JP6383477B1 - 第4級アンモニウム化合物溶液及びこれを利用したポリアセタールからの揮発性有機化合物の発生抑制 - Google Patents
第4級アンモニウム化合物溶液及びこれを利用したポリアセタールからの揮発性有機化合物の発生抑制 Download PDFInfo
- Publication number
- JP6383477B1 JP6383477B1 JP2017201061A JP2017201061A JP6383477B1 JP 6383477 B1 JP6383477 B1 JP 6383477B1 JP 2017201061 A JP2017201061 A JP 2017201061A JP 2017201061 A JP2017201061 A JP 2017201061A JP 6383477 B1 JP6383477 B1 JP 6383477B1
- Authority
- JP
- Japan
- Prior art keywords
- group
- quaternary ammonium
- acid
- ammonium compound
- polyacetal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
Description
特に、近年ではホルムアルデヒドが人体にとって好ましくない物質であるという観点から、成型後の製品からのホルムアルデヒドの発生量が極端に低い材料が求められ、ホルムアルデヒドの発生量の少ないポリアセタールが発明されてきている。
その中でも、不安定末端部を分解して安定化する方法が有利である。この不安定末端部を分解する方法としては、この不安定末端部を分解することのできる塩基性物質の存在下、粗ポリアセタール共重合体を水中また有機溶剤中で加熱し安定化する方法、粗ポリアセタール共重合体を加熱溶融状態で安定化する方法などが知られている。粗ポリアセタール共重合体を水中または有機溶剤中で加熱し安定化する方法は、分離(濾過)、回収、洗浄等の操作を必要とするのに対して、加熱溶融状態で安定化する方法は、直接安定化したポリアセタール共重合体が得られる為、工業的に最も有利な方法である。
従来知られている加熱処理方法としては、粗ポリアセタール共重合体をポリアセタール共重合体が溶解しない媒体(例えば水、水/メタノール混合液)中で不均一系を保ちつつ、加熱処理して不安定な末端部を除去する方法が知られている(例えば特許文献1、特許文献2)。しかし、この方法では不安定な末端部の分解速度を上げるためにポリアセタール共重合体の融点に近い温度で操作する必要があるとともに不安定な末端部を少なくするために長時間の処理を行う必要があった。このような処理を行っても、得られたポリアセタール共重合体は不安定な末端部の分解除去が充分でなく、高温での長時間処理によりポリアセタール共重合体が着色しやすいという問題もあった。
例えば、特許文献4には、溶融共重合体を一定時間ロールミル上で混練する方法、特許文献5または特許文献6には、水、アルコール等又は更にアルカリ成分の存在下で押出機等を用いて加熱溶融処理を行う方法、特許文献7には、粗ポリアセタール共重合体を加熱溶融した後、特殊な表面更新混合機を用いて減圧下において不安定な部分を分解除去する方法、特許文献8には、粗ポリアセタール共重合体を溶融するための1軸スクリュー押出機、流動分割と再配列の原理により粗ポリアセタール共重合体と水及び水の存在下で水酸化物を生成する化合物からなる反応剤とを混合しながら不安定な部分を分解する反応域を有する静混合機及び静混合機のすぐ後に配置された揮発分除去のためのベント式スクリュー押出機より構成される反応装置において不安定部分を分解除去する方法、また、特許文献9には、粉状または粉状粗ポリアセタール共重合体を溶融温度より5〜35℃低い温度で減圧下で処理したあと、押出機で加熱溶融処理する方法がそれぞれ提案されている。
これら粗ポリアセタール共重合体を加熱し溶融状態に保って熱的に不安定な末端部のみを分解除去する方法でもかなりの安定化が可能であり、斯かる処理を行ったポリアセタール共重合体は実用に供し得るものであるが、なお、熱的に不安定な末端部が残り、これが成型加工等において、モールドデポジット(金型付着物)の発生等の好ましからざる現象を引き起こす原因となる場合があるため、より一層安定な重合体が強く望まれている。
特許文献10には、これらの問題を解決すべく、簡便な方法で不安定な末端部の非常に少ないポリアセタール共重合体を得る安定化方法として、熱処理を特定構造の第4級アンモニウム化合物の存在下で行うことが開示されている。この方法によれば、ポリアセタール共重合体の熱的に不安定な末端部の飛躍的な安定化が実現し、上記の安定化方法に伴なう種々の問題を解消できるとされるが、成型等の加熱溶融後に発生するアセトアルデヒドやアクロレインの発生抑制には至っていない。
しかしながら、この第4級アンモニウム化合物でポリアセタールを処理した場合には、得られるポリアセタールの着色について改善の余地があることが分かった。そして、着色の問題を解決すべく鋭意検討した結果、この第4級アンモニウム化合物を、特定の動粘度を有する溶液の形で用いると、揮発性有機物質の発生抑制効果は維持したまま、着色のない色調の優れたポリアセタールが得られることを見出し、本発明を完成させた。
〔1〕下記式(1)であらわされる第4級アンモニウム化合物(A)を含む溶液であって、水温15℃での動粘度が0.4〜10.0mm2/sである、第4級アンモニウム化合物溶液。
[(R1)m(R2)4-mN+]nXn- (1)
(式中、R1、は、各々独立して、炭素数1〜30の非置換アルキル基または置換アルキル基;炭素数6〜20のアリール基;炭素数1〜30の非置換アルキル基または置換アルキル基が少なくとも1個の炭素数6〜20のアリール基で置換されたアラルキル基;又は炭素数6〜20のアリール基が少なくとも1個の炭素数1〜30の非置換アルキル基または置換アルキル基で置換されたアルキルアリール基を表わし、非置換アルキル基及び置換アルキル基は、直鎖状、分岐状、または環状であり、置換アルキル基の置換基は、ハロゲン、水酸基、アルデヒド基、カルボキシル基、アミノ基、又はアミド基であり、非置換アルキル基、アリール基、アラルキル基、及び、アルキルアリール基は、水素原子がハロゲンで置換されていてもよい。
R2は、各々独立して、炭素数が2〜60、酸素数が2〜30である、以下の式で表される基を表す。
−(RO)k―H (ただし、Rは置換又は非置換のアルキル基を表し、kは2以上の自然数を表す。)
m及びnは、1〜3の整数を表わす。
Xは、水酸基、又は、炭素数1〜20のモノカルボン酸、水素酸、オキソ酸、無機チオ酸及び炭素数1〜20の有機チオ酸からなる群から選ばれる化合物の酸残基であって、窒素原子を含まない基を表す。
〔2〕前記式(1)におけるXが、モノカルボン酸の酸残基である、〔1〕に記載の第4級アンモニウム化合物溶液。
〔3〕前記モノカルボン酸が、ギ酸、酢酸又はプロピオン酸である、〔2〕に記載の第4級アンモニウム化合物溶液。
〔4〕前記式(1)における、R2の炭素数2〜6である、〔1〕〜〔3〕いずれかに記載の第4級アンモニウム化合物溶液。
〔5〕下記式(3)で表される第4級アンモニウム化合物(C)を含む、〔1〕〜〔4〕いずれかに記載の第4級アンモニウム化合物溶液。
[R3R4R5R6N+]lYl- (3)
(式中、R3、R4、R5、R6は、各々独立して、炭素数1〜30の非置換アルキル基または置換アルキル基;炭素数6〜20のアリール基;炭素数1〜30の非置換アルキル基または置換アルキル基が少なくとも1個の炭素数6〜20のアリール基で置換されたアラルキル基;又は炭素数6〜20のアリール基が少なくとも1個の炭素数1〜30の非置換アルキル基または置換アルキル基で置換されたアルキルアリール基を表わし、非置換アルキル基及び置換アルキル基は、直鎖状、分岐状、または環状であり、置換アルキル基の置換基は、ハロゲン、水酸基、アルデヒド基、カルボキシル基、アミノ基、又はアミド基であり、非置換アルキル基、アリール基、アラルキル基、及び、アルキルアリール基は水素原子がハロゲンで置換されていてもよい。
lは、1〜3の整数を表わす。
Yは、水酸基、又は、炭素数1〜20のカルボン酸、水素酸、オキソ酸、無機チオ酸及び炭素数1〜20の有機チオ酸からなる群から選ばれる化合物の酸残基を表わす。)
〔6〕〔1〕〜〔5〕いずれかに記載の第4級アンモニウム化合物溶液を含む、ポリアセタールからの揮発性有機化合物発生抑制剤。
〔7〕〔1〕〜〔5〕のいずれかに記載の第4級アンモニウム化合物溶液を添加した、熱的に不安定な末端部を有するポリアセタールを熱処理する工程を含む、
ポリアセタールの製造方法。
<第4級アンモニウム化合物(A)>
まず、本実施形態の第4級アンモニウム化合物溶液において用いる、式(1)で表される新規な第4級アンモニウム化合物(A)について説明する。
本実施形態の第4級アンモニウム化合物(A)は下記式(1)であらわされる。
[(R1)m(R2)4-mN+]nXn- (1)
式中、R1は、各々独立して、炭素数1〜30の非置換アルキル基または置換アルキル基;炭素数6〜20のアリール基;炭素数1〜30の非置換アルキル基または置換アルキル基が少なくとも1個の炭素数6〜20のアリール基で置換されたアラルキル基;又は炭素数6〜20のアリール基が少なくとも1個の炭素数1〜30の非置換アルキル基または置換アルキル基で置換されたアルキルアリール基を表わし、非置換アルキル基または置換アルキル基は直鎖状、分岐状、または環状であり、置換アルキル基の置換基は、ハロゲン、水酸基、アルデヒド基、カルボキシル基、アミノ基、又はアミド基であり、非置換アルキル基、アリール基、アラルキル基、アルキルアリール基は水素原子がハロゲンで置換されていてもよい。
R2は、各々独立して、炭素数が2〜60、酸素数が2〜30である、以下の式で表される基を表す。
−(RO)k―H
(ただし、Rは置換又は非置換のアルキル基を表し、kは2以上の自然数を表す。)
m及びnは、1〜3の整数を表わす。nが大きくなるほど副反応が多くなる可能性が高いため、純度の高いものを得るため、さらには入手のしやすさやの観点からnは1、mは3であることが特に好ましい。
Xは、水酸基、又は、炭素数1〜20のモノカルボン酸、水素酸、オキソ酸、無機チオ酸及び炭素数1〜20の有機チオ酸からなる群から選ばれる化合物の酸残基であって、窒素原子を含まない基を表す。
Xが窒素原子を含むと、加熱時におけるアセトアルデヒド及びアクロレインの発生抑制に効果的に働かない。
−(RO)k―H
(ただし、Rは置換又は非置換のアルキル基を表し、kは2以上の自然数を表す。)
R2として、このような基を選択することにより、加熱溶融等の高温加熱を行った場合のポリアセタールからのホルムアルデヒド、アセトアルデヒド及びアクロレインの発生を抑制することができる。
炭素数が60を超えるまたは、酸素数が30を超えると、第4級アンモニウム化合物を単離生成するのに時間を要する可能性がある。
第4級アンモニウム化合物の合成の観点から、R2の炭素数は2〜10、酸素数は2〜5であることが好ましく、ポリアセタールの溶融加熱後の着色性の観点から、炭素数が2〜6、酸素数が2〜3であることがより好ましい。
これらのうち、水酸化物は強アルカリであり取り扱いに注意することが必要であるため、塩の形で使用することが好ましく、特にモノカルボン酸塩が好ましい。
本実施形態の第4級アンモニウム化合物溶液は、第4級アンモニウム化合物(A)の溶液であり、15℃における動粘度が0.4〜10.0mm2/sの範囲である。動粘度はウベローデ粘度管を用いて測定することができる。
動粘度が10.0mm2/s以下であると、色調が安定的かつ、熱安定性の良いポリアセタールを製造できる。
動粘度が0.4mm2/s以上であると、十分な末端安定化が可能かつ不要な溶媒を除去するのに有利となる。多量の溶媒を用いなくてよいという観点から、0.7mm2/s以上であることが好ましく、より好ましくは1.0mm2/s以上である。
色調が安定的なポリアセタールを得る観点から、7.0mm2/s以下であることが好ましく、5.0mm2/s以下であることがより好ましく、4.0mm2/s以下であることがさらに好ましい。
第4級アンモニウム化合物(A)の溶媒としては、溶解させうる液体であればよく、常温もしくは溶解させる所望の温度域で液体状態であればよい。具体例としては、たとえば、水、ケトン類、アルコール類、エーテル類、エステル類、炭化水素類、芳香族炭化水素類、ハロゲン化炭素類、ニトロ化合物類、酸無水物類、酸―ハロゲン化物類、アミン類、アミド類、ニトリル類が挙げられる。なお、溶解とは、ガラス製試験管に第4級アンモニウム化合物(A)と溶媒を入れよく混合した後、試験管を覗き、景色が認識可能であれば溶解している状態とする。
溶媒としては、入手のしやすさや取扱性の容易な観点から、水、アセトン、メタノール類等の原子数の少ない溶媒が好ましい。
溶媒として水を用いると、第4級アンモニウム化合物(A)の調製の際に、水を絶乾させる工程を設ける必要がなく、そのための熱エネルギーを節約することができ、さらに得られ屋第4級アンモニウム化合物(A)の変質・変色を防ぐことができる。また、ホルムアルデヒドは水と共沸することから第4級アンモニウム化合物溶液を粗ポリアセタールの安定化に使用する際に、ポリアセタールから発生するホルムアルデヒドの除去を促進することができる。
本実施形態の第4級アンモニウム化合物溶液は、第4級アンモニウム化合物(A)に加えて、下記式(3)で表される第4級アンモニウム化合物(C)を含んでもよい。
[R3R4R5R6N+]lYl- (3)
式中、R3、R4、R5、R6は、各々独立して、炭素数1〜30の非置換アルキル基または置換アルキル基;炭素数6〜20のアリール基;炭素数1〜30の非置換アルキル基または置換アルキル基が少なくとも1個の炭素数6〜20のアリール基で置換されたアラルキル基;又は炭素数6〜20のアリール基が少なくとも1個の炭素数1〜30の非置換アルキル基または置換アルキル基で置換されたアルキルアリール基を表わし、非置換アルキル基及び置換アルキル基は、直鎖状、分岐状、または環状であり、置換アルキル基の置換基は、ハロゲン、水酸基、アルデヒド基、カルボキシル基、アミノ基、又はアミド基であり、非置換アルキル基、アリール基、アラルキル基、及び、アルキルアリール基は、水素原子がハロゲンで置換されていてもよい。
lは、1〜3の整数を表わす。
Yは、水酸基、又は、炭素数1〜20のカルボン酸、水素酸、オキソ酸、無機チオ酸及び炭素数1〜20の有機チオ酸からなる群から選ばれる化合物の酸残基を表わす。
上記第4級アンモニウム化合物(C)は単独で、又は、2種類以上を組み合わせて用いてもよい。
本実施形態の第4級アンモニウム化合物溶液は、ポリアセタールからの揮発性有機化合物発生抑制剤として用いることができる。
本実施形態のポリアセタールからの揮発性有機化合物発生抑制剤は、第4級アンモニウム化合物(A)、溶媒、及び、必要に応じて、上述の第4級アンモニウム化合物(C)を含み、さらに任意の添加剤を含有することのできる第4級アンモニウム化合物溶液を含む。
以上のように、本実施形態のポリアセタールからの揮発性有機化合物発生抑制剤(第4級アンモニウム化合物溶液)は、ポリアセタールホモポリマー、コポリマーいずれに対しても用いることが可能である。
ポリアセタールコポリマー中の1,3−ジオキソラン等のコモノマーの割合は、一般的にはトリオキサン1molに対して0.01〜60mol%、好ましくは0.03〜20mol%であり、更に好ましくは0.05〜15mol%、最も好ましくは0.1〜10mol%用いられる。
ポリアセタールコポリマーを重合する際に使用する重合触媒としては、特に限定はないが、ルイス酸、プロトン酸及びそのエステル又は無水物等のカチオン活性触媒が好ましい。
ルイス酸としては、例えば、ホウ酸、スズ、チタン、リン、ヒ素及びアンチモンのハロゲン化物が挙げられ、具体的には三フッ化ホウ素、四塩化スズ、四塩化チタン、五フッ化リン、五塩化リン、五フッ化アンチモン及びその錯化合物又は塩が挙げられる。また、プロトン酸、そのエステルまたは無水物の具体例としては、パークロル酸、トリフルオロメタンスルホン酸、パークロル酸−3級ブチルエステル、アセチルパークロラート、イソポリ酸類、ヘテロポリ酸類、トリメチルオキソニウムヘキサフルオロホスフェート等が挙げられる。中でも、三フッ化ホウ素;三フッ化ホウ素水和物;及び酸素原子又は硫黄原子を含む有機化合物と三フッ化ホウ素との配位錯化合物が好ましく、具体的には、三フッ化ホウ素ジエチルエーテル、三フッ化ホウ素ジ−n−ブチルエーテルを好適例として挙げることができる。
ポリアセタールコポリマーの重合方法としては、特に限定されるものはなく、一般には塊状重合で行われ、バッチ式、連続式いずれも可能である。
重合装置としては、例えば、コニーダー、2軸スクリュー式連続押出混錬機、2軸パドル型連続混合機等のセルフクリーニング型押出混錬機が使用でき、溶融状態のモノマーが重合機に供給され、重合の進行とともに固体塊状のポリアセタールコポリマーが得られる。
この範囲にあると、効率的にアクロレイン及びアセトアルデヒドの生成を抑制できる。0.1ppb以上であると、効果的にアクロレインを抑制することができ、30ppm以下であると、アセトアルデヒドの発生、及び、ポリアセタール樹脂の黄変を効果的に抑制することができる。より好ましい範囲は、0.1ppm以上25ppm以下であり、さらに好ましくは1ppm〜20ppmであり、特に好ましくは5ppm〜15ppmである。
n=S×14/T (I)
式中、Sは第4級アンモニウム化合物(A)の、ポリアセタール及び第4級アンモニウム化合物(A)の合計量に対する量(質量ppm又はppb)を表し、14は窒素の原子量であり、Tは第4級アンモニウム化合物の分子量を表す。
ここで、第4級アンモニウム化合物(A)の含有量を、窒素換算量で規定するのは、第4級アンモニウム化合物(A)の分子量によって樹脂組成物中に含まれる第4級化合物のモル数が大きく変わってしまうことを回避するためである。
15kgのポリアセタール樹脂組成物ペレットをリンレックスミル等で凍結粉砕した後、100Lの撹拌機付SUS製オートクレーブに入れ、50Lの蒸留水を入れる。その後、120℃に設定したオーブンの中に入れ、24時間放置後室温にし、吸引濾過により固体液分離する。得られた液体をエバポレーターにて濃縮し、5ml程度にまで濃縮した液2.5ml程度と重水を1:1(体積比)で混合した液をNMR解析を行い、3.5ppm付近と3.9ppm付近のピーク面積から、第4級アンモニウム化合物(A)由来の窒素量の定量を行う。
また、窒素源が第4級アンモニウム化合物(A)のみであることが明らかである場合には、窒素分析計(例えば、三菱アナリテック製窒素分析計TN−2100H)により窒素原子量を定量することによって定量することもできる。
n’’ ’=S’’’×14/T’’’ (II)
(式中、S’’’は第4級アンモニウム化合物(C)のポリアセタール及び第4級アンモニウム化合物(C)の合計量に対する量(質量ppb又はppm)を表し、14は窒素の原子量であり、T’’’は第4級アンモニウム化合物(C)の分子量を表す。)
第4級アンモニウム化合物(C)の濃度n’’’が0.5質量ppb以上であると、第4級アンモニウム化合物(C)の併用によるポリアセタールの不安定な末端部の分解速度が向上する効果が大きくなる。また、500質量ppm以下であると安定化後もポリアセタールの色調が損なわれない。
ここで、第4級アンモニウム化合物(C)の濃度を窒素換算量で規定するのは、第4級アンモニウム化合物(C)の分子量によってポリアセタールに対する第4級アンモニウム化合物(C)のモル数が変わってしまうことを回避するためである。
熱安定剤としては、酸化防止剤、ホルムアルデヒドやギ酸の捕捉剤又はこれらの併用が挙げられ、酸化防止剤と捕捉剤との併用が好ましい。
これらヒンダードフェノール系酸化防止剤の中でも、トリエチレングリコールービス−(3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)−プロピオネート)、テトラキス−(メチレン−3−(3′,5′−ジ−t−ブチル−4′−ヒドロキシフェニル)プロピオネートメタンが好ましい。
(2)アミノ置換トリアジンとして、具体的には、グアナミン(2,4−ジアミノ−sym−トリアジン)、メラミン(2,4,6−トリアミノ−sym−トリアジン)、N−ブチルメラミン、N−フェニルメラミン、N,N−ジフェニルメラミン、N,N−ジアリルメラミン、N,N′,N″−トリフェニルメラミン、N−メチロールメラミン、N,N′−ジメチロールメラミン、N,N′,N″−トリメチロールメラミン、ベンゾグアナミン(2,4−ジアミノ−6−フェニル−sym−トリアジン)、2,4−ジアミノ−6−メチル−sym−トリアジン、2,4−ジアミノ−6−ブチル−sym−トリアジン、2,4−ジアミノ−6−ベンジルオキシ−sym−トリアジン、2,4−ジアミノ−6−ブトキシ−sym−トリアジン、2,4−ジアミノ−6−シクロヘキシル−sym−トリアジン、2,4−ジアミノ−6−クロロ−sym−トリアジン、2,4−ジアミノ−6−メルカプト−sym−トリアジン、2,4−ジオキシ−6−アミノ−sym−トリアジン(アメライト)、2−オキシ−4,6−ジアミノ−sym−トリアジン(アメリン)、N,N′,N′−テトラシアノエチルベンゾグアナミン等がある。(3)アミノ置換トリアジンとホルムアルデヒドとの共縮合物として、具体的には、メラミン−ホルムアルデヒド重縮合物等がある。これらの中でも、ジシアンジアミド、メラミン及びメラミン−ホルムアルデヒド重縮合物が好ましい。
(1)のポリアミド樹脂として、具体的には、ナイロン4−6、ナイロン6、ナイロン6−6、ナイロン6−10、ナイロン6−12、ナイロン12等及びこれらの共重合物、ナイロン6/6−6、ナイロン6/6−6/6−10、ナイロン6/6−12等が挙げられる。(2)アクリルアミド及びその誘導体又はアクリルアミド及びその誘導体と他のビニルモノマーとを金属アルコラートの存在下で重合して得られる重合体として、具体的には、ポリ−β−アラニン共重合体等が挙げられる。これらのポリマーは特公平6−12259号、特公平5−87096号、特公平5−47568号及び特開平3−234729号の各公報記載の方法で製造することができる。(3)アクリルアミド及びその誘導体又はアクリルアミド及びその誘導体と他のビニルモノマーとをラジカル重合の存在下で重合して得られる重合体は、特開平3−28260号公報記載の方法で製造することが出来る。
(イ)ベンゾトリアゾール系物質として、具体的には、2−(2′−ヒドロキシ−5′−メチル−フェニル)ベンゾトリアゾール、2−[2′−ヒドロキシ−3,5−ジ−t−ブ チル−フェニル)ベンゾトリアゾール、2−[2′−ヒドロキシ−3,5−ジ−イソアミル−フェニル)ベンゾトリアゾール、2−[2′−ヒドロキシ−3,5−ビス−(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、2−(2′−ヒドロキシ−4′−オクトキシフェニル)ベンゾトリアゾール等が挙げられ、好ましくは2−[2′−ヒドロキシ−3,5−ビス−(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、2−[2′−ヒドロキシ−3,5−ジ−t−ブチル−フェニル)ベンゾトリアゾールが挙げられる。
(ロ)シュウ酸アニリド系物質として、具体的には、2−エトキシ−2′−エチルオキザリックアシッドビスアニリド、2−エトキシ−5−t−ブチル−2′−エチルオキザリックアシッドビスアニリド、2−エトキシ−3′−ドデシルオキザリックアシッドビスアニリド等が挙げられる。これらの物質はそれぞれ単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(ハ)ヒンダードアミン系物質として、具体的には、4−アセトキシ−2,2,6,6−テトラメチルピペリジン、4−ステアロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−アクリロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−(フェニルアセトキシ)−2,2,6,6−テトラメチルピペリジン4−ベンゾイルオキシ−2,2,6,6−テトラメチルピペリジン、4−メトキシ−2,2,6,6−テトラメチルピペリジン、4−ステアリルオキシ−2,2,6,6−テトラメチルピペリジン、4−シクロヘキシルオキシ−2,2,6,6−テトラメチルピペリジン、4−ベンジルオキシ−2,2,6,6−テトラメチルピペリジン、4−フェノキシ−2,2,6,6−テトラメチルピペリジン、4−(エチルカルバモイルオキシ)−2,2,6,6−テトラメチルピペリジン、4−(シクロヘキシルカルバモイルオキシ)−2,2,6,6−テトラメチルピペリジン、4−(フェニルカルバモイルオキシ)−2,2,6,6−テトラメチルピペリジン、ビス(2,2,6,6−テトラメチル−4−ピペリジン)−カーボネート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)−オキサレート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)−マロネート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)−セバケート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)−アジペート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)−テレフタレート、1,2−ビス(2,2,6,6−テトラメチル−4−ピペリジルオキシ)−エタン、α,α′−ビス(2,2,6,6−テトラメチル−4−ピペリジルオキシ)−p−キシレン、ビス(2,2,6,6−テトラメチル−4−ピペリジル)トリレン−2,4−ジカルバメート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)−ヘキサメチレン−1,6−ジカルバメート、トリス(2,2,6,6−テトラメチル−4−ピペリジル)−ベンゼン−1,3,5−トリカルボキシレート、トリス(2,2,6,6−テトラメチル−4−ピペリジル)−ベンゼン−1,3,4−トリカルボキシレート等が挙げられ、好ましくはビス(2,2,6,6−テトラメチル−4−ピペリジル)−セバケートである。上記ヒンダードアミン系物質はそれぞれ単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
また、上記ベンゾトリアゾール系物質、シュウ酸アニリド系物質とヒンダードアミン系物質の組合せがより好ましい。
アルコールとして、具体的には、1価アルコール、多価アルコールがあり、例えば1価アルコールの例としては、オクチルアルコール、カプリルアルコール、ノニルアルコール、デシルアルコール、ウンデシルアルコール、ラウリルアルコール、トリデシルアルコール、ミリスチルアルコール、ベンタデシルアルコール、セチルアルコール、ヘブタデシルアルコール、ステアリルアルコール、オレイルアルコール、ノナデシルアルコール、エイコシルアルコール、ペヘニルアルコール、セリルアルコール、メリシルアルコール、2−ヘキシルデカノール、2−オクチルドデカノール、2−デシルテトラデカノール、ユニリンアルコール等が挙げられる。多価アルコールとしては、2〜6個の炭素原子を含有する多価アルコールであり、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコールジプロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、グリセリン、ジグリセリン、トリグリセリン、トレイトール、エリスリトール、ペンタエリスリトール、アラビトール、リビトール、キシリトール、ソルバイト、ソルビタン、ソルビトール、マンニトール等が挙げられる。
アルコールと脂肪酸のエステルとしては、脂肪酸化合物の内、好ましくはパルミチン酸、ステアリン酸、ベヘン酸、モンタン酸から選ばれた脂肪酸とグリセリン、ペンタエリスリトール、ソルビタン、ソルビトールから選ばれた多価アルコールとから誘導された脂肪酸エステルがある。これらの脂肪酸エステル化合物の水酸基は有ってもよいし、無くてもよく、脂肪酸エステル化合物を制限するものではない。例えば、モノエステルであってもジエステル、トリエステルで有ってもよい。また、ほう酸等で水酸基が封鎖されていてもよい。
好ましい脂肪酸エステルとして、具体的には、グリセリンモノパルミテート、グリセリンジパルミテート、グリセリントリパルミテート、グリセリンモノステアレート、グリセリンジステアレート、グリセリントリステアレート、グリセリンモノベヘネート、グリセリンジベヘネート、グリセリントリベヘネート、グリセリンモノモンタネート、グリセリンジモンタネート、グリセリントリモンタネート、ペンタエリスリトールモノパルミテート、ペンタエリスリトールジパルミテート、ペンタエリスリトールトリパルミテート、ペンタエリスリトールテトラパルミテート、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ペンタエリスリトールテトラステアレート、ペンタエリスリトールモノベヘネート、ペンタエリスリトールジベヘネート、ペンタエリスリトールトリベヘネート、ペンタエリスリトールテトラベヘネート、ペンタエリスリトールモノモンタネート、ペンタエリスリトールジモンタネート、ペンタエリスリトールトリモンタネート、ペンタエリスリトールテトラモンタネート、ソルビタンモノパルミテート、ソルビタンジパルミテート、ソルビタントリパルミテート、ソルビタンモノステアレート、ソルビタンジステアレート、ソルビタントリステアレート、ソルビタンモノベヘネート、ソルビタンジベヘネート、ソルビタントリベヘネート、ソルビタンモノモンタネート、ソルビタンジモンタネート、ソルビタントリモンタネート、ソルビトールモノパルミテート、ソルビトールジパルミテート、ソルビトールトリパルミテート、ソルビトールモノステアレート、ソルビトールジステアレート、ソルビトールトリステアレート、ソルビトールモノベヘネート、ソルビトールジベヘネート、ソルビトールトリベヘネートソルビトールモノモンタネート、ソルビトールジモンタネート、ソルビトールトリモンタネート等が挙げられる。
また、ほう酸等で水酸基を封鎖した脂肪族エステル化合物としてグリセリンモノ脂肪酸エステルのほう酸エステルも挙げられる。アルコールとジカルボン酸のエステルは、アルコールとしてメチルアルコール、エチルアルコール、プロピルアルコール、n−ブチルアルコール、イソブチルアルコール、t−ブチルアルコール、n−アミルアルコール、2−ペンタノール、n−ヘプチルアルコール、n−オクチルアルコール、n−ノニルアルコール、ラウリルアルコール、ミリスチルアルコール、セチルアルコール、ステアリルアルコール、ベヘニルアルコール等の飽和・不飽和アルコールと、ジカルボン酸としてシュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカニン酸、ブラシリン酸、マレイン酸、フマール酸、グルタコン酸等とのモノエステル、ジエステル等が挙げられる。
本実施形態においては、熱的に不安定な末端部を有するポリアセタールを、本実施形態の第4級アンモニウム化合物溶液を用いて事前に安定化し、安定化ポリアセタールとして製造することもできる。
具体的には、熱的に不安定な末端部を有するポリアセタールに本実施形態の第4級アンモニウム化合物溶液を添加し、熱処理を行うことにより安定化することができる。
以下に、本実施形態の、熱的に不安定な末端部を有するポリアセタール(以下、「粗ポリアセタール」ということがある。)に第4級アンモニウム化合物溶液を添加して熱処理する工程を含む、本実施形態のポリアセタールの製造方法について、具体例を挙げて説明する。
<トリオキサン>
トリオキサンとは、ホルムアルデヒドの環状3量体であり、一般的には酸性触媒の存在下でホルマリン水溶液を反応させることにより得られる。
このトリオキサンは、水、メタノール、蟻酸、蟻酸メチル等の連鎖移動作用を有する不純物を含有している場合があるので、重合反応を行う工程の前段階として、例えば、蒸留等の方法でこれら不純物を除去精製することが好ましい。
その場合、前記連鎖移動作用を有する不純物の合計量をトリオキサン1molに対して、1×10-3mol以下とすることが好ましく、より好ましくは0.5×10-3mol以下とする。
前記不純物の量を上記数値のように低減化することにより、重合反応速度を実用上十分に高めることができ、優れた熱安定性を有するポリアセタールが得られる。
ポリアセタールが共重合体である場合には、コモノマーとして、環状エーテル及び/又は環状ホルマールを使用することができる。これらは、ホルムアルデヒドや前記トリオキサンと共重合可能な成分である。
環状エーテル又は環状ホルマールとしては、以下に限定されるものではないが、例えば、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、エピクルロルヒドリン、エピブロモヒドリン、スチレンオキサイド、オキサタン、1,3−ジオキソラン、エチレングリコールホルマール、プロピレングリコールホルマール、ジエチレングリコールホルマール、トリエチレングリコールホルマール、1,4−ブタンジオールホルマール、1,5−ペンタンジオールホルマール、1,6−ヘキサンジオールホルマール等が挙げられる。入手のしやすさの観点から、1,3−ジオキソラン、1,4−ブタンジオールホルマールが好ましい。これらは、1種のみを単独で使用してもよく、2種以上を併用してもよい。
環状エーテル及び/又は環状ホルマールの添加量は、得られるポリアセタール共重合体の機械的強度の観点から、前記トリオキサン1molに対して1×10-2〜20×10-2molの範囲が好ましく、より好ましくは1×10-2〜15×10-2molであり、さらに好ましくは1×10-2〜10×10-2molであり、さらにより好ましくは1×10-2〜5×10-2molである。
ポリアセタールの(共)重合工程において用いる重合触媒としては、ルイス酸に代表されるホウ酸、スズ、チタン、リン、ヒ素及びアンチモン化物が挙げられる。特に、入手のしやすさの観点から、三フッ化ホウ素、三フッ化ホウ素系水和物、及び酸素原子又は硫黄原子を含む有機化合物と三フッ化ホウ素との配位錯化合物が好ましく、具体的には、三フッ化ホウ素、三フッ化ホウ素ジエチルエーテラート、三フッ化ホウ素−ジ−n−ブチルエーテラートが好ましい例として挙げられる。これらは、1種のみを単独で使用してもよく、2種以上を併用してもよい。
重合触媒の添加量は、前記トリオキサン1molに対して0.1×10-5〜0.1×10-3molの範囲が好ましく、より好ましくは0.3×10-5〜0.5×10-4molの範囲であり、さらに好ましくは0.5×10-5〜0.4×10-4molの範囲である。
重合触媒の添加量を前記範囲内とすることにより、重合反応機の供給部におけるスケール発生量を低減化しながら、安定して長時間の重合反応を実施することができる。
ポリアセタールの(共)重合工程においては、下記一般式で示される低分子量アセタールを用いることもできる。
R−(CH2−O)n−R
(式中、Rは、水素、分岐状又は直鎖状のアルキル基、分岐状又は直鎖状のアルコキシ基、及びヒドロキシル基からなる群より選ばれるいずれか1つを表す。nは1以上20以下の整数を表す。)
低分子量アセタールは、重合工程において連鎖移動剤として機能するものであり、分子量が200以下、好ましくは60〜170のアセタールである。上記分子量のアセタールを用いることにより、最終的に目的とするポリアセタールの分子量を調整することができる。
上記一般式で示される低分子量アセタールとしては、以下に限定されるものではないが、例えば、メチラール、メトキシメチラール、ジメトキシメチラール、トリメトキシメチラール等が挙げられる。これらは1種のみを単独で使用してもよく、2種以上を併用してもよい。
一般式で示される低分子量アセタールの添加量は、目的とするポリアセタールの分子量を好適な範囲に制御する観点から、前記トリオキサン1molに対して0.1×10-4〜0.6×10-2molの範囲が好ましく、0.1×10-4〜0.6×10-3molの範囲がより好ましく、0.1×10-4〜0.1×10-3molの範囲がさらに好ましい。
ここで、第4級アンモニウム化合物溶液を添加した粗ポリアセタールの熱処理の態様に限定はないが、例えば、以下の2つを挙げることができる。
その1つは、粗ポリアセタールを加熱して溶融させる際に第4級アンモニウム化合物溶液を添加するものであり、他の1つは、第4級アンモニウム化合物溶液を粗ポリアセタールに添加してスラリー状態で加熱するものである。
粗ポリアセタールの溶融は、例えばベント付単軸スクリュー式押出機、ベント付2軸スクリュー式押出機等によって行うことができる。熱処理は、ポリアセタールの融点以上であって260℃以下である温度で行うことが好ましい。260℃を超えると、着色の問題、及びポリマー主鎖の分解(低分子量化)の問題が生ずる恐れがある。この場合、粗ポリアセタールを溶融する前に、第4級アンモニウム化合物溶液を粗ポリアセタールにあらかじめ添加してもよいし、また粗ポリアセタールを溶融させた後に、第4級アンモニウム化合物溶液を、溶融させた粗ポリアセタールに添加してもよい。
n’=S’×14/T’ (I’)
式中、S’は第4級アンモニウム化合物(A)の粗ポリアセタール及び第4級アンモニウム化合物(A)の合計質量に対する量(質量ppb又はppm)を表わし、14は窒素の原子量であり、T’は第4級アンモニウム化合物(A)の分子量を表す。)
第4級アンモニウム化合物(A)由来の窒素濃度n’が0.1質量ppb以上であると、短時間で不安定な末端部を分解することができ、30質量ppm以下であると、安定化後もポリアセタールの色調が損なわれない。
ここで、第4級アンモニウム化合物(A)の濃度を窒素濃度に換算したもので表現したのは、前記と同様に第4級アンモニウム化合物(A)の分子量に依存することを回避するためである。
更に、本実施形態のポリアセタールの製造方法は、公知の安定化処理を含んでいてもよく、その場合、第4級アンモニウム化合物溶液を添加した粗ポリアセタールの熱処理工程は公知の安定化処理の後に、未だ不安定な末端部の一部が残留しているポリアセタールにも適用するようにしてもよい。
また、アンモニア、トリエチルアミン等の蒸気と粗ポリアセタールとを接触させて重合触媒を失活させる方法や、ヒンダードアミン類、トリフェニルホスフィン及び水酸化カルシウム等のうちの少なくとも一種と粗ポリアセタールとを混合機で接触させて触媒を失活させる方法も用いることができる。また、重合触媒の失活を行わずに、粗ポリアセタールの融点以下の温度で、不活性ガス雰囲気下において加熱することによって、重合触媒が揮発低減されたポリアセタールを用いて上述の安定化方法を行ってもよい。
以上の重合触媒の失活操作及び重合触媒の揮発低減操作は、必要に応じて、重合反応によって得られた粗ポリアセタールを粉砕した後で行ってもよい。
n’’’’=S’’’’×14/T’’’’ (II’)
(式中、S’’’’は第4級アンモニウム化合物(C)の粗ポリアセタール及び第4級アンモニウム化合物(C)の合計質量に対する量(質量ppb又はppm)を表し、14は窒素の原子量であり、T’’’’は第4級アンモニウム化合物(C)の分子量を表す。)
第4級アンモニウム化合物(C)の使用量n’’’’が0.5質量ppb以上であると、第4級アンモニウム化合物(C)の併用によるポリアセタールの不安定な末端部の分解速度が向上する効果。また、500質量ppm以下であると安定化後もポリアセタールの色調が損なわれない。
ここで、第4級アンモニウム化合物(C)の使用量を窒素換算量で規定するのは、第4級アンモニウム化合物(C)の分子量によってポリアセタールに対する第4級アンモニウム化合物(C)のモル数が変わってしまうことを回避するためである。
配合剤の配合時期については特に制限はなく、その種類によって、例えば、不安定な末端部が分解除去される前の粗ポリアセタールにあらかじめ添加しておいてもよく、また、不安定な末端部が分解除去されたポリアセタールに添加してもよい。
ポリアセタールを構成する複数のポリアセタール(共)重合体鎖が全体として有する末端基としては、上述の−CH2OH基や−(OCH2)n−OH基等のヒドロキシメチル基を含む基以外に、メトキシル基(−OCH3)等のアルコキシル基、ヒドロキシエチル基(−CH2CH2OH)等のヒドロキシアルキル基、及びホルメート基が挙げられる。
即ち、環状エーテル又は環状ホルマールに由来するオキシアルキレン基がポリアセタール単位の繰返し中に挿入されたポリアセタールを重合する際には、まず、原料中の微量な水等により、熱的に不安定な末端ヒドロキシメチル基(−CH2OH)が生成する。この末端の不安定部分が安定化処理によって分解し、この分解が、ポリアセタール単位及びオキシアルキレン単位を含む主鎖中を内へ向かって進行し、オキシアルキレン単位の部位に到達すると、その部位のオキシアルキレン単位はヒドロキシエチル基やヒドロキシブチル基等の安定な末端ヒドロキシアルキル基に変わる。ヒドロキシアルキル基の炭素数は、環状エーテル及び環状ホルマールの合成及び精製面からは、少なくとも2個であり、2〜10個であることが一般的である。
この生成を抑制する役割を担うのが、本実施形態において用いるR2を有する第4級アンモニウム化合物(A)であり、この末端ヒドロキシメチル基が第4級アンモニウム化合物(A)の作用によって分解除去され、これによりホルムアルデヒドの生成が抑制されると考えられる。
さらに、本実施形態において用いる第4級アンモニウム化合物(A)は、上述末端ヒドロキシメチル基の分解除去に加え、ポリアセタール中に除去されずに残った微量な不安定末端由来から発生した微量のホルムアルデヒド、アセトアルデヒド及びアクロレインを、成型等の加熱溶融後の冷却時にアニオン重合によりポリマー化し、ポリアセタール樹脂組成物に固定化することにも関与し、これによってホルムアルデヒド、アセトアルデヒド及びアクロレイン等の発生を低減していると考えられる。ただし、本実施形態の効果の機序はこれらに限定されない。
本実施形態において、第4級アンモニウム化合物(A)のR2の炭素数は2〜10、酸素数は2〜5である。このような炭素数、酸素数とすることにより、加熱を経ても第4級アンモニウム化合物(A)をポリアセタール中に効率的に残存させることができ、これにより上述の加熱溶融後の冷却時における揮発性有機物質の発生の低減が可能となる。
R2の炭素数及び酸素数は、揮発性有機物質の発生抑制の観点からは大きい方がよいが、一方で、あまり大きすぎるとこれを含む成型体の着色の原因となることもある。したがって、加熱処理温度や時間等を考慮して、揮発性有機物質の発生抑制と着色防止のバランスから適切な値とすることが好ましい。具体的には、炭素数2〜6、酸素数2〜3が好ましく、特に、炭素数4、酸素数2であることが好ましい。
<動粘度の測定方法>
15℃に設定した恒温槽に、空のウベローデ粘度管を設置し、30分静置した。
その後、対象試料を入れ、測時球内の2本標線間の落下時間を測定し、動粘度を求めた。
<ホルムアルデヒド、アセトアルデヒド及びアクロレインの定量>
東芝(株)製IS−100GN射出成型機を用いて、ポリアセタール共重合体組成物ペレットから、シリンダー温度200℃、射出圧力60MPa、射出時間15秒、冷却時間20秒、金型温度80℃にて、組成物を加熱溶融して、寸法130mm×110mm×3mmの平板状の成型片を作製した。
23℃で50%の湿度に保たれた恒温室で、24時間放置後、アルミ袋に入れ、パッキングをした。成型後14日に開封し、バルブを有する10Lテドラー(登録商標)バッグに、この成型片を1枚入れ密封し、窒素置換を十分に行った。その後、内部の窒素を全て排出した後に、テドラー(登録商標)バッグ中に窒素を5.00L封入した。これを2つ用意した。
その後、内部の上部に、外部に連通したサンプリング口を2つ有するオーブン中に前記テドラー(登録商標)バッグを入れ、前記テドラー(登録商標)バッグをサンプリング口に接続後、80℃で2時間放置した。
その後、1つのテドラー(登録商標)バッグと接続したサンプリング口の外部側にDNPH(2,4−ジニトロフェニルヒドラジン)カートリッジを接続し、テドラー(登録商標)バッグのバルブを開き、ポリアセタール共重合体組成物から発生したガス4.00Lを、DNPHカートリッジに通過させた。
DNPHカートリッジに一定速度で5mLのアセトニトリルを通液し、ホルムアルデヒド及びアセトアルデヒドを10mLメスフラスコに回収した。
その後、水により10mLまでメスアップし、十分に混合した。
この混合液をバイアル瓶に分注し、島津製作所製HPLCにて、標準液にDNPH標準液、分離液に水/アセトニトリル(52/48)を用い、流量1mL/分、カラム温度40℃の条件で定量し、ポリアセタール共重合体組成物の質量当たりに発生したホルムアルデヒド及びアセトアルデヒドをppmで測定した。
CNETカートリッジに一定速度で5mLのアセトニトリルを通液し、アクロレインを10mLメスフラスコに回収した。
その後、水により10mLまでメスアップし、十分に混合した。
この混合液をバイアル瓶に分注し、島津製作所製HPLCにて、標準液にCNET標準液、分離液に水/アセトニトリル(40/60)を用い、流量1mL/分、カラム温度40℃の条件で定量し、ポリアセタール共重合体組成物の質量当たりに発生したアクロレインをppbで測定した。
ポリエチレンの袋に後述の粗ポリアセタール共重合体(P−1)100gと所定量の第4級アンモニウム化合物溶液を入れ、混合しよくまぜ、SUS製バッドの上に均一に広げ、150℃にて絶乾させた。
乾燥後のバットの上を目視確認し、パウダーの色調特性を評価した
色むらがある場合を×
色むらはないが、黄変・茶変している場合は△
色むらがなく、白い場合を○とした。
東芝(株)製IS−100GN射出成形機を用いて、ポリアセタール共重合体組成物ペレットから、シリンダー温度200℃、射出圧力60MPa、射出時間15秒、冷却時間20秒、金型温度80℃にて、組成物を加熱溶融して、寸法130mm×110mm×3mmの平板状の成型片を作製した。
金型から出た成型片から出る臭いを以下の基準で評価し、○である場合を概ね臭気が低いと判定した。
強い鼻をつくホルムアルデヒド臭がした場合: ×
カラメルのような甘い臭気がした場合: △
ほとんど臭気がしない場合: ○
東芝(株)製IS−100GN射出成型機を用いて、シリンダー温度200℃、射出圧力60MPa、射出時間15秒、冷却時間20秒、金型温度80℃にて、寸法40mm×60mm×3mmの平板状の試験片を1002枚作製した。
1001枚目と1002枚目の試験片を重ね、ミノルタ製ハンディカラーテスター(CR−200)を用いて、D65の光源にて黄度(b値)を測定した。
b値が−0.8以下の値であればおおむね良しとし、
b値が−0.8を超えるが−1.6以下の値であれば良しと判断した。
以下の製造例1〜11で用いた水は全て脱イオン水であり、動粘度は全て15℃における値である。
〔製造例1〕
密閉可能な内容積60mlの耐圧容器に、2−(2−ヒドロキシエトキシ)エチルアセテート14.1g、トリメチルアミン5.6g、メタノール15.0g、水0.1gを導入し、振とう機にて撹拌しながら、120℃に加熱した。その後6時間反応させた後、冷却し内容物を得た。内容物の分析を行った結果、収率95%で2−(2−ヒドロキシエトキシ)エチル−N,N,N−トリメチルエタン−1−アンモニウムアセテートが得られた。
この溶液30gに水15gを入れた後、80℃のエバポレーターにて30gになるまで濃縮し、水を入れて60gにする。再度、30gになるまで濃縮し、次いで水を入れて60gにする。この操作を10回繰り返し、15gになるまで濃縮した後、水を徐々に加え、動粘度が1.5mm2/sになるよう調整した。この第4級アンモニウム化合物溶液をA−1とした。
NMRによって確認されたA−1液中の第4級アンモニウム化合物(A)の構造式(R1、R2及びX)は表1に示す通りであった。
2−(2−ヒドロキシエトキシ)エチルアセテート14.1gの代わりに、2−(2−(2−ヒドロキシエトキシ)エトキシ)エチルアセテート18.2gを使用し、動粘度を1.9mm2/sに調整した以外は製造例1と同様に実施した。この液をA−2とした。
NMRによって確認されたA−2液中の第4級アンモニウム化合物(A)の構造式(R1、R2及びX)は表1に示す通りであった。
〔製造例3〕
トリメチルアミン5.6gの代わりに、トリエチルアミン7.8gを用い、2−(2−ヒドロキシエトキシ)エチルアセテートを11.4g用い、動粘度を1.6mm2/sに調整した以外は、製造例1と同様に実施した。この液をA−3とした。
NMRによって確認されたA−3液中の第4級アンモニウム化合物(A)の構造式(R1、R2及びX)は表1に示す通りであった。
〔製造例4〕
トリメチルアミン5.6gの代わりに、トリエチルアミン7.8gを用い、2−(2−ヒドロキシエトキシ)エチルアセテートの代わりに、2−(2−(2−ヒドロキシエトキシ)エトキシ)エチルアセテート14.8gを用い、動粘度を2.1mm2/sに調整した以外は製造例1と同様に実施した。この液をA−4とした。
NMRによって確認されたA−4液中の第4級アンモニウム化合物(A)の構造式(R1、R2及びX)は表1に示す通りであった。
〔製造例5〕
トリメチルアミン5.6gの代わりに、2−[2−(ジメチルアミノ)エトキシ]エタノール9.4gを用い、2−(2−ヒドロキシエトキシ)エチルアセテートを10.5g用い、動粘度を1.7mm2/sに調整した以外は製造例1と同様に実施した。この液をA−5とした。
NMRによって確認されたA−5液中の第4級アンモニウム化合物(A)の構造式(R1、R2及びX)は表1に示す通りであった。
10mlのマイクロウェーブリアクションチューブにトリメチルアミン5.0gと2−(2−クロロエトキシ)エタノール2.63gを入れ、マイクロウェーブを照射しながら150℃で1時間撹拌した。反応終了後、反応液を減圧乾燥して粉末結晶を得た。反応終了後の反応液をHPLCにより分析した結果、反応率が100%であることが確認された。得られた粉末結晶にジクロロエタンを加え撹拌した後、結晶を濾過した。この操作を3回繰り返し、減圧乾燥して粉末結晶を2.58g得た。
この粉末を40℃の水酸化ナトリウムの100gを溶解した1kgエタノール溶液を5.62g添加し、塩化ナトリウムをろ別してろ液を採取した。このろ液にギ酸/水=10/90(質量比)からなるギ酸水溶液を6.46g添加した後、エバポレーターにより5gになるまで濃縮し、水を10g添加した。
濃縮と水10gの添加を3回繰り返した後、水を徐々に加え、動粘度が1.5mm2/sになるよう調整したものをA−6とした。
NMRによって確認されたA−6液中の第4級アンモニウム化合物(A)の構造式(R1、R2及びX)は表1に示す通りであった。
トリメチルアミンを4.5g、2−(2−クロロエトキシ)エタノールのかわりに2−[2−(2−クロロエトキシ)エトキシ]エタノール3.21gを用いた以外は、製造例6と同様に実施し、粉末結晶を3.10g得た。
この粉末に製造例6で用いた水酸化ナトリウムのエタノール溶液5.44gと、ギ酸水溶液6.26gを用いて、製造例6と同様に塩化ナトリウムのろ別と濃縮を行い、水を徐々に加え、動粘度が2.2mm2/sになるよう調整したものをA−7とした。
NMRによって確認されたA−7液中の第4級アンモニウム化合物(A)の構造式(R1、R2及びX)は表1に示す通りであった。
〔製造例8〕
トリメチルアミンのかわりにトリエチルアミンを5.8g、2−(2−クロロエトキシ)エタノール1.79gを用いた以外は、製造例6と同様に実施し、粉末結晶を1.76g得た。
この粉末に製造例6で用いた水酸化ナトリウムのエタノール溶液3.11gと、ギ酸水溶液3.58gを用い製造例6と同様に塩化ナトリウムのろ別と濃縮を行い、水を徐々に加え、動粘度が1.5mm2/sになるよう調整したものをA−8とした。
NMRによって確認されたA−8液中の第4級アンモニウム化合物(A)の構造式(R1、R2及びX)は表1に示す通りであった。
トリメチルアミンのかわりにトリエチルアミンを5.4g、2−(2−クロロエトキシ)エタノールのかわりに2−[2−(2−クロロエトキシ)エトキシ]エタノール2.25gを用いた以外は、製造例6と同様に実施し、粉末結晶を2.18g得た。
この粉末に製造例6で用いた水酸化ナトリウムのエタノール溶液3.24gと、ギ酸水溶液3.72gを用い製造例6と同様に塩化ナトリウムのろ別と濃縮を行い、水を徐々に加え、動粘度が2.2mm2/sになるよう調整したものをA−9とした。
NMRによって確認されたA−9液中の第4級アンモニウム化合物(A)の構造式(R1、R2及びX)は表1に示す通りであった。
〔製造例10〕
トリメチルアミンを4.0g、2−(2−クロロエトキシ)エタノールのかわりに2−[2−[2−(2−クロロエトキシ)エトキシ]エトキシ]エタノール3.60gを用いた以外は、製造例6と同様に実施し、粉末結晶を3.41g得た。
この粉末に製造例6で用いた水酸化ナトリウムのエタノール溶液5.02gと、ギ酸水溶液5.77gを用い製造例6と同様に塩化ナトリウムのろ別と濃縮を行い、水を徐々に加え、動粘度が3.5mm2/sになるよう調整したものをA−10とした。
NMRによって確認されたA−10液中の第4級アンモニウム化合物(A)の構造式(R1、R2及びX)は表1に示す通りであった。
〔製造例11〕
トリメチルアミンの代わりにトリエチルアミンを5.0g、2−(2−クロロエトキシ)エタノールのかわりに2−[2−[2−(2−クロロエトキシ)エトキシ]エトキシ]エタノール2.63gを用いた以外は、製造例6と同様に実施し、粉末結晶を2.50g得た。
この粉末に製造例6で用いた水酸化ナトリウムのエタノール溶液3.19gと、ギ酸水溶液3.67gを用い製造例6と同様に塩化ナトリウムのろ別と濃縮を行い、水を徐々に加え、動粘度が3.7mm2/sになるよう調整したものをA−11とした。
NMRによって確認されたA−11液中の第4級アンモニウム化合物(A)の構造式(R1、R2及びX)は表1に示す通りであった。
動粘度を5.5mm2/sに調整した以外は製造例1と同様に実施した。この第4級アンモニウム化合物溶液をA−12とした。
〔製造例13〕
動粘度を7.2mm2/sに調整した以外は製造例2と同様に実施した。この第4級アンモニウム化合物溶液をA−13とした。
〔製造例14〕
動粘度を12.8mm2/sに調整した以外は製造例1と同様に実施した。この第4級アンモニウム化合物溶液をA−14とした。
〔製造例15〕
動粘度を13.9mm2/sに調整した以外は製造例2と同様に実施した。この第4級アンモニウム化合物溶液をA−15とした。
〔製造例16〕
動粘度を15.8mm2/sに調整した以外は製造例7と同様に実施した。この第4級アンモニウム化合物溶液をA−16とした。
なお、上記製造例は、必要量に応じ繰り返し実施した。
また、調製した第4級アンモニウム化合物溶液の使用時には、事前に微量全窒素分析装置 TN−2100Wにて窒素含有量を確認した。
C−1:コリン酢酸塩(アルドリッチ製)を水に溶解し、動粘度は1.5mm2/sに調整した
C−2:水酸化コリン(多摩化学工業製)を水に溶解し、動粘度は2.1mm2/sに調整した
熱媒を通すことのできるジャケット付き2軸パドル型連続重合反応機(栗本鐵工所製、径2B(2インチ)、L(重合反応機の原料供給口から排出口までの距離)/D(重合反応機の内径)=14.8)を80℃に調整した。
次いで、重合触媒として三フッ化ホウ素−ジ−n−エチルエーテラートを0.10g/hr、低分子量アセタールとしてメチラールを6.00g/hr、ジエチレングリコールジメチルエーテル95.70g/hr、環状エーテル及び/又は環状ホルマールとして1,3−ジオキソランを110.9g/hr、トリオキサンを3300g/hrを配管にて重合反応機に連続的に供給し重合を行い、粗ポリアセタール共重合体(P−1)を得た。
粗ポリアセタール共重合体(P−1)をトリエチルアミン0.5%溶液中に投入し重合触媒の失活を行った。その後、濾過・洗浄し、粗ポリアセタール共重合体(P−1)100質量部に対して各製造例で作製した第4級アンモニウム化合物溶液を窒素濃度nが表2に示すようになる量添加し、均一に混合した後130℃で乾燥した。
得られた第4級アンモニウム化合物(A)を含有した粗ポリアセタール共重合体組成物100質量部に対して、酸化防止剤として2,2’−メチレンビス−(4−メチル−t−ブチルフェノール)を0.2質量部添加し、ベント付き2軸スクリュー式押出機に供給した。
押出機中の溶融している粗ポリアセタール共重合体組成物に必要に応じて水を添加し、押出機の設定温度200℃、押出機における滞留時間5分で粗ポリアセタール共重合体の不安定末端部の分解を行った。不安定末端部の分解されたポリアセタール共重合体をベント真空度20Torrの条件下で脱揮し、押出機ダイス部よりストランドとして押出しペレタイズした。
用いた第4級アンモニウム化合物(A)の種類、及び、ポリアセタール共重合体及び第4級アンモニウム化合物(A)の合計質量に対する第4級アンモニウム化合物(A)の使用量(含有量)(第4級アンモニウム化合物(A)由来の窒素濃度n)、押出機に添加した水、トリエチルアミンの粗ポリアセタール共重合体組成物100質量部に対する添加量、得られたポリアセタール共重合体組成物から発生したホルムアルデヒド(FA)、アセトアルデヒド(AA)及びアクロレイン(AL)の量、パウダー色調、成型時の臭気、成型片色調を表2にまとめて示す。
〔比較例4〕
第4級アンモニウム化合物溶液を用いない以外は、実施例1と同様に実施した。
なお、実施例12及び13においてb値が若干高くなった理由は、用いた第4級アンモニウム化合物溶液の動粘度が高めだったためにポリアセタールが着色し、それに伴い成型片の色調が若干悪化したと推測される。
一方、比較例1〜3においては、用いた第4級アンモニウム化合物溶液の動粘度が高すぎたため、パウダーの色調が悪化し、成型時に甘いにおいが漂った。また、比較例4において、第4級アンモニウム化合物溶液を使用しなかったため、ホルムアルデヒド、アセトアルデヒド及びアクロレインの発生が抑制されたポリアセタールを得ることはできなかった。
Claims (5)
- 下記式(1)であらわされる第4級アンモニウム化合物(A)を含む溶液であって、水温15℃での動粘度が0.4〜10.0mm2/sである、第4級アンモニウム化合物水溶液。
[(R1)m(R2)4-mN+]nXn- (1)
(式中、R1、は、各々独立して、炭素数1〜2の非置換アルキル基を表わす。
R2は、各々独立して、炭素数が2〜8、酸素数が2〜4である、以下の式で表される
基を表す。
−(RO)k―H (ただし、Rは炭素数が1〜2の置換又は非置換のアルキレン基
を表し、kは2〜4の自然数を表す。)
m及びnは、1〜3の整数を表わす。
Xは、ギ酸又は酢酸の酸残基を表す。 - 前記式(1)における、R2の炭素数2〜6である、請求項1に記載の第4級アンモニウム化合物水溶液。
- 下記式(3)で表される第4級アンモニウム化合物(C)を含む、請求項1又は2に記載の第4級アンモニウム化合物水溶液。
[R3R4R5R6N+]lYl- (3)
(式中、R3、R4、R5、R6は、各々独立して、炭素数1〜30の非置換アルキル基または置換アルキル基;炭素数6〜20のアリール基;炭素数1〜30の非置換アルキル基または置換アルキル基が少なくとも1個の炭素数6〜20のアリール基で置換されたアラルキル基;又は炭素数6〜20のアリール基が少なくとも1個の炭素数1〜30の非置換アルキル基または置換アルキル基で置換されたアルキルアリール基を表わし、非置換アルキル基及び置換アルキル基は、直鎖状、分岐状、または環状であり、置換アルキル基の置換基は、ハロゲン、水酸基、アルデヒド基、カルボキシル基、アミノ基、又はアミド基であり、非置換アルキル基、アリール基、アラルキル基、及び、アルキルアリール基は水素原子がハロゲンで置換されていてもよい。
lは、1〜3の整数を表わす。
Yは、水酸基、又は、炭素数1〜20のカルボン酸、水素酸、オキソ酸、無機チオ酸及び炭素数1〜20の有機チオ酸からなる群から選ばれる化合物の酸残基を表わす。) - 請求項1〜3いずれか一項に記載の第4級アンモニウム化合物水溶液を含む、ポリアセタールからの揮発性有機化合物発生抑制剤。
- 請求項1〜3のいずれか一項に記載の第4級アンモニウム化合物水溶液を添加した、熱的に不安定な末端部を有するポリアセタールを熱処理する工程を含む、
ポリアセタールの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017201061A JP6383477B1 (ja) | 2017-10-17 | 2017-10-17 | 第4級アンモニウム化合物溶液及びこれを利用したポリアセタールからの揮発性有機化合物の発生抑制 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017201061A JP6383477B1 (ja) | 2017-10-17 | 2017-10-17 | 第4級アンモニウム化合物溶液及びこれを利用したポリアセタールからの揮発性有機化合物の発生抑制 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6383477B1 true JP6383477B1 (ja) | 2018-08-29 |
JP2019073637A JP2019073637A (ja) | 2019-05-16 |
Family
ID=63354786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017201061A Active JP6383477B1 (ja) | 2017-10-17 | 2017-10-17 | 第4級アンモニウム化合物溶液及びこれを利用したポリアセタールからの揮発性有機化合物の発生抑制 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6383477B1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000159850A (ja) * | 1998-09-24 | 2000-06-13 | Asahi Chem Ind Co Ltd | ポリアセタールコポリマー及びその組成物 |
JP3087912B2 (ja) * | 1997-03-26 | 2000-09-18 | 旭化成工業株式会社 | オキシメチレン共重合体の安定化方法 |
-
2017
- 2017-10-17 JP JP2017201061A patent/JP6383477B1/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3087912B2 (ja) * | 1997-03-26 | 2000-09-18 | 旭化成工業株式会社 | オキシメチレン共重合体の安定化方法 |
JP2000159850A (ja) * | 1998-09-24 | 2000-06-13 | Asahi Chem Ind Co Ltd | ポリアセタールコポリマー及びその組成物 |
Also Published As
Publication number | Publication date |
---|---|
JP2019073637A (ja) | 2019-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4980986B2 (ja) | ポリアセタール樹脂組成物及びその成形品 | |
JP2008156489A (ja) | ポリアセタール樹脂組成物及びその成形品 | |
JP2009215340A (ja) | 安定化ポリアセタール共重合体の製造方法 | |
JP6934857B2 (ja) | オキシメチレン共重合体の製造方法 | |
JP5971259B2 (ja) | 樹脂組成物および成形体 | |
JP6329478B2 (ja) | ポリアセタール共重合体の製造方法 | |
JP2010037445A (ja) | ポリアセタール樹脂組成物及びその成形品 | |
WO2018021526A1 (ja) | 第4級アンモニウム化合物及びこれを利用したポリアセタールからの揮発性有機化合物の発生抑制 | |
JP6383468B2 (ja) | ポリアセタール樹脂組成物 | |
JP2007051205A (ja) | ポリアセタール樹脂組成物及び樹脂成形体 | |
JP6383477B1 (ja) | 第4級アンモニウム化合物溶液及びこれを利用したポリアセタールからの揮発性有機化合物の発生抑制 | |
JP6383261B2 (ja) | ポリアセタール共重合体の製造方法 | |
JP6438278B2 (ja) | ポリアセタールペレットの製造方法 | |
JP7081604B2 (ja) | オキシメチレン共重合体の製造方法 | |
JP6383469B2 (ja) | 第4級アンモニウム化合物 | |
JP6673539B1 (ja) | オキシメチレン共重合体の製造方法 | |
JP6383461B1 (ja) | 第4級アンモニウム組成物 | |
US11661511B2 (en) | Production method of polyacetal resin composition | |
JP2007211193A (ja) | 新規なポリオキシメチレン重合体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171108 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20171108 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20171124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180329 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180528 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180713 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180803 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6383477 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |