JP6403835B1 - 同期機制御装置およびその制御方法 - Google Patents

同期機制御装置およびその制御方法 Download PDF

Info

Publication number
JP6403835B1
JP6403835B1 JP2017109003A JP2017109003A JP6403835B1 JP 6403835 B1 JP6403835 B1 JP 6403835B1 JP 2017109003 A JP2017109003 A JP 2017109003A JP 2017109003 A JP2017109003 A JP 2017109003A JP 6403835 B1 JP6403835 B1 JP 6403835B1
Authority
JP
Japan
Prior art keywords
synchronous machine
inverter
converter
voltage
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017109003A
Other languages
English (en)
Other versions
JP2018207622A (ja
Inventor
大樹 松浦
大樹 松浦
和田 典之
典之 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2017109003A priority Critical patent/JP6403835B1/ja
Priority to US15/954,883 priority patent/US10581350B2/en
Priority to DE102018207132.2A priority patent/DE102018207132A1/de
Priority to CN201810489224.1A priority patent/CN108988698B/zh
Application granted granted Critical
Publication of JP6403835B1 publication Critical patent/JP6403835B1/ja
Publication of JP2018207622A publication Critical patent/JP2018207622A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4837Flying capacitor converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/04Arrangements for controlling or regulating the speed or torque of more than one motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】直流電源の電圧を昇圧するコンバータを含む同期機制御装置において、動作停止後、動作復帰させる際、直流電源の損傷を防止して確実に復帰させることと、復帰にかかる時間を短縮させることを両立させた同期機制御装置等をうる。【解決手段】動作復帰時、回転速度、トルク指令から演算される電力演算値が閾値以上の場合は、インバータとコンバータ対して同時に動作許可指示を発行する。一方、電力演算値が閾値未満の場合は、インバータの電力が閾値以上になるよう動作指示を出してからコンバータに対して動作許可指示を発行する。【選択図】図3

Description

この発明は、電力変換手段を備え同期機を回転駆動する同期機制御装置およびその制御方法に関するものである。
同期機制御装置は、インバータを用いて直流電源の電圧を交流電圧に変換して、同期機に電力を供給する。同期機制御装置には、効率改善のため、直流電源の電圧を昇圧してインバータに電力を供給するコンバータを搭載するものもある(例えば下記特許文献1参照)。
このような構成の同期機制御装置で動作復帰時を行う際、例えばコンバータの動作開始前にインバータの回生動作開始を行うと、コンバータ内のコンデンサに電荷が蓄積され、過電圧が発生する恐れがある。また例えば同期機が高回転速度で動作していて、インバータの動作が停止している状態でコンバータの動作が開始されると、インバータが全波整流状態となり、直流電源に回生電流が流れることになる。バッテリが満充電状態で回生電流が流れると直流電源が損傷する恐れがある。
そこで、このような動作復帰時の過電圧、直流電源損傷を防止する方法として、まず、インバータを回生動作禁止した状態で動作させ、その後にコンバータの動作を開始することで復帰処理を行っている。コンバータの動作が開始されるまでの間、インバータで回生動作が行われないため、インバータの端子間電圧を平滑化するためのコンバータ内の平滑コンデンサに電荷がたまることはなく、過電圧を防止することができる。また、インバータが回生以外の状態になってからコンバータを動作させるため、直流電源の損傷も防止することができる。
特開2008−154371号公報
以上のように、直流電源の電圧を昇圧するコンバータを含む従来の同期機制御装置では、動作復帰時に、例えばバッテリが満充電状態で回生電流が流れることを防止するために、インバータを回生動作禁止した状態で動作させ、その後コンバータを動作させていた。従って、インバータを回生動作できるようになるのは、コンバータ動作が開始された後になるため、インバータの所望の動作が回生の場合、動作復帰に時間がかかることになる。一方、インバータが複数接続され、いずれかのインバータが回生動作の場合でも、インバータの電力の合計値が0以上であれば、インバータの端子間電圧を平滑化するためのコンバータ内の平滑コンデンサに電荷がたまることはなく、過電圧は発生しない。従って従来の手法は回生動作禁止が不要な場合でも、回生動作禁止を行い、所望の動作への復帰時間を必要以上に長くしてしまう恐れがあった。
この発明は、このような問題点を解決するためになされたものであり、直流電源の電圧を昇圧するコンバータを含む同期機制御装置において、動作停止後、動作復帰させる際、直流電源の損傷を防止して確実に復帰させることと、復帰にかかる時間を短縮させることの両立をさせた同期機制御装置およびその制御方法を提供することを目的としている。
この発明は、直流電圧を昇圧するコンバータと、昇圧した直流電圧を交流電圧に変換して同期機に電力を供給する1つ以上のインバータと、前記コンバータと前記1つ以上のインバータを制御する制御部と、を備え、前記制御部は前記コンバータと前記1つ以上のインバータが動作を開始する際に前記コンバータと前記インバータの動作開始順を切り替える統合制御部を含み、前記統合制御部は、前記コンバータと前記1つ以上のインバータを動作を開始させる際に、1つ以上のインバータの電力演算値が閾値以上となるように動作させた後にコンバータの動作を開始させるという第1の動作開始順と、1つ以上のインバータとコンバータを同時に動作を開始させるという第2の動作開始順と、で切り替えて制御を行う、同期機制御装置等にある。
この発明によれば、直流電源の電圧を昇圧するコンバータを含む同期機制御装置において、動作停止後、動作復帰させる際、直流電源の損傷を防止して確実に復帰させることと、復帰にかかる時間を短縮させることを両立することができる。
この発明の実施の形態1および2による同期機制御装置を含む同期機制御システムの一例を示す構成図である。 この発明の実施の形態1および2における制御部の構成の一例を示す機能ブロック図である。 この発明の実施の形態1における統合制御部の動作フローチャートである。 この発明の実施の形態2における統合制御部の動作フローチャートである。 この発明の実施の形態1および2の別の形態の同期機制御装置を含む同期機制御システムの一例を示す構成図である。 この発明の実施の形態1および2のさらに別の形態の同期機制御装置を含む同期機制御システムの一例を示す構成図である。 この発明の実施の形態1および2のさらに別の形態の同期機制御装置を含む同期機制御システムの一例を示す構成図である。
以下、この発明による同期機制御装置およびその制御方法を各実施の形態に従って図面を用いて説明する。なお、各実施の形態において、同一もしくは相当部分は同一符号で示し、重複する説明は省略する。
実施の形態1.
この発明の実施の形態1および2による同期機制御装置を含む同期機制御システムの一例を示す構成図である。同期機制御システムは、直流電源DCPSと、同期機制御装置SCD1、例えば2つの同期機1,2を含む。
同期機制御装置SCD1は、インバータ11、11aと、コンバータ12と、制御部13から構成される。
インバータ11は、後述するC2コンデンサ17bの直流電圧を交流電圧に変換して、同期機1に供給する。インバータ11は、スイッチ素子14a、14b、14c、14d、14e、14fと、ダイオード15a、15b、15c、15d、15e、15fと、電流検出器16a、16b、16cから構成される。
スイッチ素子14a、14b、14c、14d、14e、14fは、後述する制御部13からのスイッチON/OFF信号1に従って、スイッチON/OFFを行う。
ダイオード15a、15b、15c、15d、15e、15fは、一方方向(図1では、下から上の方向)のみ電流を流す。接続されたスイッチ素子がIGBT(Insulated Gate Bipolar Transistor)の場合はエミッタからコレクタの方向となる。
電流検出器16a、16b、16cは、同期機1の三相電流を検出し、制御部13に出力する。
インバータ11aは、後述するC2コンデンサ17bの直流電圧を交流電圧に変換して、同期機2に供給する。インバータ11aの構成は、インバータ11と同様である。
コンバータ12は、直流電源DCPSの直流電圧を昇圧して、インバータ11、11aに供給する。コンバータ12は、スイッチ素子14g、14h、と、ダイオード15g、15hbと、C1コンデンサ17aと、C2コンデンサ17bと、リアクトル18と、放電抵抗19から構成される。
C1コンデンサ17aは、電源電圧2の端子間電圧を平滑化する。
C2コンデンサ17bは、インバータ11、11aの端子間電圧を平滑化する。
放電抵抗19は、同期機制御装置SCD1の動作停止時にC2コンデンサ17bの電荷を放電するために入れられている。
インバータ11,11aおよびコンバータ12の回路構成は基本的なインバータ、コンバータの構成であり、詳細な説明は省略する。また、この発明では多くの検出ファクタがあるため、一部を除き、以下の説明では説明の便宜上、検出器等の図示や詳細な説明は省略する。
制御部13の演算処理部分は、ソフトウェアで構成する場合には、後述する各機能を実行するプログラムおよび各機能を実行するのに必要な各種データを記憶したメモリと、メモリに格納されたプログラムおよび各種データに従って処理を行うプロセッサからなるコンピュータで構成され得る。ハードウェアで構成する場合には、各種機能を実行する1つまたは複数のディジタル回路で構成され、付随する各種データはディジタル回路に予め組み込んでおく。
制御部13は、同期機1に内蔵されている角度検出器に対して同期機1励磁信号を出力し、角度検出器(図示省略)が出力した同期機1角度検出器出力電圧を取得する。また、制御器13は、概略、
C2コンデンサ17bの電圧、
同期機1の三相電流、
同期機1角度検出器出力電圧、
同期機1トルク指令
より、トルク指令通りの実トルクが同期機1から出力されるよう、スイッチON/OFF信号1を生成する。
また、制御器13は、同期機2に内蔵されている角度検出器に対して同期機2励磁信号を出力し、角度検出器(図示省略)が出力した同期機2角度検出器出力電圧を取得する。また、制御器13は、
C2コンデンサ17bの電圧、
同期機2の三相電流、
同期機2角度検出器出力電圧、
同期機2トルク指令
より、トルク指令通りの実トルクが同期機2から出力されるよう、スイッチON/OFF信号2を生成する。
また、制御器13は、
同期機1トルク指令、
同期機1回転速度、
同期機2トルク指令、
同期機2回転速度、
C2コンデンサ電圧
を用いて、C2コンデンサ電圧の目標値を算出する。また、C2コンデンサ17bの電圧の実値が目標値と一致するよう、スイッチON/OFF信号3を生成する。
図2は、この発明の実施の形態1における制御器13の構成の一例を示す機能ブロック図である。図2において、第1の角度・回転速度演算部101は、同期機1の角度検出器に対して同期機1励磁信号を出力し、角度検出器より同期機1角度検出器出力電圧を取得する。そして、同期機1角度検出器出力電圧より同期機1角度、同期機1回転速度を算出する。
第2の角度・回転速度演算部101aは、同期機2の角度検出器に対して同期機2励磁信号を出力し、角度検出器より同期機2角度検出器出力電圧を取得する。そして、同期機2角度検出器出力電圧より同期機2角度、同期機2回転速度を算出する。
統合制御部102は、
同期機1回転速度、
同期機2回転速度、
同期機1トルク指令、
同期機2トルク指令、
C2コンデンサ電圧、
統合動作許可指令
を入力とする。
同期機1回転速度は第1の角度・回転速度演算部101から得られ、
同期機2回転速度は第2の角度・回転速度演算部101aから得られ、
同期機1トルク指令と同期機2トルク指令と統合動作許可指令は同期機制御装置SCD1外部から得られ、
C2コンデンサ電圧は図示を省略して電圧検出器より得られる。
そして、
インバータ1動作許可指令、
インバータ1強制モード、
インバータ1強制指令、
インバータ2動作許可指令、
インバータ2強制モード、
インバータ2強制指令、
コンバータ動作許可指令
を算出する。
統合制御部102は、
C2コンデンサ電圧が閾値1以上または統合動作許可指令:禁止の場合、
インバータ1動作許可指令:禁止、
インバータ2動作許可指令:禁止、
コンバータ動作許可指令:禁止
を出力する。
一方、C2コンデンサ電圧が閾値1未満かつ統合動作許可指令:許可の場合、
インバータ1動作許可指令:許可、
インバータ2動作許可指令:許可、
コンバータ動作許可指令:許可
を出力する。
但し、C2コンデンサ電圧が閾値1以上または統合動作許可指令:禁止の状態から、C2コンデンサ電圧が閾値1未満かつ統合動作許可指令:許可の状態に切り替わった際、一定の条件が成立した場合、一定時間経過してからコンバータ動作許可:禁止から許可に切り替える。詳細は、後述する図3を用いて説明する。
インバータ制御部103は、
同期機1三相電流、
同期機1トルク指令、
C2コンデンサ電圧、
同期機1角度、
同期機1回転速度、
インバータ1動作許可指令、
インバータ1強制モード、
インバータ1強制指令
より、スイッチON/OFF信号1を生成する。
同期機1三相電流は電流検出器16から得られ、
同期機1トルク指令は同期機制御装置SCD1外部から得られ、
C2コンデンサ電圧は図示を省略した電圧検出器から得られ、
同期機1角度と同期機1回転速度は第1の角度・回転速度演算部101から得られ、
インバータ1動作許可指令とインバータ1強制モードとインバータ1強制指令は統合制御部102から得られる。
インバータ制御部103は、インバータ1動作許可指令:禁止の場合、スイッチON/OFF信号1:OFFに固定する。
一方、インバータ1動作許可指令:許可かつインバータ1強制モード:OFFの場合、同期機1トルク指令通りの実トルクが同期機1から出力されるよう、
同期機1三相電流、
C2コンデンサ電圧、
同期機1角度、
同期機1回転速度
を用いて、スイッチON/OFF信号1を生成する。
また、インバータ1動作許可指令:許可かつインバータ1強制モード:ONの場合、インバータ1強制指令通りの実トルクが同期機1から出力されるよう、
同期機1三相電流、
C2コンデンサ電圧、
同期機1角度、
同期機1回転速度
を用いて、スイッチON/OFF信号1を生成する。
インバータ制御部103aは、
同期機2三相電流、
同期機2トルク指令、
C2コンデンサ電圧、
同期機2角度、
同期機2回転速度、
インバータ2動作許可指令、
インバータ2強制モード、
インバータ2強制指令
より、スイッチON/OFF信号2を生成する。
同期機2三相電流は電流検出器16から得られ、
同期機2トルク指令は同期機制御装置SCD1外部から得られ、
C2コンデンサ電圧は図示を省略した電圧検出器から得られ、
同期機2角度と同期機2回転速度は第2の角度・回転速度演算部101aから得られ、
インバータ2動作許可指令とインバータ2強制モードとインバータ2強制指令は統合制御部102から得られる。
インバータ制御部103aは、インバータ2動作許可指令:禁止の場合、スイッチON/OFF信号2を:OFFに固定する。
一方、インバータ2動作許可指令:許可かつインバータ1強制モード:OFFの場合、同期機2トルク指令通りの実トルクが同期機2から出力されるよう、
同期機2三相電流、
C2コンデンサ電圧、
同期機2角度、
同期機2回転速度
を用いて、スイッチON/OFF信号2を生成する。
また、インバータ2動作許可指令:許可かつインバータ2強制モード:ONの場合、インバータ2強制指令通りの実トルクが同期機2から出力されるよう、
同期機2三相電流、
C2コンデンサ電圧、
同期機2角度、
同期機2回転速度
を用いて、スイッチON/OFF信号2を生成する。
コンバータ制御部104は、
C1コンデンサ電圧、
C2コンデンサ電圧、
同期機1トルク指令、
同期機1回転速度、
同期機2トルク指令、
同期機2回転速度、
コンバータ動作許可指令
から、スイッチON/OFF信号3を生成する。
C1コンデンサ電圧とC2コンデンサ電圧は図示を省略した電圧検出器から得られ、
同期機1トルク指令と同期機2トルク指令は同期機制御装置SCD1外部から得られ、
同期機1回転速度は第1の角度・回転速度演算部101から得られ、
同期機2回転速度は第2の角度・回転速度演算部101aから得られ、
コンバータ動作許可指令は統合制御部102から得られる。
コンバータ制御部104は、コンバータ動作許可指令:禁止の場合、スイッチON/OFF信号3:OFFに固定する。
一方、コンバータ動作許可指令:許可の場合、
C1コンデンサ電圧、
同期機1トルク指令、
同期機1回転速度、
同期機2トルク指令、
同期機2回転速度
よりC2コンデンサ電圧の目標値を算出し、その目標値通りのC2コンデンサ電圧になるよう、C1コンデンサ電圧、C2コンデンサ電圧を用いてスイッチON/OFF信号3を生成する。
図3は、本実施の形態1における統合制御部102の動作を示すフローチャートである。
C2コンデンサ電圧が閾値1以上または統合動作許可指令:禁止になった場合、ステップS101からステップS109までの動作を行う。ここで、閾値1は例えば、スイッチ素子14a、14b、14c、14d、14e、14f、14g、14hの耐圧電圧、ダイオード15a、15b、15c、15d、15e、15f、15g、15hの耐圧電圧、C1コンデンサ17の耐圧電圧、C2コンデンサの耐圧電圧の内、最も低い値に設定する。
まず、ステップS101において、
インバータ1動作許可指令:禁止、
インバータ2動作許可指令:禁止、
コンバータ動作許可指令:禁止
に切り替え、ステップS102に進む。
ステップS102において、C2コンデンサ電圧が閾値2未満かつ統合動作許可指令:許可の条件を満たしているか否かを判定し、条件を満たしていなければステップS103に進み、条件を満たしていればステップS104に進む。閾値2は、閾値1より低い値に設定する。
ステップS103において、一定時間待機し、ステップS102に進む。
ステップS104において、電力演算値が閾値3以上であればステップS105に進み、電力演算値が閾値3未満であればステップS106に進む。
閾値3としては、例えば0W[ワット]を設定してもよい。また、例えば、C2コンデンサ電圧が閾値2の時点からインバータ11と、インバータ11aが電力演算値α(α<0W[ワット])で一定時間動作した際、C2コンデンサ電圧が閾値1以内に収まる最小のαを設定値としてもよい。また、電力演算値は例えば以下のように演算する。例えば、
同期機1回転速度、
同期機1トルク指令、
同期機2回転速度、
同期機2トルク指令
より以下の式(1)より算出してもよい。
(電力演算値)=(同期機1回転速度)×(2π/60)×(同期機1トルク指令)
+(同期機2回転速度)×(2π/60)×(同期機2トルク指令)
(1)
また、例えば、同期機1回転速度と同期機1トルク指令に応じて変化する同期機1の損失とインバータ11の損失、同期機2回転速度と同期機2トルク指令に応じて変化する同期機2の損失とインバータ11aの損失をそれぞれマップの形式で記憶しておき、同期機1回転速度と同期機1トルク指令から同期機1の損失とインバータ11の損失をマップ引きすることで算出し、同期機2回転速度と同期機2トルク指令から同期機2の損失とインバータ11aの損失をマップ引きすることで算出し、電力演算値を次式(2)から算出してもよい。
(電力演算値)=(同期機1回転速度)×(2π/60)×(同期機1トルク指令)
+(同期機2回転速度)×(2π/60)×(同期機2トルク指令)
+(同期機1の損失)+(インバータ11の損失)
+(同期機2の損失)+(インバータ11aの損失)
(2)
ステップS105において、
インバータ1動作許可指令、
インバータ2動作許可指令、
コンバータ動作許可指令
を許可に切り替え、処理を終了する。
ステップS106において、
インバータ1強制指令、インバータ2強制指令をONに切り替え、
インバータ1動作許可指令、インバータ2動作許可指令を許可に切り替える。
またインバータ1強制指令、インバータ2強制指令を出力する。
インバータ1強制指令、インバータ2強制指令としては、例えば両者ともに0[Nm]以上の値に設定してもよい。また、例えば下記式(3)に示す電力演算値が閾値3以上となるように設定してもよい。
(電力演算値)=(同期機1回転速度)×(2π/60)×(インバータ1強制指令)
+(同期機2回転速度)×(2π/60)×(インバータ2強制指令)
(3)
ステップS107において、一定時間待機し、ステップS108に進む。ここで、待機時間の設定は、例えば
インバータ1動作許可指令:許可に切り替えてから、インバータ強制指令通りの実トルクが出力されるようになるまでかかる時間と、
インバータ2動作許可指令:許可に切り替えてから、インバータ強制指令通りの実トルクが出力されるようになるまでかかる時間
の内、大きな値の方を設定する。
ステップS108において、コンバータ動作許可指令:許可を送信し、ステップS109に進む。
ステップS109において、一定時間待機し、ステップS110に進む。ここで、待機時間の設定は、例えばコンバータ12が、C2コンデンサ電圧が指令通りの値になるまでにかかる時間に設定する。また、C2コンデンサ電圧がC1コンデンサ電圧以下の場合は、例えば、スイッチ素子14gがON状態固定になり、かつスイッチ素子14hがOFF状態固定になるまでにかかる時間に設定する。
ステップS110において、インバータ1強制指令、インバータ2強制指令をOFFに切り替え、インバータ11、11aを通常動作の状態に戻し、処理を終了する。
上記特許文献1の手法は、インバータ11、11a、コンバータ12の動作を再開する場合、
同期機1回転速度、
同期機1トルク指令、
同期機2回転速度、
同期機2トルク指令
の値に依らず、まず、インバータ11、11aを回生禁止状態で動作させ、その後、コンバータ12を動作させる。インバータ11、11aが回生動作できるようになるのは、コンバータ12動作開始後となるため、その分だけ動作再開が遅れることになる。
一方、本実施の形態1の同期機制御装置は、電力演算値が閾値3未満であれば、回生動作を禁止することなく、インバータ11、11a、コンバータ12の動作を開始するため、特許文献1の手法より動作復帰を早くすることができる。
以上のように、実施の形態1の同期機制御装置では、同期機の動作開始時、確実に動作を開始させることと、動作開始にかかる時間を短縮させることを両立することができる。
実施の形態2.
上記実施の形態1の同期機制御装置は、ステップS104で算出される電力演算値が閾値3以上の場合、
インバータ1動作許可指令、
インバータ2動作許可指令、
コンバータ動作許可指令
を同時に許可に切り替える。そのため、コンバータ12の動作が、インバータ11、インバータ11aの動作よりも早く始まる可能性がある。ここで、直流電源DCPSが満充電状態で、同期機1または同期機2が高回転速度で動作している場合、インバータ11またはインバータ11aが全波整流状態になり、直流電源DCPSに回生電流が流れ、直流電源DCPSが損傷する恐れがある。
本実施の形態2の同期機制御装置は、同期機1、または同期機2が高回転速度で動作している場合、コンバータ12の動作前に、インバータ11とインバータ11aの動作を開始させることにより、直流電源DCPSに回生電流が流れ、直流電源2を損傷することを防止する。
本実施の形態2の同期機制御装置の構成は、図1,2で説明した上記実施の形態1の同期機制御装置と同じである。
図4は、本実施の形態2の同期機制御装置の統合制御部102の動作を示すフローチャートである。本実施の形態2の統合制御部102の動作は、上記実施の形態1の統合制御部102の動作とほぼ同じであるが、図3に示した実施の形態1の統合制御部102のステップS104の処理が、実施の形態2の統合制御部102では図4に示すステップS112の処理内容となっているところが異なる。
ステップS112において、
電力演算値が閾値3未満、または
同期機1回転速度が閾値4以上、または
同期機2回転速度が閾値5以上
の場合ステップS106に進み、条件が成立しない場合はステップS105に進む。
閾値4は、例えば同期機1の回転によって発生する誘起電圧が直流電源DCPSの電圧を上回る回転速度に設定する。
閾値5は、例えば同期機2の回転によって発生する誘起電圧が直流電源DCPSの電圧を上回る回転速度に設定する。
本実施の形態2の同期機制御装置は、同期機1、同期機2の回転速度がそれぞれの閾値以上の場合インバータ11、インバータ11aの動作を開始させてから、コンバータ12の動作を開始する。よって、本実施の形態1の同期機制御装置のように、インバータ11、インバータ11aの動作よりもコンバータ12の動作が早く始まり、直流電源2に回生電流が流れ、直流電源DCPSが損傷することを防止することができる。
以上のように、実施の形態2の同期機制御装置では、同期機の動作開始時、直流電源に回生電流が流れ、直流電源を損傷することを防止することができる。
なお、上記実施の形態1,2では図1に示す同期機、インバータがそれぞれ2つの場合を例として挙げたが、同期機、インバータの数はそれぞれ1つ以上であればよい。例えば、図5に示す同期機制御装置SCD2ように同期機、インバータが1つずつであってもよい。
また、コンバータについては、図6に示す同期機制御装置SCD3のコンバータ12aのように、インバータの電源側に接続する上側のスイッチ素子とダイオードからなるスイッチ回路と、インバータのアース側に接続する下側のスイッチ素子とダイオードからなるスイッチ回路とを、それぞれ2つのスイッチ回路を直列に接続して構成し、スイッチ素子14hの電源側とスイッチ素子14iのアース側をコンデンサ17cに接続した構成としてもよい。
また、例えばコンバータについて、図7に示す同期機制御装置SCD4のコンバータ12bのように、直列接続された2つのスイッチ回路と1つのリアクトルからなるコンバータ回路を2つ並列に接続した構成としてもよい。
1、2 同期機、11、11a インバータ、12、12a、12b コンバータ、
13 制御部、14a−14j スイッチ素子、15a−15j ダイオード、
16a、16b、16c 電流検出部、17a−17c コンデンサ、
18、18a リアクトル、19 放電抵抗、101 第1の角度・回転速度演算部、
101a 第2の角度・回転速度演算部、102 統合制御部、
103、103a インバータ制御部、104 コンバータ制御部。

Claims (4)

  1. 直流電圧を昇圧するコンバータと、
    昇圧した直流電圧を交流電圧に変換して同期機に電力を供給する1つ以上のインバータと、
    前記コンバータと前記1つ以上のインバータを制御する制御部と、
    を備え、
    前記制御部は前記コンバータと前記1つ以上のインバータが動作を開始する際に前記コンバータと前記インバータの動作開始順を切り替える統合制御部を含み、
    前記統合制御部は、前記コンバータと前記1つ以上のインバータを動作を開始させる際に、
    1つ以上のインバータの電力演算値が閾値以上となるように動作させた後にコンバータの動作を開始させるという第1の動作開始順と、
    1つ以上のインバータとコンバータを同時に動作を開始させるという第2の動作開始順と、
    で切り替えて制御を行う、同期機制御装置。
  2. 前記統合制御部は、前記同期機の回転速度とトルク指令から演算される電力演算値に従って前記第1の動作開始順と前記第2の動作開始順を切り替える、請求項1に記載の同期機制御装置。
  3. 前記統合制御部は、前記同期機の回転速度とトルク指令から演算される電力演算値と、前記同期機の回転速度に従って前記第1の動作開始順と前記第2の動作開始順を切り替える、請求項1に記載の同期機制御装置。
  4. 直流電圧を昇圧するコンバータと、昇圧した直流電圧を交流電圧に変換して同期機に電力を供給する1つ以上のインバータと、を備えた同期機制御装置において、
    前記コンバータと前記1つ以上のインバータが動作を開始する際に動作開始順を、
    1つ以上のインバータの電力演算値が閾値以上となるように動作させた後にコンバータの動作を開始させるという第1の動作開始順と、
    1つ以上のインバータとコンバータを同時に動作を開始させるという第2の動作開始順と、
    で切り替えて制御を行う、同期機制御装置の制御方法。
JP2017109003A 2017-06-01 2017-06-01 同期機制御装置およびその制御方法 Active JP6403835B1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017109003A JP6403835B1 (ja) 2017-06-01 2017-06-01 同期機制御装置およびその制御方法
US15/954,883 US10581350B2 (en) 2017-06-01 2018-04-17 Synchronous machine control device and method of controlling the synchronous machine control device
DE102018207132.2A DE102018207132A1 (de) 2017-06-01 2018-05-08 Synchronmaschine-Steuervorrichtung und Verfahren zum Steuern der Synchronmaschine-Steuervorrichtung
CN201810489224.1A CN108988698B (zh) 2017-06-01 2018-05-21 同步电机控制装置及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017109003A JP6403835B1 (ja) 2017-06-01 2017-06-01 同期機制御装置およびその制御方法

Publications (2)

Publication Number Publication Date
JP6403835B1 true JP6403835B1 (ja) 2018-10-10
JP2018207622A JP2018207622A (ja) 2018-12-27

Family

ID=63788081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017109003A Active JP6403835B1 (ja) 2017-06-01 2017-06-01 同期機制御装置およびその制御方法

Country Status (4)

Country Link
US (1) US10581350B2 (ja)
JP (1) JP6403835B1 (ja)
CN (1) CN108988698B (ja)
DE (1) DE102018207132A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154371A (ja) * 2006-12-18 2008-07-03 Toyota Motor Corp 車両の駆動装置、車両の駆動装置の制御方法、車両の駆動装置の制御方法をコンピュータに実行させるためのプログラムおよびそのプログラムをコンピュータ読取り可能に記録した記録媒体
WO2016167041A1 (ja) * 2015-04-13 2016-10-20 東芝キヤリア株式会社 モータ駆動装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5893876B2 (ja) * 2011-09-13 2016-03-23 トヨタ自動車株式会社 モータ制御システム
JP5222985B2 (ja) * 2011-09-15 2013-06-26 株式会社安川電機 電源回生コンバータ、モータ駆動システム、及び電源回生処理方法
JP5915675B2 (ja) * 2014-02-21 2016-05-11 トヨタ自動車株式会社 電動車両
US9493091B2 (en) * 2014-04-21 2016-11-15 Samsung Electro-Mechanics Co., Ltd. Driving circuit for hybrid electric vehicle and controlling method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154371A (ja) * 2006-12-18 2008-07-03 Toyota Motor Corp 車両の駆動装置、車両の駆動装置の制御方法、車両の駆動装置の制御方法をコンピュータに実行させるためのプログラムおよびそのプログラムをコンピュータ読取り可能に記録した記録媒体
WO2016167041A1 (ja) * 2015-04-13 2016-10-20 東芝キヤリア株式会社 モータ駆動装置

Also Published As

Publication number Publication date
JP2018207622A (ja) 2018-12-27
US20180351486A1 (en) 2018-12-06
US10581350B2 (en) 2020-03-03
CN108988698A (zh) 2018-12-11
DE102018207132A1 (de) 2018-12-06
CN108988698B (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
JP5820021B1 (ja) 充電抵抗の保護手段を有するモータ制御装置
JP5954356B2 (ja) 電動車両
JP4708495B1 (ja) 停電検出機能を有するモータ駆動装置
JP5528858B2 (ja) 電力変換装置
JP2001186689A (ja) 無停電電源装置
CN108809120B (zh) 转换器装置
JP2004023809A (ja) Pwmインバータ制御装置および制御方法
JP6403835B1 (ja) 同期機制御装置およびその制御方法
JP6721443B2 (ja) インバータ装置
EP3011674A1 (en) Dual power mode drive
JP2016005385A (ja) 電源装置及び電力変換装置
JP4487155B2 (ja) Pwmサイクロコンバータの保護装置
JP6455938B2 (ja) 電力変換装置及びその制御方法
JP5638894B2 (ja) 電力変換装置及び直流給電システム
JPH1023672A (ja) 分散型電源装置
JP7001895B2 (ja) 電力変換器の制御回路
JP2002320390A (ja) 蓄電装置
JPWO2017183200A1 (ja) Pn母線共通システム、回生制御装置及び回生制御方法
KR20180132869A (ko) 무정전 전원 장치
JP6539354B2 (ja) 電力変換装置
JP7392570B2 (ja) インバータ装置
JP5372645B2 (ja) インバータ用電源回路
JP2016086515A (ja) バッテリ充電装置
WO2022044927A1 (ja) Pwmコンバータに接続されるフィルタ及びコンバータシステム
JP6285290B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180911

R150 Certificate of patent or registration of utility model

Ref document number: 6403835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250