JP6408548B2 - むだ時間を短縮したデジタル補正プロセストランスミッタ - Google Patents

むだ時間を短縮したデジタル補正プロセストランスミッタ Download PDF

Info

Publication number
JP6408548B2
JP6408548B2 JP2016500357A JP2016500357A JP6408548B2 JP 6408548 B2 JP6408548 B2 JP 6408548B2 JP 2016500357 A JP2016500357 A JP 2016500357A JP 2016500357 A JP2016500357 A JP 2016500357A JP 6408548 B2 JP6408548 B2 JP 6408548B2
Authority
JP
Japan
Prior art keywords
digital
process signal
signal
speed
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016500357A
Other languages
English (en)
Other versions
JP2016510889A (ja
Inventor
ジョン, ポール シュルト,
ジョン, ポール シュルト,
Original Assignee
ローズマウント インコーポレイテッド
ローズマウント インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローズマウント インコーポレイテッド, ローズマウント インコーポレイテッド filed Critical ローズマウント インコーポレイテッド
Publication of JP2016510889A publication Critical patent/JP2016510889A/ja
Application granted granted Critical
Publication of JP6408548B2 publication Critical patent/JP6408548B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Measuring Fluid Pressure (AREA)
  • Analogue/Digital Conversion (AREA)

Description

本発明は、プロセストランスミッタに関し、具体的には、改善された動的性能を有したデジタル補正を特徴とするプロセストランスミッタに関するものである。
プロセストランスミッタは、差圧、ゲージ圧、絶対圧、流量、液位、温度、pHなどの産業プロセスパラメータ(即ちプロセス変数)を監視するために用いられる。近年の高性能なプロセストランスミッタは、デジタル補正機能を用いることにより全誤差を低減している。補正前のプロセス信号が、アナログ・デジタル(A/D)コンバータを用いてデジタル化され、デジタル補正を行うためにマイクロコントローラに伝達される。周囲温度情報も、温度補正を行うために、デジタル化されてマイクロコントローラに伝達される。製造工場でのキャラクタライゼーションを行うことにより、装置出力を極めて線形にすると共に温度補正することが可能な補正係数が生成され、静的入力状態に対して全誤差が極めて小さなものとなる。
このようなデジタル補正を採用した結果の1つとして、動的性能が犠牲となっていた。デジタル補正処理に加え、A/D変換処理は、かなりの大きさのむだ時間をトランスミッタに与えることになる。デジタル補正機能を有した一般的なプロセストランスミッタは、100ms〜500msの範囲のむだ時間を有することがある。むだ時間は、パルプ・製紙用ヘッドボックスの圧力制御のように迅速な制御ループが必要となる用途や、緊急遮断の用途にとって問題となる場合がある。
1970年代のかつてのプロセストランスミッタは、事実上全てがアナログ方式であった。A/D変換器やデジタルプロセッサを有していないため、これらの機器は、実質的にむだ時間がなく、動的入力信号に対し、極めて迅速に応答した。しかしながら、その総合的な性能は、現代の標準に対して劣るものであった。
デジタル補正機能を有する機器で得られる静的性能と、全てをアナログ処理してむだ時間のない機器で得られる動的性能とを提供可能なプロセストランスミッタが求められている。
本発明の1つの特徴として、プロセストランスミッタは、センサ、第1信号経路、第2信号経路、第3信号経路、中間加算回路、及び出力加算回路を備えている。センサは、プロセスパラメータと相関するプロセス信号を生成する。第1信号経路は、デジタル方式でプロセス信号を補正し、デジタル補正プロセス信号が生成される。第2信号経路は、デジタル方式でプロセス信号をフィルタ処理し、第1信号経路よりも小さい遅延が生じて、デジタルフィルタ処理プロセス信号が生成される。第3信号経路は、プロセス信号がデジタル方式でフィルタ処理されると共に反転され、第2信号経路よりも大きい遅延を生じさせて、遅延反転プロセス信号が生成される。中間加算回路は、遅延反転プロセス信号を第2信号経路のプロセス信号に加算し、デジタルフィルタ処理プロセス信号を生成する。出力加算回路は、第1信号経路から供給されたデジタル補正プロセス信号と、第2信号経路から供給されたデジタルフィルタ処理プロセス信号とを加算し、高速化デジタル補正プロセス信号を生成する。
本発明のもう1つの特徴として、プロセストランスミッタは、センサ、アナログ・デジタルコンバータ、第1デジタルローパスフィルタ、第2デジタルローパスフィルタ、デジタルプロセッサ、反転回路、整合回路、中間加算回路、及び出力加算回路を備える。センサは、プロセスパラメータと相関するプロセス信号を生成する。アナログ・デジタルコンバータは、プロセス信号をデジタル化し、デジタルプロセス信号を生成する。第1デジタルローパスフィルタは、デジタルプロセス信号をフィルタ処理し、高速フィルタ処理プロセス信号を生成する。第2デジタルローパスフィルタは、第1デジタルローパスフィルタより少ない更新頻度を有し、高速フィルタ処理プロセス信号をフィルタ処理して、低速フィルタ処理プロセス信号を生成する。デジタルプロセッサは、低速フィルタ処理プロセス信号をデジタル方式で補正し、遅延を与えながらデジタル補正プロセス信号を生成する。反転回路は、低速フィルタ処理プロセス信号を反転させ、反転プロセス信号を生成する。整合回路は、反転プロセス信号に遅延を生じさせて、遅延反転プロセス信号を生成する。中間加算回路は、高速フィルタ処理プロセス信号と遅延反転プロセス信号とを加算し、デジタルフィルタ処理プロセス信号を生成する。出力加算回路は、デジタルフィルタ処理プロセス信号とデジタル補正プロセス信号とを加算し、高速デジタル補正プロセス信号を生成する。
本発明の一実施形態を示すプロセストランスミッタのブロック図である。 本発明の別の実施形態を示すプロセストランスミッタのブロック図である。 本発明の別の実施形態を示すプロセストランスミッタのブロック図である。 本発明の別の実施形態を示すプロセストランスミッタのブロック図である。 ステップ入力に対する応答として、図2A〜図2Cのプロセストランスミッタの出力を、従来のプロセストランスミッタの出力と比較しながら、正規化した出力信号を時間の変化と共に示す図である。 本発明の別の実施形態を示すプロセストランスミッタのブロック図である。 本発明の別の実施形態を示すプロセストランスミッタのブロック図である。
デジタル補正機能を有する機器で得られる静的性能と、全てをアナログ処理してほとんどむだ時間のない機器で得られる動的性能とを提供するプロセストランスミッタを得るための1つの解決策は、米国特許出願公開第2009/0196374号明細書に、むだ時間を短縮したデジタル補正プロセストランスミッタとして示されている。この文献には、デジタル方式により補正を行う信号経路と並列に、アナログ方式による信号経路を有したプロセストランスミッタが示されている。デジタル方式により補正を行う信号経路は、出力回路の手前に、デジタル・アナログコンバータを備えている。これら2つの信号経路が出力回路で結合される。
本発明において、プロセストランスミッタは、高速のデジタルプロセス信号経路と、デジタル補正プロセス信号経路とを有する。これら2つのデジタル信号経路は、デジタル・アナログコンバータの手前で結合される。全てをデジタル方式でフィルタ処理する手法を適用することにより、後述するように、検出したプロセスパラメータの変化に対して優れた動的応答性が得られる。また、全てをデジタル方式とすることは、アナログ方式のトランスミッタの高速の動的応答性、デジタル補正式トランスミッタにおける少ない全誤差、及びセンサ出力にほとんど合致した動的応答性を得る上での、費用対効果が高い手法でもある。
図1は、本発明を具現化したデジタル補正式のプロセストランスミッタのブロック図である。図1には、プロセスセンサ12、アナログ・デジタル(A/D)コンバータ14、デジタルローパスフィルタ16、デジタルプロセッサ18、温度センサ20、アナログ・デジタル(A/D)コンバータ22、出力加算回路24、デジタル・アナログ(D/A)コンバータ26、出力回路28、及びデジタルバンドパスフィルタ30を備えたプロセストランスミッタ10のブロック図が示されている。
プロセスセンサ12は、差圧、絶対圧、ゲージ圧、流体温度、液位、流速などのプロセス変数に対応して変化するプロセス信号を生成する。A/Dコンバータ14は、シグマ・デルタ変調器であるのが好ましい。デジタルローパスフィルタ16はデシメーションフィルタである。デジタルプロセッサ18は、マイクロプロセッサとするのが一般的である。温度センサ20は、プロセストランスミッタ10の周囲温度に対応して変化する温度信号を生成する。出力加算回路24は、2つのデジタル入力信号を加算して得られる単一のデジタル出力信号を生成する回路である。出力回路28は、アナログ入力信号に対応したトランスミッタ出力信号を生成することにより、プロセストランスミッタ10の相互通信を行う。プロセストランスミッタ10が2線式ループに接続されるような代表的なシステムにおいては、出力回路28が、4mA(ゼロ点)から20mA(フルスケール)の間で電流を変化させてトランスミッタ出力信号を生成する。デジタルバンドパスフィルタ30はデシメーションフィルタである。
プロセスセンサ12は、A/Dコンバータ14に接続されており、A/Dコンバータ14は、デジタルローパスフィルタ16及びデジタルバンドパスフィルタ30の双方に接続されている。デジタルローパスフィルタ16は、デジタルプロセッサ18に接続されている。デジタルバンドパスフィルタ30及びデジタルプロセッサ18は、いずれも出力加算回路24に接続されている。D/Aコンバータ26は、出力加算回路24を出力回路28に接続している。温度センサ20は、A/Dコンバータ22に接続されており、A/Dコンバータ22は、デジタルプロセッサ18に接続されている。
作動時、プロセスセンサ12から出力されたアナログプロセス信号は、A/Dコンバータ14によってデジタル化される。A/Dコンバータ14の出力は、高速低分解能のデジタルプロセス信号である。例えば、A/Dコンバータ14から出力されるデジタルプロセス信号は、50kHzの1ビットデータストリームとすることができる。A/Dコンバータ14の出力は、デジタルローパスフィルタ16とデジタルバンドパスフィルタ30とに分岐して伝達される。デジタルローパスフィルタ16では、デジタルプロセス信号のデータレートが、50kHzから25Hzに低減され、低速フィルタ処理プロセス信号を生成する。このときデジタルローパスフィルタ16は、A/Dコンバータ14から出力されたデジタルプロセス信号に含まれるノイズのほとんどを除去する。デジタルローパスフィルタ16から出力された低速フィルタ処理プロセス信号は、デジタル補正を行うために、デジタルプロセッサ18に供給される。デジタルプロセッサ18は、補正アルゴリズムを実行し、線形化、ライン圧力補正、及び温度補正の少なくとも1つにより、低速フィルタ処理プロセス信号をデジタル方式で補正する。デジタルプロセッサ18は、比較的限られた演算能力を有するものであってもよい。デジタルプロセッサ18の比較的限られた演算能力に起因し、補正アルゴリズムの複雑性により、15msまでのむだ時間遅延が加わる可能性がある。温度補正は、温度センサ20から出力された周囲温度信号に基づくものであり、この周囲温度信号は、A/Dコンバータ22によってデジタル化された後、デジタルプロセッサ18に供給される。
一方、デジタルバンドパスフィルタ30においても、デジタルプロセス信号のデータレートが低減されるが、デジタルローパスフィルタ16における低減ほど大幅なものではなく、高速のフィルタ処理プロセス信号が生成される。例えば、デジタルバンドパスフィルタ30は、デジタルプロセス信号のデータレートを50kHzから100Hzに低減するようにしてもよい。この高速のフィルタ処理プロセス信号は、デジタルフィルタ処理プロセス信号である。デジタルプロセッサ18からのデジタル補正プロセス信号と、デジタルバンドパスフィルタ30からのデジタルフィルタ処理プロセス信号とは、出力加算回路24において加算され、高速デジタル補正プロセス信号が生成される。この高速デジタル補正プロセス信号は、D/Aコンバータ26によって、アナログ補正プロセス信号に変換される。出力回路28は、D/Aコンバータ26から出力されたアナログ補正プロセス信号に対応してトランスミッタ出力を生成する。
これに代え、A/Dコンバータ14を、高速の更新が得られる任意のアナログ・デジタルコンバータとしてもよい。例えば、A/Dコンバータ14は、100Hzのデータ変換レートで作動する逐次比較型A/Dコンバータであってもよい。この場合、デジタルバンドパスフィルタ30をデシメーションフィルタとする必要はない。
図1に示すように、プロセストランスミッタ10は、プロセスセンサ12と出力加算回路24とを接続する2つの信号経路として、第1信号経路32及び第2信号経路34を備える。第1信号経路32には、A/Dコンバータ14、デジタルローパスフィルタ16、及びデジタルプロセッサ18が含まれ、第2信号経路34には、A/Dコンバータ14、及びデジタルバンドパスフィルタ30が含まれる。第1信号経路32では、プロセス信号がデジタル方式でフィルタ処理され、デジタル方式で補正されて、デジタル補正プロセス信号が生成される。また、第2信号経路34では、プロセス信号がデジタル方式でフィルタ処理され、デジタルフィルタ処理プロセス信号が生成される。重要な点は、第2信号経路34におけるプロセス信号が、第1信号経路32におけるプロセス信号ほどは大きく遅延しないことである。デジタルバンドパスフィルタ30が、デジタルプロセス信号の一部を、A/Dコンバータ14から出力加算回路24を介してD/Aコンバータ26へと直接的に受け渡すことにより、出力回路28のトランスミッタ出力は、第2信号経路34における高速の信号によってもたらされる高速の応答性を具備したものとなる。デジタルバンドパスフィルタ30の高域遮断周波数は、高速の信号の所望の部分を通過させる一方で、必要とされる周波数より高域のノイズを遮断するように設定される。また、デジタルバンドパスフィルタ30の低域遮断周波数は、プロセス信号における動的変化を示す周波数レベルより低域にある部分の高速の信号を遮断するように設定される。
プロセス信号の動的変化に応答して、第2信号経路34では、例えば100Hzといった非常に高速のレートで、プロセス信号がD/Aコンバータ26に伝達され、ほとんどむだ時間のない、高速の動的応答が得られる。動的変化が安定化していくに従って、第2信号経路34におけるプロセス信号が減衰し始めると同時に、第1信号経路32におけるプロセス信号が応答し始める。デジタルバンドパスフィルタ30は、その出力が、初期の動的応答状態(ゼロより大)から、最終的な静止出力状態(ゼロ)まで減衰していくように選定されており、このとき、デジタルローパスフィルタ16の出力は、初期の動的応答状態(ゼロ)から、最終的な静止出力状態(ゼロより大)まで変動していく。このような同調した動き、即ち変動の一致により、出力加算回路24において加算される際に、デジタルバンドパスフィルタ30から出力されるデジタルフィルタ処理プロセス信号の減衰部分が、デジタルプロセッサ18から出力されるデジタル補正プロセス信号の変動部分を相殺する。プロセス信号が静止状態に近付くと、第1信号経路32におけるプロセス信号のみが、適切なデジタル補正プロセス信号の供給を維持する。このため、出力加算回路24から出力される高速デジタル補正プロセス信号は、デジタルローパスフィルタ16及びデジタルバンドパスフィルタ30のいずれよりもかなり早く、静的な値に落ち着く。このようにして、プロセストランスミッタ10は、デジタル補正機能を有する機器で得られる静的性能と、全てをアナログ処理してほとんどむだ時間のない機器で得られる動的性能とを提供する。
プロセス信号の補正は演算負荷が高く、100Hzといった高速レートで実現することは困難である。本実施形態では、第1信号経路32において、25Hzといった比較的低速レートで補正が行われる。一方、デジタルバンドパスフィルタ30によるデジタル方式のフィルタ処理、及び出力加算回路24による加算処理は、演算負荷が高くなく、高速レートで容易に実行することが可能である。出力加算回路24の出力も、この高速レートに従って行われるので、D/Aコンバータ26及び出力回路28の更新も高速となる。一般的に、プロセス信号の動的な部分は、計測範囲の5%の最大全誤差が必須の要件となる。この程度の性能は、多くのプロセスセンサから出力される補正前の信号で容易に得ることができる。この結果、デジタルプロセッサ18の十分な演算能力が確保される。
図1は、デジタルローパスフィルタ16、デジタルプロセッサ18、及びデジタルバンドパスフィルタ30、及び出力加算回路24を別個の素子として示しているが、これらの各ブロックの機能は、ホストプロセッサといった、1以上の集積回路において作動するソフトウエアで実行するようにしてもよい。デジタルバンドパスフィルタ30によるデジタル方式のフィルタ処理、及び出力加算回路24による加算処理は、演算負荷が高くないので、そのような実施形態では、ホストプロセッサなどにわずかな演算負荷の増大が生じるだけである。
実施形態の1つとして、プロセス信号をD/Aコンバータ26に供給する前に、トランスミッタ出力が、使用者による上限値及び下限値のキャリブレーションによって定まる範囲、即ち尺度範囲内となるように、プロセス信号を調整するようにしてもよい。このような処理をスケーリングと称する。第1信号経路32から供給されるデジタル補正プロセス信号と、第2信号経路34から供給されるデジタルフィルタ処理プロセス信号とは、D/Aコンバータ26の手前で加算されるので、出力加算回路24から出力される単一の加算出力、即ち高速デジタル補正プロセス信号に対して、適切なスケーリングを行うようにしてもよい。
図2A〜図2Cは、本発明を具現化した、もう1つのデジタル補正式のプロセストランスミッタのブロック図である。図1の実施形態とは異なり、図2A〜図2Cに示す実施形態は、プロセストランスミッタの動的応答における忠実度を改善するための第3信号経路を備えている。明瞭化のため、図2A〜図2Cでは、それぞれ3つの信号経路のうちの1つずつを特定している。図2Aは第1信号経路132を特定し、図2Bは第2信号経路134を特定し、図2Cは第3信号経路136を特定している。図2A〜図2Cのそれぞれは、プロセストランスミッタ110のブロック図であり、プロセストランスミッタ110は、図1に基づいて上述したような、プロセスセンサ12、アナログ・デジタル(A/D)コンバータ14、デジタルプロセッサ18、温度センサ20、アナログ・デジタル(A/D)コンバータ22、出力加算回路24、デジタル・アナログ(D/A)コンバータ26、及び出力回路28を備える。更に、プロセストランスミッタ110は、高速デジタルローパスフィルタ116、低速デジタルローパスフィルタ140、反転回路142、整合回路144、及び中間加算回路146を備えている。
高速デジタルローパスフィルタ116は、例えば100Hzといった高速レートで作動するデシメーションフィルタである。また、低速デジタルローパスフィルタ140もデシメーションフィルタであるが、例えば25Hzといった、かなり低速レートで作動する。反転回路142は、信号を反転させる回路である。整合回路144は、調整可能な量をもって信号を遅延させる回路である。中間加算回路146は、2つのデジタル入力信号を加算して得られる単一のデジタル出力信号を生成する回路である。
プロセスセンサ12は、A/Dコンバータ14に接続され、A/Dコンバータ14は、高速デジタルローパスフィルタ116に接続されている。高速デジタルローパスフィルタ116は、低速デジタルローパスフィルタ140及び中間加算回路146の双方に接続されている。低速デジタルローパスフィルタ140は、反転回路142及びデジタルプロセッサ18の双方に接続されている。反転回路142は、整合回路144に接続され、整合回路144は、中間加算回路146に接続されている。中間加算回路146及びデジタルプロセッサ18は、いずれも出力加算回路24に接続されている。D/Aコンバータ26は、出力加算回路24を出力回路28に接続している。温度センサ20は、A/Dコンバータ22に接続され、A/Dコンバータ22は、デジタルプロセッサ18に接続されている。
作動時、プロセスセンサ12から出力されたアナログプロセス信号は、A/Dコンバータ14によってデジタル化される。A/Dコンバータ14の出力は、高速低分解能のデジタルプロセス信号である。例えば、A/Dコンバータ14から出力されるデジタルプロセス信号は、50kHzの1ビットデータストリームとすることができる。A/Dコンバータ14の出力は、高速デジタルローパスフィルタ116に伝達され、デジタルプロセス信号のデータレートが、50kHzから100Hzに低減される。このようなフィルタ処理により、A/Dコンバータ14から出力されたデジタルプロセス信号に含まれるノイズの多くが除去され、高速フィルタ処理プロセス信号が生成される。高速フィルタ処理プロセス信号は、低速デジタルローパスフィルタ140と中間加算回路146とに分岐して伝達される。低速デジタルローパスフィルタ140では、高速フィルタ処理プロセス信号のデータレートが、例えば100Hzから25Hzへと、再び低減され、低速フィルタ処理プロセス信号が生成される。このような処理において、低速デジタルローパスフィルタ140は、高速デジタルローパスフィルタ116から出力された高速フィルタ処理プロセス信号に残存するノイズのほとんどを除去する。低速デジタルローパスフィルタ140から出力された低速フィルタ処理プロセス信号は、反転回路142とデジタルプロセッサ18とに分岐して伝達される。デジタルプロセッサ18は、補正アルゴリズムを実行して、線形化、ライン圧力補正、及び温度補正の少なくとも1つにより、低速フィルタ処理プロセス信号をデジタル方式で補正する。補正アルゴリズムの実行により、低速フィルタ処理プロセス信号に補正遅延が生じる。温度補正は、温度センサ20から出力された周囲温度信号に基づくものであり、この周囲温度信号は、A/Dコンバータ22によってデジタル化された後、デジタルプロセッサ18に供給される。
一方、反転回路142では、低速デジタルローパスフィルタ140から出力された低速フィルタ処理プロセス信号が反転された後、整合回路144に伝達される。整合回路144は、反転回路142から出力された反転後のプロセス信号を遅延させ、中間加算回路146に伝達する。整合回路144による遅延は、デジタルプロセッサ18によって生じる補正遅延と合致するように調整される。整合回路144による遅延は、補正遅延と確実に合致するように、デジタルプロセッサ18によって制御されるのが好ましい。中間加算回路146では、高速デジタルローパスフィルタ116から直接受け取った高速フィルタ処理プロセス信号に、反転され遅延されて整合回路144から出力された遅延反転プロセス信号が加算され、デジタルフィルタ処理プロセス信号が生成される。中間加算回路146から出力されたデジタルフィルタ処理プロセス信号は、出力加算回路24に伝達される。デジタルプロセッサ18から出力されたデジタル補正プロセス信号と、中間加算回路146から出力されたデジタルフィルタ処理プロセス信号とは、出力加算回路24において加算され、高速デジタル補正プロセス信号が生成される。この高速デジタル補正プロセス信号は、D/Aコンバータ26によって、アナログ補正プロセス信号に変換される。出力回路28は、D/Aコンバータ26から出力されたアナログ補正プロセス信号に対応してトランスミッタ出力を生成する。
図1の実施形態のように、A/Dコンバータ14は、シグマ・デルタ変調器であるのが好ましい。これに代えて、A/Dコンバータ14を、高速の更新が得られる任意のアナログ・デジタルコンバータとすることが可能である。例えば、A/Dコンバータ14は、100Hzのデータ変換レートで作動する逐次比較型A/Dコンバータであってもよい。この場合、高速デジタルローパスフィルタ116をデシメーションフィルタとする必要はない。
図2A〜図2Cを併せて参照すると、プロセストランスミッタ110は、プロセスセンサ12と出力加算回路24とを接続する3つの信号経路、即ち、第1信号経路132、第2信号経路134、及び第3信号経路136を備えている。第1信号経路132には、A/Dコンバータ14、高速デジタルローパスフィルタ116、低速デジタルローパスフィルタ140、及びデジタルプロセッサ18が含まれる。第2信号経路134には、A/Dコンバータ14、高速デジタルローパスフィルタ116、及び中間加算回路146が含まれる。第3信号経路136には、A/Dコンバータ14、高速デジタルローパスフィルタ116、低速デジタルローパスフィルタ140、反転回路142、整合回路144、及び中間加算回路146が含まれる。第1信号経路132では、プロセス信号がデジタル方式により補正され、デジタル補正プロセス信号が生成される。第2信号経路134では、プロセス信号がデジタル方式によりフィルタ処理され、高速フィルタ処理プロセス信号が生成される。重要な点は、第2信号経路134におけるプロセス信号が、第1信号経路132におけるプロセス信号ほどは大きく遅延しないことである。第2信号経路134では、デジタルプロセス信号の一部が、A/Dコンバータ14からD/Aコンバータ26及び出力回路28へと直接的に伝達されることにより、トランスミッタ出力は、第2信号経路134における高速の信号によってもたらされる高速の応答性を具備したものとなる。第3信号経路136では、低速フィルタ処理プロセス信号が反転され、この反転されたプロセス信号と、第2信号経路134で得られる高速フィルタ処理プロセス信号とが中間加算回路146で加算される際に、反転されたプロセス信号の動的応答が、第2信号経路134で得られる高速フィルタ処理プロセス信号の動的応答とは逆向きに作用することになる。第3信号経路136における遅延は、第1信号経路132におけるデジタルプロセッサ18による補正遅延と合致するように同調される。
プロセス信号の動的変化に応答し、第2信号経路134では、100Hzの高速レートで、プロセス信号がD/Aコンバータ26に伝達され、ほとんどむだ時間のない、高速の動的応答が得られる。動的変化が安定化していくに従い、第3信号経路136におけるプロセス信号が応答し始めて、第2信号経路134からのプロセス信号を相殺すると共に、第1信号経路132におけるプロセス信号が応答し始める。プロセス信号が静止状態に近付くと、第2信号経路134からのプロセス信号と第3信号経路136からのプロセス信号とが相殺し、第1信号経路132におけるプロセス信号のみが、適切なデジタル補正プロセス信号の供給を維持する。
図2A〜図2Cの実施形態では、反転回路142が、低速デジタルローパスフィルタ140を整合回路144に接続している。しかし、反転回路142と整合回路144とを入れ替え、整合回路144が、低速デジタルローパスフィルタ140を反転回路142に接続し、反転回路142が中間加算回路146に接続されるようにして、遅延反転プロセス信号が、反転回路142から中間加算回路146に伝達されるような実施形態も、本発明に包含されるものである。第3信号経路136のデジタルフィルタ処理されたプロセス信号が、反転されてから遅延されるか、遅延されてから反転されるかは、本発明の目的に対して大きな問題ではない。従って、反転回路142の反転機能と、中間加算回路146の加算機能とを単一の機能に統合し、第3信号経路136からの低速デジタルフィルタ処理プロセス信号と、第2信号経路134からの高速フィルタ処理プロセス信号との加算ではなく、減算を行う(差分を求める)ようにした実施形態も、本発明に包含される。
図2A〜図2Cの実施形態は、図1に基づいて前述した実施形態の利点を全て備えている。本実施形態で重要な点は、第3信号経路136における遅延が、第1信号経路132におけるデジタルプロセッサ18による補正遅延と合致するように同調されるので、デジタルプロセッサ18と整合回路144とが同調している限りは、補正遅延の実際の大きさを知る必要がないことである。プロセストランスミッタ110は、デジタル補正機能を有する機器で得られる静的性能と、全てをアナログ処理してほとんどむだ時間のない機器で得られる動的性能とを提供する。更に、本実施形態では、綿密な整合が行われることにより、図3に示すように、プロセストランスミッタ110が、プロセスセンサ12の動的特性に緊密に追従する総合的な動的応答性を提供する。
図2A〜図2Cは、高速デジタルローパスフィルタ116、低速デジタルローパスフィルタ140、反転回路142、整合回路144、中間加算回路146、デジタルプロセッサ18、及び出力加算回路24を別個の素子として示しているが、これらの各ブロックの機能は、ホストプロセッサといった、1以上の集積回路において作動するソフトウエアで実行するようにしてもよい。高速デジタルローパスフィルタ116、低速デジタルローパスフィルタ140、反転回路142、整合回路144、中間加算回路146、及び出力加算回路24は、演算負荷が高くないので、そのような実施形態では、ホストプロセッサなどにわずかな演算負荷の増大が生じるだけである。
図3は、プロセストランスミッタ110の出力を、本発明を具現化していない従来のプロセストランスミッタの出力と比較しながら、正規化した出力を時間の変化と共に示す図である。この模擬出力は、プロセスセンサ12への0から1に変化するステップ入力に応答するものである。図3には、センサ応答信号200、プロセストランスミッタ応答信号210、及び従来技術応答信号220が示されている。センサ応答信号200は、A/Dコンバータ14の手前にあるプロセスセンサ12のステップ応答正規化出力である。プロセストランスミッタ応答信号210は、プロセスセンサ12のステップ応答正規化出力に応答した、プロセストランスミッタ110の正規化出力である。従来技術応答信号220は、プロセスセンサ12のステップ応答正規化出力に応答した、従来のプロセストランスミッタの正規化出力である。センサ応答信号200は、むだ時間を何ら伴うことなく、約20msで63%に達する応答を示している。また、従来技術応答信号220は、約75msのむだ時間を伴い、約140msで63%に達する応答を示している。一方、プロセストランスミッタ応答信号210は、わずか10msと、ほとんどむだ時間を伴うことなく、約45msで63%に達する応答を示している。従って、プロセストランスミッタ応答信号210は、デジタル補正機能を有する機器で得られる静的性能を提供するプロセストランスミッタ110が、全てをアナログ処理してほとんどむだ時間のない機器で得られる動的性能を有することを示している。更に、プロセストランスミッタ応答信号210の波形形状は、従来技術応答信号220よりもはるかに優れた忠実度をもって、センサ応答信号200の波形形状に追従しており、プロセストランスミッタ110を、デジタル補正機能を有する機器で得られる静的性能を保持しているにも関わらず、むしろアナログ方式のプロセストランスミッタのように見なすことができる。特に、このような特徴は、わずかな演算負荷の増大のみで、本発明によって全て実現することができる。
図1に基づき前述したように、一般的に、プロセス信号の動的な部分は、計測範囲の5%の最大全誤差が必須の要件となる。このようなレベルの性能は、多くのプロセスセンサから出力される補正前の信号で容易に得られる。しかしながら、本発明のいくつかの実施形態では、プロセスセンサ12からの補正前の信号に、プロセス信号の動的な部分に必須となる最大全誤差の要件を満足する上で十分なレベルの性能が得られない場合がある。図4は、本発明を具現化した、もう1つのデジタル補正式のプロセストランスミッタのブロック図である。図2A〜図2Cの実施形態とは異なり、図4の実施形態は、全ての信号経路に、少なくとも部分的なデジタル補正機能を備える。図4の実施形態は、デジタルプロセッサ350を追加した点を除き、図2A〜図2Cの実施形態と同様である。図4に示すように、プロセストランスミッタ310は、高速デジタルローパスフィルタ116を、低速デジタルローパスフィルタ140及び中間加算回路146の双方に接続するデジタルプロセッサ350を備えている。デジタルプロセッサ350は、第1信号経路132内、第2信号経路134内、及び第3信号経路136内のそれぞれにおいて、部分的なデジタル補正を行う。第1信号経路132、第2信号経路134、及び第3信号経路136は、図2A〜図2Cに基づき上述したとおりである。
プロセストランスミッタ310に関する作動は、プロセストランスミッタ310にとってプロセス信号の動的な部分に必須とされる最大全誤差の要件を満足する上で十分なレベルの性能となるように、高速デジタルローパスフィルタ116から出力される高速フィルタ処理プロセス信号がデジタル方式で部分的に補正される点を除き、図2A〜図2Cに基づき上述したプロセストランスミッタ110に関する作動と同様である。デジタルプロセッサ350は、マイクロプロセッサとするか、または集積回路の一部とするのが一般的である。デジタルプロセッサ18と同様に、デジタルプロセッサ350は補正アルゴリズムを実行し、線形化、ライン圧力補正、及び温度補正の少なくとも1つにより、プロセス信号をデジタル方式で補正する。但し、デジタルプロセッサ350によるデジタル補正は、デジタルプロセッサ18が行うような全体的なデジタル補正ではなく、部分的な補正に過ぎないため、デジタルプロセッサ18が行うデジタル補正よりかなり省力化されたものである。従って、デジタルプロセッサ350の演算負荷は、デジタルプロセッサ18の演算負荷より大幅に少ない。
図5は、プロセス信号の部分的なデジタル補正を行って、プロセストランスミッタにとってプロセス信号の動的な部分に必須とされる最大全誤差の要件を満足する上で十分なレベルの性能とするための、図4の実施形態の代替例を示す図である。図5の実施形態は、デジタルプロセッサ450及びデジタルプロセッサ452を追加した点を除き、図2A〜図2Cの実施形態と同様である。図5に示すように、プロセストランスミッタ410は、高速デジタルローパスフィルタ116を中間加算回路146に接続するデジタルプロセッサ450を備えている。また、プロセストランスミッタ410は、低速デジタルローパスフィルタ140を反転回路142に接続するデジタルプロセッサ452も備えている。デジタルプロセッサ450は、第2信号経路134において部分的なデジタル補正を行う。また、デジタルプロセッサ452は、第3信号経路136において部分的なデジタル補正を行う。図4の実施形態とは異なり、デジタルプロセッサ18の手前で、第1信号経路132における部分的なデジタル補正は行われない。第1信号経路132、第2信号経路134、及び第3信号経路136は、図2A〜図2Cに基づき上述したとおりである。
プロセストランスミッタ410に関する作動は、プロセストランスミッタ410にとってプロセス信号の動的な部分に必須とされる最大全誤差の要件を満足する上で十分なレベルの性能となるように、中間加算回路146に供給される高速フィルタ処理プロセス信号がデジタル方式で部分的に補正される点を除き、図2A〜図2Cに基づき上述したプロセストランスミッタ110に関する作動と同様である。同じく、低速デジタルローパスフィルタ140から出力された低速フィルタ処理プロセス信号も、プロセストランスミッタ410にとってプロセス信号の動的な部分に必須とされる最大全誤差の要件を満足する上で十分なレベルの性能となるように、デジタル方式で部分的に補正される。デジタルプロセッサ450及びデジタルプロセッサ452は、マイクロプロセッサとするか、または集積回路の一部とするのが一般的である。図4に基づき上述したデジタルプロセッサ350と同様に、デジタルプロセッサ450及びデジタルプロセッサ452は補正アルゴリズムを実行して、線形化、ライン圧力補正、及び温度補正の少なくとも1つにより、プロセス信号をデジタル方式で部分的に補正する。デジタルプロセッサ350と同じく、デジタルプロセッサ450及びデジタルプロセッサ452によるデジタル補正は、デジタルプロセッサ18が行うデジタル補正よりかなり省力化されたものである。従って、デジタルプロセッサ450及びデジタルプロセッサ452の演算負荷は、デジタルプロセッサ18の演算負荷より大幅に少ない。
図4及び図5の実施形態は、図1、図2A〜図2C、及び図3のそれぞれに基づき説明した実施形態の利点を全て備えるものである。重要な点は、図4及び図5の実施形態の場合、プロセスセンサ12から出力される補正前の信号が、プロセストランスミッタ310やプロセストランスミッタ410にとってプロセス信号の動的な部分に必須とされる最大全誤差の要件を満足する上で十分なレベルの性能を有していない場合であっても、これらの利点が得られることである。
本発明を具現化したプロセストランスミッタは、デジタル補正機能を有する機器で得られる静的性能と、全てをアナログ処理してほとんどむだ時間のない機器で得られる動的性能とを提供する。全てをデジタル方式でフィルタ処理する構成を採用することにより、十分な演算能力を確保すると共に出力のスケーリングを簡素化しながら、検出したプロセスパラメータの変化に対する優れた動的応答性が得られる。全てをデジタル方式とすることは、アナログ方式のプロセストランスミッタの高速の動的応答性、デジタル補正式プロセストランスミッタにおける少ない全誤差、及びセンサ出力にほとんど合致した動的応答性を得る上での費用対効果の高い方法である。
具体的な実施形態に基づき本発明を説明したが、本発明の範囲から逸脱することなく、様々な変更が可能であると共に、均等物で本発明の各構成要素を置き換えることが可能であることが当業者に理解されよう。また、本発明の本質的な範囲から逸脱することなく、特定の状況やものを本発明の教示に適合させるためのさまざまな変形が可能である。従って、本発明は、開示した特定の実施形態に限定されるものではなく、添付の特許請求の範囲内に包含される全ての態様を含むものである。

Claims (12)

  1. プロセスパラメータと相関するプロセス信号を生成するセンサと、
    前記プロセス信号がデジタル方式で補正され、デジタル補正プロセス信号が生成される第1信号経路と、
    前記プロセス信号がデジタル方式でフィルタ処理され、前記第1信号経路より小さい遅延が生じて、デジタルフィルタ処理プロセス信号が生成される第2信号経路と、
    前記プロセス信号がデジタル方式によりフィルタ処理されると共に反転され、前記第2信号経路より大きい遅延を生じさせて、遅延反転プロセス信号が生成される第3信号経路と、
    前記遅延反転プロセス信号を前記第2信号経路のプロセス信号に加算し、前記デジタルフィルタ処理プロセス信号を生成する中間加算回路と、
    前記デジタル補正プロセス信号と前記デジタルフィルタ処理プロセス信号とを加算し、高速デジタル補正プロセス信号を生成する出力加算回路と
    を備えることを特徴とするプロセストランスミッタ。
  2. 前記第1信号経路、前記第2信号経路、及び前記第3信号経路のためのプロセス信号をデジタル方式でフィルタ処理する第1デジタルローパスフィルタと、
    前記第1デジタルローパスフィルタよりも少ない更新頻度を有し、前記第1信号経路及び前記第3信号経路のためのプロセス信号をデジタル方式でフィルタ処理する第2デジタルローパスフィルタと
    を更に備えることを特徴とする請求項に記載のプロセストランスミッタ。
  3. 前記第3信号経路におけるプロセス信号の遅延は、前記第1信号経路におけるプロセス信号の遅延に同調されることを特徴とする請求項に記載のプロセストランスミッタ。
  4. 前記高速デジタル補正プロセス信号をアナログ補正プロセス信号に変換するデジタル・アナログコンバータと、
    前記アナログ補正プロセス信号に対応してトランスミッタ出力を生成する出力回路と
    を更に備えることを特徴とする請求項に記載のプロセストランスミッタ。
  5. プロセスパラメータと相関するプロセス信号を生成するセンサと、
    前記プロセス信号をデジタル化し、デジタルプロセス信号を生成するアナログ・デジタルコンバータと、
    前記デジタルプロセス信号をフィルタ処理し、高速フィルタ処理プロセス信号を生成する第1デジタルローパスフィルタと、
    前記第1デジタルローパスフィルタより少ない更新頻度を有し、前記高速フィルタ処理プロセス信号をフィルタ処理して、低速フィルタ処理プロセス信号を生成する第2デジタルローパスフィルタと、
    前記低速フィルタ処理プロセス信号をデジタル方式で補正して、デジタル補正プロセス信号を生成し、前記デジタル補正プロセス信号に遅延を生じさせる第1デジタルプロセッサと、
    前記低速フィルタ処理プロセス信号を反転させて、反転プロセス信号を生成する反転回路と、
    前記反転プロセス信号に遅延を生じさせて、遅延反転プロセス信号を生成する整合回路と、
    前記高速フィルタ処理プロセス信号と前記遅延反転プロセス信号とを加算し、デジタルフィルタ処理プロセス信号を生成する中間加算回路と、
    前記デジタルフィルタ処理プロセス信号と前記デジタル補正プロセス信号とを加算し、高速デジタル補正プロセス信号を生成する出力加算回路と
    を備えることを特徴とするプロセストランスミッタ。
  6. 前記第1デジタルプロセッサは、前記整合回路で生じさせる遅延を制御し、前記遅延反転プロセス信号を、前記デジタル補正プロセス信号と同調させることを特徴とする請求項に記載のプロセストランスミッタ。
  7. 前記高速デジタル補正プロセス信号をアナログ補正プロセス信号に変換するデジタル・アナログコンバータと、
    前記アナログ補正プロセス信号に対応してトランスミッタ出力を生成する出力回路と
    を更に備えることを特徴とする請求項に記載のプロセストランスミッタ。
  8. 前記低速フィルタ処理プロセス信号を補正する際の前記第1デジタルプロセッサの演算負荷より少ない演算負荷で、前記高速フィルタ処理プロセス信号をデジタル方式で部分的に補正する第2デジタルプロセッサを更に備えることを特徴とする請求項に記載のプロセストランスミッタ。
  9. 前記中間加算回路で加算する前記高速フィルタ処理プロセス信号の一部をデジタル方式で補正する第2デジタルプロセッサと、
    前記反転回路で反転する前記低速フィルタ処理プロセス信号の一部をデジタル方式で補正する第3デジタルプロセッサとを更に備え、
    前記第2デジタルプロセッサによる前記高速フィルタ処理プロセス信号の補正の演算負荷及び第3デジタルプロセッサによる前記低速フィルタ処理プロセス信号の補正の演算負荷は、前記第1デジタルプロセッサによる前記低速フィルタ処理プロセス信号の補正の演算負荷より少ない
    ことを特徴とする請求項に記載のプロセストランスミッタ。
  10. 周囲温度と相関する温度信号を生成する温度センサと、
    前記温度信号をデジタル化し、デジタル周辺温度信号を生成する温度用アナログ・デジタルコンバータとを更に備え、
    前記第1デジタルプロセッサは、前記デジタル周辺温度信号を用い、前記低速フィルタ処理プロセス信号をデジタル方式で補正して、前記デジタル補正プロセス信号を生成する
    ことを特徴とする請求項に記載のプロセストランスミッタ。
  11. 検出されたプロセスパラメータに追従する動的応答性を有したプロセストランスミッタの出力を生成する方法であって、
    検出されたプロセスパラメータと相関するアナログプロセス信号を生成する工程と、
    前記アナログプロセス信号をデジタル化し、デジタルプロセス信号を生成する工程と、
    前記デジタルプロセス信号を補正し、デジタル補正プロセス信号を生成する工程と、
    前記デジタルプロセス信号をフィルタ処理し、デジタルフィルタ処理プロセス信号を生成する工程と、
    前記デジタル補正プロセス信号と前記デジタルフィルタ処理プロセス信号とを加算し、高速デジタル補正プロセス信号を生成する工程と、
    前記高速デジタル補正プロセス信号に対応してトランスミッタ出力を生成する工程とを備え、
    前記デジタルプロセス信号をフィルタ処理し、前記デジタルフィルタ処理プロセス信号を生成する前記工程は、
    高速デジタルローパスフィルタを用いて前記デジタルプロセス信号をフィルタ処理し、高速フィルタ処理プロセス信号を生成する工程と、
    前記高速デジタルローパスフィルタよりも更新頻度が少ない低速デジタルローパスフィルタを用いて前記高速フィルタ処理プロセス信号をフィルタ処理し、低速フィルタ処理プロセス信号を生成する工程と、
    前記低速フィルタ処理プロセス信号を遅延及び反転させて遅延反転プロセス信号を生成する工程と、
    前記高速フィルタ処理プロセス信号と前記遅延反転プロセス信号とを加算し、前記デジタルフィルタ処理プロセス信号を生成する工程とを備え、
    前記デジタルプロセス信号を補正し、前記デジタル補正プロセス信号を生成する前記工程は、
    前記高速デジタルローパスフィルタを用いて前記デジタルプロセス信号をフィルタ処理し、前記高速フィルタ処理プロセス信号を生成する工程と、
    前記低速デジタルローパスフィルタを用いて前記高速フィルタ処理プロセス信号をフィルタ処理し、低速フィルタ処理プロセス信号を生成する工程と、
    前記低速フィルタ処理プロセス信号をデジタル方式で補正し、前記デジタル補正プロセス信号を生成する工程とを備える
    ことを特徴とする方法。
  12. 前記低速フィルタ処理プロセス信号を遅延及び反転させる前記工程は、前記遅延反転プロセス信号を前記デジタル補正プロセス信号と同調させる工程を備えることを特徴とする請求項11に記載の方法。
JP2016500357A 2013-03-11 2014-02-24 むだ時間を短縮したデジタル補正プロセストランスミッタ Active JP6408548B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/792,659 US9136886B2 (en) 2013-03-11 2013-03-11 Digitally compensated process transmitter with minimal dead time
US13/792,659 2013-03-11
PCT/US2014/017978 WO2014163842A1 (en) 2013-03-11 2014-02-24 Digitally compensated process transmitter with minimal dead time

Publications (2)

Publication Number Publication Date
JP2016510889A JP2016510889A (ja) 2016-04-11
JP6408548B2 true JP6408548B2 (ja) 2018-10-17

Family

ID=49616629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016500357A Active JP6408548B2 (ja) 2013-03-11 2014-02-24 むだ時間を短縮したデジタル補正プロセストランスミッタ

Country Status (5)

Country Link
US (1) US9136886B2 (ja)
EP (1) EP2973490B1 (ja)
JP (1) JP6408548B2 (ja)
CN (2) CN203310426U (ja)
WO (1) WO2014163842A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9136886B2 (en) * 2013-03-11 2015-09-15 Rosemount Inc. Digitally compensated process transmitter with minimal dead time
EP2778619B1 (en) * 2013-03-15 2015-12-02 Invensys Systems, Inc. Process variable transmitter
JP2015204608A (ja) * 2014-04-16 2015-11-16 富士電機株式会社 物理量センサ装置および物理量センサ装置の調整方法
JP6915656B2 (ja) * 2014-04-16 2021-08-04 富士電機株式会社 物理量センサ装置の調整方法
US10659090B2 (en) 2018-06-22 2020-05-19 Rosemount Inc. Analog circuit time constant compensation method for a digital transmitter using an analog output

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4590579A (en) * 1983-10-04 1986-05-20 Ramsey Engineering Company Apparatus and method for digital specific gravity measurement
JPS61103335A (ja) * 1984-10-26 1986-05-21 Toshiba Corp 遠方監視制御装置
JPH04291121A (ja) * 1991-03-20 1992-10-15 Nippon Denpa Kk 流量計測補正装置
US6445969B1 (en) 1997-01-27 2002-09-03 Circuit Image Systems Statistical process control integration systems and methods for monitoring manufacturing processes
JP4551515B2 (ja) 1998-10-07 2010-09-29 株式会社日立国際電気 半導体製造装置およびその温度制御方法
US6308106B1 (en) 1998-11-30 2001-10-23 Mts Systems Corporation Feed-forward controller with delayed command input
DE10005611A1 (de) 2000-02-09 2001-08-30 Randolf Hoche Verfahren und Vorrichtung zum Verstellen eines Elements
CN1183305C (zh) 2000-03-31 2005-01-05 日立建机株式会社 故障处理法输出系统
US6687635B2 (en) * 2002-06-13 2004-02-03 Mks Instruments, Inc. Apparatus and method for compensated sensor output
DE10329540A1 (de) * 2003-06-30 2005-02-24 Endress + Hauser Flowtec Ag, Reinach Verfahren zum Betrieb eines magnetisch-induktiven Durchflußmessers
DE10336820A1 (de) 2003-08-11 2005-01-20 Physik Instrumente (Pi) Gmbh & Co. Kg Verfahren und Schaltungsanordnung zur präzisen, dynamischen digitalen Ansteuerung von insbesondere Piezoaktoren für Mikropositioniersysteme
US7092848B2 (en) 2003-12-22 2006-08-15 Caterpillar Inc. Control system health test system and method
US7693491B2 (en) 2004-11-30 2010-04-06 Broadcom Corporation Method and system for transmitter output power compensation
JP2007240286A (ja) * 2006-03-08 2007-09-20 Yokogawa Electric Corp 計測方法および計測装置
US8473022B2 (en) 2008-01-31 2013-06-25 Abbott Diabetes Care Inc. Analyte sensor with time lag compensation
JP5330703B2 (ja) 2008-01-31 2013-10-30 アズビル株式会社 差圧発信器
US9157763B2 (en) * 2008-02-06 2015-10-13 Rosemount, Inc. Minimal dead time digitally compensated process transmitter
CN102122146B (zh) * 2011-01-06 2012-10-03 上海交通大学 用于高速精密加工的热误差实时补偿系统及其补偿方法
US8842769B2 (en) * 2012-03-16 2014-09-23 Telefonaktiebolaget L M Ericsson (Publ) Programmable digital up-conversion for concurrent multi-band signals
US9136886B2 (en) * 2013-03-11 2015-09-15 Rosemount Inc. Digitally compensated process transmitter with minimal dead time

Also Published As

Publication number Publication date
WO2014163842A1 (en) 2014-10-09
EP2973490B1 (en) 2019-01-02
CN203310426U (zh) 2013-11-27
US9136886B2 (en) 2015-09-15
JP2016510889A (ja) 2016-04-11
CN104048682A (zh) 2014-09-17
EP2973490A4 (en) 2016-11-02
CN104048682B (zh) 2018-01-02
US20140254717A1 (en) 2014-09-11
EP2973490A1 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
JP6408548B2 (ja) むだ時間を短縮したデジタル補正プロセストランスミッタ
JP5221680B2 (ja) デッドタイムが最小のデジタル的に補償されるプロセストランスミッタ
KR101926665B1 (ko) 커브피팅 회로, 아날로그 전치보상기 및 무선 주파수 신호 송신기
US8259974B2 (en) Configuration and method for detecting feedback in hearing devices
CN111627459B (zh) 音频处理方法及装置、计算机可读存储介质及电子设备
JP2021002819A (ja) フィルタリング装置、センサ装置、フィルタリング方法、およびフィルタリングプログラム
CN115060306B (zh) 模拟量校准方法、装置及模拟量采集设备
JP2011033439A (ja) コリオリ質量流量計
JP7314420B2 (ja) ノッキング信号処理装置および方法
TWI472151B (zh) 自動調整頻寬的濾波器系統及自動調整濾波器頻寬的方法
CN108226607B (zh) 一种应用于apf的静止坐标系下谐波电流检测方法
CN110199475B (zh) 信号处理装置
CN114362771B (zh) 一种信号处理电路、方法和电子设备
EP4067825A1 (en) Sensor configured to provide an output signal, electronic apparatus comprising the sensor and method for personalizing the output data rate from the sensor
JP2013205266A (ja) 複合センサ
JP5670301B2 (ja) 能動型振動騒音制御装置
CN110632864B (zh) 数字变送器的模拟电路时间常数补偿方法和过程变送器
JPH10124108A (ja) 周期性信号の適応制御方法
JP2010288211A (ja) デジタルフィルタの設計方法
JP2013122399A (ja) 伝送器
JP2020021139A (ja) Ad変換装置
JP2008203052A (ja) エンジンベンチシステムの制御装置
JPWO2023032472A5 (ja)
PL416997A1 (pl) Adaptacyjny układ czujników do pomiaru wielkości fizycznych z rozszerzonym zakresem pomiarowym
JP2014155075A (ja) 音源分離方法、装置及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180711

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180920

R150 Certificate of patent or registration of utility model

Ref document number: 6408548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250