JP6407817B2 - 磁気ヘッド、磁気ヘッドアセンブリ、および磁気記録再生装置 - Google Patents

磁気ヘッド、磁気ヘッドアセンブリ、および磁気記録再生装置 Download PDF

Info

Publication number
JP6407817B2
JP6407817B2 JP2015146598A JP2015146598A JP6407817B2 JP 6407817 B2 JP6407817 B2 JP 6407817B2 JP 2015146598 A JP2015146598 A JP 2015146598A JP 2015146598 A JP2015146598 A JP 2015146598A JP 6407817 B2 JP6407817 B2 JP 6407817B2
Authority
JP
Japan
Prior art keywords
layer
electrode
disposed
magnetic
nonmagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015146598A
Other languages
English (en)
Other versions
JP2017027645A (ja
Inventor
洋介 礒脇
洋介 礒脇
山田 健一郎
健一郎 山田
高岸 雅幸
雅幸 高岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015146598A priority Critical patent/JP6407817B2/ja
Publication of JP2017027645A publication Critical patent/JP2017027645A/ja
Application granted granted Critical
Publication of JP6407817B2 publication Critical patent/JP6407817B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Heads (AREA)

Description

本発明の実施形態は,磁気ヘッド、磁気ヘッドアセンブリ、および磁気記録再生装置に関する。
HDD(Hard Disk Drive:ハードディスクドライブ)などの再生素子として、磁気抵抗効果素子が用いられている。HDDでは、記録密度の向上のために、再生分解能の向上に加え、ノイズの低減が求められている。このため、1つの磁気ヘッドに複数の磁気抵抗効果素子を搭載する、マルチ磁気ヘッド(マルチ再生ヘッド)が検討されている。
このようなマルチ磁気ヘッドによって、同一の被再生信号を複数回積分することが可能となり、白色系のノイズ成分を低減できる。この結果、高いSNR(Signal Noise Ratio)が得られ、記録密度を向上することができる。
ここで、マルチ磁気ヘッドでは、スキューにより、オフトラックとなる可能性がある。即ち、磁気ヘッドがトラックに対して角度を持つと、一対の磁気抵抗素子の一方が狙いの被再生トラックから外れる可能性がある。この場合、白色系ノイズの低減が困難となる。
従って、スキューを有する場合でも、一対の磁気抵抗効果素子が同一のトラック上に載るように、磁気抵抗効果素子の間隔を狭くする必要がある。このため、磁気抵抗効果素子間にある磁気シールド電極を薄くすることが検討されている。
しかし、磁気シールド電極を薄くすると、シールド性能が劣化し、磁気抵抗効果素子が外部ノイズの影響を受け易くなる。
特開2009−064528号公報
本発明は,磁気抵抗効果素子の間隔の低減と特性バラツキの抑制の両立を図った磁気ヘッド、磁気ヘッドアセンブリ、および磁気記録再生装置を提供することを目的とする。
実施形態の磁気ヘッドは,磁気シールド性の磁性体を有する第1電極と、前記第1電極上に配置され、磁気抵抗効果素子として機能する第1信号検出部と、前記第1信号検出部上に配置される第2電極と、前記第2電極上に配置される第1絶縁層と、前記第1絶縁層上に配置される第3電極と、前記第3電極上に配置され、磁気抵抗効果素子として機能する第2信号検出部と、前記第2信号検出部上に配置され、磁気シールド性の磁性体を有する第4電極と、を具備する。
前記第2電極および前記第3電極の少なくとも一方が非磁性金属層を含む。
前記第2電極および前記第4電極が反強磁性層を含む。
前記第1信号検出部が、第1ピン層と、第1、第2フリー層と、第1サイドシールドと、を有する。
前記第2信号検出部が、第2ピン層と、第3、第4フリー層と、第2サイドシールドと、を有する。
第1の実施形態に係る磁気ヘッドを示す模式図である。 第1の実施形態に係る磁気ヘッドを示す模式図である。 磁気抵抗効果素子の一例を示す模式図である。 磁気抵抗効果素子の一例を示す模式図である。 第1の実施形態に係る磁気ヘッドの層構成の詳細構成例を示す模式図である。 比較例1に係る磁気ヘッドを示す模式図である。 磁気ヘッドのスキューを示す模式図である。 比較例2に係る磁気ヘッドを示す模式図である。 比較例2に係る磁気ヘッドを示す模式図である。 比較例2に係る磁気ヘッドを示す模式図である。 第2の実施形態に係る磁気ヘッドを示す模式図である。 第2の実施形態に係る磁気ヘッドを示す模式図である。 磁気抵抗効果素子の一例を示す模式図である。 磁気抵抗効果素子の一例を示す模式図である。 第2の実施形態に係る磁気ヘッドを示す模式図である。 第2の実施形態に係る磁気ヘッドを示す模式図である。 信号演算部の一例を示すブロック図である。 信号演算部の一例を示すブロック図である。 磁気記録再生装置の一例を示す模式図である。
以下,図面を参照して,実施形態を詳細に説明する。
(第1の実施形態)
図1A,図1Bは、第1の実施形態に係るマルチ再生素子10の一例を示す模式図である。図1Aは、マルチ再生素子10(磁気ヘッド)の平面図であり、図1Bは、図1AのA1−A2線断面図で、図1Aの紙面奥行き方向のマルチ再生素子10の形状を示す。
ここで、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と以下の各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
マルチ再生素子10は、例えば、HDD(後述の磁気記録再生装置90)の磁気ヘッド(後述の磁気ヘッド93)に搭載される。したがって、図1Aの平面図は、例えばHDDに搭載される磁気記録媒体(後述の磁気記録媒体91)の媒体対向面から見たときの模式図である。図1Bの断面図は、例えば、磁気記録媒体対向面に垂直方向から見たときの模式図である。
図1A、図1Bに示すように、マルチ再生素子10は、第1再生素子部20、絶縁層30、第2再生素子部40、第1サイドシールド24、第2サイドシールド44を含む。絶縁層30は、第1再生素子部20と第2再生素子部40の間に配置される。
第1再生素子部20は、第1電極21、第1信号検出部22、第2電極23、一対の第1サイドシールド24,および絶縁層25を含む。第1信号検出部22は、第1電極21と第2電極23の間に配置される。第1サイドシールド24と、第1信号検出部22および第1電極21の間に、絶縁層25が配置される。
第2再生素子部40は、第3電極41、第2信号検出部42、第4電極43、一対の第2サイドシールド44,および絶縁層45を含む。第2信号検出部42は、第3電極41と第4電極43の間に配置される。第2サイドシールド44と、第2信号検出部42および第3電極41の間に、絶縁層45が配置される。
第1信号検出部22と第2信号検出部42は、ピン層と2つのフリー層を有する磁気抵抗効果素子である。なお、磁気抵抗効果素子の詳細は後述する。
ここで、第1電極21から第4電極43に向かう方向をY軸とすると、Y軸が膜の成膜方向である。Y軸方向と交差し、第1信号検出部22及び第2信号検出部42から、第1サイドシールド24及び第2サイドシールド44へ向かう方向をX軸方向とし、Y軸方向と交差し、X軸方向とも交差する方向をZ軸方向とする。
第1電極21及び第4電極43は、シールド機能を有し、磁性体から構成される。この磁性体には、強磁性体及び反強磁性体が利用できる。
この強磁性体として、例えば、NiFe、CoZrTa、CoZrNb、CoZrNbTa、CoZrTaCr、及び、CoZrFeCr(以下、「NiFe等」という)のいずれかを利用できる。
この反強磁性体として、例えば、IrMn、PtMnのいずれかを利用できる。IrMn、PtMnの膜厚(Y軸方向の厚さ)は、5nm以上10nm以下が良い。
第1電極21、および第4電極43として、多層膜を利用できる。多層膜として、例えば、NiFe等の強磁性体をそれぞれ含む膜を積層して利用できる。また、この多層膜として、強磁性体(NiFe等)の膜、および反強磁性体(例えば、IrMn、PtMnのいずれか)の膜を積層して利用できる。
なお、第1電極21、および第4電極43が互いに異なる磁性体あるいは異なる積層構造を有しても良い。本実施形態においては、第1電極21は、例えば、NiFe、第4電極43はIrMn/NiFe(反強磁性層と強磁性層の2層構造)が好ましい。
第2電極23及び第3電極41は、磁性体及び非磁性金属を利用できる。この磁性体には、強磁性体(NiFe等)及び反強磁性体(例えば、IrMn、PtMnのいずれか)を利用できる。
第2電極23及び第3電極41に、強磁性体(NiFe等)、反強磁性体(IrMn、PtMn)の一方、または双方を含む多層膜を用いても良い。反強磁性体(IrMn、PtMn)の膜厚(Y軸方向の厚さ)は、5nm以上10nm以下が良い。強磁性体(NiFe等)の膜厚は、5nm以上60nm以下が良い。
第2電極23及び第3電極41には非磁性金属も利用できる。非磁性金属として、例えば、Cu、Au、Ag、W、Mo、およびRu(以下、「Cu等」という)を利用でき、この内、Cu,Ruが好ましい。Cu等の膜厚は、3nm以上20nm以下が良い。この非磁性金属には、Cu等の合金を用いても良い。
第2電極23及び第3電極41は、Cu等をそれぞれ含む多層膜を用いても良い。
第2電極23及び第3電極41は、磁性体と非磁性金属の積層構成を用いることもできる。本実施形態において、第2電極23は、例えば、IrMn(反強磁性層の単層構造)、IrMn/NiFe(反強磁性層と強磁性層の2層構造)、IrMn/NiFe/Cu(反強磁性層、強磁性層、および非磁性金属層の3層構造)、IrMn/Cu(反強磁性層と非磁性金属層の2層構造)が好ましい。また、第3電極41はCu等非磁性金属層の単層構造が好ましい。
本実施形態では、第2電極23、第3電極41の少なくとも一方が、例えば、3nm以上20nm以下の厚さを有する非磁性金属層を含む。非磁性金属は、第1電極21及び第4電極43を構成する磁性体よりも比抵抗が小さい。このため、第2電極23及び第3電極41の膜厚(Y軸方向の厚さ)を、エレクトロマイグレーションを抑制しつつ薄くすることが可能となる。その結果、第1再生素子部20と第2再生素子部40間の距離を容易に低減できる。
このとき、第2電極23、第3電極41の他方が、例えば、5nm以上60nm以下の厚さを有する磁性金属層を含むことができる。この磁性金属層は、若干のシールド特性を有する。第1信号検出部22と第2信号検出部42は、この磁性金属層によってシールドされ、その感度分布の裾(微弱な外乱)がカットされる。この結果、マルチ再生素子10の分解能がさらに向上する。
また、本実施形態では、第2電極23および第4電極43が、反強磁性層を含む。この反強磁性層によって、第1信号検出部22及び第2信号検出部42のフリー層(第1フリー層55a、第2フリー層55b)にバイアス磁界が印加される。このバイアス磁界は、第1サイドシールド24、第2サイドシールド44から第1信号検出部22及び第2信号検出部42のフリー層に印加されるバイアス磁界よりも、大きい。このため、第1信号検出部22及び第2信号検出部42のフリー層の磁化方向が、第1サイドシールド24及び第2サイドシールド44からのバイアス磁界方向と反平行となることで生じる、動作不安定性を抑制できる。この結果、マルチ再生素子10の特性バラツキを抑制できる。
各部材料の膜厚(Y軸方向の厚さ)については、磁気ヘッド断面のTEM(透過型電子顕微鏡)を観察することで、測定することができる。
絶縁層30の絶縁材料として、酸化珪素(例えばSiO)、窒化珪素、酸窒化珪素、酸化アルミニウム(例えばAl)、窒化アルミニウム、及び、酸窒化アルミニウムの少なくともいずれかを用いることができる。
絶縁層30の膜厚(絶縁層30のY軸方向に沿う長さ)は、5nm以上40nm以下が好ましい。これらの膜厚範囲において、第1再生素子部20と第2再生素子部40の間の良好な電気的絶縁性を得ることができる。
第1サイドシールド24及び第2サイドシールド44は磁性体から構成される。この磁性体には、NiFe等を利用できる。第1サイドシールド24及び第2サイドシールド44は、NiFe等のいずれかをそれぞれ含む多層膜を用いても良い。
第1サイドシールド24及び第2サイドシールド44はそれぞれ、第2電極23及び第4電極43と交換結合している。交換結合は、例えば、磁性層と磁性層との直接接合を含む。交換結合は、例えば、複数の磁性層において、複数の磁性層の間に配置される極薄非磁性層を介して作用する複数の磁性層間の磁気結合を含む。交換結合は、磁性層と磁性層との間の界面、または、磁性層と非磁性層との間の界面を介する効果である。磁性層と非磁性層との間の界面を介する場合、交換結合は、その非磁性層の膜厚に依存し、非磁性層の厚さが2nm以下で作用する。
交換結合は、磁性層の端部からの漏れ磁界による静磁界結合とは異なる。交換結合では、磁性層間に強磁性結合バイアス磁界(または反強磁性結合バイアス磁界)が作用していると考えることができる。例えば、外部からの印加磁界バイアス等が無い場合、この交換結合作用により、磁性層間の磁化の向きが、同じ向きに揃う(強磁性結合状態)、または、反対向きに揃う(反強磁性結合状態)ことができる。
外部からの印加磁界バイアス等がある場合は、外部からの印加磁界バイアス磁界と、交換結合によるバイアス磁界と、の合成で決まる方向に、磁化が向く。このため、外部からの印加磁界バイアス等がある場合は、交換結合による強磁性結合バイアス磁界成分、または、反強磁性結合磁界成分が作用する。このとき、交換結合によるバイアス磁界の向きと、磁性層間の磁化の向きとは必ずしも一致しない。
複数の磁性層間に非磁性層が配置されている場合、交換結合の強度を強くするために非磁性層の界面に1nm以下のCoFe、CoFeBなどのCoFe系材料を形成する場合もある。
本実施形態において、第1サイドシールド24及び第2サイドシールド44の初期状態、つまり外部からの印加磁界が無い場合における磁化方向は、X軸方向を向いている。第1サイドシールド24と第2サイドシールド44により、X軸方向における再生分解能が向上する。
第1信号検出部22及び第2信号検出部42には、磁気抵抗効果素子、特に差動出力型の磁気抵抗効果素子が用いられる。差動出力型の磁気抵抗効果素子は、空間磁界分布の変化に反応して出力を出す磁気抵抗効果素子である。例えば、垂直磁気記録方式HDDの場合、通常のTMR(Tunnel MagnetoResistance)素子では、各記録ビットの磁化の向きに応じて出力が生成され、記録ビット位置で最大出力が得られる。一方、差動出力型の磁気抵抗効果素子の場合は、記録ビットの磁化の向きが変化する遷移領域に反応して出力され、ビットの遷移領域位置で最大出力が得られる。
図2A及び図2Bは、本実施形態に用いられる第1、第2信号検出部22,42の一例で、差動出力型の磁気抵抗効果素子50を示している。
なお、ここでは、広義の第1、第2信号検出部22,42として、第1サイドシールド24または第2サイドシールド44(サイドシールドS)を含めている。
図2Aは、差動出力型の磁気抵抗効果素子50の平面図である。図2Bは、図2AのA1−A2線断面図で、図2Aの紙面奥行き方向の形状を示したものである。
この磁気抵抗効果素子50は、下地層51、第1反強磁性層52、積層体B、一対のサイドシールドS、第1強磁性層57、及び絶縁層58を有する。
積層体Bは、ピン層53、第1非磁性層54a、第1フリー層55a、第2非磁性層54b、第2フリー層55b、第3非磁性層54c、第2強磁性層56を有する。
第1強磁性層57は、サイドシールドSと積層体B(第2強磁性層56)上に配置される。
この磁気抵抗効果素子50が第1信号検出部22の場合、サイドシールドSは第1サイドシールド24に該当する。第2信号検出部42の場合、サイドシールドSは第2サイドシールド44に該当する。
下地層51は、MR素子の被着面からの汚染(コンタミネーション)などの影響を低減することと、この上に形成する成膜の結晶配向性を良好にするためのものである。下地層51には、例えば、Ta、NiCr、FeNi、Ta/NiCr、Cu等を利用できる。下地層51の膜厚は、例えば、1nm以上4nm以下とすることができる。
第1反強磁性層52は、反強磁性体から構成される。この反強磁性体には、IrMn、PtMnを利用できる。第1反強磁性層52aの膜厚は、5nm以上10nm以下が良い。
ピン層53(第1磁気固着層)は、強磁性体から構成される。この強磁性体には、CoFe、CoFeB、NiFeの層、またはそれらの2つの組み合わせでRuを挟んで積層させた積層構造を利用できる。例えば、CoFe/Ru/CoFeの3層構造が好ましい。ピン層53に用いられる強磁性体の膜厚は1nm以上5nm以下、Ruは0.1nm以上2nm以下が良い。
第1非磁性層54aは、絶縁体(例えば、MgO、AlO(Al酸化物層)、TiO(Ti酸化物層))もしくは非磁性金属(Cu、Ag)を利用できる。第1非磁性層54aの膜厚は、1nm以上 2nm以下が好ましい。
第1フリー層55a(第1磁気自由層)および第2フリー層55b(第2磁気自由層)は、例えば、CoFe、CoFeB、NiFe、CoFeMn、CoFeMnSi、CoFeGeSiCoMnSi、CoFeMnGe、CoMnGe、CoFeAlGe、CoFeAlSiもしくは、これらの積層構成を利用できる。第1フリー層55a(第1磁気自由層)および第2フリー層55b(第2磁気自由層)の膜厚は、例えば、2nm以上10nm以下とすることができる。
第2非磁性層54b及び第3非磁性層54cは、Cu、またはRuを利用できる。Cu、またはRuの膜厚は、0.2nm以上2nm以下が好ましい。
第2非磁性層54bは、Cu、Ruの層と強磁性層の積層構成を用いることもできる。強磁性層としては、CoFe、CoFeB、NiFeを利用できる。例えば、[Ru(0.4nm)/CoFe(1nm)]n(n:積層回数)を利用できる。差動出力型の磁気抵抗効果素子50は、第1フリー層55aと第2フリー層55b間の距離で分解能が規定される。したがって、Cu、Ru層と強磁性層の積層構成により、第1フリー層55aと第2フリー層55b間の距離を変更して、分解能を調整できる。
第1強磁性層57及び第2強磁性層56は、CoFe、CoFeB、またはNiFeなどが利用できる。第1強磁性層57及び第2強磁性層56の膜厚は、1nm以上5nm以下が好ましい。
以上、第1の実施形態について各構成部分について好ましい条件の詳細を説明した。図3はこれら好ましい条件を適用した場合の第1の実施形態の詳細構成例を全体図で示したものである。具体的には、次の材料の層構成を用いることができる。
第1電極21: NiFe(強磁性層)
第1反強磁性層52a、52b: IrMn
ピン層53a、53b: CoFe/Ru/CoFe(強磁性層、非磁性金属層、強磁性層の3層構造)
第1非磁性層54a、54d: MgO(絶縁層)
第1フリー層55a、55c: CoFeB/NiFe/CoFe(強磁性層の3層構造)
第2非磁性層54b、54e: Ru
第2フリー層55b、55d: CoFe/NiFe/CoFe(強磁性層の3層構造)
第3非磁性層54c、54f: Ru
第2強磁性層56a、56b: CoFe(強磁性層)
第1サイドシールド24,第2サイドシールド44: NiFe(強磁性層)
第1強磁性層57a、57b: CoFe(強磁性層)
第2電極22: IrMn/NiFe(反強磁性層、強磁性層の2層構造)
絶縁層30: SiO
第3電極41: Cu(非磁性金属層)
第4電極43: IrMn/NiFe(反強磁性層、強磁性層の2層構造)
(比較例1)
図4は、比較例1に係るマルチ再生素子10x(磁気ヘッド)を示す模式図である。図4に示すように、マルチ再生素子10xは、第1再生素子部20xと絶縁層30と第2再生素子部40xと第1サイドシールド24xと第2サイドシールド44xを含む。
第1再生素子部20xは、第1電極21xと第1信号検出部22xと第2電極23xを含む。第2再生素子部40xは、第3電極41xと第2信号検出部42xと第4電極43xを含む。
第1信号検出部22xと第2信号検出部42xは、非差動型(例えば、TMR型)の磁気抵抗効果素子である。また、第1電極21x、第2電極23x、第3電極41x、第4電極43xの全てが磁性体であり、磁気シールド特性を有する。
即ち、第1信号検出部22xと第2信号検出部42xは、非差動型であることから、外部ノイズの影響を受け易く、第2電極23x、第3電極41xの双方に磁気シールド特性が要求される。このため、第2電極23x、第3電極41xの双方を厚くする必要があり、第1信号検出部22xと第2信号検出部42xの間隔が大きくなる。この結果、マルチ再生素子10x(磁気ヘッド)は、スキューの影響を受け易くなる。
図5に示すように、磁気ヘッド93によって、磁気記録媒体91上のトラックTの情報を読み取ることを考える。このとき、そのトラックTが磁気記録媒体91の内周寄りまたは外周寄りに位置すると、磁気ヘッド93がトラックTに対して角度(スキュー角度)θを有することになる(スキューの発生)。
図5の(a),(b)がそれぞれ、スキューの無い場合、ある場合を表す。スキューがある場合、第1信号検出部22xと第2信号検出部42xの間隔dが大きければ、第1信号検出部22xと第2信号検出部42xが読み取るトラックTが一致しなくなる。このときには、同一の被再生信号を複数回積分することによる、白色系のノイズ成分の低減が困難となる。
これに対して、第1の実施形態では、第2電極23および第3電極41を薄くすることができる。この結果、第1信号検出部22と第2信号検出部42の間隔が小さくなり、スキューがあっても、オフトラックとなる可能性が低くなる。即ち、第1信号検出部22と第2信号検出部42が読み取るトラックが一致し易くなる。この結果、同一の被再生信号を複数回積分することによる、白色系のノイズ成分の低減が容易となる。
(比較例2)
図6、図7A,図7Bは、比較例2に係るマルチ再生素子10y(磁気ヘッド)を示す模式図である。図6は全体の模式図である。図7A,図7Bは、差動出力型の磁気抵抗効果素子50yのみを示している。
図6に示すように、マルチ再生素子10yは、第1再生素子部20yと絶縁層30yと第2再生素子部40yと第1サイドシールド24yと第2サイドシールド44yを含む。図7A,図7Bに示すサイドシールドS1,S2は、磁気抵抗効果素子50yが第1再生素子部20yの場合、第1サイドシールド24yであり、第2再生素子部40yの場合、第2サイドシールド44yである。
図7A,図7Bに示すように、第1サイドシールド24y及び第2サイドシールド44yは積層フェリ構造(反強磁性結合された上下2層のサイドシールドS1,S2)で構成される。また、第2フリー層55byは上部に配置される非磁性Cap層CPにより、第2電極23y及び第4電極43yとの磁気的結合は無い。
比較例2は差動出力型の磁気抵抗効果素子50yを用いるため、本実施形態と同じように磁気抵抗効果素子50y間の間隔を縮小できる。しかし、次に示すように、比較例2では、製造のバラツキ等に起因して、動作が不安定になり、特性ばらつきが大きくなる可能性がある。
図7Bに示すように、製造のバラツキ等に起因して、サイドシールドS1,S2の積層フェリ界面位置P1が第1フリー層55ayと第2フリー層55by間の中心位置P2からずれる可能性がある。ここでは、積層フェリ界面位置P1が、中心位置P2に対して、上側にずれた場合を示している。
位置P1,P2がずれた場合、第1フリー層55ayまたは第2フリー層55byの磁化方向が不定となり、動作が不安定になり、特性ばらつきが大きくなる。図7Bの場合、第2フリー層55byにサイドシールドS1,S2それぞれから反対方向のバイアス磁界が同程度に印加され、第2フリー層55byの磁化方向が不定になる。
一方、本実施形態では、第2電極23及び第4電極43が、反強磁性層を含むうえ、第2フリー層55bが、第2電極23、第4電極43と磁気的に結合している。したがって、第2フリー層55bには、第2電極23及び第4電極43の反強磁性層からバイアス磁界が印加される。このバイアス磁界は、第2フリー層55bに対向するサイドシールドSからのバイアス磁界よりも大きいため、第2フリー層55bの動作を安定化させる。したがって、比較例2のような動作不安定は生じ難くなり、特性ばらつきを抑制できる。
本実施形態では、磁気抵抗効果素子50の間隔の縮小が容易であり、大きなスキュー角度θまで白色系ノイズの低減効果を得ることができる。つまり高いSNRを得ることが可能となる。これにより、高記録密度化が容易となる。また、比較例2のようなサイドシールドSの積層フェリ界面の位置ずれによる特性ばらつきも抑制できる。
以下、本発明に係る他の実施形態について説明する。
(第2の実施形態)
図8A,図8Bは、第2の実施形態に係るマルチ再生素子10aの一例を示す模式図である。図8Aは、平面図であり、図8Bは、図8AのA1−A2線断面図で、図8Aの紙面奥行き方向の形状を示したものである。マルチ再生素子10aは、例えば、HDDの磁気ヘッドに搭載される。したがって、図8Aの平面図は、例えばHDDに搭載される磁気記録媒体の媒体対向面から見た模式図である。図8Bの断面図は、例えば、磁気記録媒体対向面に垂直方向の形状の模式図である。
第2の実施形態が第1の実施形態から大きく異なる点は、第1信号検出部22aと第2信号検出部42aの構造である。
図8A、図8Bは、第2の実施形態に係る第1信号検出部22aと第2信号検出部42aの構造を示したものである。第1の実施形態と同様、差動出力型の磁気抵抗効果素子50aである。
図9Aは、差動出力型の磁気抵抗効果素子50aの平面図である。図9Bは、図9AのA1−A2線断面図で、図9Aの紙面奥行き方向の形状を示したものである。この磁気抵抗効果素子50aは、下地層51、第1反強磁性層52、積層体Ba、サイドシールドS、絶縁層58を有する。
積層体Baは、ピン層53、第1非磁性層54a、第1フリー層55a、第2非磁性層54b、第2フリー層55b、第2反強磁性層59を有する。
第2反強磁性層59は、IrMn、PtMn等を利用できる。第2反強磁性層59の膜厚は、5nm以上10nm以下が良い。
その他の材料条件については、第1の実施形態と同様である。
また、本実施形態では、第2電極23および第4電極43が、反強磁性層を含む。この反強磁性層によって、第1信号検出部22及び第2信号検出部42のフリー層(第1フリー層55a、第2フリー層55b)にバイアス磁界が印加される。このバイアス磁界は、第1サイドシールド24、第2サイドシールド44から第1信号検出部22及び第2信号検出部42のフリー層に印加されるバイアス磁界よりも、大きい。このため、第1信号検出部22及び第2信号検出部42のフリー層の磁化方向が、第1サイドシールド24及び第2サイドシールド44からのバイアス磁界方向と反平行となることで生じる、動作不安定性を抑制できる。この結果、マルチ再生素子10の特性バラツキを抑制できる。
(第3の実施形態)
図10A,図10Bは、第3の実施形態に係るマルチ再生素子10bの一例を示す模式図である。図10Aは、平面図であり、図10Bは、図10AのA1−A2線断面図で、図10Aの紙面奥行き方向の形状を示したものである。
図10A、図10Bに示すように、マルチ再生素子10bは、第1再生素子部20、絶縁層30、第3再生素子部60、絶縁層70、第2再生素子部40、第1サイドシールド24、第2サイドシールド44、第3サイドシールド64を含む。
絶縁層30は、第1再生素子部20と第3再生素子部60の間に配置される。
絶縁層70は、第3再生素子部60と第2再生素子部40の間に配置される。
第3再生素子部60は、第5電極61、第3信号検出部62、第6電極63、一対の第3サイドシールド64,および絶縁層65を含む。第3信号検出部62は、第5電極61と第6電極63の間に配置される。第3サイドシールド64と、第3信号検出部62および第5電極61の間に、絶縁層65が配置される。
本実施形態では、第1再生素子部20、第2再生素子部40、第3再生素子部60と3つの差動出力型の磁気抵抗効果素子50または50aを用いている。このように、3つの磁気抵抗効果素子を用いることで、2つの磁気抵抗効果素子を用いる場合よりも、白色系のノイズ成分をより低減できる。この結果、高いSNR(Signal Noise Ratio)が得られ、記録密度を向上できる。
なお、第3信号検出部62は、第1、第2信号検出部22,42と対応する構成を有する。第5電極61、第6電極63はそれぞれ、第3電極41,第2電極23と対応する構成を有する。絶縁層70は、絶縁層30と対応する構成を有する。このため、第3再生素子部60、絶縁層70についての詳細な説明を省略する。
本実施形態では、第5電極61、第6電極63の少なくとも一方が、例えば、3nm以上20nm以下の厚さを有する非磁性金属層を含む。非磁性金属は、第1電極21及び第4電極43を構成する磁性体よりも比抵抗が小さい。このため、第5電極61、第6電極63の膜厚(Y軸方向の厚さ)を、エレクトロマイグレーションを抑制しつつ薄くすることが可能となる。その結果、第1再生素子部20、第3再生素子部60、および第2再生素子部40間の距離を容易に低減できる。
このとき、第5電極61、第6電極63の他方が、例えば、5nm以上60nm以下の厚さを有する磁性金属層を含むことができる。この磁性金属層は、若干のシールド特性を有する。第1信号検出部22と第3信号検出部62もしくは、第2信号検出部42と第3信号検出部62は、この磁性金属層によってシールドされ、これらの感度分布の裾(微弱な外乱)がカットされる。この結果、マルチ再生素子10bの分解能がさらに向上する。
(第4の実施形態)
図11は、第4の実施形態に係る 磁気記録再生装置が有する信号演算部の一例を示すブロック図である。図11に示すように、マルチ再生素子10の第1信号検出部22及び第2信号検出部42の出力信号は、それぞれヘッドアンプ81a、81bにて増幅される。ヘッドアンプ81aの出力信号は、同期回路83へ入力される。同期回路83でキャッシュされた後、所定のタイミング、例えば、ヘッドアンプ81bの出力信号との同位相組み合わせ信号として、データ復調器84へ入力し、読み出し信号Sが得られる。
このようにすることで、第1信号検出部22及び第2信号検出部42の出力信号を用いて、白色系のノイズ成分が低減された読み出し信号Sを得ることができる。
第4の実施形態に係る磁気記録再生装置は、マルチ再生素子10、10aの第1信号検出部22と、第2信号検出部42の出力信号を、組み合わせ処理することで読み出し信号Sを得ることができる。したがって、図11はあくまで一例である。例えば、第1信号検出部22の出力信号を同期回路83へ入力し、第2信号検出部42の出力信号との組み合わせ信号とした後に、ヘッドアンプで増幅して、データ復調器84に入力することも可能である。
(第5の実施形態)
図12は、第5の実施形態に係る 磁気記録再生装置が有する信号演算部の一例を示すブロック図である。図12に示すように、マルチ再生素子10bの第1信号検出部22、第2信号検出部42、第3信号検出部62の出力信号は、それぞれヘッドアンプ81a〜81cにて増幅される。ヘッドアンプ81a、81bの出力信号はそれぞれ、同期回路83a,83bへ入力される。同期回路83a,83b、ヘッドアンプ81cからの出力が、データ復調器84へ入力され、読み出し信号Sが得られる。
このように、第5の実施形態に係る磁気記録再生装置は、マルチ再生素子10bの第1信号検出部22、第2信号検出部42、第3信号検出部62からの出力信号を、組み合わせ処理することで、白色系のノイズ成分がより低減された読み出し信号Sを得ることができる。
(第6の実施形態)
図13は、第6の実施形態に係る磁気記録再生装置90(HDD装置)を示す図である。磁気記録再生装置90は、磁気記録媒体91、スピンドルモータ92、磁気ヘッド93を有する。磁気ヘッド93には、第1〜第3の実施形態のマルチ再生素子10,10a、10bのいずれかが用いられる。
磁気ヘッド93にマルチ再生素子10,10aを用いる場合、図11に示すヘッドアンプ81a,81b、同期回路83,データ復調器84を備える。また、磁気ヘッド93にマルチ再生素子10bを用いる場合には、図12に示すヘッドアンプ81a〜81c、同期回路83a,83b,データ復調器84を備える。
磁気記録再生装置90は,ロータリーアクチュエータを用いた形式の装置である。磁気記録媒体91は,スピンドルモータ92に装着され,駆動装置制御部(図示せず)からの制御信号に応答するモータ(図示せず)により回転する。
磁気記録媒体91が回転すると,サスペンション94による押付け圧力とヘッドスライダーの媒体対向面(ABSともいう)で発生する圧力とが釣り合う。その結果,ヘッドスライダーの媒体対向面(磁気ヘッド93)は,磁気記録媒体91の表面から所定の浮上量をもって保持される。
サスペンション94は,駆動コイル(図示せず)を保持するボビン部などを有するアクチュエータアーム95の一端に接続されている。アクチュエータアーム95の他端には,リニアモータの一種であるボイスコイルモータ97が配置されている。ボイスコイルモータ97は,アクチュエータアーム95のボビン部に巻き上げられた駆動コイル(図示せず)と,このコイルを挟み込むように対向して配置された永久磁石及び対向ヨークからなる磁気回路とから構成することができる。
アクチュエータアーム95は,軸受部96の上下2箇所に配置されたボールベアリング(図示せず)によって保持され,ボイスコイルモータ97により回転摺動が自在にできる。その結果,磁気記録ヘッド93を磁気記録媒体91の任意の位置に移動できる。
以上の第1〜第3の実施形態に係るマルチ再生素子10、10a、10bが含有するX軸方向における信号検出部間のずれについては、-10nm 〜 +10nmが好ましい(さらに、-5nm 〜 +5nmの範囲であることがより好ましい)。この範囲内であれば、より大きなスキュー角度θまで白色系ノイズを低減できる。
以下、実施例につき説明する。
(実施例1)
実施例1に係る磁気ヘッドの特性について説明する。実施例1に係る磁気ヘッドの層構成は、図3に示す第1の実施形態と同じである。実施例1に係る磁気ヘッドの層構成は、表1、表2に示される。
Figure 0006407817
Figure 0006407817
第1信号検出部22と第2信号検出部42の図1A中X軸方向の位置ずれは、ほぼ0nmである。第1信号検出部22及び第2信号検出部42に含まれる4つのフリー層のサイズは、30nm×30nmである。
実施例1の磁気ヘッドを用いて、1200kfciの磁気記録パターンにおけるSNRのスキュー角度θ依存性をスピンスタンドで測定した。測定時の再生出力は、第1信号検出部22、第2信号検出部42ともに20mV程度であった。再生信号は、第1信号検出部22及び第2信号検出部42のそれぞれの出力波形をソフトウェア的に信号同期し、組み合わせ処理して取得した。
(比較例1)
比較例1に係るマルチ再生素子10xの特性について説明する。比較例1に係るマルチ再生素子10xは、図4に示すように、上下磁気シールドで挟まれたTMR素子が絶縁層30を挟んで積層される。比較例1に係るマルチ再生素子10xの層構成は表3、表4に示される。
Figure 0006407817
Figure 0006407817
ここで、2つのTMR素子の図4中X軸方向の位置ずれは、ほぼ0nmである。2つのTMR素子に含まれるフリー層のサイズは、共に30nm×30nmである。
実施例1と同様に、1200kfciの磁気記録パターンにおけるSNRのスキュー角度θ依存性をスピンスタンドで測定した。測定時の再生出力は、第1信号検出部22、第2信号検出部42ともに20mV程度であった。比較例1における再生信号についても、実施例1と同様にソフトウェア的に信号処理し、取得した。
表5は、実施例1と比較例1のSNRのスキュー角度θ依存性を比較したものである。これにより、実施例1は比較例1よりも、より大きなスキュー角度θまで白色系ノイズの低減効果、つまり、高いSNRを得られており、高記録密度化が容易になっていることがわかる。
Figure 0006407817
(比較例2)
比較例2に係るマルチ再生素子10yの特性について説明する。比較例2に係るマルチ再生素子10yは、図6に示す比較例2と同じである。比較例2に係るマルチ再生素子10yの層構成は、表6、表7に示される。
Figure 0006407817
Figure 0006407817
第1信号検出部22と第2信号検出部42の図1A中X軸方向の位置ずれは、ほぼ0nmである。第1信号検出部22及び第2信号検出部42に含まれる4つのフリー層のサイズは、30nm×30nmである。
比較例2のマルチ再生素子10yを用いて、1200kfciの磁気記録パターンにおけるSNRのスキュー角度θ依存性をスピンスタンドで測定した。測定時の再生出力は、第1信号検出部22y、第2信号検出部42yともに20mV程度であった。再生信号は、第1信号検出部22y及び第2信号検出部42yのそれぞれの出力波形をソフトウェア的に信号同期し、組み合わせ処理して取得した。
表8は、実施例1と比較例2のマルチ再生素子10,10yそれぞれ10個について、スキュー角度0[deg]でのSNRのばらつきを測定した。これにより、実施例1は比較例2よりも特性ばらつきを抑制できていることがわかる。
Figure 0006407817
(実施例2:非磁性金属の材料依存性)
実施例2に係る磁気ヘッドの特性について説明する。実施例2では、第1の実施形態において第3電極41の構成材料(非磁性金属)を変化させている。表9は、第3電極41の構成材料を示す。
Figure 0006407817
第1信号検出部22と第2信号検出部42の図1A中X軸方向の位置ずれは、実施例1と同様、ほぼ0nmである。第1信号検出部22、第2信号検出部42に含まれるフリー層のサイズも実施例1と同様、30nm×30nmである。実施例1と同様に、SNRのスキュー角度θ依存性を測定した。
表10は、実施例2と比較例1のSNRのスキュー角度θ依存性を比較して示している。これにより、実施例2の第3電極41材料の有効性が示されている。
Figure 0006407817
本発明のいくつかの実施形態を説明したが,これらの実施形態は,例として提示したものであり,発明の範囲を限定することは意図していない。これら新規な実施形態は,その他の様々な形態で実施されることが可能であり,発明の要旨を逸脱しない範囲で,種々の省略,置き換え,変更を行うことができる。これら実施形態やその変形は,発明の範囲や要旨に含まれるとともに,特許請求の範囲に記載された発明とその均等の範囲に含まれる。
10 マルチ再生素子
20 第1再生素子部
21 第1電極
22 第1信号検出部
23 第2電極
24 第1サイドシールド
25 絶縁層
30 絶縁層
40 第2再生素子部
41 第3電極
42 第2信号検出部
43 第4電極
44 第2サイドシールド
45 絶縁層
50 磁気抵抗効果素子
51 下地層
52 第1反強磁性層
53 ピン層
54a 第1非磁性層
54b 第2非磁性層
54c 第3非磁性層
55a 第1フリー層
55b 第2フリー層
56 第2強磁性層
57 第1強磁性層
58 絶縁層
81 ヘッドアンプ
81a ヘッドアンプ
81a,81b ヘッドアンプ
81b ヘッドアンプ
81c ヘッドアンプ
83 同期回路
83, 同期回路
83a,83b 同期回路
83a,83b, 同期回路
84 データ復調器
90 磁気記録再生装置
91 磁気記録媒体
92 スピンドルモータ
93 磁気ヘッド
93 磁気記録ヘッド
94 サスペンション
95 アクチュエータアーム
96 軸受部
97 ボイスコイルモータ

Claims (16)

  1. 磁気シールド性の磁性体を有する第1電極と、
    前記第1電極上に配置され、磁気抵抗効果素子として機能する第1信号検出部と、
    前記第1信号検出部上に配置される第2電極と、
    前記第2電極上に配置される第1絶縁層と、
    前記第1絶縁層上に配置される第3電極と、
    前記第3電極上に配置され、磁気抵抗効果素子として機能する第2信号検出部と、
    前記第2信号検出部上に配置され、磁気シールド性の磁性体を有する第4電極と、を具備し、
    前記第2電極および前記第3電極の少なくとも一方が非磁性金属層を含み、
    前記第2電極および前記第4電極が反強磁性層を含み、
    前記第1信号検出部が、第1ピン層と、第1、第2フリー層と、第1サイドシールドと、を有し、
    前記第2信号検出部が、第2ピン層と、第3、第4フリー層と、第2サイドシールドと、を有する
    磁気ヘッド。
  2. 前記第1信号検出部が、
    前記第1電極上に配置される第1積層体と、
    前記第1電極上に前記第1積層体の側面に対向して配置される前記第1サイドシールドと、を有し、
    前記第1積層体が、
    前記第1電極上に配置され、磁化方向が固着される前記第1ピン層と、
    前記第1ピン層上に配置される第1非磁性層と、
    前記第1非磁性層上に配置され、外部磁界に応じて磁化方向が変化する前記第1フリー層と、
    前記第1フリー層上に配置される第2非磁性層と、
    前記第2非磁性層上に配置され、前記第2非磁性層を介して前記第1フリー層と反強磁性的に交換結合し、かつ外部磁界に応じて磁化方向が変化する前記第2フリー層と、を有する、
    請求項1記載の磁気ヘッド。
  3. 前記第1信号検出部が、前記第1積層体及び前記第1サイドシールド上に配置される第1強磁性層、をさらに有し、
    前記第1積層体が、
    前記第2フリー層上に配置される第3非磁性層と、
    前記第3非磁性層上に配置され、前記第3非磁性層を介して、前記第2フリー層と反強磁性的に交換結合する第2強磁性層と、を有し、
    前記第1サイドシールドと前記第2強磁性層が、前記第1強磁性層と交換結合している
    請求項2記載の磁気ヘッド。
  4. 前記第1積層体が、前記第2フリー層上に配置される第2反強磁性層をさらに有する、
    請求項2記載の磁気ヘッド。
  5. 前記第2信号検出部が、
    前記第3電極上に配置される第2積層体と、
    前記第3電極上に前記第2積層体の側面に対向して配置される前記第2サイドシールドと、を有し、
    前記第2積層体が、
    前記第3電極上に配置され、磁化方向が固着される前記第2ピン層と、
    前記第2ピン層上に配置される第4非磁性層と、
    前記第4非磁性層上に配置され、外部磁界に応じて磁化方向が変化する前記第3フリー層と、
    前記第3フリー層上に配置される第5非磁性層と、
    前記第5非磁性層上に配置され、前記第5非磁性層を介して前記第3フリー層と反強磁性的に交換結合し、かつ外部磁界に応じて磁化方向が変化する前記第4フリー層と、を有する、
    請求項1乃至4のいずれか1項に記載の磁気ヘッド。
  6. 前記第2電極及び前記第3電極の少なくとも一方が、3nm以上20nm以下の厚さを有する非磁性金属層を含む
    請求項1乃至5のいずれか1項に記載の磁気ヘッド。
  7. 前記第2電極及び前記第3電極の他方が、5nm以上60nm以下の厚さを有する磁性金属層を含む
    請求項6記載の磁気ヘッド。
  8. 前記第2電極及び前記第3電極の双方が、3nm以上20nm以下の厚さを有する非磁性金属層を含む
    請求項6または7に記載の磁気ヘッド。
  9. 前記非磁性金属層が、Cu、Au、Ag、W、Mo、及びRuの少なくともいずれかを含む、
    請求項6乃至8のいずれか1項に記載の磁気ヘッド。
  10. 前記第1絶縁層上に配置される第5電極と、
    前記第5電極上に配置され、磁気抵抗効果素子として機能する第3信号検出部と、
    前記第3信号検出部上に配置される第6電極と、
    前記第6電極上に配置される第2絶縁層と、をさらに具備し、
    前記第5電極及び前記第6電極の少なくとも一方が前記非磁性金属層を含み、
    前記第6電極が反強磁性層を含み、
    前記第3信号検出部が第3ピン層と、第5、第6フリー層と、第3サイドシールドを有する第3磁気抵抗効果素子である、
    請求項1乃至9のいずれか1項に記載の磁気ヘッド。
  11. 前記第3信号検出部が、
    前記第5電極上に配置される第3積層体と、
    前記第5電極上に前記第3積層体の側面に対向して配置される前記第3サイドシールドと、を有し、
    前記第3積層体が、
    前記第5電極上に配置され、磁化方向が固着される前記第3ピン層と、
    前記第3ピン層上に配置される第7非磁性層と、
    前記第7非磁性層上に配置され、外部磁界に応じて磁化方向が変化する前記第5フリー層と、
    前記第5フリー層上に配置される第8非磁性層と、
    前記第8非磁性層上に配置され、前記第8非磁性層を介して前記第5フリー層と反強磁性的に交換結合し、かつ外部磁界に応じて磁化方向が変化する前記第6フリー層と、を有する、
    請求項10記載の磁気ヘッド。
  12. 前記第5電極及び前記第6電極の少なくとも一方が、3nm以上20nm以下の厚さを有する前記非磁性金属層を含む
    請求項10または11に記載の磁気ヘッド。
  13. 前記第5電極及び前記第6電極の他方が、5nm以上60nm以下の厚さを有する磁性金属層を含む
    請求項12記載の磁気ヘッド。
  14. 前記第5電極及び前記第6電極の双方が、3nm以上20nm以下の厚さを有する前記非磁性金属層を含む
    請求項12または13に記載の磁気ヘッド。
  15. 請求項1乃至14のいずれか1項に記載の磁気ヘッドと、
    前記磁気ヘッドを搭載するサスペンションと、
    前記サスペンションに接続されたアクチュエータアームと、
    を備えた磁気ヘッドアセンブリ。
  16. 請求項15に記載の磁気ヘッドアセンブリと、
    前記第1信号検出部からの第1の出力信号および前記第2信号検出部からの第2の出力信号を組み合わせ演算して読み出し信号を生成する信号演算部と、
    を具備する磁気記録再生装置。
JP2015146598A 2015-07-24 2015-07-24 磁気ヘッド、磁気ヘッドアセンブリ、および磁気記録再生装置 Active JP6407817B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015146598A JP6407817B2 (ja) 2015-07-24 2015-07-24 磁気ヘッド、磁気ヘッドアセンブリ、および磁気記録再生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015146598A JP6407817B2 (ja) 2015-07-24 2015-07-24 磁気ヘッド、磁気ヘッドアセンブリ、および磁気記録再生装置

Publications (2)

Publication Number Publication Date
JP2017027645A JP2017027645A (ja) 2017-02-02
JP6407817B2 true JP6407817B2 (ja) 2018-10-17

Family

ID=57946092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015146598A Active JP6407817B2 (ja) 2015-07-24 2015-07-24 磁気ヘッド、磁気ヘッドアセンブリ、および磁気記録再生装置

Country Status (1)

Country Link
JP (1) JP6407817B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10620279B2 (en) * 2017-05-19 2020-04-14 Allegro Microsystems, Llc Magnetoresistance element with increased operational range

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009026400A (ja) * 2007-07-20 2009-02-05 Hitachi Global Storage Technologies Netherlands Bv 差動磁気抵抗効果型磁気ヘッド
US8089734B2 (en) * 2010-05-17 2012-01-03 Tdk Corporation Magnetoresistive element having a pair of side shields
US9190078B2 (en) * 2013-08-30 2015-11-17 Seagate Technology Llc Dual reader structure
US9047892B2 (en) * 2013-10-24 2015-06-02 HGST Netherlands B.V. Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor having an antiparallel free (APF) structure with improved magnetic stability
US9087527B1 (en) * 2014-10-28 2015-07-21 Western Digital (Fremont), Llc Apparatus and method for middle shield connection in magnetic recording transducers

Also Published As

Publication number Publication date
JP2017027645A (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
JP6309796B2 (ja) 磁気ヘッド、磁気記録再生装置、および磁気ヘッドの製造方法
US9099125B1 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor structure with stacked sensors for minimization of the effect of head skew
US8873204B1 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor structure with multiple stacked sensors and center shield with CoFeB insertion layer
US9042059B1 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor structure with multiple stacked sensors and improved center shield
US9047892B2 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor having an antiparallel free (APF) structure with improved magnetic stability
US9824703B2 (en) Magnetic recording and reproducing device having magnetic head with first and second reproducing element portions and magnetic reproducing method
JP6121943B2 (ja) 磁気ヘッドおよび磁気記録再生装置
JP2002025013A (ja) 磁気トンネル接合積層型ヘッド及びその製法
JP2002050011A (ja) 磁気抵抗効果素子、磁気抵抗効果ヘッド、磁気抵抗変換システム及び磁気記録システム
US9183858B2 (en) Dual capping layer utilized in a magnetoresistive effect sensor
JP2009026400A (ja) 差動磁気抵抗効果型磁気ヘッド
JP2010140524A (ja) 差動型磁気抵抗効果ヘッド及び磁気記録再生装置
JP2006245581A (ja) スタック内バイアス付与構造を持つ磁気センサ
JP2017037699A (ja) マルチセンサ読取器、読取器、およびマルチセンサ読取器を形成する方法
US9129622B2 (en) CPP-type magnetoresistance effect element and magnetic disk device
JP2015015068A (ja) 結晶性CoFeX層およびホイスラー型合金層を含む、多重層からなる基準層を含む平面垂直通電型(CPP)磁気抵抗センサ
US8711525B2 (en) Magnetoresistive shield with coupled lateral magnet bias
US8467154B2 (en) Magnetic sensors having perpendicular anisotropy free layer
JP2007531178A (ja) 磁気抵抗ヘッド用安定化器及び製造方法
JP2008186496A (ja) 磁気ヘッド
JP2008084430A (ja) 磁気ヘッド及び磁気記録装置
US10249329B1 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor with wedge shaped free layer
JP6448282B2 (ja) 磁気ヘッド、磁気ヘッドアセンブリ、磁気記録再生装置、および磁気ヘッドの製造方法
JP2008153295A (ja) 磁気抵抗効果素子、磁気ヘッドおよび磁気記憶装置
US8913351B2 (en) Magnetoresistance effect element, magnetic head, magnetic head assembly, and magnetic recording and reproducing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180919

R151 Written notification of patent or utility model registration

Ref document number: 6407817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151