間および撮られる(かつ後に処理される)写真の数両方を決定することになる。従って、重複が大きいことは、飛行時間および処理時間の両方に関しては費用がかかり、実際的な重複の選択には、費用とモザイク写真精度との間で妥協点を見出すことになる。
多重解像度カメラシステムの使用によって、精度を過度に妥協せずに重複を低減する効果的な方法がもたらされる。多重解像度航空写真を撮りかつ処理することは、米国特許第8,497,905号および第8,675,068号(Nixon)に記載されており、これらの内容は本明細書において参照によって組み込まれている。多重解像度の写真一式は、モザイク写真精度が低解像度の概観写真の間の重複から得られることを可能にし、モザイク写真の詳細はより高い解像度の詳細写真から得られる。
米国特許第8,497,905号および第8,675,068号(Nixon)は小型機に取り付け可能な外付けカメラポッドついて記載している。外付けポッドは、ポッドがきわめて航空機に特化していること、および、ポッド内の空間が制約されていることといった2つの重要な不利点を有する。航空機に特化したポッドは航空機の選択に限られるため、高度範囲といった操作パラメータを限定し、逆に言えば、異なる航空機に適応させるために設計、試験、および認定に対するかなりの労力を必要とする。ポッド内の制約のある空間は、カメラレンズのサイズ、ひいては焦点距離を限定し、さらには、特定の目標像の解像度について動作高度の範囲を限定する。
第1の態様では、本発明は、航空画像を撮るためのシステムを提供する。このシステムは、少なくとも1つの概観カメラ、複数の詳細カメラ、およびカメラを保持するためのフレームを含む少なくとも1つのカメラ装置を備える。それぞれの詳細カメラは少なくとも1つの概観カメラより長い焦点距離を有し、それぞれの詳細カメラは異なる角度で横方向に装着されることで、詳細カメラの視野は重複して拡張された横方向視野を形成する。
カメラ装置は、カメラ穴より上に、航空機の床面および航空機によって運搬されるポッドの床面のうちの少なくとも1つに取り付け可能であることによって、カメラ穴を通して航空機より下の地表の光景をカメラにもたらすことができる。
このシステムは、航空機またはポッドの床面に取り付け可能なアダプター板を含むことができ、フレームはアダプター板に取り付け可能である。例えば、アダプター板は、床面に設定された装着点に留め付けることによって床面に取り付けることができる、または、床面に取り付けられたシートトラックに留め付けることによって床面に取り付けることができる。
システムは、複数のカメラ装置を備え、それぞれのカメラ装置は、異なる横方向の角度で装着されることで、カメラ装置の拡張された横方向視野は重複してより大きく拡張された横方向視野を形成することができる。
それぞれの詳細カメラはカメラ穴の中央の方へ内方に角度が付けられることによって、詳細カメラの視野に対応するために必要とされるカメラ穴のサイズを最小化してもうよい。
少なくとも1つの詳細カメラは、屈折レンズ、反射レンズ、または反射屈折レンズを有してもよい。
少なくとも1つの詳細カメラの指示方向は、ビームステアリング機構を介して時間多重化されることでより広い有効な視野をもたらしてもよく、ビームステアリング機構は可動式ミラーであってもよい。
システムは、連続する詳細写真が縦方向に重複するように飛行中に詳細カメラを自動的に作動させるように構成されるコンピュータシステムをさらに備えてもよい。
システムは、少なくとも1つの全地球的航法衛星システム(GNSS)受信機をさらに備えてもよい。コンピュータは、少なくとも1つのGNSS受信機からの位置データをリアルタイムで受信しかつ記憶するように構成される。
システムは、慣性計測装置(IMU)をさらに備えてもよい。コンピュータは、IMUからの方位データをリアルタイムで受信しかつ記憶するように構成される。
システムは、少なくとも1つのカメラ上で、航空機の角運動の影響を補正することによって、カメラの指向を確実に経時的に不変の方向にするように構成される少なくとも1つの角運動補償(AMC)装置をさらに備えてもよい。AMCはカメラの光路において可動式ミラーを介してもたらされてもよい。
システムは、少なくとも1つのカメラ上で、航空機の順方向運動の影響を補正することによって、カメラによって撮られる写真のモーションブラーを低減するように構成される少なくとも1つの順方向運動補償(FMC)機構をさらに備えてもよい。FMCは、カメラの光路において可動式ミラーを介してもたらされてもよい。
天底に対するカメラ装置の平均指示方向は、ゼロ度および45度を含む群から選択されてもよい。
少なくとも1つのカメラの画像センサは、カメラによって撮られる写真の遠近短縮を低減するように傾斜されてもよい。
V5−300HyperCamera装置の前面図、すなわち、航空機の正面の方へ前方に向いている図である。 カメラ装置の背面図である。 カメラ装置の上面図である。 カメラ装置の底面図である。 カメラ装置の分解図である。 カメラの分解図、および、それぞれのカメラの視野と共にカメラ装置の中央支持部を示す図である。 下から見たカメラ装置を、航空機カメラ穴の開口部を通るそのカメラ装置の組み合わせられた視野と共に示す図である。 カメラ装置の概観視野、および、5つの重複する詳細視野を示す図である。 航空機の床面上のシートトラックに装着されるHyperCameraのアダプター板を示す図である。 カメラ装置、アダプター板、および、航空機の床面上のシートトラックの分解図である。 カメラ、および、広角バージョンのカメラ装置の中央支持部の分解図である。 V5−180HyperCamera装置の概観視野および5つの重複する詳細視野を示す図である。 セスナ208航空機に設置されるHyperCameraの平面図である。 セスナ208航空機に設置されるV5−300HyperCameraの詳細な平面図である。 V5−300HyperCameraを運搬するセスナ208航空機の正面図であって、合成概観視野および集成詳細視野を示す図である。 V5−300HyperCameraを運搬するセスナ208航空機の側面図であって、合成概観視野および集成詳細視野を示す図である。 3つの連続したスナップショットの重複する視野を示す図である。 隣接した飛行経路におけるスナップショットの重複する視野を示す図である。 3つの隣接した飛行経路に沿った連続したスナップショットの重複する集成詳細視野を示す図である。 HyperCameraの電源および制御システムのブロック図である。 多重解像度のHyperCameraの写真からモザイク写真を効率的に作成するための写真測量プロセスフローを示す図である。 高度および100mm〜600mmのカメラ焦点距離に応じた地上分解能(GSD)の表を示す図である。 高度および700mm〜1200mmのカメラ焦点距離に応じた地上分解能(GSD)の表を示す図である。 高度12,000フィートでの、V5−300HyperCameraの概観視野および重複する詳細視野を示す図である。 高度12,000フィートでの、V10−600HyperCameraの概観視野および重複する詳細視野を示す図である。 高度12,000フィートでの、V15−900HyperCameraの概観視野および重複する詳細視野を示す図である。 高度12,000フィートでの、V5−300HyperCameraの3つの連続したスナップショットの重複する視野を示す図である。 高度12,000フィートでの、V10−600HyperCameraの3つの連続したスナップショットの重複する視野を示す図である。 高度12,000フィートでの、V15−900HyperCameraの3つの連続したスナップショットの重複する視野を示す図である。 高度12,000フィートでの、V5−300HyperCameraの隣接した飛行経路でのスナップショットの重複する視野を示す図である。 高度12,000フィートでの、V10−600HyperCameraの隣接した飛行経路でのスナップショットの重複する視野を示す図である。 高度12,000フィートでの、V15−900HyperCameraの隣接した飛行経路でのスナップショットの重複する視野を示す図である。 2つのV5−600HyperCamera装置から成るV10−600HyperCameraを運搬するセスナ208航空機の正面図であって、合成概観視野および集成詳細視野を示す図である。 航空機客室に設置される2つのV5−600カメラ装置を備えるV10−600HyperCameraを運搬するセスナ208航空機の側面図であって、それぞれのカメラ装置の合成概観視野および集成詳細視野を示す図である。 標準的なセスナ208の胴体下側部分に装着されるカーゴポッドに設置される2つのV5−600カメラ装置を備えるV10−600HyperCameraを運搬するセスナ208航空機の側面図であって、それぞれのカメラ装置の合成概観視野および集成詳細視野を示す図である。 3つのV5−900カメラ装置を備えるV15−900HyperCameraを運搬するセスナ208航空機の正面図であって、破線はカメラ装置の視野間の区分を示す、合成概観視野および集成詳細視野を示す図である。 航空機客室に設置される3つのV5−900カメラ装置を備えるV15−900HyperCameraを運搬するセスナ208航空機の側面図であって、それぞれのカメラ装置の合成概観視野および集成詳細視野を示す図である。 標準的なセスナ208の胴体下側部分に装着されるカーゴポッドに設置される3つのV5−900カメラ装置を備えるV15−900HyperCameraを運搬するセスナ208航空機の側面図であって、それぞれのカメラ装置の合成概観視野および集成詳細視野を示す図である。 一定の飛行高度24,000フィートでの、V5−300の2つの隣接した飛行経路からの2つの重複するフットプリントを示し、本図の破線グリッドは1km間隔を有する図である。 一定の飛行高度24,000フィートでの、V10−600の2つの隣接した飛行経路からの2つの重複するフットプリントを示し、本図の破線グリッドは1km間隔を有する図である。 一定の飛行高度24,000フィートでの、V15−900の2つの隣接した飛行経路からの2つの重複するフットプリントを示し、本図の破線グリッドは1km間隔を有する図である。 一定の飛行高度36,000フィートでの、V5−300の2つの隣接した飛行経路からの2つの重複するフットプリントを示し、本図の破線グリッドは1km間隔を有する図である。 一定の飛行高度36,000フィートでの、V10−600の2つの隣接した飛行経路からの2つの重複するフットプリントを示し、本図の破線グリッドは1km間隔を有する図である。 一定の飛行高度36,000フィートでの、V15−900の2つの隣接した飛行経路からの2つの重複するフットプリントを示し、本図の破線グリッドは1km間隔を有する図である。 航空機客室に設置される5つのHyperCamera:V10−600(垂直)、R10−600(右斜め)、L10−600(左斜め)、F10−600(前斜め)、およびB10−600(後斜め)を運搬するセスナ208航空機の正面図であって、それぞれの合成概観視野および集成詳細視野を示す図である。 航空機客室に設置される5つのHyperCamera:V10−600(垂直)、R10−600(右斜め)、L10−600(左斜め)、F10−600(前斜め)、およびB10−600(後斜め)を運搬するセスナ208航空機の側面図であって、それぞれの合成概観視野および集成詳細視野を示す図である。 標準的なセスナ208の胴体下側部分に装着されるカーゴポッドに設置される5つのHyperCamera:V10−600(垂直)、R10−600(右斜め)、L10−600(左斜め)、F10−600(前斜め)、およびB10−600(後斜め)を運搬するセスナ208航空機の側面図であって、それぞれの合成概観視野および集成詳細視野を示す図である。 代替的なカメラ配置構成によるカメラ装置の底面図である。 一連のカメラとして実装されるカメラ装置、およびそれらカメラのそれぞれの光軸を示す図である。 複数の光路をもたらすための可動式ミラーを介して時間多重化される単一カメラとして実装されるカメラ装置を示す図である。 複数の光路をもたらすための可動式ミラーを介して時間多重化される単一カメラとして実装されるカメラ装置の代替的な構成を示す図である。 角運動補償(AMC)用の可動式ミラーによる、複数の光路をもたらすための可動式ミラーを介して時間多重化される単一カメラとして実装されるカメラ装置を示す図である。 カメラの視野および解像度の計算に関する式を示す図表である。 一連のカメラの視野の計算に関する式を示す図表である。 傾斜させたカメラの解像度の計算に関する式を示す図表である。
例としてのみ示される以下の形態は、好ましい実施形態(複数可)の主題をより正確に理解してもらうために記載される。
HyperCamera(登録商標)は、大型および小型の広範な航空機に配備するのに適した幅広い多重解像度航空カメラシステムである。このカメラシステムは、モジュール式で、通常は測量機または航空機搭載ポッドの床面から設けられるように、適切な、1つまたは複数の標準カメラ穴より上に設置されるように設計される。
それぞれのHyperCameraモデルは、カメラの指示方向(P)、配列されたカメラの数(N)、および、カメラの焦点距離(f)によって画定され、指示子PN−fによって特定される。例えば、300mmのカメラ5台の垂直HyperCameraは、V5−300モデルと呼ばれる。
航空カメラによって撮られる詳細度は、通常は、地上分解能(GSD)、すなわち、カメラの視野範囲内で地上へ投影される時隣接した画素中心間の距離によって特徴付けられる。
GSDは、図42の式1に従って、カメラレンズの焦点距離(252)、地面からの高度(254)、および、画像センサの画素ピッチ(260)によって決定される。
航空撮像の効率は、通常は、単位時間当たりに撮られる領域(例えば、1時間当たりの平方km)によって特徴付けられる。これは、航空機の速度、および、走査幅と呼ばれる、航空カメラシステムの視野(FOV)の幅に比例する。
単一カメラの走査幅(258)は、図42の式2に従って、カメラレンズの焦点距離(252)、地面からの高度(254)、および、画像センサの横方向サイズ(256)によって決定される。高度を2倍にすると走査幅は2倍になる。
単一カメラの横方向視野(250)は、図42の式4に従って、カメラレンズの焦点距離(252)、および、画像センサの横方向サイズ(256)によって決定される。焦点距離を2倍にすると、視野はおよそ半分に減る。
一連のカメラの横方向視野(270)は、図43の式7に従って、それぞれのカメラの視野(250)、カメラの数、および、それらカメラの角重複(272)によって決定される。カメラの数を2倍にすると視野はおよそ2倍になる。一連のカメラの走査幅(278)は図43の式8によって示される。
航空カメラシステムの実際的な視野は、航空画像における許容傾斜度によって、例えば、建物が視野端で撮られる時どれだけ傾くことが可能とされるのかによって限定される。実際的な視野は、たいてい50度以下に限定される。
実際的な視野が限定されるものとして、より高速でおよび/またはより高い高度で飛行することによって、より高い撮影効率(ひいてはより低い撮影費)が実現できる。より高い高度での飛行は、同じGSDを維持するためにより長い焦点距離を必要とする。次いで、それぞれのカメラがより狭い個々の視野を有するため、この飛行はさらには視野全体を維持するためにより多くのカメラを必要とする。
HyperCamera範囲は、さまざまな高度の操作ならびに幅広いGSDおよび撮影効率のサポートに適するモデルを含む。目標速度および高度によっては、HyperCameraシステムは、航空撮像に適した任意の航空機に設置可能である。例として、このシステムは、セスナ210などのピストン航空機、セスナ208などのターボプロップ航空機、および、セスナサイテーションなどのターボファン(ジェット)航空機を含む(がこれらに限定されない)。これらの航空機によって、100ノット未満から400ノットまでの速度で、低い高度から40,000フィートを上回る高度までの航空撮像が可能になる。
航空機は、非加圧または加圧可能であり、それぞれのカメラ穴は、適宜、開口されてよい、または、光学ガラス窓を収めてよい。それぞれのカメラ穴は、オプションとして、HyperCameraが操作されていない時に閉口できる扉によって保護されてよい。
好ましい実施形態では、図1〜図5に示されるように、V5−300HyperCameraは、5つの詳細カメラ110、および比較的広角の概観カメラ112を組み込むカメラ装置100を含む。それぞれの詳細カメラ110は詳細レンズ114を有し、概観カメラ112は概観レンズ116を有する。
概観レンズ116は、詳細レンズ114よりもかなり広角であることによって特徴付けられる。この概観レンズ116は、本来の広角レンズとすることができる一方、詳細レンズ114よりかなり広角である限りは、標準レンズまたはさらには望遠レンズとすることもできる。同様に、詳細レンズ114は本来の望遠レンズとすることができる一方、概観レンズ116よりかなり狭角である限りは、標準レンズまたはさらには広角レンズとすることもできる。
カメラ110および112は、好ましくは、民生(COTS)デジタルSLR(DSLR)カメラである。COTSカメラを使用することによって、システムを、利用可能な最新かつ最良のカメラに容易に適応させることができる。代替的にはまたは追加として、非モザイクのRGB撮像、マルチスペクトル撮像、および順方向運動補償といった、COTSカメラにおいて利用可能とされない撮像特徴をもたらすために、専用のカメラ設計も利用可能である。
ニコンおよびキャノンなどの供給業者による、24M画素〜36M画素の典型的な画素数の高解像度COTSカメラが利用可能である。36M画素のニコンD800DSLRカメラは、本システムにとってとりわけ優れた選択である。
DSLRカメラは、広範な高品質レンズを提供し、システムをさまざまな高度および解像度で動作するように容易に構成できるようにする。
システムは、カメラの組み合わせに容易に適応される。例えば、より大きい画素数の比較的より高価なカメラは、概観カメラとして採用可能である。70M画素のDSLRカメラは近い将来利用可能になることが見込まれ、70M画素のカメラは概観カメラにとって優れた選択となるであろう。
好ましい実施形態では、詳細カメラ110の詳細レンズ114は全て、同じ焦点距離を有し、詳細カメラ110は全て、同じ画素サイズを有する。よって、カメラ装置100は、概観および詳細といった、2つの別個のカメラ解像度を取り入れる。これは、異なる焦点距離を有する詳細レンズ114を使用することによって、および/または、異なる画素サイズの詳細カメラ110を使用することによって、2つ以上の複数の解像度に容易に拡張される。カメラ装置100は、異なる解像度を有する複数の概観カメラを組み込むこともできる。
それぞれの詳細レンズ114および概観レンズ116は、無限遠で焦点を合わせる固定焦点レンズ、または、可変焦点レンズであってよい。可変焦点レンズの場合、対応するカメラ110および/または112は自動焦点機構を組み込む。
それぞれの詳細カメラ110は、カメラ架台140に留め付けられ、さらにまた中央支持部122に留め付けられる。それぞれの詳細カメラレンズ114は、詳細カメラ架台140に留め付けられるクランプ144によってさらに据え付けられる。
概観カメラは、カメラ架台142に留め付けられ、さらにまた中央支持部122に留め付けられる。概観カメラレンズ116は、概観カメラ架台142に留め付けられるクランプ146によってさらに据え付けられる。
カメラ架台140および142は、カメラ装置100の構造の多くを個々のカメラモデルおよびレンズサイズの特性から切り離す。
中央支持部122は、一組の側部支持部124aおよび124bに取り付けられ、それぞれの側部支持部124はさらにまた、後部支持部126および前部支持部128に取り付けられて堅固なフレーム120を形成する。
それぞれの側部支持部124は、4つのボルト一式を介して装着点ブロック130に取り付けられ、装着点ブロック130はさらにまた、さらなる4つのボルト一式を介して、後部支持部126または前部支持部128に適宜取り付けられる。その結果、装着点ブロック130は、側部支持部124と、後部支持部126および前部支持部128との間の取り付け機構をもたらす。
側部支持部124のそれぞれ、ならびに後部支持部126および前部支持部128は、重量を最低限に抑えかつ剛性を最大化するためにC形の断面形を有し、中央支持部122は重量を最低限に抑えかつ剛性を最大化するために包囲されている。
それぞれの装着点ブロック130は固体であり、以下に記載されるように、カメラ装置100と測量機との間の取り付け点をもたらすというさらなる目的を果たす。
鋼鉄から作られる留め具以外の全ての部品は軽量のアルミニウムから作られる。
後部支持部126および前部支持部128は、3つの電源および制御分電箱150を保持する。それぞれの箱150は、電力および制御信号を一組のカメラに分配する。明確にするために、箱150とカメラ110および112との間の電源および制御ケーブル布線は図では省略される。
好ましい実施形態では、それぞれの詳細カメラ110は比較的高高度での高解像度撮像に適した焦点距離300mmのレンズ114を有する。例えば、(4.88um画素を有する)36M画素のニコンD800カメラを使用する時、300mmレンズは、60,000フィートで30cm、40,000フィートで20cm、20,000フィートで10cm、16,000フィートで8cm、12,000フィートで6cm、8000フィートで4cm、4,000フィートで2cm、および、2,000フィートで1cmといった地上分解能(GSD)を可能にする。
詳細カメラ110および概観カメラ112が同様の画素数および画素サイズを有すると仮定すると、概観カメラ112は、理想的には、さらに後述されるように、詳細レンズ114の焦点距離より4〜8倍短い焦点距離を有するレンズ116を有する。すなわち、300mmの詳細レンズ114について、概観レンズ116にとって適した焦点距離は約40mm〜75mmである。例示の目的のために、本システムは50mmの概観レンズ116を利用する。
図6は、300mmレンズ114を有する5つの詳細カメラ110のそれぞれの6.90度横方向視野162、および、50mmレンズ116を有する概観カメラ112の39.60度横方向視野を示す。
この明細書では、横方向は飛行方向220に垂直な方向であり、縦方向は飛行方向220に平行な方向である。
示されるように、詳細カメラは、横方向に6度離して、すなわち、6.90度の視野162をわずかに下回るように角度が付けられることで、視野162はわずかに重複する。
36M画素のニコンD800カメラを使用すると、5つの詳細カメラ110は、およそ160M画素の画素数を有する、すなわち重複を除いて、集成視野を有する。
詳細レンズ114としての使用に適したストック望遠レンズは、通常は、85mm、105mm、135mm、180mm、200mm、300mm、400mm、500mm、600mm、700mm、および800mmを含む種々の焦点距離で利用可能である。
20,000フィートでは、ニコンD800カメラにおける400mmレンズは、7.4cmのGSDを、600mmレンズは5.0cmのGSDを、800mmレンズは3.7cmのGSDを可能にする。
概観レンズ116としての使用に適したストック標準広角レンズは、通常は、10.5mm、14mm、16mm、18mm、20mm、21mm、24mm、28mm、35mm、40mm、45mm、50mm、55mm、60mm、および70mmを含む種々の焦点距離で利用可能である。
カメラ装置100は、異なるカメラ架台140(および142)およびクランプ144(および146)を介して異なるモデルおよびサイズのカメラ110(および112)およびレンズ114(および116)に対して容易に適応される。極端に長いレンズには、より高い中央支持部122が使用できる。
図6および図7に示されるように、詳細カメラは内方へ角度が付けられ、それによって、それらカメラの視野162はカメラ装置100の真下にわたって、視野がカメラ穴212を通る最小直径の腰状部をもたらす。これによって、カメラ装置100は標準20インチカメラ穴のみならず、約17インチほどしかないカメラ穴に対応する。
図8は、詳細カメラ110および概観カメラ112の接地板上への三次元視野160および170の投影を示す。この図は、詳細視野160が飛行方向220に垂直の方向にどのように重複するかを示す。
図9は、標準シートトラック留め具202によって、航空機、この場合セスナ208のシートトラック214に取り付けるアダプター板200を示す。アダプター板は、航空機の床面210からカメラ穴212を露出する開口部216を有する。
図10は、カメラ装置100、アダプター板200、および航空機床面210の分解図を示す。アダプター板200は、カメラ装置100を特定の航空機に取り付けるように設計され、そのカメラ装置100の設計を航空機特性から切り離す。例えば、さまざまなシートトラック間隔によって、または、航空機のカメラ穴設置がそれ自体の装着点を含むため、それぞれの航空機取り付けの変形に対して異なるアダプター板が設計される。
4つの装着点132は、その対応する装着点ブロック134の基部において凹部とはめ合わせるそれぞれの装着点132によって、アダプター板に留め付けられる。装着ボルト143は、それぞれの装着点ブロック134をその対応する装着点132にしっかりと取り付けることで、カメラ装置100をアダプター板200に取り付ける。
アダプター板200によって、カメラ装置100を、4つの装着ボルト143の設置および除去によって、航空機に容易に設置でき、かつ、後に航空機から除去できる。アダプター板200はそれ自体、一般的に航空機に容易に設置されかつ航空機から除去され、(適したカメラ穴が既に設置されていると仮定すると)航空機への改修を一切必要としない。外付けカメラポッドの設置は一般的に、格段に複雑な動作である。
図11は、詳細カメラ110にはより短い180mmレンズ114を、および、概観カメラ112には適合する28mmレンズ116を利用するV5−180HyperCamera装置100を示す。
(4.88um画素を有する)36M画素のニコンD800カメラを使用する時、180mmレンズは、12,000フィートで9.9cm、10,000フィートで8.3cm、8,000フィートで6.6cm、6,000フィートで5cm、および、4,000フィートで3.3cmといった地上分解能(GSD)を可能にする。
図11は、180mmレンズ114を有する5つの詳細カメラ110のそれぞれの11.40度横方向視野162、および、28mmレンズ116を有する概観カメラ112の65.50度横方向視野を示す。
示されるように、詳細カメラは、横方向に10.50度離して、すなわち、11.40度視野162をわずかに下回るように角度が付けられることで、視野162はわずかに重複する。
図12は、図10の詳細カメラ110および概観カメラ112の接地板上への三次元視野160および170の投影を示す。この図は、詳細視野160が飛行方向220に垂直の方向にどのように重複するか、および、より短いレンズに関連付けられたより広い視野が地表面の同じフットプリントについて、すなわち、図8と比較して、どのようにより低い飛行高度をもたらすのかを示す。
図13および図14は、カメラ穴にわたって中央に設置されるカメラ装置100を運搬するセスナ208測量機230の平面図を示す。この図は、カメラ装置100の制御および電力供給を行うために使用されるカメラ制御装置310(CCU)およびバッテリ装置320も示す。これらは下記でより詳細に説明される。明確にするために、CCU310、バッテリ装置320、およびカメラ装置100を接続するケーブル布線は省略される。
図15は、HyperCameraを運搬するセスナ208測量機230の正面図を示し、カメラ装置100の横方向概観視野172、および、カメラ装置100の集成横方向詳細視野182を示す。集成横方向詳細視野182は、5つの個々の重複する横方向詳細視野162の集成である。
図16は、HyperCameraを運搬するセスナ208測量機230の側面図を示し、カメラ装置100の縦方向概観視野174、および、カメラ装置100の縦方向詳細視野164を示す。
図17は、飛行方向220における3つの連続するスナップショットの重複する概観視野170および集成詳細視野180を示す。集成詳細視野180は、5つの個々の重複する詳細視野160の集成である。図に示される(すなわち、縦方向の重複によって暗に示されるような)カメラ作動率では、集成詳細視野180は縦方向に約20%重複し、概観視野170は縦方向に約85%重複する。
図18は、隣接した飛行航路からの、すなわち、相対する方向220に飛行した際の、2つのスナップショットの重複する概観視野170および集成詳細視野180を示す。図に示される飛行航路間隔では、集成詳細視野180は横方向に20%〜25%重複し、概観視野170は横方向に約40%重複する。
詳細カメラ110および概観カメラ112が同様の画素数および画素サイズを有すると仮定すると、詳細カメラレンズ114の焦点距離と概観カメラレンズ116の焦点距離の比率が約6の時、横方向概観視野172のサイズおよび横方向詳細視野182のサイズは同様であり、約4〜8の焦点距離の比率の有用なレンズの組み合わせが選択できる。
図19は、典型的な蛇行飛行航路222の一部である3つの隣接した飛行航路、すなわち、典型的な広域測量を構成することになる飛行航路のサブセットに沿った連続したスナップショットの重複する集成詳細視野180を示す。明確にするために、対応する概観視野170は省略される。この図は、それぞれの集成詳細視野180に対応するスナップショット位置224、すなわち、測量機230の位置も示す。
既に記したように、従来の単一解像度の航空測量は通常は、60/40の重複で、すなわち、60%前方への(または縦方向の)重複で、および40%側方への(横方向の)重複で行われる。図17〜図19に示されるように操作される多重解像度のHyperCameraによって、85/40より良好な重複で概観写真が撮られ、最高でも20/20のみの重複で詳細写真が撮られる。
従来の単一解像度の航空カメラシステムおよび相当する集成詳細画素数(例えば160M画素)と比較すると、後述されるように、HyperCameraは、測量飛行時間の低減および処理する写真がより少ないことの両方に関して、2〜3倍より効率的である。HyperCameraはまた、ただその高(詳細)画素数だけで、多くの航空カメラシステムより高効率である。
概観写真および詳細写真の両方を撮るための代替策として、HyperCameraは、より大きい重複(例えば、20/20ではなく60/40)で詳細写真を撮るためだけに使用できて、より高い空間精度でモザイク写真を作成可能となるが、多くの撮影を要し、処理費用がかさむ。この場合、概観カメラ112は省略できる。
多重解像度のHyperCameraの相対効率を解析するために、多重解像度のHyperCameraが、横方向にX%重複し、縦方向にY%重複し、詳細カメラ110がN個あり、概観カメラ112がM個あるように構成されると想定し、比較のために、単一解像度のHyperCameraが、横方向にA%重複し、縦方向にB%重複し、詳細カメラがN個あり、概観カメラは1つもないと想定する。XがAより小さいと仮定すると、飛行航路の間隔が大きくなり、飛行時間が短くなり、撮られる詳細写真が少なくなるというように、横方向の効率が改善され、これは(1−X)/(1−A)で示される。同様に、YがBより小さいと仮定すると、スナップショット間隔が大きくなり、飛行時間が短くなり、撮られる詳細写真が少なくなるというように、縦方向の効率が改善され、これは(1−Y)/(1−B)で示される。全体的な効率の改善は、(1−X)(1−Y)/(1−A)(1−B)で示される。これは、概観写真を撮る分のオーバーヘッドを割り引く、すなわち、(N/(N+M))の係数で乗算される必要がある。X/Y=20/20、A/B=60/40、N=5、およびM=1として、改善した正味効率は2.2である。
詳細カメラ110のより高い解像度ではなく概観カメラ112のより低い解像度でいくつかのモザイク写真の計算を行うという代償を払って、効率を高めることができる。しかしながら、これは、従来のやり方よりも概観写真の間でより多く重複させることによって、少なくとも部分的に補償される。
図20は、カメラ装置100の電源および制御システムのブロック図を示す。詳細カメラ110および概観カメラ112は、アナログ−デジタル変換器308(ADC)一式を介してコンピュータ300によって制御される。
コンピュータ300は、1つまたは複数の全地球的航法衛星システム(GNSS)受信機304を使用して、測量機230の位置および速度をリアルタイムで監視する。GNSS受信機(複数可)は、全地球測位システム(GPS)、GLONASS、Galileo、およびBeiDouを含む、種々の宇宙ベースの衛星ナビゲーションシステムに対応可能である。
コンピュータ300は、ADC308によってカメラ110および112に正確な時限の作動信号をもたらして、記憶された飛行計画、ならびに航空機のリアルタイムの位置および速度に従ってカメラを露出させる。カメラ110および/または112が自動焦点機構を組み込む場合、コンピュータ300はまた、それぞれのこのようなカメラに焦点信号をもたらして、露出の前に自動焦点を始動させる。
コンピュータ300は同じ比率で概観カメラ112および詳細カメラ110を作動させる。代替的には、コンピュータ300は、詳細カメラ110に対して異なる比率で、すなわち、より高い比率かより低い比率で、概観カメラ112を作動させて、連続する詳細写真の間の重複とは関係なく、連続する概観写真の間の異なる重複、すなわち、より大きい重複かより小さい重複を実現することができる。コンピュータ300は、カメラを同時に作動させて、または、作動させるタイミングをずらして、例えば、写真の縦方向の異なる位置合わせを実現することができる、または、ピーク電力消費を低減することができる。
飛行計画には、測量を構成するそれぞれの飛行経路、および、連続するスナップショット間で必要な重複が確実に維持されるようにすることが必要とされる、それぞれの飛行経路に沿った公称カメラ作動比率を記載する。作動比率は、航空機下の地形の標高の影響を受ける、すなわち、地形が高いほど、作動比率を高くする必要がある。この比率は、風、およびパイロットによる航空機の操作によって公称速度から変化する場合がある、航空機の実対地速度に従って、コンピュータ300によって調整される。
コンピュータ300はまた、飛行計画およびリアルタイムのGNSS位置を使用して、パイロット用ディスプレイ302を介してそれぞれの飛行航路に沿ってパイロットを誘導する。
図20に示されるように、GNSS受信機からの位置データは、オプションとして、慣性計測装置306(IMU)からの方位情報(横揺れ、縦揺れおよび偏揺れ)で補われる。これによって、コンピュータ300は、パイロットが飛行計画にどれくらい綿密に従っているかについてのパイロットへのフィードバックを向上させることができ、また、より正確な写真の製作ができる。IMU306が無い場合、GNSS受信機はコンピュータ300に直接接続する。
それぞれのカメラ110および112は、例えば取り外し可能なフラッシュメモリに、スナップショットをローカルに記憶する。これによって、HyperCameraにおける集中記憶の必要性、および、カメラと集中記憶との間の高帯域幅データ通信チャネルの必要性が排除される。
それぞれのスナップショットのGNSS位置は、それぞれのカメラ110および112に送出されて、カメラがそれぞれの写真をそのGNSS位置にタグ付け可能とすることができる。
IMU306によって報告される方位に応答する、1つまたは複数のオプションの角運動補償(AMC)装置330は、飛行中の航空機の横揺れ、縦揺れ、または偏揺れに関わらず、カメラの方位を経時的に不変の指示方向を維持するように補正する。これによって、撮られた写真は、確実に、とぎれのないモザイク写真を作成するために使用でき、連続したスナップショット間および隣接した飛行経路間の重複を最小限に抑えることが可能になる。
AMC330は、2つまたは3つの回転軸(すなわち、横揺れおよび縦揺れ、または横揺れ、縦揺れおよび偏揺れ)を有するプラットフォームから成ることができ、このプラットフォーム上に、HyperCamera装置100が装着される。市販のAMCプラットフォームはライカジオシステムズ製のPACシリーズを含む。
代替的には、AMC330は、それぞれのカメラ(またはカメラ群)の光路において1つまたは複数のビームステアリング機構を備えることができ、これによって、カメラの指示方向はビームステアリングによって補正される。
角運動補償は、飛行高度が上げられる、および/または、GSDが低下すると、ますます重要になる。
航空機の順方向運動によるモーションブラーは、航空機の速度とカメラの露出時間との乗算に等しい。モーションブラーがGSDのかなりの割合になる(または超える)と、モーションブラーを低減するまたは排除するために順方向運動補償(FMC)機構を設けることが有用になる。FMCは、(画像センサ、中間ミラー、またはカメラ自体を移動させることによって)カメラの光軸を並進させることまたは回転させることを含むいくつかのやり方で、または、画像センサにおける画素の隣接線の時間遅延統合(TDI)によってもたらされ得る。
コンピュータ300はそれぞれのスナップショットのGNSS位置を記憶する。この位置は、精確なモザイク写真を製作するために、写真の後の処理中に使用される。コンピュータ300はまた、IMU306がある場合はそれぞれのスナップショットの方位を記憶し、AMC330がある場合はAMCからの補正情報に基づいてそれぞれのスナップショットの補正済み方位を記憶する。
カメラ110および112は、バッテリ装置320によって電力供給される。バッテリ装置320は、接続される全てのコンポーネントによって必要とされる電圧より高い電圧、例えば24V〜28Vをもたらし、接続されるそれぞれのコンポーネントによって要求される電圧は、DC−DC変換器326によってもたらされる。例えば、ニコンD800カメラは10V未満を必要とする。さらなるDC−DC変換器326はまた、コンピュータ300、パイロット用ディスプレイ302、GNSS受信機304、およびIMU306に電力供給するために適切な電圧をもたらす。明確にするために、これらの電源接続は図20では省略される。
バッテリ装置320は、2つの12Vまたは14Vバッテリ、または、単一の24Vまたは28Vバッテリを含む。このバッテリ装置320は、適した補助電源322によって航空機から細流充電できるようにする充電回路を含み、常に充電された状態を可能にする。この装置はまた、地上電源車324(GPU)から地上で充電可能である。
ADC308およびDC−DC変換器326は、カメラ制御装置310(CCU)に収容されてよい。これはさらに、コンピュータ300がADCを制御できるようにするためにUSBインターフェイスを含むことができる。
カメラ110および112に電力をもたらすDC−DC変換器326は、CCU310に、または、分電箱150においてカメラにさらに近くに位置することができる。
HyperCameraによって撮られる写真は、連続的にモザイク写真にまとめられるようにされ、図21は、多重解像度のHyperCamera写真からのモザイク写真を効率的に作成するための写真測量プロセスフローを示す。このプロセスは、詳細カメラ110によって撮られる詳細写真400、および、概観カメラ112によって撮られる概観写真402について行われる。
プロセスは、次の4つの主要なステップ:(1)写真400および402のそれぞれにおいて特徴が自動的に検出され、かつ、写真間で適合されること(ステップ410)と;それぞれの特徴の実世界の三次元位置、ならびにそれぞれの写真に関連付けられるカメラ姿勢(三次元位置および方位)およびカメラ較正(焦点距離および径方向ゆがみ)の当初予測を繰り返し改良するためにバンドル調整が使用されること(ステップ412において)と;それぞれの詳細写真400がそのカメラ姿勢および地形標高データに従って正射投影されること(ステップ414において)と;正射投影された写真(正射写真)がブレンドされて最終的なモザイク写真404を形成すること(ステップ416において)と、から成る。
(ステップ414で使用される)高度データは、(ステップ412中に改良される)三次元特徴位置から得られ得る、および/または、写真間の高密度多視点ステレオマッチングから得られ得る(例えば、内容が本明細書において参照によって組み込まれている、米国特許第8,331,615号(Furukawa)を参照)、および/または、関心領域のLIDAR測量といった別の出所から取得され得る。高度データは、ラスターもしくはベクトル数値標高モデル(DEM)の形式、または、三次元点群の形式、または、三次元幾何モデルの形式であってよい。このデータは、植物および建物などの表面特徴を含むことができる、または、露地を描写することができる。
モザイク写真404の精度は、低解像度の概観写真402の間の大きな重複から得て、モザイク写真404における詳細はより高い解像度の詳細写真400から得る。
代替策として、上で記されるように、詳細写真400の間のより大きな重複による測量内容が飛ばされてよく、モザイク写真は詳細写真400からのみ作成可能である。
モザイク写真は通常は、画像ピラミッドとして、すなわち、その範囲内ではさまざまな(バイナリ)ズームレベルが任意のズームレベルにおける高速アクセスのために事前計算されるように記憶される。ピラミッドにおけるより低いズームレベルは、低域フィルタ処理および二次抽出法によってより高いズームレベルから生成されるため、ピラミッド全体は、詳細解像度のモザイク写真から生成可能である。代替策として、より低いズームレベルは概観写真402から作成されるモザイク写真から生成可能であり、この場合、概観写真402はまた、詳細写真400について上述されるように正射投影されかつブレンドされる。
後にバンドル調整プロセスによって改良される、それぞれの写真のカメラ姿勢の当初予測(ステップ412において)は、それぞれの写真のGNSS位置、および利用可能である場合そのIMUから得られる方位から得られる。
詳細写真400を(ステップ414において)正射投影するために使用される地形データは、(ステップ412における)バンドル調整から得られる3D特徴位置に基づくことができる、または、他の所から(LiDAR航空測量などから)供給される地形データであってよい。
自動的に検出される地表特徴は、手動で特定される接地点で補われてよく、このそれぞれは、精確に測量された実在の位置(地上制御点とも呼ばれる)を有することができる。
V5−300およびV5−180HyperCameraは、HyperCamera範囲からの2つのモデルである。より長い焦点距離でのより高い高度操作によって、より一層高められた効率が実現され、追加のHyperCamera構成は後述される。
図22は、地面からの飛行高度(フィート)および100mm〜600mmのレンズ焦点距離(100mm刻み)に応じたGSDを表にしたものであり、高度に応じた30度および45度の視野の走査幅(km)も表にしており、さらに、焦点距離に応じたこれらの視野をカバーするのに必要とされる詳細カメラの数を表にしている。
図23はさらに、700mm〜1200mmの焦点距離に応じたGSDを表にしたものである。
図22および図23における表から、V5−300、V10−600およびV15−900のHyperCamera構成の特性を比較することは有益である。それぞれの構成は、およそ同じ30度の横方向視野を有するが、5cmのGSDと仮定して、対応する走査幅はそれぞれ、1.6km、3.3km、および4.9kmである(それぞれ10,000フィート、20,000フィート、および30,000フィートの飛行高度に対応する)。極めて重大であるが、(同じ航空機速度と仮定して)相対的な撮影効率はそれぞれ、1×、2×、および3×である。
30度のV10−600HyperCameraは、2つの15度のV5−600HyperCamera装置を並行して使用することで達成可能である。それぞれの装置は、7.5度横方向に傾斜させる必要がある楔形のアダプター板200に装着される。
45度のV15−600HyperCameraは、3つの15度のV5−600HyperCamera装置を並行して使用することで達成可能である。中央の装置は水平に装着され、2つの外側の装置のそれぞれは、15度横方向に傾斜させる必要がある楔形のアダプター板200に装着される。
30度のV15−900HyperCameraは、3つの10度のV5−900HyperCamera装置を並行して使用することで達成可能である。中央の装置は水平に装着され、2つの外側の装置のそれぞれは、10度横方向に傾斜させる必要がある楔形のアダプター板200に装着される。
横方向に傾斜させる必要がある楔形状を利用することに対する代替策としてまたは追加として、アダプター板200は、カメラユニット100の傾斜を表面上調整すること、および、航空機床面の傾斜の変化を補償することの両方を可能にするための1つまたは複数の総体的なおよび/または精細な傾斜調整機構を備えることができる。傾斜機構は、1つまたは複数のシム、1つまたは複数のバイアスねじ、または同様のものを含むことができる。
傾斜調整はまた、カメラ装置100のあらかじめ設定された公称横揺れを調整することによって、ある場合は角運動補償(AMC)装置330の横揺れ補償機構によってもたらされ得る。
図24A、図24B、および図24Cは、一定飛行高度16,000フィートでの、V5−300、V10−600、およびV15−900HyperCameraそれぞれのフットプリントを示す。これらの図の破線グリッドは1km間隔を有する。これらの図は同じ走査幅を示すが、GSDは大きくなっている。
図25A、図25B、および図25Cは、一定飛行高度16,000フィートでの、V5−300、V10−600、およびV15−900HyperCameraそれぞれの3つの連続した重複するフットプリントを示す。適切な縦方向の重複を確実にするために、スナップショット率は、解像度を高めることで増加させる。
図26A、図26B、および図26Cは、一定飛行高度16,000フィートでの、V5−300、V10−600、およびV15−900HyperCameraそれぞれの2つの隣接した飛行経路からの2つの重複するフットプリントを示す。
図27は、2つのV5−600カメラ装置を備えるV10−600HyperCameraを運搬するセスナ208航空機の正面図であって、合成概観視野および集成詳細視野を示す。破線はカメラ装置の視野間の区分を示す。
図28は、航空機客室に設置される2つのV5−600カメラ装置を備えるV10−600HyperCameraを運搬するセスナ208航空機の側面図であって、それぞれのカメラ装置の合成概観視野および集成詳細視野を示す。
図29は、標準的なセスナ208の胴体下側部分に装着されるカーゴポッドに設置される2つのV5−600カメラ装置を備えるV10−600HyperCameraを運搬するセスナ208航空機の側面図であって、それぞれのカメラ装置の合成概観視野および集成詳細視野を示す。
図30は、3つのV5−900カメラ装置を備えるV15−900HyperCameraを運搬するセスナ208航空機の正面図であって、合成概観視野および集成詳細視野を示す。破線はカメラ装置の視野間の区分を示す。
図31は、航空機客室に設置される3つのV5−900カメラ装置を備えるV15−900HyperCameraを運搬するセスナ208航空機の側面図であって、それぞれのカメラ装置の合成概観視野および集成詳細視野を示す。
図32は、標準的なセスナ208の胴体下側部分に装着されるカーゴポッドに設置される3つのV5−900カメラ装置を備えるV15−900HyperCameraを運搬するセスナ208航空機の側面図であって、それぞれのカメラ装置の合成概観視野および集成詳細視野を示す。
図33A、図33B、および図33Cは、一定の飛行高度24,000フィートでの、V5−300、V10−600、およびV15−900HyperCameraそれぞれの2つの隣接した飛行経路からの2つの重複するフットプリントを示す。これらの図の破線グリッドは1km間隔を有する。
図34A、図34B、図34Cは、一定の飛行高度36,000フィートでの、V5−300、V10−600、およびV15−900HyperCameraそれぞれの2つの隣接した飛行経路からの2つの重複するフットプリントを示す。これらの図の破線グリッドは1km間隔を有する。
一般に、特定のHyperCameraモデルは、いくつかの同一のより小さいカメラ装置100を使用して達成でき、それぞれの装置は、必要とされる横方向角度で装着される。図27〜図32に示されるように、個々のカメラ装置100は、航空機の縦軸に沿って装着可能である。それぞれのカメラ装置100は、その縦方向位置および航空機速度を明らかにするためにずらして作動させることができる、または、種々のカメラ装置からの写真間の縦方向オフセットは、下流処理中明らかにできる。
よって、HyperCamera設計は、モジュール式で、1つまたは複数の標準カメラ穴と併せた配設に適している。
必要とされる斜角で、例えば、アダプター板200を傾斜させることによって装着される1つまたは複数の垂直カメラ装置100を使用して、または、それぞれが必要とされる斜角で、その他の場合は垂直に配向されたフレーム内で装着される一連のカメラを含む、1つまたは複数の斜めカメラ装置100を使用して、斜め方向の、すなわち、垂直以外の指示方向(および、通常は45度の指示方向)のHyperCameraが達成できる。
斜め航空写真にはいくつかの使用法がある。この航空写真は、垂直モザイク写真への有用な補償をもたらすために、斜め方向の地理参照されたモザイク写真を製作するために使用できる。斜め航空写真は、より高められた高度データ精度を含むより高められた精度を実現するために(図21に関して上述されるように)写真測量バンドル調整中に垂直写真と共に使用可能である。そして、この斜め航空写真は、三次元仮想化および相互作用をサポートするために、関心領域の標高モデルまたは完全三次元モデルをテクスチャ処理するために使用可能である。
図35Aおよび図35Bは、航空機客室に設置される5つのHyperCamera:V10−600(垂直)、R10−600(右斜め)、L10−600(左斜め)、F10−600(前斜め)、およびB10−600(後斜め)を運搬するセスナ208航空機の正面図および側面図であって、それぞれの合成概観視野および集成詳細視野を示す。
垂直方向から離れる角度(280)で傾斜させたカメラの斜め方向のGSD(282)が図44の式9によって示される。垂直のGSD(262)は、傾斜角のセカントの二乗倍に増加する。第1のセカントの項は、より大きく傾斜誘導された視距離によるもので、第2のセカントの項は、傾斜誘導された地表の短縮によるものである。従って、傾斜させたカメラは、それに応じたより長い焦点距離を有して垂直カメラのGSDを適合させる必要がある。
45度傾斜させることで、垂直のGSDは2倍に増加し、このことは、斜め45度のカメラが垂直カメラのGSDを適合させるために垂直カメラの焦点距離の2倍の焦点距離を有する必要があることを暗に示す。しかしながら、実際には、垂直カメラおよび斜めカメラのGSDを適合させることを厳しく要求してはおらず、斜めカメラには任意の適した焦点距離が使用できる。
カメラの画像センサが地表に平行であるように傾斜させられる場合、第2のセカントの項は消滅する。そして、斜めのGSD(286)は図44の式10によって示される。45度傾斜させることで、垂直GSD(262)は2の平方根倍だけ増加し、このことは、45度傾斜センサの斜めカメラが垂直カメラのGSDを適合させるために垂直カメラの焦点距離の1.4倍の焦点距離を有する必要があることを暗に示す。
しかしながら、建物の側部などの垂直面上のGSDをより大きくすることに付随して、水平面上のGSDはより小さくなる。さらにまたこのことによって、複数回の走査で斜め写真を撮る方策を立てることができ、それぞれの走査は、画像センサを傾斜させることによって特定の表面の方位に対して最適化される。
図36は、標準的なセスナ208の胴体下側部分に装着されるカーゴポッドに設置される5つのHyperCamera:V10−600(垂直)、R10−600(右斜め)、L10−900(左斜め)、F10−900(前斜め)、およびB10−900(後斜め)を運搬するセスナ208航空機の側面図であって、それぞれの合成概観視野および集成詳細視野を示す。それぞれの斜めHyperCameraは45度の指向角を有する。
より一般的には、地表に(より)平行になるように任意の天底にない(non−nadir)カメラの画像センサを傾斜させることは、カメラによって撮られる写真の遠近短縮を低減するために使用できるため、GSDが改善する。
それぞれの900mmの斜めHyperCameraは、600mmの垂直HyperCameraより33%大きいGSDを有する。1200mmの斜めHyperCameraは、600mmの垂直HyperCameraと同じGSDを有することになる。850mmの傾斜センサの斜めHyperCameraはまた、600mmの垂直HyperCameraと同じGSDを有することになる。
図37は、より長い詳細レンズ114のためのより広いスペースを与えるために、すなわち、より大きい寸法のより長いレンズに対応するために、詳細カメラが代替的な「X」パターンで配置されるカメラ装置100の底面図を示す。この配置はまた、第2の概観カメラ、または、近赤外線(NIR)カメラなどの専用スペクトルカメラのどちらかに対して利用可能である第2の低解像度の(すなわちより短いレンズを有する)カメラのためのスペースを与える。第2の概観カメラを含むことは、両方のカメラが、より長い焦点距離を有することができるようにするため、解像度、ひいては写真測量精度をより高めることを可能にする。近赤外線カメラを含むことは、近赤外線域がモザイク写真に含まれるようにすることができ、その結果として、植物を特定するなどの応用をサポートすることになる。
詳細レンズ114の焦点距離を長くすると、純屈折(屈折)レンズ設計のサイズおよび重量はかなり大きくなる。ミラーだけを使用して(反射)、または、補正屈折素子と併せて(反射屈折)、焦点を合わすために、反射設計を使用することで、すなわち湾曲させたミラーを使用することで、同じ長さの焦点距離によるレンズを軽量にしかつ物理的に短くすることが達成できる。長い焦点距離および大きい開口部によって特徴付けられる天体望遠鏡は通常は、反射設計を利用する。典型的な現代の設計は、球状の主鏡および副鏡をシュミット補正板と組み合わせるシュミット−カセグレン設計、および、双曲面主鏡および双曲面副鏡を利用するリッチー−クレティアン設計を含む。
よって、反射式詳細レンズ114は、カメラ装置100のサイズおよび重量を大幅に低減するために使用でき、このことは、900mm以上のより長い焦点距離に対してとりわけ利益をもたらす。
図38は、ファンに配置される一連のカメラ600として実装されるカメラ装置100、およびそれぞれのカメラの光軸602を示す。この図は、前述の説明における一連の詳細カメラまたは概観カメラのいずれかを比喩的に表し、以下の説明についての前後関係を示す。それぞれのカメラ600は、カメラ本体(例えば110または112)、およびカメラレンズ(例えば114または116)から成る。
図39は、複数の光路をもたらすための可動式ミラー604を介して時間多重化される単一カメラ600として実装されるカメラ装置100を示す。これによって、単一カメラを、時間多重化を使用して一連のカメラを実装するために使用可能となるため、HyperCameraを実装するために必要とされる物理的なカメラの数を低減し、その結果として、それぞれのカメラ装置100のサイズ、重量、および費用を低減する。可動式ミラー604に対する代替策として、任意の適したビームステアリング機構が使用できる。
図40は、複数の光路をもたらすための可動式ミラーを介して時間多重化される単一カメラ600として実装されるカメラ装置100の代替的な構成を示す。固定ミラー606を追加することによって、カメラ600を、垂直に装着することが可能になり、カメラ装置100はより小さいフットプリントを有することが可能になる。
図41は、角運動補償(AMC)をもたらす追加の可動式ミラー608による、複数の光路をもたらすための可動式ミラーを介して時間多重化される単一カメラ600として実装されるカメラ装置100を示す。この際、IMU駆動のAMC装置330を実装する。可動式ミラー608に対する代替策として、任意の適したビームステアリング機構が使用可能である。
可動式ミラー608は、追加としてまたは代替的に、順方向運動補償(FMC)機構を実装するために使用できる。FMCモードでは、ミラーは、航空機の順方向運動を適合させるように露出中後方に円滑に調節され、露出間に再び順方向に調節される。ミラー608の調節は、直接的に駆動できる、または、FMCをもたらすための適切なレートで振動させることができ、カメラの露出は、振動の後方への位相と同期される。AMCおよびFMCはまた、別個のカスケード式ミラーによってもたらされ得る。
本発明は、いくつかの好ましい実施形態に関して説明されている。本発明のいくつかの代替的実施形態が存在し、かつ、本発明の範囲が添付の特許請求の範囲によってのみ限定されることは、当業者には理解されるであろう。
この明細書、およびそれに続く特許請求の範囲の全体にわたって、文脈上他の意味に解すべき場合を除き、「comprise(含む)」という用語、および、「comprises」または「comprising」などの変形は、記述された完全体、ステップ、または完全体もしくはステップの群が含まれるものを暗に示すが、その他の完全体、ステップ、または完全体もしくはステップの群を除外するものではないことは理解されるであろう。
この明細書における任意の先行文献(またはそれから派生する情報)または公知な任意の事項への言及は、この明細書に関する努力傾注分野において先行文献(またはそれから派生する情報)または公知の事項が共通一般知識の一部を形成するといった示唆の、承認、許諾またはいかなる形式とも見なされるものではなく、見なされるべきではない。
100 カメラ装置
110 詳細カメラ
112 概観カメラ
114 詳細カメラレンズ
116 概観カメラレンズ
118 特殊用途(例えばNIR)カメラのレンズ
120 フレーム
122 フレーム中央支持部
124 フレーム側部支持部
126 フレーム後部支持部
128 フレーム前部支持部
130 装着点ブロック
132 装着点
134 装着ボルト
140 詳細カメラの架台
142 概観カメラの架台
144 詳細カメラレンズのクランプ
146 概観カメラレンズのクランプ
150 電源および制御分電箱
160 詳細視野
162 横方向詳細視野
164 縦方向詳細視野
170 概観視野
172 横方向概観視野
174 縦方向概観視野
180 集成詳細視野
182 横方向集成詳細視野
190 集成概観視野
192 横方向集成概観視野
194 30度の公称視野
196 1kmグリッド
200 アダプター板
202 シートトラック留め具
210 航空機床面
212 カメラ穴
214 シートラック
216 アダプター板開口部
220 飛行方向
222 航路
224 スナップショット位置
230 航空測量機
232 航空測量機胴体下側部分に装着されるポッド
250 視野角(ベータ)
252 焦点距離(f)
254 地面からの高度(a)
256 画像センサ幅(s)
258 走査幅(w)
260 画像センサ画素ピッチ(p)
262 地上分解能(GSD)(g)
270 集成視野角(ガンマ)
272 カメラの角重複(オメガ)
278 集成走査幅(w(N))
280 カメラ傾斜角(テータ)
282 傾斜させたカメラのGSD(g(テータ))
284 傾斜させたカメラの視野
286 傾斜焦点面を有する傾斜させたカメラのGSD(h(テータ))
288 傾斜焦点面視野を有する傾斜させたカメラの視野
300 コンピュータ
302 パイロット用ディスプレイ
304 慣性計測装置(IMU)
306 全地球的航法衛星システム(GNSS)受信機
308 アナログ−デジタル変換器(ADC)
310 カメラ制御装置(CCU)
320 バッテリ装置
322 航空機補助電源
326 DC−DC変換器
330 角運動補償(AMC)装置(複数可)
324 地上電源車(GPU)
400 詳細写真
402 概観写真
404 モザイク写真
410 特徴適合ステップ
412 姿勢および位置解決ステップ
414 正射投影ステップ
416 ブレンドステップ
510 右斜め詳細視野
512 横方向右斜め詳細視野
514 縦方向右斜め詳細視野
520 右斜め概観視野
522 横方向右斜め概観視野
524 縦方向右斜め概観視野
530 左斜め詳細視野
532 横方向左斜め詳細視野
534 縦方向左斜め詳細視野
540 左斜め概観視野
542 横方向左斜め概観視野
544 縦方向左斜め概観視野
550 前斜め詳細視野
552 横方向前斜め詳細視野
554 縦方向前斜め詳細視野
560 前斜め概観視野
562 横方向前斜め概観視野
564 縦方向前斜め概観視野
570 後斜め詳細視野
572 横方向後斜め詳細視野
574 縦方向後斜め詳細視野
580 後斜め概観視野
582 横方向後斜め概観視野
584 縦方向後斜め概観視野
600 カメラ
602 カメラ光軸
604 可動式多重化ミラー
606 固定ミラー
608 可動式運動補償ミラー

Claims (19)

  1. 航空画像を撮るためのシステムであって、
    光路を実質的に垂直に配向するように装着される少なくとも1つの詳細カメラを含む、少なくとも1つのカメラ装置と、
    前記少なくとも1つの詳細カメラの指示方向を時間多重化して、視野を重複させてカメラの仮想配列を実現することによって、前記少なくとも1つの詳細カメラが拡張された視野を撮影できるように構成される第1の可動式ミラーと、
    航空機の角運動を測定するように構成される慣性計測装置(IMU)と、
    前記慣性計測装置(IMU)によって測定される前記航空機の角運動を補償することによって、前記少なくとも1つの詳細カメラの指向を確実に経時的に不変の方向にするように構成される第2の可動式ミラーであって、前記第1の可動式ミラーによる前記少なくとも1つの詳細カメラの光路の屈曲を少なくとも部分的に補償するようにさらに構成される、第2の可動式ミラーと、を備える、システム。
  2. 請求項1のシステムであって、
    前記少なくとも1つのカメラ装置は、カメラ穴より上に、前記航空機の床面および前記航空機によって運搬されるポッドの床面のうちの少なくとも1つに取り付け可能であることによって、前記カメラ穴を通して前記航空機より下の地表の光景を前記少なくとも1つの詳細カメラにもたらす、システム。
  3. 請求項1または2に記載のシステムであって、
    前記カメラ装置を複数備え、それぞれの前記カメラ装置は、異なる度で装着されることで、前記カメラ装置の前記拡張された野は重複するので、より大きく拡張された視野が形成される、システム。
  4. 請求項1から3のいずれか一項に記載のシステムであって、
    前記少なくとも1つのカメラ装置は少なくとも1つの概観カメラを含み、前記少なくとも1つの詳細カメラは前記少なくとも1つの概観カメラより長い焦点距離を有する、システム。
  5. 請求項4に記載のシステムであって、
    前記少なくとも1つの詳細カメラの前記焦点距離と前記少なくとも1つの概観カメラの前記焦点距離の比率は4乃至8である、システム。
  6. 請求項1から5のいずれか一項に記載のシステムであって、
    前記少なくとも1つの詳細カメラは、屈折レンズ、反射レンズ、および反射屈折レンズを含む群から選択されるレンズを有する、システム。
  7. 請求項1から6のいずれか一項に記載のシステムであって、
    記憶された飛行計画、および前記航空機のリアルタイムの位置に従って、前記少なくとも1つの詳細カメラを飛行中に自動的に露出させるように構成されるコンピュータをさらに備える、システム。
  8. 請求項7に記載のシステムであって、
    少なくとも1つの全地球的航法衛星システム(GNSS)受信機をさらに備え、前記コンピュータは、前記少なくとも1つの全地球的航法衛星システム(GNSS)受信機からの位置データをリアルタイムで受信しかつ記憶するように構成される、システム。
  9. 請求項7に記載のシステムであって、
    前記コンピュータは、前記慣性計測装置(IMU)からの方位データをリアルタイムで受信しかつ記憶するように構成される、システム。
  10. 請求項1から3のいずれか一項に記載のシステムであって、
    前記少なくとも1つの詳細カメラにおいて、前記航空機の角運動の影響を補正することによって、前記詳細カメラの指向を確実に経時的に不変の方向にするように構成される少なくとも1つの角運動補償(AMC)装置をさらに備える、システム。
  11. 請求項10に記載のシステムであって、
    角運動補償(AMC)は、前記詳細カメラの光路において可動式ミラーを介して行われる、システム。
  12. 請求項1から11のいずれか一項に記載のシステムであって、
    前記少なくとも1つの詳細カメラにおいて、前記航空機の順方向運動の影響を補正することによって、前記詳細カメラによって撮られる写真のモーションブラーを低減するように構成される、少なくとも1つの順方向運動補償(FMC)機構をさらに備える、システム。
  13. 請求項12に記載のシステムであって、
    順方向運動補償(FMC)は、前記少なくとも1つの詳細カメラの画像センサを並進させること、前記少なくとも1つの詳細カメラの画像センサを回転させること、前記少なくとも1つの詳細カメラを並進させること、前記少なくとも1つの詳細カメラを回転させること、前記少なくとも1つの詳細カメラの光路においてミラーを回転させること、および、前記少なくとも1つの詳細カメラの画像センサにおける画素の隣接線の時間遅延統合をすること、を含む群から選択される機構を介してもたらされる、システム。
  14. 請求項12に記載のシステムであって、
    順方向運動補償(FMC)は、前記少なくとも1つの詳細カメラの前記光路において可動式ミラーを介してもたらされる、システム。
  15. 請求項14に記載のシステムであって、
    前記順方向運動補償(FMC)の前記可動式ミラーは振動させられ、前記少なくとも1つの詳細カメラの露出は前記振動と同期する、システム。
  16. 請求項1から15のいずれか一項に記載のシステムであって、
    前記少なくとも1つのカメラ装置の天底に対する指示方向は、ゼロ度および45度を含む群から選択される、システム。
  17. 請求項3に記載のシステムであって、
    それぞれの前記カメラ装置の天底に対する指示方向は、ゼロ度および45度を含む群から選択される、システム。
  18. 請求項1から17のいずれか一項に記載のシステムであって、
    前記少なくとも1つの詳細カメラの画像センサは、前記詳細カメラによって撮られる写真の遠近短縮を低減するように傾斜させられる、システム。
  19. 請求項14に記載のシステムであって、
    前記順方向運動補償(FMC)の可動式ミラーは、前記第2の可動式ミラーである、システム。
JP2017518383A 2014-06-20 2014-12-08 高高度航空カメラシステム Active JP6410931B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US14/310,523 US9046759B1 (en) 2014-06-20 2014-06-20 Compact multi-resolution aerial camera system
US14/310,523 2014-06-20
US14/478,380 US9052571B1 (en) 2014-06-20 2014-09-05 Wide-area aerial camera systems
US14/478,380 2014-09-05
PCT/AU2014/050402 WO2015192164A1 (en) 2014-06-20 2014-12-08 Wide-area aerial camera systems

Publications (2)

Publication Number Publication Date
JP2017527819A JP2017527819A (ja) 2017-09-21
JP6410931B2 true JP6410931B2 (ja) 2018-10-24

Family

ID=53267873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017518383A Active JP6410931B2 (ja) 2014-06-20 2014-12-08 高高度航空カメラシステム

Country Status (8)

Country Link
US (2) US9052571B1 (ja)
EP (1) EP3158291B1 (ja)
JP (1) JP6410931B2 (ja)
CN (1) CN106461389B (ja)
AU (1) AU2014274508B2 (ja)
CA (1) CA2952868C (ja)
ES (1) ES2722000T3 (ja)
WO (1) WO2015192164A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7381427B2 (ja) 2020-09-16 2023-11-15 真一 田代 水耕栽培方法及びその装置

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103646384B (zh) * 2013-12-20 2016-06-22 江苏大学 一种遥感扫描成像平台飞行速度的优化方法
US9052571B1 (en) * 2014-06-20 2015-06-09 nearmap australia pty ltd. Wide-area aerial camera systems
US9641736B2 (en) * 2014-06-20 2017-05-02 nearmap australia pty ltd. Wide-area aerial camera systems
US9440750B2 (en) * 2014-06-20 2016-09-13 nearmap australia pty ltd. Wide-area aerial camera systems
US9046759B1 (en) * 2014-06-20 2015-06-02 nearmap australia pty ltd. Compact multi-resolution aerial camera system
US9185290B1 (en) * 2014-06-20 2015-11-10 Nearmap Australia Pty Ltd Wide-area aerial camera systems
KR101668834B1 (ko) * 2014-10-02 2016-10-25 씨제이씨지브이 주식회사 다중 카메라 촬영용 리그
JP2018500853A (ja) 2014-10-08 2018-01-11 スプークフィッシュ イノヴェーションズ プロプライエタリー リミテッド 航空カメラシステム
US9900509B2 (en) * 2014-10-21 2018-02-20 Bae Systems Information And Electronic Systems Integration Inc. Frame registration for imaging sensors in motion
FR3038482B1 (fr) * 2015-06-30 2017-08-11 Parrot Bloc camera apte a etre embarque dans un drone pour cartographier un terrain et procede de gestion de capture d'images par un bloc camera
DE202016007867U1 (de) 2015-08-07 2017-01-25 Google Inc. Steuerung des Sichtlinienwinkels einer Bildverarbeitungsplattform
CN105438490B (zh) * 2015-12-04 2017-10-03 厦门汉航精密科技有限公司 无人机的长焦距相机大角度头部追踪增稳云台结构
DE102016000810A1 (de) * 2016-01-26 2017-07-27 Diehl Defence Gmbh & Co. Kg Verfahren zum Bestimmen einer Position eines Objekts
US10151970B2 (en) 2016-04-11 2018-12-11 As Vision Limited Aerial panoramic oblique photography apparatus
HK1216818A2 (zh) * 2016-04-11 2016-12-02 天維移動測量有限公司 號 航空全景傾斜相機系統
CN105979145A (zh) * 2016-06-22 2016-09-28 上海顺砾智能科技有限公司 提高无人机航拍影像质量的拍摄系统及拍摄方法
US10460582B2 (en) 2016-10-04 2019-10-29 Avigilon Corporation Presence detection and uses thereof
EP3590008A4 (en) * 2017-03-03 2020-12-09 Aqueti Incorporated MULTI-CAMERA SYSTEM FOR TRACKING ONE OR MORE OBJECTS THROUGH A SCENE
WO2018198634A1 (ja) * 2017-04-28 2018-11-01 ソニー株式会社 情報処理装置、情報処理方法、情報処理プログラム、画像処理装置および画像処理システム
WO2019100219A1 (zh) * 2017-11-21 2019-05-31 深圳市大疆创新科技有限公司 输出影像生成方法、设备及无人机
CN108318007B (zh) * 2018-01-26 2020-11-10 广州市红鹏直升机遥感科技有限公司 一种拼接式航空倾斜摄影的拍摄方法
EP3875901B1 (en) * 2018-11-21 2024-01-10 Guangzhou Xaircraft Technology Co., Ltd Planning method and apparatus for surveying and mapping sampling points
CN109367806A (zh) * 2018-11-30 2019-02-22 海南赛博地理信息技术有限公司 无人机倾斜摄影用三相机(或镜头)朝向布局
CN111327838B (zh) * 2018-12-13 2021-09-24 杭州海康威视数字技术股份有限公司 摄像机
US10863085B2 (en) * 2019-02-28 2020-12-08 Harman International Industries, Incorporated Positioning and orienting cameras to extend an angle of view
KR102620783B1 (ko) * 2019-03-10 2024-01-04 구글 엘엘씨 베이스볼 스티치를 갖는 360도 광각 카메라
CN111083372B (zh) * 2019-12-27 2021-06-04 成都英飞睿技术有限公司 全景监测控制方法、装置、设备及可读存储介质
US11622062B1 (en) * 2021-04-05 2023-04-04 United States Of America As Represented By The Administrator Of Nasa Ruggedized miniaturized infrared camera system for aerospace environments
CN113271409B (zh) * 2021-04-06 2022-07-01 南京极目机器人科技有限公司 一种组合相机、图像采集方法及航空器
US11670089B2 (en) 2021-06-03 2023-06-06 Not A Satellite Labs, LLC Image modifications for crowdsourced surveillance
US11663911B2 (en) 2021-06-03 2023-05-30 Not A Satellite Labs, LLC Sensor gap analysis
US11997390B2 (en) 2021-06-28 2024-05-28 nearmap australia pty ltd. Hyper camera with shared mirror

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1797849A (en) 1926-12-16 1931-03-24 Firm Photogrammetrie G M B H Multiple chamber for taking photographs from aeroplanes
US1735109A (en) * 1927-02-08 1929-11-12 Leon T Eliel Process of and apparatus for making aerial photographs
US2665481A (en) * 1951-03-02 1954-01-12 James E Henry Method of aerial mapping
US3109169A (en) * 1960-01-06 1963-10-29 Texas Instruments Inc Optical system for radar strip map recorder
US4989086A (en) * 1988-06-02 1991-01-29 Westinghouse Electric Corp. Ultra wide field-of-regard multispectral imaging radiometer
FR2696843B1 (fr) * 1992-10-14 1994-12-09 Matra Sep Imagerie Inf Appareil de prise de vues à distance, à haute résolution, pour porteur aérien.
US5550669A (en) * 1993-04-19 1996-08-27 Martin Marietta Corporation Flexure design for a fast steering scanning mirror
US5894323A (en) * 1996-03-22 1999-04-13 Tasc, Inc, Airborne imaging system using global positioning system (GPS) and inertial measurement unit (IMU) data
FR2752619B1 (fr) * 1996-08-23 1998-11-13 Thomson Csf Procede et dispositif de reconnaissance air-sol pour equipement optronique
DE19902081A1 (de) * 1999-01-20 2000-07-27 Zeiss Carl Fa Stabilisierte Kamera
US6737591B1 (en) * 1999-05-25 2004-05-18 Silverbrook Research Pty Ltd Orientation sensing device
DE10034601B4 (de) 2000-07-14 2013-05-23 Leica Geosystems Ag Kamerasystem mit mindestens zwei ersten und zweiten Kameras
US6366734B1 (en) * 2000-08-31 2002-04-02 Recon/Optical, Inc. Method of forward motion compensation in an aerial reconnaissance camera
IL149934A (en) * 2002-05-30 2007-05-15 Rafael Advanced Defense Sys Airborne intelligence photography system
US7308342B2 (en) * 2004-01-23 2007-12-11 Rafael Armament Development Authority Ltd. Airborne reconnaissance system
IL163565A (en) * 2004-08-16 2010-06-16 Rafael Advanced Defense Sys Airborne reconnaissance system
US7597489B2 (en) * 2005-09-12 2009-10-06 Honeywell International Inc. Apparatus and method for providing pointing capability for a fixed camera
US20070188610A1 (en) 2006-02-13 2007-08-16 The Boeing Company Synoptic broad-area remote-sensing via multiple telescopes
US8581981B2 (en) * 2006-04-28 2013-11-12 Southwest Research Institute Optical imaging system for unmanned aerial vehicle
US9262818B2 (en) * 2007-05-01 2016-02-16 Pictometry International Corp. System for detecting image abnormalities
US8331615B2 (en) 2007-08-01 2012-12-11 The Board Of Trustees Of The University Of Illinois Match, expand, and filter technique for multi-view stereopsis
JP4970296B2 (ja) * 2008-01-21 2012-07-04 株式会社パスコ オルソフォト画像の生成方法、および撮影装置
US8497905B2 (en) 2008-04-11 2013-07-30 nearmap australia pty ltd. Systems and methods of capturing large area images in detail including cascaded cameras and/or calibration features
US8675068B2 (en) 2008-04-11 2014-03-18 Nearmap Australia Pty Ltd Systems and methods of capturing large area images in detail including cascaded cameras and/or calibration features
US7899311B1 (en) * 2008-04-29 2011-03-01 Optech International, Inc. Removable shutter for a camera
IL201682A0 (en) * 2009-10-22 2010-11-30 Bluebird Aero Systems Ltd Imaging system for uav
JP5519388B2 (ja) * 2010-04-23 2014-06-11 株式会社パスコ 航空写真撮影方法
ES2531299T3 (es) * 2011-02-10 2015-03-12 Bae Systems Plc Captura de imagen
CN102829762B (zh) * 2011-06-17 2015-02-11 刘正千 无人飞行载具的图像处理系统及方法
US9256117B2 (en) * 2011-10-07 2016-02-09 L-3 Communications Cincinnati Electronics Corporation Panoramic imaging systems comprising rotatable mirrors for image stabilization
US9046759B1 (en) * 2014-06-20 2015-06-02 nearmap australia pty ltd. Compact multi-resolution aerial camera system
US9052571B1 (en) * 2014-06-20 2015-06-09 nearmap australia pty ltd. Wide-area aerial camera systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7381427B2 (ja) 2020-09-16 2023-11-15 真一 田代 水耕栽培方法及びその装置

Also Published As

Publication number Publication date
EP3158291B1 (en) 2019-01-30
CN106461389B (zh) 2019-06-28
CN106461389A8 (zh) 2017-04-12
JP2017527819A (ja) 2017-09-21
AU2014274508A1 (en) 2016-01-21
AU2014274508B2 (en) 2018-09-13
CA2952868C (en) 2021-10-12
EP3158291A4 (en) 2017-12-13
US20150373267A1 (en) 2015-12-24
CA2952868A1 (en) 2015-12-23
US9706117B2 (en) 2017-07-11
US9052571B1 (en) 2015-06-09
CN106461389A (zh) 2017-02-22
EP3158291A1 (en) 2017-04-26
ES2722000T3 (es) 2019-08-06
WO2015192164A1 (en) 2015-12-23

Similar Documents

Publication Publication Date Title
JP6410931B2 (ja) 高高度航空カメラシステム
JP6339245B2 (ja) 高高度航空カメラシステム
JP6541779B2 (ja) 高高度航空カメラシステム
US9440750B2 (en) Wide-area aerial camera systems
US9641736B2 (en) Wide-area aerial camera systems
RU2562707C2 (ru) Системы и способы захвата изображений большой площади по частям, включающие в себя каскадные камеры и/или калибровочные признаки

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180925

R150 Certificate of patent or registration of utility model

Ref document number: 6410931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250