JP6382002B2 - Dc−dcコンバータ - Google Patents

Dc−dcコンバータ Download PDF

Info

Publication number
JP6382002B2
JP6382002B2 JP2014143255A JP2014143255A JP6382002B2 JP 6382002 B2 JP6382002 B2 JP 6382002B2 JP 2014143255 A JP2014143255 A JP 2014143255A JP 2014143255 A JP2014143255 A JP 2014143255A JP 6382002 B2 JP6382002 B2 JP 6382002B2
Authority
JP
Japan
Prior art keywords
voltage
converter
signal
switching element
side switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014143255A
Other languages
English (en)
Other versions
JP2016019455A (ja
Inventor
林 秀和
秀和 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2014143255A priority Critical patent/JP6382002B2/ja
Priority to US14/754,790 priority patent/US9612604B2/en
Publication of JP2016019455A publication Critical patent/JP2016019455A/ja
Application granted granted Critical
Publication of JP6382002B2 publication Critical patent/JP6382002B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/63Generation or supply of power specially adapted for television receivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0063High side switches, i.e. the higher potential [DC] or life wire [AC] being directly connected to the switch and not via the load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0072Low side switches, i.e. the lower potential [DC] or neutral wire [AC] being directly connected to the switch and not via the load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0081Power supply means, e.g. to the switch driver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Description

本発明はDC−DCコンバータに係り、特にブートストラップ回路を備えるとともに、同期整流方式又は非同期整流方式(ダイオード整流方式ともいうが、本書では非同期整流方式と呼称する)のいずれか一方を選択するものに係る。
ハイサイドスイッチング素子にNチャンネルMOSFET[Metal Oxide Semiconductor Field Effect Transistor]を使用するDC−DCコンバータにおいては、ハイサイドスイッチング素子を十分にオンさせるために、そのゲートに印加する駆動電圧をドレインに印加される入力電圧以上に昇圧するブートストラップ回路が採用されている。前記ブートストラップ回路はローサイドスイッチング素子としてNチャンネルMOSFETを使う、いわゆる同期整流方式であってもNチャンネルMOSFETを使わずに、整流ダイオードを使う、いわゆる非同期整流方式のいずれにも用いられる。なお、ハイサイドスイッチング素子にPチャンネルMOSFETを用いる場合にはブートストラップ回路は不要である。しかしこの場合にはトランジスタの特性上、PチャンネルMOSFETのサイズはNチャンネルMOSFETに比べてたとえば2〜3倍の大きさにしなければならないという不具合が生じる。このため、ブートストラップ回路を用いNチャンネルMOSFETでハイサイドスイッチング素子を構成するDC−DCコンバータは少なくない。
DC−DCコンバータは降圧型、昇圧型にかかわらず、たとえば同期整流方式と非同期整流方式に分けることができる。同期整流方式は、ハイサイドスイッチング素子とローサイドスイッチング素子のオン/オフを相補的に制御する方式である。ローサイドスイッチング素子にハイサイドスイッチング素子と同導電型のNチャンネルMOSFETを用い、非同期整流方式はローサイドスイッチング素子を用いずに、その代替としてたとえばショットキーバリアダイオードを採用するものである。通常、ハイサイドスイッチング素子とローサイドスイッチング素子は同一の半導体チップに集積(IC)化されることが多い。このため同期整流方式では消費電力が増大してしまう。一方、非同期整流方式ではショットキーバリアダイオードはICの外付けとして設けられるので半導体チップの消費電力には影響を及ぼさない。ショットキーバリアダイオードの順方向電圧は0.2V〜0.5Vであり、通常のPN接合のダイオードの順方向電圧の0.7Vに比べて小さいのでDC−DCコンバータ全体の消費電力を低減させる観点から有利である。
特許文献1は出力電圧が高い場合においても、ブートストラップキャパシタの初期充電を完了でき、且つ高速に起動できるDC−DCコンバータを提供する、としている。特許文献1の更なる説明については後述する。
特許文献2はDC−DCコンバータにおいて、同期/非同期の切替を負荷状態に応じた最適なタイミングで行うと、している。
図5は、特許文献1に記載された一従来例の降圧型DC−DCコンバータの回路ブロック図を示す。従来例はハイサイドスイッチング素子51を駆動するブートストラップ回路、ハイサイドスイッチング素子51と直列接続されたスイッチ60と、スイッチ60に並列接続された還流ダイオード53と、ハイサイドスイッチング素子51をオン/オフするドライバ63と、ドライバ63の制御回路61と、スイッチ60をオン/オフする発振器67と、を有する。
発振器67は制御回路61の入力であるrun/stopバー信号がインバータ66を介して供給されているため、run/stopバー信号がハイレベルのときに停止(発振器67の出力はローレベル)し、ローレベルのときに動作(発振器67はパルスを出力)する。
発振器67の出力信号がハイレベルのとき、スイッチ60がオンになり、レギュレータ55からブートストラップダイオード56、抵抗57、ブートストラップキャパシタ52、スイッチ60という経路でブートストラップキャパシタ52に充電電流が流れる。このときに出力OUTからはインダクタ58、スイッチ60という経路で出力キャパシタ59に放電電流が流れる。発振器67の出力信号がローレベルのとき、スイッチ60がオフになり、インダクタL58を経由して流れる電流はハイサイドスイッチング素子51のボディーダイオード(図示せず)と、入力INへと流れながら減少し、ハイサイドスイッチング素子51の低電位側の端子電圧Vswがローレベルになる。
発振器67の出力信号が再びハイレベルになるとスイッチ60は再びオンし、ブートストラップキャパシタ52の充電が行われる。こうした一連の動作を繰り返すことにより、出力電圧Voutが十分に低下しない場合でも端子電圧Vswの上昇を抑制することによりブートストラップキャパシタ52を十分に充電することができる。
特開2010−200554号公報 特開2011−78212号公報
しかし図5に示された特許文献1のDC−DCコンバータの構成では、余分の発振器67が必要となるので、半導体チップの面積が比較的増大するという問題が生じる。また、特許文献1はDC−DCコンバータを起動するにあたり、一時的にブートストラップキャパシタの充電を行い、確実且つ高速に起動させることを目的とするものであって、DC−DCコンバータの定常状態でのブートストラップキャパシタの充電については何ら示唆していない。さらに加えて特許文献1は同期整流方式及び非同期整流方式の両者に適用できることは示唆するも両者間で方式を切り替えることについては何ら示唆していない。
また、特許文献2は、同期整流方式もしくは非同期整流方式に切り替えることは可能であるが、両者を切り替えるためにハイサイドスイッチング素子のオフ期間の絶対値を検出するオフ期間検出手段と、オフ期間の絶対値に基づいて同期整流と非同期整流の切替を行う制御切替手段を用意しなければならず回路構成がやや複雑になるという問題点が存在する。さらに、ハイサイドスイッチング素子のオフ期間の絶対値を検出しているため、動作周波数が変わる場合も想定するとオフ期間検出手段と制御切替手段はさらに複雑になってしまい、さらなる回路の増大を招く。加えて、非同期整流に切り替えられた場合にはローサイドスイッチング素子側に内蔵され比較的順方向電圧が大きなボディイダイオードを使用することになり消費電力の低減化は実現できないことになる。
本発明は、上記の問題点に鑑み、装置の大型化やコストアップを抑えつつ、シンプルな構造で同期整流方式か非同期整流方式かを簡便に選択可能ならしめ、且つ確実,高速に起動できるDC−DCコンバータを提供することを目的とする。
本発明に係るDC−DCコンバータは、直流入力電圧を所望の直流出力電圧に変換して出力するDC−DCコンバータにおいて、直流入力電圧に接続されクロック信号に同期して動作するハイサイドスイッチング素子と、ハイサイドスイッチング素子を駆動するために直流入力電圧以上に昇圧された第1駆動信号が供給される第1ドライバと、第1駆動信号を生成するためにブートストラップキャパシタを有するブートストラップ回路と、
直流入力電圧と接地電位との間にハイサイドスイッチング素子と直列に接続されハイサイドスイッチング素子がオフのときにオンするローサイドスイッチング素子と、
ローサイドスイッチング素子を駆動し第1駆動信号と相補的な第2駆動信号が供給される第2ドライバと、
第1ドライバ及び第2ドライバを駆動するドライブロジック回路とを備え、
ドライブロジック回路は、第2ドライバに対して第2駆動信号及びクロック信号とほぼ等価な第3駆動信号のいずれか一方を選択して供給する選択手段を備える。
また本発明に係るDC−DCコンバータは、クロック信号は矩形波を構成する第1パルス幅w1と第2パルス幅w2を有し、ローサイドスイッチング素子がオンされるオンデューティ比Do(=w1/(w1+w2))は0.02〜0.30である。
本発明のブートストラップ回路を備えたDC−DCコンバータは、シンプルな構造で同期整流方式及び非同期整流方式のいずれか一方を容易に選択可能ならしめ、且つ、非同期整流方式であってもブートストラップ回路を作動させることができるので所望の昇圧動作を維持することができる。
本発明に係るDC−DCコンバータの一構成例を示す図 ドライブロジック回路106の一構成例を示す図 図1に示す一構成例のDC−DCコンバータを非同期整流方式で使用したときの回路動作を説明する図 駆動制御シーケンスの一例を示すタイミングチャート 従来のブートストラップ回路を備える降圧型DC−DCコンバータの一般的構成を示す図
図1は本発明に係るDC−DCコンバータを示す回路図である。本構成例のDC−DCコンバータは、半導体集積回路装置100と、これに外付けされるディスクリート素子として、キャパシタ201、ブートストラップキャパシタ202、インダクタ203、整流ダイオード204、及び平滑キャパシタ205、を有する。
なお、図1示の回路構成は同期整流方式及び非同期清流方式の2つに適用されるが、同期整流方式では整流ダイオード204は不用である。しかし、使用上、両者間で切り替えが頻繁に生じる場合には整流ダイオード204を実装できるスペースを、あらかじめ、たとえばプリント基板上に用意しておくことが好ましい。
半導体集積回路装置100は、トランジスタ101、トランジスタ102、第1ドライバ103、第2ドライバ104、ブートストラップダイオード105、ドライブロジック回路106、過電流保護回路107、スロープ電圧生成回路108、PWM[ Pulse Width Modulation ] コンパレータ109、エラーアンプ110、基準電圧生成回路111、分圧抵抗112,113、位相補償抵抗114、位相補償キャパシタ115を集積化した電源ICである。また、半導体集積回路装置100は、装置外部との電気的な接続を確立する手段として、外部端子T11〜T17を有している。
半導体集積回路装置100の外部において、外部端子T11(電源端子)は、入力電圧端子VINとキャパシタ201の第1端にそれぞれ接続されている。キャパシタ201の第2端は接地端子GND(外部端子T14)に接続されている。キャパシタ201は入力電圧端子VINに印加される直流入力電圧Vccに含まれるリップル成分やノイズ成分を抑圧するために用意されている。外部端子T12(ブート端子)は、ブートストラップダイオード105のカソードとブートストラップキャパシタ202の第1端に接続されている。外部端子T13(スイッチ端子)は、インダクタ203の第1端、ブートストラップキャパシタ202の第2端、及び整流ダイオード204のカソードにそれぞれ接続されている。インダクタ203の第2端は出力端子VOUTとして平滑キャパシタ205の第1端と外部端子T16にそれぞれ接続されている。整流ダイオード204のアノードは、接地電位(外部端子T14)に接続されている。外部端子T15(選択端子)は、同期整流方式と非同期整流方式のいずれか一方を選択するための選択信号が入力される入力端子である。外部端子T15には同期整流方式及び非同期整流方式のいずれか一方を選択するための選択信号SELが印加される。外部端子T16(帰還端子)は分圧抵抗112の一端に接続され直流出力電圧Voutをエラーアンプ110に帰還するために用意されている。外部端子T17(クロック端子)は、クロック信号CLKを半導体集積回路装置100の外部から受け入れる端子であるが、クロック信号CLKを半導体集積回路装置100の内部で生成する場合には不要となる。
トランジスタ101は、外部端子T11、すなわち直流入力電圧Vinが接続されたハイサイドスイッチング素子である。ハイサイドスイッチング素子は高電位側に配置され、オン/オフを断続的に繰り返してインダクタ203に電流を供給する働きを有する。トランジスタ101のドレインは、直流入力電圧Vinが接続されている。ハイサイドトランジスタ101のソースは、外部端子T13に接続されている。トランジスタ101のゲートは、第1ドライバ103の出力端に接続されている。トランジスタ101にはボディーダイオード101dが接続されることになる。ボディーダイオード101dはトランジスタ101が半導体集積回路装置100に作り込まれたときに、寄生的に形成されるいわゆる寄生ダイオードである。ボディーダイオード101dのカソードはトランジスタ101のドレイン側すなわち外部端子T11側に接続される。ボディーダイオード101dのアノードはトランジスタ101のソース側すなわち外部端子T13側に接続される。
トランジスタ102は、低電位側である外部端子T14すなわち接地電位GND側に配置され、同期整流方式が選択されたときにはトランジスタ101と相補的にオン/オフを繰り返してインダクタ203に電流を供給する働きを有する。すなわち、トランジスタ102はDC−DCコンバータにおいて同期整流用として働く。なお、本書での「相補的」とはトランジスタ102及びトランジスタ101のオン/オフが正反対であることを指す。すなわち、たとえばトランジスタ101がオンのときにはトランジスタ102はオフであり、トランジスタ101がオフのときにはトランジスタ102はオンであること指している。しかし、この種のDC−DCコンバータでは、両者トランジスタが同時にオンして貫通電流が流れ、両者トランジスタが劣化または破壊しないように両者トランジスタを同時にオフとするいわゆるデッドタイムが設けられることが少なくない。本書ではこうしたデッドタイムも「相補的」の概念に含まれると解すべきである。なお、非同期整流方式ではトランジスタ101とトランジスタ102とは相補的には動作させる必要はないが、本発明の1つの特徴として、トランジスタ101がオフの期間の一部の期間にトランジスタ102をオンさせ、ブートストラップキャパシタ202を充電させている。トランジスタ102は、第2ドライバ104から印加されるゲート信号に応じてスイッチングされる。トランジスタ102のドレインは、外部端子T13に接続されている。第2ドライバ104からトランジスタ102のゲートに印加される信号は第2駆動信号LDRV(SYN)または、第3駆動信号LDRV(ASY)のいずれか一方とほぼ等価である。第2駆動信号LDRV(SYN)、第3駆動信号LDRV(ASY)については第1駆動信号HDRVと共に後述する。トランジスタ102のソースは、外部端子T14すなわち接地端子GNDに接続されている。トランジスタ102のゲートは、第2ドライバ104の出力端に接続されている。トランジスタ102にはボディーダイオード102dが接続されることになる。ボディーダイオード102dはトランジスタ102が半導体集積回路装置100に作り込まれたときに、寄生的に形成されるいわゆる寄生ダイオードである。ボディーダイオード102dのカソードはトランジスタ102のドレイン側すなわち外部端子T13側に接続される。ボディーダイオード102dのアノードはトランジスタ102のソース側すなわち接地端子GNDである外部端子T14側に接続される。
第1ドライバ103の第1電源端(高電位端)は、外部端子T12に接続されている。第1ドライバ103の第2電源端(低電位端)は、外部端子T13に接続されている。第1ドライバ103の入力端は、ドライブロジック回路106に接続されている。第1ドライバ103の出力端は、先述したように、トランジスタ101のゲートに接続されている。
第2ドライバ104の入力端は、ドライブロジック回路106に接続されている。第2ドライバ104の出力端は、先述したように、トランジスタ102のゲートに接続されている。
ドライブロジック回路106は、PWMコンパレータ109から出力されるパルス幅変調信号PWM、クロック信号CLK及び選択信号SELに基づき、第1ドライバ103及び第2ドライバ104のオン/オフを制御する。なお、ドライブロジック回路106の回路構成及び動作については、後述する。
PWMコンパレータ109は、エラーアンプ110から出力されるエラー電圧VERRと、スロープ電圧生成回路108から出力されるスロープ(三角波)電圧SLOPEとを比較して、パルス変調信号PWMを生成する。
エラーアンプ110は、外部端子T16から入力される帰還電圧VFB、すなわち、分圧抵抗112,113の共通接続ノードから引き出される直流出力電圧Voutの分圧電圧と、基準電圧生成回路111から出力される基準電圧VREFとの差分を増幅してエラー電圧VERRを生成する。
エラーアンプ110の出力側すなわちPWMコンパレータの入力側には位相補償キャパシタ114及び位相補償抵抗115が接続されている。これらの位相補償素子を、DC−DCコンバータに採用することは公知であり、DC−DCコンバータにおける位相遅れ180度に対する差分すなわち位相余裕を高めるために行われる。たとえばDC−DCコンバータのループゲインが0db(ゲイン1倍)のときの位相がたとえば120度であるとすると、位相余裕は、180度−120度=60度として表すことができる。この位相余裕はたとえば45度以上あれば十分であるとも言われている。また、位相遅れ180度のときのゲイン0dbに対するループゲイン差を「ゲイン余裕」と称する。たとえば、位相遅れ180度のときのループゲインが−20dbであるときにはゲイン余裕は20dbとなる。
半導体集積回路装置100は、スロープ電圧生成回路108、PWMコンパレータ109、エラーアンプ110、基準電圧生成回路111、及び分圧抵抗112,113を有し、これらの回路の組み合わせによって、負帰還回路が形成されている。このような負帰還回路によって、直流出力電圧Voutが何らかの原因で所定値よりも増加、減少した場合にはそれを減少、増加させて所定値に戻すように制御する。
過電流保護回路107は、半導体集積回路装置100に過電流が流れたとき、具体的にはトランジスタ101に過電流が流れたときにトランジスタ101の動作をシャットダウンさせるものである。トランジスタ101に流れる電流は、外部端子T13に生じる電圧を検出することで把握できる。トランジスタ101のオン抵抗は、あらかじめ把握しておくことができる。たとえばオン抵抗Ronは0.2Ω程度であるとし、トランジスタ101に5A(アンペア)という過電流が流れたと仮定すると、トランジスタ101のドレイン・ソース間では0.2Ω×5A=1Vの電圧降下が発生する。すなわち、外部端子T12とT13との間に1Vの電圧降下が生じることになる。こうした電圧降下をたとえばコンパレータで検知すればトランジスタ101にたとえば5A以上の過電流が流れた場合には過電流保護回路107でこうした状態を検知し、ドライブロジック回路106、第1ドライバ103を介してトランジスタ101の動作をシャットダウンさせる。
次に上記構成からなるDC−DCコンバータの基本的な回路動作について説明する。
まず、同期整流方式が選択されたときの動作について説明する。同期整流方式又は非同期整流方式の選択は、図1において外部端子T15に印加される選択信号のレベルで決定される。たとえば外部端子T15がローレベルに設定されたときには、同期整流方式が選択される。同期整流方式では、第1ドライバ103及び第2ドライバ104はそれぞれトランジスタ101及びトランジスタ102を相補的にオン/オフさせ制御信号を出力する。
トランジスタ101がオフであり、トランジスタ102がオンのときには入力電源VLの印加端から、ブートストラップダイオード105,ブートストラップキャパシタ202、トランジスタ102を介してブートストラップキャパシタ202を充電する充電電流が接地端子GND(外部端子T14)に向かって流れる。その結果、ブートストラップキャパシタ202の一端すなわち外部端子T12の電位V12は、(Vl−Vd)(Vlは入力電源VLの電圧値、Vdはブートストラップダイオード105の順方向電圧)まで上昇し、外部端子T11に印加される入力電源V11の電位より高く設定される。これによって、第1ドライバ103から出力される駆動電圧はトランジスタ101を十二分に駆動できるまで持ち上げられる。
次に、第2ドライバ104によってトランジスタ102がオンからオフになると、前もって持ち上げられた第1ドライバ103のブート電圧Vbootでトランジスタ101がオンとなる。このときには、ブートストラップキャパシタ202の充電電圧分(Vl−Vd)が入力電圧VINに加算されたブート電圧Vboot(=Vin+Vl−Vd)という電圧で第1ドライバ103が駆動され、トランジスタ101をスイッチング制御する。
上記の動作が繰り返されることで、不図示の負荷は出力端子VOUTに結合され、該負荷には平滑キャパシタ205により平滑された直流出力電圧Voutが供給される。
次に非同期整流方式が選択されたときの動作について説明する。非同期整流方式の選択は、同期整流方式と同じであるが図1において外部端子T15に印加するレベルの大きさで決定される。たとえば外部端子T15がハイレベルに設定されたときに、非同期整流方式が選択される。非同期整流方式では、第2ドライバ104及びトランジスタ102は、それぞれ第1ドライバ103及びトランジスタ101との相補的な動作の実行は解除され、ローサイドスイッチング素子としてのトランジスタ102はクロック信号CLKとほぼ等価な第3駆動信号LDRV(ASY)でオン/オフを繰り返す。
外部端子T15が非同期整流方式を選択した場合には、トランジスタ101がオンでありトランジスタ102がオフである動作期間1と,トランジスタ102がオンであり、トランジスタ101がオフである動作期間2と,トランジスタ101及び102が同時にオフとなる動作期間3の3つの動作期間が存在する。動作期間3は一般的にデッドタイムと称される。なお、これら3つの動作期間は同期整流方式の場合も同じである。
非同期整流方式では本来トランジスタ102は採用せずにこれの代替として整流ダイオード204を採用するものである。動作期間2すなわちトランジスタ101がオフである期間は、整流ダイオード204を介してインダクタ203に電流が供給される。
先述のとおり、非同期整流方式では本来トランジスタ102は不要であり、その代替として整流ダイオード204を採用するものであるから動作期間2すなわちトランジスタ101がオフのときに、トランジスタ102の動作状態を論ずるのは論外のはずである。しかし、本発明の1つの特徴としてトランジスタ102を整流ダイオード204と並行して短い期間ではあるがオンさせるというものである。このときのトランジスタ102はブートストラップ回路の充電経路を形成し、第1ドライバ103を介してトランジスタ101のオン/オフを確実なものとする。
動作期間3すなわちトランジスタ101及びトランジスタ102が同時にオフのとき、すなわちデッドタイム期間は、入力電源VLの印加端から、ブートストラップダイオード105、ブートストラップキャパシタ202、インダクタ203、及び平滑キャパシタ205を経由した充電経路が形成され、トランジスタ102を介した充電経路は短い時間ではあるが遮断される。
図2は、ドライブロジック回路106の一構成例を示す図である。ドライブロジック回路106は上記選択手段の他に図示しないデッドタイム生成回路や、過電流保護回路107と第1ドライバ103とのインターフェース回路や、過電流保護回路107と第2ドライバ104とのインターフェース回路などが内蔵されている。デッドタイム生成回路は、トランジスタ101とトランジスタ102とが同時にオンしないように第1駆動信号HDRV、第2駆動信号LDRV(SYN)、第3駆動信号LDRV(ASN)が同時にローレベルとなる時間設定を行う回路である。
インバータ14は、クロック信号CLKを論理反転して、論理積回路12に出力する。
論理積回路12は、パルス幅変調信号PWMとインバータ14の出力信号とで理論積演算を行いその論理積演算結果を、第1ドライバ103を駆動する第1駆動信号HDRVとして出力する。第1駆動信号HDRVは第1ドライバ103を介してトランジスタ101を駆動する。第1駆動信号HDRVは、外部端子T15に印加される選択信号SELのレベルに関わらず、すなわち、同期整流方式であっても非同期整流方式であっても常時、パルス幅が変調されたいわゆるPWM信号である。
インバータ16は、論理積回路12から出力される第1駆動信号HDRVの極性を反転して、スイッチ18に第2駆動信号LDRV(SYC)として出力する。スイッチ18は、よく知られた、たとえば二者択一の簡便なもので足り、MOSFETやバイポーラトランジスタで構成することができる。
スイッチ18は、選択信号SELがたとえば、ローレベルの時、即ち同期整流方式を選択した時、インバータ16の出力信号を第2駆動信号LDRV(SYN)として出力する。一方、外部選択信号SELがたとえばハイレベルの時、即ち非同期整流方式を選択した時、クロック信号CLKとほぼ等価な第3駆動信号LDRV(ASY)を出力する。なお、スイッチ18は二者択一の簡便なもので足りるが、たとえば三者択一とし、もう1つの選択肢としてたとえば、常時ローレベルやハイレベルである信号を第2ドライバに印加するようにして、同期整流用として働くトランジスタ102の動作を完全に遮断するようにしてもよい。こうするならば、本来の非同期整流方式の降圧型DC−DCコンバータや非同期整流方式の昇圧型DC−DCコンバータにも適用することが可能となる。
図3は本発明に係るDC−DCコンバータを非同期整流方式で使用するときのブートストラップ回路の回路動作を説明するために用意した回路図である。半導体集積回路装置100には本来、図1に示したような各回路部や各素子が内蔵されているが、説明の便宜上省略している。図1と同じ箇所には同じ符号を付与し、説明を省略する。
図3に示した半導体集積回路装置100は、非同期整流方式では、外部端子T13に整流ダイオード204が接続される。本来、非同期整流方式ではトランジスタ102は不用であるが、本発明ではトランジスタ102を積極的に活用する。非同期整流方式ではトランジスタ102のゲートにクロック信号CLKとほぼ等価な第3駆動信号LDRV(ASY)が供給される。第3駆動信号LDRV(ASY)は、クロック信号CLKと同様に、第1パルス幅w1と第2パルス幅w2を有し、第1パルス幅w1の期間、トランジスタ102はオンし、第2パルス幅期間w2の期間ではオフする。本書では第1パルス幅w1と第2パルス幅w2との割合をオンデューティ比Do(=w1/(w1+w2))と称する。オンデューティ比Doは、0.02〜0.30の範囲が好ましい。なぜならば、非同期整流方式では、トランジスタ101と相補的に動作させる必要はなく、トランジスタ101がオフの期間に、入力電源VLからブートストラップダイオード105を介してブートストラップキャパシタ202を充電するに足りる充電経路が形成できれば十分であるからである。オンデューティ比Doが0.02を下回ると、ブートストラップキャパシタ202を十分に充電できなくなり、所望の昇圧効果が得られないという不具合が生じる。一方、オンデューティ比Doが0.30を超えると、ブートストラップの充電作用は十分となるが、トランジスタ102での電力消費が増加し、非同期整流方式を採用するとメリットが低下する。
ブートストラップ回路の充電経路iBは、入力電源VL−外部端子T12−ブートストラップキャパシタ202−外部端子T13−トランジスタ102−外部端子T14(GND)となる。
先述のとおり、トランジスタ102をオンさせるオンデューティ比Doは、Do=0.02〜0.30が好ましい。オンデューティ比Doの設定については、クロック信号CLKの周波数の大きさも勘案して決めるとよい。なぜならばクロック信号CLKの周波数が高くなると、当然のことながら第1パルス幅w1、第2パルス幅w2のパルス幅は短くなるからである。たとえば、クロック信号CLKの周波数が1MHzとし、オンデューティ比Doを仮に0.1とすると、第1パルス幅w1=0.1μS、第2パルス幅w2=0.9μSとなる。クロック信号CLKを仮に3MHzで使用すると、第1パルス幅w1=0.033μS、第2パルス幅w2=0.297μSとなる。したがって、クロック信号CLKが3MHzで使用するとなると、クロック信号CLKが1MHzに比べて第1パルス幅w1は1/3となり、ブートストラップキャパシタ202を充電する充電時間は1/3となり、外部端子T12に十分な電圧が得られないという不具合が生じることも考えられる。そうした場合にはブートストラップキャパシタ202の容量値、トランジスタ102のスイッチング特性やオン抵抗値も考慮して第1パルス幅w1の大きさを設定するとよい。
また、クロック信号CLKを200kHzで使用すると、第1パルス幅w1=0.5μS、第2パルス幅w2=4.5μSとなる。したがって、クロック信号CLKが200kHzの場合には第1パルス幅w1はクロック信号CLKが3MHzの時と比べると15倍の長さとなる。一般的にブートストラップキャパシタ202の充電時間は長くなると昇圧効果は高まる。したがって、クロック信号CLKが3MHzの時には、オンデューティ比Do=w1/(w1+w2)=0.30に設定し、クロック信号CLKが200kHzのオンデューティ比Do=w1/(w1+w2)=0.02に設定すると、ほぼ同じ充電時間が得られることになる。
図4は、起動時における駆動方式制御シーケンスの一例を示すタイミングチャートである。図4(a)はクロック信号CLKを示す。クロック信号CLKの周波数はたとえば200kHzから3MHzの範囲とすることができる。クロック信号CLKは第1パルス幅w1、第2パルス幅w2で構成される。本書では第1パルス幅w1と第2パルス幅w2と割合は先述のとおり、オンデューティ比Do(=w1/(w1+w2))として定義される。オンデューティDoは0.02〜0.30の範囲である。クロック信号CLKはスロープ電圧生成回路108でスロープ電圧SLOPEを生成する基準信号となり、また、本発明において非同期整流方式を採用したときに、トランジスタ102を駆動する第3駆動信号として用いられる。
図4(b)は、スロープ電圧生成回路108で生成されるスロープ電圧SLOPE及びエラーアンプ110から出力されるエラー電圧VERRを示す。スロープ電圧SLOPEは、クロック信号CLKに同期させて、キャパシタをたとえば定電流で充放電させることによって生成する。スロープ電圧SLOPEはPWMコンパレータ109でパルス幅を変調するいわゆるPWM信号を出力させるための基準信号となる。エラー電圧VERRはコンパレータ110から出力される。エラー電圧VERRは基準電圧生成回路111で生成された基準電圧VREFと帰還電圧VFBとの比較結果信号である。
図4(c)はPWMコンパレータ109から出力されるパルス幅変調信号PWMである。パルス幅変調信号PWMは図4(b)に示したスロープ電圧SLOPEとエラー電圧VERRで比較された結果の信号である。
図4(d)は図4(a)に示したクロック信号CLKの極性が反転された信号CLK__REである。信号CLK_REは図2示の論理積回路12の他方の入力端子に印加される。
図4(e)は、ドライブロジック回路106から出力され、第1ドライバ103を介してトランジスタ101を駆動する第1駆動信号HDRVを示す。第1駆動信号HDRVは図4示(c)のパルス幅変調信号PWMと図4(d)示のクロック信号CLK_REとが論理積演算されて得られる信号である。なお、第1駆動信号HDRVは図2示の論理積回路12から出力される。第1駆動信号HDRVは、DC−DCコンバータが同期整流方式であっても非同期整流方式であっても、言い換えれば、外部端子T15がローレベルであってもハイレベルであっても常時同じである。
図4(f)は、同期整流方式が選択された時、すなわち、外部端子T15がローレベルに設定された時にドライブロジック回路106から出力され、第2ドライバ104を介してトランジスタ102を駆動する第2駆動信号LDRV(SYN)を示す。第2駆動信号LDRV(SYN)は、図4(e)示の第1駆動信号HDRVとは極性が反転されたいわゆる、相補的な関係に置かれている。第2駆動信号LDRV(SYN)が第1駆動信号HDRVと相補的な関係にあるので、トランジスタ102がオンの時にはトランジスタ101はオフとなる。また、トランジスタ102がオフの時にはトランジスタ101はオンとなり、両者トランジスタによってインダクタ203に電流が安定的に供給される。なお、両者トランジスタは同時にオフとなるいわゆるデッドタイムが設けられていることは先述のとおりである。
図4(g)は、非同期整流方式が選択された時、すなわち、外部端子T15がハイレベルに設定された時にドライブロジック回路106から出力され、第2ドライバ104を介してトランジスタ102を駆動する第3駆動信号LDRV(ASY)を示す。第3駆動信号(ASY)は、図4(a)示のクロック信号CLKとほぼ等価である。図4(e)示の第1駆動信号HDRVがハイレベルHiの時には常時ローレベルであり、第1駆動信号HDRVがローレベルLoの一部の期間ハイレベルHiになるように信号の極性とタイミングが設定されている。これによって、非同期整流方式ではあるが、トランジスタ102は、クロック信号CLKとほぼ等価な期間オンし、図3に示した充電経路iBが形成される。なお、図4(g)示には第3駆動信号LDRV(ASY)がハイレベルHiからローレベルLoに遷移すると、図4示(e)の第1駆動信号HDRVが直ちにローレベルLoからハイレベルHiに遷移する状態を示したが、実際にはデッドタイムが設定されている。
なお、本発明の構成は、上記実施形態のほか、発明の主旨を逸脱しない範囲で様々の変更を加えることが可能である。即ち、上記実施形態は、全ての点で例示であって、制限的なものでないと考えられるべきであり、本発明の技術的範囲は、上記実施形態の説明ではなく、特許請求の範囲によって示されるものであり、特許請求の範囲と均等の意味及び範囲内に属する全ての変更が含まれると理解されるべきである。
以上説明したように、本発明のDC−DCコンバータはシンプルな構造で同期整流方式か非同期整流方式のいずれか一方を比較的容易に選択可能ならしめ、且つ確実,高速に起動できるのでその産業上の利用可能性は極めて高い。
100 半導体集積回路装置
101 トランジスタ(ハイサイドスイッチング素子)
102 トランジスタ(ローサイドスイッチング素子)
103 第1ドライバ
104 第2ドライバ
105 ブートストラップダイオード
106 ドライブロジック回路
107 過電流保護回路
108 スロープ電圧生成回路
109 PWMコンパレータ
110 エラーアンプ
111 基準電圧生成回路
112、113 分圧抵抗
114 位相補償用抵抗
115 位相補償用キャパシタ
201 キャパシタ
202 ブートストラップキャパシタ
203 インダクタ
204 整流ダイオード
205 平滑キャパシタ
12 論理積回路
14、16 インバータ
18 スイッチ
T11〜T17 外部端子
VIN 入力電圧端子
Vin 直流入力電圧
VOUT 出力電圧
Vout 直流出力電圧

Claims (8)

  1. 直流入力電圧を所望の直流出力電圧に変換して出力するDC−DCコンバータにおいて、
    前記直流入力電圧に接続されクロック信号に同期して動作するハイサイドスイッチング素子と、
    前記ハイサイドスイッチング素子を駆動するために前記直流入力電圧以上に昇圧された第1駆動信号供給する第1ドライバと、
    前記第1駆動信号を生成するためにブートストラップキャパシタを有するブートストラップ回路と、
    前記直流入力電圧と接地電位との間に前記ハイサイドスイッチング素子と直列に接続され前記ハイサイドスイッチング素子がオフのときにオンするローサイドスイッチング素子と、
    前記ローサイドスイッチング素子を駆動し前記第1駆動信号と相補的な第2駆動信号が印加される第2ドライバと、
    前記第1ドライバ及び前記第2ドライバを駆動するドライブロジック回路を備え、
    前記ドライブロジック回路は、前記第2ドライバに対して前記第2駆動信号及び前記クロック信号とほぼ等価な第3駆動信号のいずれか一方を選択して印加することにより同期整流方式及び非同期整流方式のいずれか一方を選択する選択手段を備えていることを特徴とするDC−DCコンバータ。
  2. 前記クロック信号は矩形波を構成する第1パルス幅w1と第2パルス幅w2を有し、前記ローサイドスイッチング素子がオンされるオンデューティ比Do(=w1/(w1+w2))は0.02〜0.30であることを特徴とする請求項1に記載のDC−DCコンバータ。
  3. 前記選択手段が前記第2駆動信号を選択したとき、前記DC−DCコンバータは前記同期整流方式で動作することを特徴とする請求項2に記載のDC−DCコンバータ。
  4. 前記選択手段が前記第3駆動信号を選択したとき、前記ローサイドスイッチング素子と並列に整流ダイオードが結合された前記非同期整流方式で動作することを特徴とする請求項2に記載のDC−DCコンバータ。
  5. 前記ハイサイドスイッチング素子、前記ローサイドスイッチング素子、前記第1ドライバ、前記第2ドライバ、前記ドライブロジック回路は複数の外部端子を備えた半導体集積回路装置に内蔵されており、前記ドライブロジック回路の前記選択手段には前記外部端子の1つが配設されており、前記選択手段に設けた前記外部端子に前記同期整流方式及び前記非同期整流方式のいずれか一方を選択する選択信号が印加されることを特徴とする請求項3または請求項4に記載のDC−DCコンバータ。
  6. 前記DC−DCコンバータはさらに、前記直流出力電圧を分圧し帰還電圧を生成する帰還電圧生成手段と、
    前記帰還電圧と基準電圧との差分を増幅して誤差電圧を生成するエラーアンプと、
    前記クロック信号に同期した三角波電圧を生成するスロープ電圧生成回路と、
    前記誤差電圧と前記三角波電圧とを比較してパルス幅が変調されたパルス幅変調信号を生成するPWMコンパレータとを備え、前記PWMコンパレータから出力された前記パルス幅変調信号は前記選択手段の一方の入力端に、さらに前記選択手段の他方の入力端には前記クロック信号が入力され、前記選択手段の出力端から前記第2駆動信号及び前記第3駆動信号の一方が選択されて前記第2ドライバに供給されることを特徴とする請求項5に記載のDC−DCコンバータ。
  7. 前記選択手段は、前記パルス幅変調信号及び前記クロック信号を論理積演算する回路手段と、前記論理積演算した信号と前記クロック信号とのいずれか一方を出力するスイッチを備え、前記スイッチの出力側から前記選択手段に配設された前記外部端子に印加された前記選択信号に基づき前記第2駆動信号及び前記第3駆動信号のいずれか一方を前記第2ドライバに印加することを特徴とする請求項6に記載のDC−DCコンバータ。
  8. 前記DC−DCコンバータはさらに過電流保護回路を備え、前記過電流保護回路は前記ハイサイドスイッチング素子に流れる電流が所定の基準値を超えた時、前記ドライブロジック回路を介して、前記ハイサイドスイッチング素子をオフさせることを特徴とする請求項7に記載のDC−DCコンバータ。
JP2014143255A 2014-07-11 2014-07-11 Dc−dcコンバータ Expired - Fee Related JP6382002B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014143255A JP6382002B2 (ja) 2014-07-11 2014-07-11 Dc−dcコンバータ
US14/754,790 US9612604B2 (en) 2014-07-11 2015-06-30 DC-DC converter and television receiver therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014143255A JP6382002B2 (ja) 2014-07-11 2014-07-11 Dc−dcコンバータ

Publications (2)

Publication Number Publication Date
JP2016019455A JP2016019455A (ja) 2016-02-01
JP6382002B2 true JP6382002B2 (ja) 2018-08-29

Family

ID=55067518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014143255A Expired - Fee Related JP6382002B2 (ja) 2014-07-11 2014-07-11 Dc−dcコンバータ

Country Status (2)

Country Link
US (1) US9612604B2 (ja)
JP (1) JP6382002B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6368196B2 (ja) * 2014-08-28 2018-08-01 ローム株式会社 降圧dc/dcコンバータおよびそのコントロールic、オフィス用通信機器、電動自転車
JP6692069B2 (ja) * 2016-04-27 2020-05-13 パナソニックIpマネジメント株式会社 電源装置及び照明装置
US10680522B2 (en) * 2017-02-09 2020-06-09 Rohm Co., Ltd. Switching regulator and control device therefor
JP6886343B2 (ja) * 2017-05-15 2021-06-16 ローム株式会社 Dc/dcコンバータ
CN109391126B (zh) * 2017-08-09 2023-11-03 恩智浦美国有限公司 用于功率转换器的切换控制器电路
WO2019145040A1 (en) * 2018-01-25 2019-08-01 Renesas Electronics Corporation Controlling a high-side switching element using a bootstrap capacitor
US10587262B1 (en) * 2019-03-01 2020-03-10 Infineon Technologies Austria Ag DV/DT self-adjustment gate driver architecture
JP7129366B2 (ja) * 2019-03-15 2022-09-01 ニチコン株式会社 スイッチング電源装置
JP7174672B2 (ja) * 2019-06-12 2022-11-17 ニチコン株式会社 スイッチング電源装置
JP7308137B2 (ja) * 2019-12-03 2023-07-13 ローム株式会社 スイッチング回路のゲート駆動回路および制御回路、スイッチング電源
JP7348123B2 (ja) 2020-03-25 2023-09-20 ローム株式会社 電源制御装置
WO2023110726A1 (en) * 2021-12-16 2023-06-22 Signify Holding B.V. Solar powered battery charger
CN114664269B (zh) * 2022-04-21 2023-07-28 京东方科技集团股份有限公司 工作电源转换电路、显示驱动板及液晶显示屏

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106115A (ja) * 2007-10-24 2009-05-14 Fuji Electric Device Technology Co Ltd ブートストラップ回路及び該回路を用いる降圧コンバータ
JP2010200554A (ja) 2009-02-26 2010-09-09 Fuji Electric Systems Co Ltd Dc−dcコンバータ
JP5428713B2 (ja) 2009-09-30 2014-02-26 サンケン電気株式会社 Dc−dcコンバータ、及びその制御方法
US8193798B1 (en) * 2009-10-29 2012-06-05 Texas Instruments Incorporated Buck regulators with adjustable clock frequency to achieve dropout voltage reduction
JP6013052B2 (ja) * 2012-07-04 2016-10-25 ローム株式会社 スイッチング電源装置
US8558586B1 (en) * 2012-08-30 2013-10-15 Infineon Technologies Ag Circuit arrangement for driving transistors in bridge circuits

Also Published As

Publication number Publication date
JP2016019455A (ja) 2016-02-01
US20160011610A1 (en) 2016-01-14
US9612604B2 (en) 2017-04-04

Similar Documents

Publication Publication Date Title
JP6382002B2 (ja) Dc−dcコンバータ
US8000117B2 (en) Buck boost function based on a capacitor bootstrap input buck converter
US9729061B2 (en) Boost regulator having adaptive dead time
JP5739832B2 (ja) 昇降圧型dc−dcコンバータの制御回路、昇降圧型dc−dcコンバータの制御方法、および昇降圧型dc−dcコンバータ
US9484758B2 (en) Hybrid bootstrap capacitor refresh technique for charger/converter
US9584019B2 (en) Switching regulator and control method thereof
US20110101946A1 (en) Voltage converters
EP2421137B1 (en) Switching power supply unit
US20070296386A1 (en) Switching power-supply circuit and semiconductor integrated circuit
US8638082B2 (en) Control circuit for step-down and boost type switching supply circuit and method for switching supply circuit
US8503195B1 (en) System and method for zero volt switching of half bridge converters during startup and short circuit conditions
US9225242B2 (en) Electronic control device including voltage converter
JP2014050299A (ja) Dc−dcコンバータ、および、半導体装置
US9209691B2 (en) Fast transient buck regulator with dynamic charge/discharge capability
JP2010213559A (ja) 直流電源装置およびdc−dcコンバータ
JP2006014559A (ja) Dc−dcコンバータ
JP2009254110A (ja) 昇圧型dc−dcコンバータおよび電源駆動用半導体集積回路
JP5023819B2 (ja) 昇降圧型dc−dcコンバータの制御方法、昇降圧型dc−dcコンバータの制御回路、および昇降圧型dc−dcコンバータ
JP2004096816A (ja) 多出力dc−dcコンバータ
JP2009225642A (ja) 電源装置および半導体集積回路装置
KR102583956B1 (ko) 전력 컨버터 및 전력 컨버터의 데드-타임 제어 회로
US9178425B2 (en) Power supply device
JP2018055617A (ja) プログラマブルロジックコントローラ
JP2005210820A (ja) 同期整流式dc/dcコンバータ
CN212572391U (zh) 电子电路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180801

R150 Certificate of patent or registration of utility model

Ref document number: 6382002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees