JP6368971B2 - 超精密形状測定装置 - Google Patents

超精密形状測定装置 Download PDF

Info

Publication number
JP6368971B2
JP6368971B2 JP2014206784A JP2014206784A JP6368971B2 JP 6368971 B2 JP6368971 B2 JP 6368971B2 JP 2014206784 A JP2014206784 A JP 2014206784A JP 2014206784 A JP2014206784 A JP 2014206784A JP 6368971 B2 JP6368971 B2 JP 6368971B2
Authority
JP
Japan
Prior art keywords
support frame
plate
fixed
sub
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014206784A
Other languages
English (en)
Other versions
JP2016075603A (ja
JP2016075603A5 (ja
Inventor
尚史 津村
尚史 津村
和人 山内
和人 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEC Corp
Original Assignee
JTEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEC Corp filed Critical JTEC Corp
Priority to JP2014206784A priority Critical patent/JP6368971B2/ja
Publication of JP2016075603A publication Critical patent/JP2016075603A/ja
Publication of JP2016075603A5 publication Critical patent/JP2016075603A5/ja
Application granted granted Critical
Publication of JP6368971B2 publication Critical patent/JP6368971B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、超精密形状測定装置に係わり、例えば大型放射光施設やX線自由電子レーザーで発生させた硬X線から軟X線を集光させるための斜入射光学系に用いるX線ミラーの反射面の全体形状を超精密に測定することが可能な超精密形状測定装置に関する。
大型放射光施設(SPring-8等)やX線自由電子レーザー(SACLA等)で発生させた硬X線から軟X線を集光させるための斜入射光学系には、平面ミラーあるいは平面に近い形状の球面ミラーや非球面ミラー等の各種のX線ミラーが使われている。このX線ミラーの反射面の全体形状を超精密に測定することは、このような用途に用いるX線ミラーを製造する上でも必須である。通常、X線ミラーは、反射面の全体にわたってナノレベルの形状精度が要求される。X線ミラーの製造には、先ずSi単結晶ブロックや石英ガラス等のX線光学材料を前加工して反射面を設計形状に近い状態にした後、反射面の形状を精密に測定し、設計形状と測定形状の差から加工量のプロファイルを算出し、その加工量データに基づいて数値制御加工を行い、これを繰り返す方法がとられている。
平面あるいは平面に近い形状のX線ミラーの反射面の形状を超精密に測定する装置として、中長周期の空間波長領域における高精度計測が可能なフィゾー型干渉計は最適である。しかし、フィゾー型干渉計は、高精度に研磨された参照面を基準として被測定物表面の形状を測定するので、測定範囲は参照面の大きさ(視野)に制限され、つまり参照面よりも寸法が大きい長尺のX線ミラーの場合は一括形状測定ができない。更に、フィゾー型干渉計は、視野内であっても、参照面と被測定物表面間の角度が1×10-4radを超えると、フリンジパターンが高密度となり、表面プロファイルデータが取得できなくなるという原理的な制限もある。ところで、より小さく輝度の高いX線集光ビームを実現するためには、入射角度が大きく、より急峻な形状、あるいは入射角は小さくても長尺の形状のX線ミラー、すなわち開口数の大きな楕円ミラーを設計し作製する必要がある。
そこで、本出願人は、特許文献1で開示される超精密形状測定装置を提案し、長尺のX線ミラーや急峻な反射面を有するX線ミラーの形状計測に用い、反射面の全体形状を1nm程度の精度で測定可能にした。つまり、特許文献1には、略水平に配した被測定物の被測定面を、光軸を略鉛直に向けたフィゾー型干渉計で計測し、被測定面よりも狭い領域の部分形状データを互に隣接するデータ間に重合領域を設けて複数取得するとともに、隣接する部分形状データ間の相対角度を取得した後、隣接する部分形状データを前記相対角度と重合領域の一致度を利用してスティッチング処理を施し、被測定面の全体形状を測定するための超精密形状測定装置であって、被測定面の短辺がフィゾー型干渉計の参照面の直径よりも小さく且つ長辺が参照面の直径より大きい被測定物と、基準平面ミラーとを、フィゾー型干渉計の参照面に対して略平行に並べるとともに、被測定物を主傾斜ステージ上にXステージを介して保持し、基準平面ミラーを主傾斜ステージ上に設けた副傾斜ステージ上に保持した配置とした超精密形状測定装置が開示されている。
特許文献1に開示された超精密形状測定装置を用いて被測定物の被測定面の形状を測定するには、次の各ステップによって行う。つまり、被測定面の短辺がフィゾー型干渉計の参照面の直径よりも小さく且つ長辺が参照面の直径より大きい被測定物を対象とし、前記被測定面の一部と形状データが既知の基準平面とを並べてフィゾー型干渉計で同時に計測して部分形状データと、ヌルフリンジ状態の基準平面の角度情報とを取得するステップ1と、前記被測定面のみを平行移動させるステップ2と、フィゾー型干渉計の参照面に対して被測定面と基準平面を同時に傾斜させて、先行取得した部分形状データに隣接する測定領域の部分形状データと、基準平面の傾斜角度を取得するステップ3と、基準平面の傾斜角度が一定値を超えた場合又は常に該基準平面のみを逆方向に傾斜させてヌルフリンジ状態に復帰させ、その復帰させた傾斜角度を先行取得した部分形状データとの相対角度として取得するステップ4と、前記ステップ1〜4を繰り返した後、隣接する部分形状データを前記相対角度と重合領域の一致度を利用してスティッチング処理をするステップ5とによる。
前述の特許文献1に記載の超精密形状測定装置は、X線ミラーをその反射面を上向きにし、ベッセル点で3点支持された姿勢で形状が測定される。ここで、ベッセル点とは、均等荷重の梁を2点で支持したときに、梁の中立軸上の両端間距離に与えるたわみの影響が最小になる支持位置であり、梁の長さをLとすれば、その両端から0.22×Lの位置である。この場合、フィゾー型干渉計が鉛直方向に配置されているので、この方式の超精密形状測定装置を「縦型」と呼ぶことにする。ところで、X線集光光学系には、通常KB(Kirkpatrick-Baez)ミラーが使われている。KBミラーは、2枚の楕円ミラーを光軸に沿って前後に配置し且つ互いに反射面が直交するように配置して構成されている。通常は、反射面を水平方向(反射面は上向き)に配向した水平楕円ミラーと、反射面を鉛直方向(反射面は横向き)に配向した鉛直楕円ミラーを、ミラーマニピュレーターのホルダーにベッセル点で3点支持して使用する。
しかし、従来の縦型の超精密形状測定装置でKBミラーを構成する前記鉛直楕円ミラーの形状を測定する場合、反射面を上向きにした姿勢で行うことになり、実際に使用する姿勢と形状を測定する姿勢とは異なることになる。つまり、鉛直楕円ミラーの反射面の形状を縦型の超精密形状測定装置で超精密に測定し、反射面の数値制御加工を繰り返し、その測定形状を設計形状にナノレベルの精度で近付けたとしても、鉛直楕円ミラーの自重によるたわみ量が無視できないので、実際の使用時の姿勢における反射面の形状精度をナノレベルで保証することができない。更に詳しくは、反射面を上に向けたX線ミラーをベッセル点で支持した状態で縦型の超精密形状測定装置で形状計測を行うと、ベッセル点で支持した部分以外の反射面は下方に撓んだ形状になるので、ベッセル点で支持した部分の加工量が必然的に多くなる。このX線ミラーを使用する際に、反射面を上向きにした姿勢でベッセル点で支持すれば、反射面の形状は計測結果と同じになるが、反射面を横向きにした姿勢でベッセル点で支持すれば、ベッセル点に対応する反射面が僅かに凹んだ形状になり、長尺のX線ミラーにおいては設計形状からの誤差が無視できなくなる。
特許第5070370号公報
そこで、本発明が前述の状況に鑑み、解決しようとするところは、大型放射光施設やX線自由電子レーザーで発生させた硬X線から軟X線を集光させるための斜入射光学系に用いるX線ミラーの反射面の全体形状を、ナノ若しくはサブナノオーダーの精度で超精密に測定することが可能であり、特にメートル級の長尺X線ミラーの全体形状を超精密に測定することができ、また1×10-4radを超えるような傾斜部分を有する急峻な形状の被測定物の表面形状を超精密に測定することができることは勿論、反射面を鉛直方向に配向して使用するX線ミラーを、使用時の姿勢と同じ姿勢で形状を超精密に測定することができる横型の超精密形状測定装置を提供する点にある。
本発明は、前述の課題解決のために、略鉛直に配した被測定物の被測定面を、光軸を略水平に向けたフィゾー型干渉計で計測し、被測定面よりも狭い領域の部分形状データを互に隣接するデータ間に重合領域を設けて複数取得するとともに、隣接する部分形状データ間の相対角度を取得した後、隣接する部分形状データを前記相対角度と重合領域の一致度を利用してスティッチング処理を施し、被測定面の全体形状を測定するための超精密形状測定装置であって、主支持架台の内部に副支持架台を配置するとともに、該副支持架台の上下部を前記主支持架台に対して鉛直方向に回動軸芯を持つ十字バネでそれぞれ連結してヨーイング軸を形成し、前記主支持架台に対して副支持架台をヨーイング可能とし、被測定面の短辺がフィゾー型干渉計の参照面の直径よりも小さく且つ長辺が参照面の直径より大きい被測定物と、基準平面ミラーとをフィゾー型干渉計の参照面に対して略平行に並べるとともに、前記被測定物を前記副支持架台の載置板上にXステージを介して保持し、前記基準平面ミラーを前記副支持架台の載置板上に設けた少なくともヨーイング可能な傾斜ステージ上に保持した配置としたことを特徴とする超精密形状測定装置を構成した(請求項1)。
ここで、前記主支持架台は、上板と下板を複数の主支柱で上下に間隔を隔てて固定した剛構造であり、前記副支持架台は、前記主支持架台の上板と下板の間に収まる大きさを有し、天板と前記載置板を複数の副支柱で上下に間隔を隔てて固定した剛構造であり、前記主支持架台の上板の下面に固定した固定体と前記副支持架台の天板との上面に固定した可動体の間を前記十字バネで連結するとともに、前記主支持架台の下板の上面に固定した固定体と前記副支持架台の載置板の下面に固定した可動体の間を前記十字バネで連結し、リニアアクチュエータの本体部を前記主支持架台に固定するとともに、押圧部を前記副支持架台に固定した可動体の側面に圧接して、ヨーイング駆動してなることが好ましい(請求項2)。
また、前記主支持架台の上板の下面近傍に前記副支持架台の天板の上面に固定した吊板を接触することなく配置し、該吊板から上方に前記ヨーイング軸と同心状に垂設した吊支棒を前記主支持架台の上板の開口を通して上方へ貫通させるとともに、該開口の上部に前記ヨーイング軸と同心状に設けたスラスト軸受と前記吊支棒の先端に設けた係止リングとの間に圧縮コイルバネを配置して前記副支持架台の荷重を上方から支持してなることがより好ましい(請求項3)。
また、前記副支持架台の載置板の下面に、前記ヨーイング軸と同心状に設けたスラスト軸受を介して押上板を回転可能に配置するとともに、前記主支持架台の下板と該押上板の間に複数の圧縮コイルバネを配置して前記副支持架台の荷重を下方から支持してなることもより好ましい(請求項4)。
そして、前記Xステージの可動台にX軸方向に延びる基台を固定し、該基台の一側部にX軸方向に間隔を隔てて立設した一対の支持アームの上端部に、ヒンジ部の屈曲中心線をX軸方向に向けて固定した弾性ヒンジを介して一対の可動アームを吊下げ状態で連結するとともに、該両可動アームの下端に前記基台に接触しないように被測定物ホルダーを固定し、前記可動台にリニアアクチュエータの本体部を固定するとともに、前記被測定物ホルダーの中間部に設けた受部にリニアアクチュエータの押圧部を圧接し、被測定物ホルダーに保持した被測定物をローリング可能としてなることが好ましい(請求項5)。
更に、前記載置板には前記Xステージと平行してX方向リニア駆動機構を設けるとともに、該リニア駆動機構で前記可動台と該可動台上の機構部の荷重とにバランスするカウンターウエイトを前記可動台と逆方向に駆動し、前記載置板上の重心の変動を抑制してなることがより好ましい(請求項6)。
そして、前記基準平面ミラーの傾斜ステージは、前記フィゾー型干渉計の参照面と対向する位置で前記載置板上に配置し、X軸方向に間隔を隔てて前記載置板に固定した一対の倒L字形の支持アームの先端部間に支持板を固定し、該支持板の上位に平行に配置した傾動板の一端部をヒンジ部の屈曲中心線をX軸方向に向けて固定した弾性ヒンジを介して連結するとともに、前記支持アームに本体部を固定したリニアアクチュエータの押圧部を前記傾動板の遊端側下面に圧接してローリング可能とし、更に前記傾動板の上面に固定した垂直板の一端部にヒンジ部の屈曲中心線をZ軸方向に向けた弾性ヒンジを介してミラー支持部材を連結するとともに、前記垂直板に本体部を固定したリニアアクチュエータの押圧部を前記ミラー支持部材の背面に延設した受部に圧接し、該ミラー支持部材に保持した基準平面ミラーをヨーイング可能とし、前記弾性ヒンジのヒンジ部の屈曲中心線が前記基準平面ミラーの反射面中心を通るように設定してなるのである(請求項7)。
また、前記弾性ヒンジのヒンジ部の屈曲中心線から半径方向に伸ばした線に直交する接線方向に、前記リニアアクチュエータの押圧部の駆動方向を設定し、該押圧部と前記受部を常に点接触させてなることも好ましい(請求項8)。
また、各駆動部に変位を検出する変位センサーを設けてなることも好ましい(請求項9)。
以上にしてなる本発明の超精密形状測定装置は、略鉛直に配した被測定物の被測定面を、光軸を略水平に向けたフィゾー型干渉計で計測し、被測定面よりも狭い領域の部分形状データを互に隣接するデータ間に重合領域を設けて複数取得するとともに、隣接する部分形状データ間の相対角度を取得した後、隣接する部分形状データを前記相対角度と重合領域の一致度を利用してスティッチング処理を施し、被測定面の全体形状を測定するための超精密形状測定装置であって、主支持架台の内部に副支持架台を配置するとともに、該副支持架台の上下部を前記主支持架台に対して鉛直方向に回動軸芯を持つ十字バネでそれぞれ連結してヨーイング軸を形成し、前記主支持架台に対して副支持架台をヨーイング可能とし、被測定面の短辺がフィゾー型干渉計の参照面の直径よりも小さく且つ長辺が参照面の直径より大きい被測定物と、基準平面ミラーとをフィゾー型干渉計の参照面に対して略平行に並べるとともに、前記被測定物を前記副支持架台の載置板上にXステージを介して保持し、前記基準平面ミラーを前記副支持架台の載置板上に設けた少なくともヨーイング可能な傾斜ステージ上に保持した配置としたので、反射面を鉛直方向に配向して使用するX線ミラー等の被測定物を、使用時の姿勢と同じ姿勢で形状を超精密に測定することができる。そして、被測定面の短辺がフィゾー型干渉計の参照面の直径よりも小さく且つ長辺が参照面の直径より大きい被測定物でも、フィゾー型干渉計で部分形状データを取得しつつ、隣接する部分形状データ間の相対角度を、基準平面ミラーを利用して精度よく取得でき、それらを用いてスティッチング処理をすることにより、フィゾー型干渉計の精度で全体形状を測定することができる。また、同一の視野内で被測定面がフィゾー型干渉計で形状を一括計測できないような急峻な傾斜あるいは曲率を有する場合でも1nm程度の精度で全体形状を測定することができる。例えば、長さが50cmを超える細長い形状の平面ミラーあるいは平面に近い形状の曲面ミラー、例えば楕円ミラー、球面ミラー、非球面ミラー又は円筒ミラー等のX線ミラーの反射面の全体形状を、1nm程度の精度で測定できるので、このようなX線ミラーを製造してSPring-8等の大型放射光施設やX線自由電子レーザーで発生させた硬X線から軟X線を、よりスポット径を小さく且つより高輝度に集光させるために供することができ、工学分野は勿論、医学や薬学分野においても放射光の利用レベルを高めることができる。
また、本発明の超精密形状測定装置は、駆動部に十字バネや弾性ヒンジを用いているので、微小角度を高精度に調節できる。ところで、本発明では長尺の被測定物を計測する必要性から高精度な送り機構とガイド機構を有する重いXステージを副支持架台の載置板上に設けるが、主支持架台に対して副支持架台の荷重を圧縮コイルバネの弾性力で受ける構造であるので、十字バネに加わる荷重を最小限に抑制することができ、主支持架台に対して副支持架台をスムーズ且つ精度よくヨーインングさせることができる。また、長尺で重量のある被測定物を含む可動部のX軸方向の変位に対し、その逆方向にリニア駆動機構でカウンターウエイトを駆動するので、重心の変動を最小限に抑制することができ、それにより十字バネによるヨーイング駆動が常に安定である。
測定対象のX線ミラー、基準平面ミラー及びフィゾー型干渉計の参照面との位置関係を示した簡略配置図である。 同じく測定原理を示す説明図である。 本発明の超精密形状測定装置の全体斜視図である。 主支持架台に対して副支持架台をヨーイング駆動する機構部を示す部分斜視図である。 十字バネによるヨーイング機構部を示す部分斜視図である。 十字バネによるヨーイング機構部の主要部を示す分解斜視図である。 十字バネによるヨーイング機構部の下部構造を示す斜視図である。 十字バネによるヨーイング機構部の下部構造を示す平面図である。 十字バネの拡大斜視図である。 副支持架台の荷重を弾性的に支持する機構を示す部分斜視図である。 副支持架台の荷重を弾性的に支持する機構の上部構造を一部破断して示した部分斜視図である。 副支持架台の荷重を弾性的に支持する機構の下部構造を一部破断して示した部分斜視図である。 副支持架台に組み込んだ超精密形状測定装置の主要機構部を示す斜視図である。 同じくフィゾー型干渉計を省略した超精密形状測定装置の主要機構部を示す斜視図である。 Xステージ上に設けた被測定物を保持し、ローリング駆動する構造を示す側面図である。 基準平面ミラーを保持し、ヨーイングとローリング駆動する傾斜ステージの斜視図である。 同じく支持アームを省略した傾斜ステージの部分斜視図である。 同じく支持アームを省略した傾斜ステージの側面図である。 同じく支持アームとミラー支持部材を省略した傾斜ステージの部分斜視図である。
本発明の超精密形状測定装置は、原理的には曲面であればどのような形状でも測定可能であるが、好ましくは曲率半径が50〜100mmよりも大きな被測定曲面を有し、長さが1m程度までの長尺の曲面ミラーを対象としている。例えば、被測定面としては、円柱面(円筒面)、楕円柱面(楕円筒面)、放物柱面、双曲柱面、楕円体面等があり、主に凹面形状のX線ミラーを対象としている。
本発明では、長尺のX線ミラーの全長に渡って部分形状データを取得できるように、傾斜ステージ機構と、その長手方向に平行移動させるためのXステージ機構とを組み合わせたシステムとなっている。そして、それぞれの機構は現時点で最高レベルの精度が出せるように工夫している。それにより、1m程度までの長さを有するX線ミラーの反射面形状を1nm程度の精度で測定でき、また反射面に1×10-4radを超えるような傾斜部分を有していても形状を計測できる。それには、X線ミラーのフィゾー型干渉計の参照面に対する傾斜角度を調整するとともに、長手方向に平行移動させることにより、各場所における部分形状データを取得する。そして、各部分形状データを高精度につなぎ合わせることで全体形状を得るのである。その際、スティッチング角度を一般的に用いられている部分形状データ間の重合領域の誤差を最小にすることにより求める方法ではなく、表面プロファイル測定時に高精度に測定された基準平面ミラーの傾斜角度を利用した方法により求めている。そして、スティッチング角度を高精度に測定するために、ミラーの傾斜角度を1×10-8radの精度で測定可能なシステムとした。
本実施形態で使用したフィゾー型干渉計は、ZYGO社のGPI HP-HRであり、最大計測領域は200mmφである。ここで、X線ミラーの反射面が非球面や円筒面であっても、1×10-4radを超えるような傾斜部分がなければ、視野内の形状を一括で測定可能であれば、約10mm以上の長中空間波長領域において、1nm以下の高い精度で形状の測定が可能である。原理的に、フィゾー型干渉計では、数mm以下の短空間波長領域(高周波)の計測に適しないので、短空間波長領域の計測に適したマイケルソン型顕微干渉計による計測結果を組み合わせて形状の評価をすることが望ましい。但し、代表的なマイケルソン型顕微干渉計であるZYGO社のNew View 100HRの最大計測領域は5.1mm×4.8mmであるので、狭い領域の顕微測定データを更に多数スティッチングする必要があり、このスティッチング処理にはフィゾー型干渉計による全体形状データによって傾き角を補正することにより、全空間波長領域に渡って高精度に形状を測定することができる。
本発明の超精密形状測定方法の要旨は、被測定物の被測定面をフィゾー型干渉計で計測し、被測定面よりも狭い領域の部分形状データを互に隣接するデータ間に重合領域を設けて複数取得した後、隣接する部分形状データを重合領域の一致度を利用してスティッチング処理を施し、被測定面の全体形状を測定する超精密形状測定方法であって、被測定面の短辺がフィゾー型干渉計の参照面の直径よりも小さく且つ長辺が参照面の直径より大きい被測定物を対象とし、前記被測定面の一部と形状データが既知の基準平面とを並べてフィゾー型干渉計で同時に計測して部分形状データと、ヌルフリンジ状態の基準平面の角度情報とを取得するステップ1と、前記被測定面のみを平行移動させるステップ2と、フィゾー型干渉計の参照面に対して被測定面と基準平面を同時に傾斜させて、先行取得した部分形状データに隣接する測定領域の部分形状データと、基準平面の傾斜角度を取得するステップ3と、基準平面の傾斜角度が一定値を超えた場合又は常に該基準平面のみを逆方向に傾斜させてヌルフリンジ状態に復帰させ、その復帰させた傾斜角度を先行取得した部分形状データとの相対角度として取得するステップ4と、前記ステップ1〜4を繰り返した後、隣接する部分形状データを前記相対角度と重合領域の一致度を利用してスティッチング処理をするステップ5と、を有することにある。
フィゾー型干渉計は、被測定面が平面形状であれば、1nmの精度で形状を測定できる。これは、正確に言うならば、被測定面と参照面間の距離を1nmで測定していることを意味している。計測されたデータは、平面補正処理され、計測データとして表示される。ここで、平面補正処理しないデータには、参照面と、基準平面ミラー間の姿勢関係の情報が含まれていることになる。各点における計測精度が1nmであり、例えば100mmの測定範囲を考えると、参照面と基準平面ミラー間の傾斜角度は、1nm/100mm=1×10-8radの精度で測定することができる。また、2点のみの計測ではなく、面データとしてデータを取得できるので、極めて精度よく、かつ、再現性よく角度を測定することが可能となる。
次に、添付図面に示した実施形態に基づき、本発明を更に詳細に説明する。図1は本発明の装置の概念図、図2は本発明の測定原理を示している。図中符号1は被測定物、2は参照面、3は基準平面ミラーをそれぞれ示している。本発明の超精密形状測定装置は、図1及び図3に示すように、略鉛直に配した被測定物1の被測定面を、光軸を略水平に向けたフィゾー型干渉計4で計測し、被測定面よりも狭い領域の部分形状データを互に隣接するデータ間に重合領域を設けて複数取得するとともに、隣接する部分形状データ間の相対角度を取得した後、隣接する部分形状データを前記相対角度と重合領域の一致度を利用してスティッチング処理を施し、被測定面の全体形状を測定するための超精密形状測定装置であって、主支持架台5の内部に副支持架台6を配置するとともに、該副支持架台6の上下部を前記主支持架台5に対して鉛直方向に回動軸芯を持つ十字バネ7,8でそれぞれ連結してヨーイング軸を形成し、前記主支持架台5に対して副支持架台6をヨーイング可能とし、被測定面の短辺がフィゾー型干渉計4の参照面2の直径よりも小さく且つ長辺が参照面の直径より大きい被測定物1と、基準平面ミラー3とをフィゾー型干渉計4の参照面2に対して略平行に並べるとともに、前記被測定物1を前記副支持架台6の載置板9上にXステージ10を介して保持し、前記基準平面ミラー3を前記副支持架台6の載置板9上に設けた少なくともヨーイング可能な傾斜ステージ11上に保持した配置としたものである。
ここで、図1及び図3に示すように、前記被測定物1(X線ミラー)の長手方向をX軸とし、該X軸に直交する水平方向をY軸とし、鉛直方向をZ軸としている。また、Z軸を中心とした回転をヨーイング(θで示している)、X軸を中心とした回転をローリング(φで示している)とする。尚、前記フィゾー型干渉計の光軸はY軸である。
上述の基本構造としたことにより、前記主支持架台5に対して副支持架台6をヨーイング操作するとともに、前記傾斜ステージ11を操作して前記ステップ1におけるX線ミラー1と基準平面ミラー3の初期アライメントを行い、前記Xステージ10を操作して前記ステップ2におけるX線ミラー1の平行移動を行い、前記主支持架台5に対して副支持架台6をヨーイング操作して前記ステップ3におけるX線ミラー1と基準平面ミラー3を同時に傾斜させ、前記傾斜ステージ11を操作して前記ステップ4における基準平面ミラー3の傾斜角度を初期状態に復帰させることになる。尚、前記X線ミラー1と基準平面ミラー3の反射面は略同じ鉛直面になるように平行に接近させて上下に配置し、フィゾー型干渉計で同時に計測できるようにする。
図2に基づいて、細長いX線ミラー1の反射面の全体形状を測定する手順を簡単に説明する。本発明では測定対象が1m程度までの長尺のX線ミラー1であるので、測定対象のX線ミラー1及び基準平面ミラー3の傾斜操作と、X線ミラー1の長手方向への行移動操作によって、長手方向の一端部から他端部へ順次部分形状データと、隣接する部分形状データ間の相対角度を取得していくことになる。具体的には、以下のステップで形状測定を行う。
(ステップ1)
先ず、X線ミラー1の一端を含む端部領域をフィゾー型干渉計で測定できるように、Xステージ10の可動台12の位置を初期設定した後、副支持架台6をヨーイング操作してフリンジが適度の間隔で現われるようにし、初期座標を決定する。それから、傾斜ステージ11を操作して基準平面ミラー3がヌルフリンジ状態になるように調節する。その状態で、フィゾー型干渉計4で同時に計測してX線ミラー1の部分形状データとヌルフリンジ状態の基準平面ミラー3の角度情報とを取得する(図3(a)参照)。図中符号Mは、X線ミラー1の部分形状データを取得した範囲を示している。尚、X線ミラー1と基準平面ミラー3の反射面は略同じ高さ位置にあるが、表示上の理由で上下にずらして示している。以下同様である。
(ステップ2)
前記ステップ1の配置で、フィゾー型干渉計の視野内でX線ミラー1の部分形状データを取得し終わると、Xステージ10を操作してX線ミラー1のみを平行移動させ、ステップ1で測定した領域に隣接する領域を視野内に位置させる(図3(b)参照)。
(ステップ3)
測定しようとする領域のフリンジが観察可能な状態になるように、副支持架台6をヨーイング操作して、フィゾー型干渉計4の参照面2に対してX線ミラー1と基準平面ミラー3を同時に傾斜させて、先行取得した部分形状データに隣接する測定領域の部分形状データと、基準平面ミラー3の傾斜角度を取得する(図3(c)参照)。
(ステップ4)
基準平面ミラー3の傾斜角度が一定値を超えた場合又は常に、該基準平面ミラー3のみを逆方向に傾斜させてヌルフリンジ状態に復帰させ、その復帰させた傾斜角度を先行取得した部分形状データとの相対角度として取得する(図3(d)参照)。ここで、ステップ3とステップ4で測定した傾斜角度は、X線ミラー1を傾斜させる毎に基準平面ミラー3をヌルフリンジ状態に復帰させる場合には一致するが、複数回X線ミラー1を傾斜させた後、基準平面ミラー3の傾斜角度が一定値を超えたときにヌルフリンジ状態に復帰させる場合には、複数回のX線ミラー1の傾斜角度の和が本ステップ4で測定した傾斜角度に一致する。従って、原理的にはステップ3で測定する個々の部分形状データに対応する傾斜角度のみで良いが、本ステップ4で測定した傾斜角度を利用することにより、角度測定における累積誤差を少なくすることができる。
前記ステップ1〜4を繰り返して、X線ミラー1の全長に渡って部分形状データと、隣接する部分形状データ間の相対角度を測定する。
(ステップ5)
隣接する部分形状データを前記相対角度と重合領域の一致度を利用してスティッチング処理をして全体形状を形成する。ここで、得られた全体形状のデータは、X線ミラー1の反射面を修正、仕上げ加工するときのNCデータとなる。
ここで、前記ステップ1において、フィゾー型干渉計4の視野内で前記X線ミラー1の傾斜角度若しくは曲率が大きくて形状データを取得できない領域がある場合、前記ステップ2を実行しないでステップ3とステップ4を繰り返して、フィゾー型干渉計4の視野内の略全域で部分形状データを取得する。その後に、ステップ2を実行して次の領域の測定を実行するのである。
次に、図3〜図19に基づいて、本発明の超精密形状測定装置の詳細を説明する。図3は、本発明の装置の全体斜視図であり、装置全体が防振台13の上に構築されている。尚、防振台13の下部構造は省略している。先ず、前記防振台13の上にYテージ14が設けられ、その上に前記主支持架台5を設置している。前記防振台13には前記フィゾー型干渉計4が保持台15を介して設置されており、前記Yテージ14を操作することにより、参照面2とX線ミラー1及び基準平面ミラー3との距離を大まかに調節し、微調節はフィゾー型干渉計4に備わっている調節機能で行う。
図3〜図5に示すように、前記主支持架台5は、上板16と下板17を複数の主支柱18,…で上下に間隔を隔てて固定した剛構造であり、前記副支持架台6は、前記主支持架台5の上板16と下板17の間に収まる大きさを有し、天板19と前記載置板9を複数の副支柱20,…で上下に間隔を隔てて固定した剛構造である。そして、前記主支持架台5の上板16の下面に固定した固定体21と前記副支持架台6の天板19との上面に固定した可動体22の間を前記十字バネ7で連結するとともに、前記主支持架台5の下板17の上面に固定した固定体23と前記副支持架台6の載置板9の下面に固定した可動体24の間を前記十字バネ8で連結し、リニアアクチュエータ25の本体部25Aを前記主支持架台5に固定するとともに、押圧部25Bを前記副支持架台6に固定した可動体24の側面に圧接して、ヨーイング駆動するのである。尚、前記リニアアクチュエータ25による副支持架台6のヨーイング駆動は、前記主支持架台5の上板16の下面側で行ってもよい。
ここで、図6〜8に示すように、前記固定体21、可動体22、固定体23及び可動体24は、それぞれ二つの部材を直交状態で連結して強度を高め、それぞれには鉛直方向に向いた直角エッジが形成され、該直角エッジを利用して前記十字バネ7,8を取付けるのである。前記十字バネ7,8は、図9に示すように、複数の板バネ26,…を交互に直交させて上下に配置し、両端部をそれぞれ固定板27で挟んで前記固定体21、可動体22、固定体23及び可動体24の対応面にボルト止めする。また、図6に示すように、前記主支持架台5の上板16の下面に固定した固定体21の上部で前記十字バネ7の近傍部分には切欠部28を形成し、また前記副支持架台6の載置板9の下面に固定した可動体24の上部で前記十字バネ8の近傍部分にも切欠部29を形成し、前記上板16の下面と十字バネ7の間と前記載置板9の下面と十字バネ8の間にそれぞれ空間を設けている。また、前記リニアアクチュエータ25の本体部25Aは、前記載置板9の上面に突設した取付台30に固定し、該取付台30から突出したリニアアクチュエータ25の押圧部25Bを前記副支持架台6に固定した可動体24の側面に当接し、該取付台30と可動体24とを引張コイルバネ31で引き付けて、常に押圧部25Bが可動体24の側面に点接触している状態を維持する。
前記副支持架台6には、重量のある装置の主要部分が組み込まれるため、全体の重量は約200kgにもなり、前記十字バネ7,8に過大な荷重が加わるので、それを低減するために圧縮コイルバネによる荷重軽減機構が設けられている(図3及び図4参照)。図10は、主支持架台5と副支持架台6及び圧縮コイルバネによる荷重軽減機構のみを取り出して示したものであり、副支持架台6の上部に上荷重軽減機構32と下部に下荷重軽減機構33が設けられている。
前記上荷重軽減機構32は、図10及び図11に示すように、前記主支持架台5の上板16の下面近傍に前記副支持架台6の天板19の上面に4本の支持脚34,…で固定した吊板35を接触することなく配置し、該吊板35から上方に前記ヨーイング軸と同心状に垂設した吊支棒36を前記主支持架台5の上板16の開口37を通して上方へ貫通させるとともに、該開口37の上部に前記ヨーイング軸と同心状に設けたスラスト軸受38と前記吊支棒36の先端に設けた係止リング39との間に圧縮コイルバネ40を配置して前記副支持架台6の荷重を上方から吊り下げて支持するものである。ここで、前記吊支棒36の先端にはネジを切っており、これにナット41を螺合して圧縮コイルバネ40の弾性力を調節できるようにしている。前記吊板35は、前記切欠部28による空間に位置し、前記各支持脚34は、前記固定体21及び可動体22と干渉しない位置に設けている。
前記下荷重軽減機構33は、図10及び図12に示すように、前記副支持架台6の載置板9の下面に、前記ヨーイング軸と同心状に設けたスラスト軸受42を介して押上板43を回転可能に配置するとともに、前記主支持架台5の下板17と該押上板43の間に複数の圧縮コイルバネ44,…を配置して前記副支持架台6の荷重を下方から支持するものである。更に詳しくは、前記押上板43の4隅には上下に貫通させてスリーブ45を設け、前記下板17の上面に垂設したガイド棒46を前記スリーブ45にスライド可能に嵌挿し、前記スリーブ45とガイド棒46を巻回するように前記圧縮コイルバネ44を配置している。また、前記ガイド棒46の上端は前記載置板9に形成した逃がし孔47内に遊挿されている。前記押上板43は、前記切欠部29による空間に位置し、前記各圧縮コイルバネ44は、前記固定体23及び可動体24と干渉しない位置に設けている。更に、前記主支持架台5の下板17と副支持架台6の載置板9の間には、本装置の搬送時の振動を防止するために、前記下板17と載置板9を固定する4本の仮支持棒48,…が下荷重軽減機構33の外側で前記固定体23及び可動体24と干渉しない位置に設けている。
そして、前記副支持架台6に組み込む装置主要部は、図13〜図19に示されている。先ず図13〜図15に示すように、前記副支持架台6の載置板9の上面には、X軸方向に延びた剛性の高いステージ支持部材49の中央部を載置して固定し、該ステージ支持部材49の上に前記Xステージ10と後述のX方向リニア駆動機構50を平行に設置している。前記Xステージ10の可動台12にX軸方向に延びる基台51を固定し、該基台51の一側部にX軸方向に間隔を隔てて立設した一対の支持アーム52,52の上端部に、ヒンジ部53Aの屈曲中心線をX軸方向に向けて固定した弾性ヒンジ53を介して一対の可動アーム54,54を吊下げ状態で連結するとともに、該両可動アーム54,54の下端に前記基台51に接触しないように被測定物ホルダー55を固定し、更に前記可動台12にリニアアクチュエータ56の本体部56Aを固定するとともに、前記被測定物ホルダー55の中間部に設けた受部57にリニアアクチュエータ56の押圧部56Bを圧接し、被測定物ホルダー55に保持した被測定物(X線ミラー1)をローリング可能としている。ここで、前記弾性ヒンジ53は、前記十字バネの構成部材と同様に板バネと一対の固定板で構成しているが、一体の削り出し部材を用いてもよい。また、前記被測定物ホルダー55の上面には、X線ミラー1をベッセル点で3点支持できるように3個のピンを突設しているとともに、X線ミラー1の短辺、長辺を当止し、位置を微調節できる機構を設けている。
更に、図13及び図14に示すように、前記載置板9には前記Xステージ10と平行してX方向リニア駆動機構50を設けるとともに、該リニア駆動機構50で前記可動台12と該可動台12上の機構部の荷重とにバランスするカウンターウエイト58を前記可動台12と逆方向に駆動し、前記載置板9上の重心の変動を抑制している。具体的には、前記リニア駆動機構50は、前記ステージ支持部材49の上に敷設したレール59,59と該レール59,59上を転動する可動体60と、前記レール59の外側に併設したモータ駆動の送りねじ機構61とからなり、前記可動体60にカウンターウエイト58の中央部を固定し、送りねじ機構61でX軸方向に移動できるようにしている。そして、前記Xステージ10の可動台12の動きと逆方向にカウンターウエイト58を駆動し、X軸方向に対する重心位置が常に一定になるようにしている。理想的には、前記副支持架台6の重心位置が十字バネ7,8によるヨーイング軸に一致することであるが、被測定対象のX線ミラー1のサイズが異なるので、正確に重心を一致させることはできないが、ダミーの物体を被測定物ホルダー55に装着して重量バランスを補正することが可能である。
次に、図16〜図19に基づいて前記基準平面ミラー3の傾斜ステージ11を説明する。前記傾斜ステージ11は、前記フィゾー型干渉計4の参照面2と対向する位置で前記載置板9上に配置し、X軸方向に間隔を隔てて前記載置板9に固定した一対の倒L字形の支持アーム62,62の先端部間に支持板63を固定し、該支持板63の上位に平行に配置した傾動板64の一端部をヒンジ部65Aの屈曲中心線をX軸方向に向けて固定した弾性ヒンジ65を介して連結するとともに、前記支持アーム62に本体部66Aを固定したリニアアクチュエータ66の押圧部66Bを前記傾動板64の遊端側下面に圧接してローリング可能とし、更に前記傾動板64の上面に固定した垂直板67の一端部にヒンジ部68Aの屈曲中心線をZ軸方向に向けた弾性ヒンジ68を介してミラー支持部材69を連結するとともに、前記垂直板67に本体部70Aを固定したリニアアクチュエータ70の押圧部70Bを前記ミラー支持部材69の背面に延設した受部71に圧接し、該ミラー支持部材69に保持した基準平面ミラー3をヨーイング可能とし、前記弾性ヒンジ65,68のヒンジ部65A,68Aの屈曲中心線が前記基準平面ミラー3の反射面中心を通るように設定している。ここで、前記リニアアクチュエータ66の本体部66Aは、前記支持板63の後方で前記支持アーム62,62間に固定した取付板72に固定するとともに、前記垂直板67の他端部と該取付板72を引張コイルバネ73で引き付けて、前記押圧部66Bが傾動板64の下面に点接触している状態を維持する。同様に、前記垂直板67の他端部と受部71を引張コイルバネ74で引き付けて、前記押圧部66Bが傾動板64の下面に点接触している状態を維持する。
そして、前記弾性ヒンジ65,68のヒンジ部65A,68Aの屈曲中心線から半径方向に伸ばした線に直交する接線方向に、前記リニアアクチュエータ66,70の押圧部66B,70Bの駆動方向を設定し、該押圧部66B,70Bと前記傾動板64及び受部71を常に点接触させることが好ましい。
また、各駆動部には、変位を検出する変位センサーを設けるとともに、ストッパーを設けて十字バネや弾性ヒンジを保護している。また、変位量を高精度に計測できる変位センサーを用いることにより、例えば、検出感度が0.01μmの変位センサーを用い、前記ヒンジ部から変位センサーまでの距離を20〜30cmとすれば、傾斜角度をサブμradの精度で検出することができる。
ここで、前記リニアアクチュエータ25,56,66,70は、0.0125μm/パルス(フルステップ)のものを用いており、ヒンジ部から20〜30cm離れた位置で駆動するので、分解能は約0.06μradである。但し、ステッピングモータ駆動のリニアアクチュエータを用いれば、ステップを分割してフルステップを1/100ステップに設定を変えれば、nradのレベルの角度調節が可能になる能力を秘めている。
1 被測定物(X線ミラー)、 2 参照面、
3 基準平面ミラー、 4 フィゾー型干渉計、
5 主支持架台、 6 副支持架台、
7 十字バネ、 8 十字バネ、
9 載置板、 10 Xステージ、
11 傾斜ステージ、 12 可動台、
13 防振台、 14 Yテージ、
15 保持台、 16 上板、
17 下板、 18 主支柱、
19 天板、 20 副支柱、
21 固定体、 22 可動体、
23 固定体、 24 可動体、
25 リニアアクチュエータ、 25A 本体部、
25B 押圧部、 26 板バネ、
27 固定板、 28 切欠部、
29 切欠部、 30 取付台、
31 引張コイルバネ、 32 上荷重軽減機構、
33 下荷重軽減機構、 34 支持脚、
35 吊板、 36 吊支棒、
37 開口、 38 スラスト軸受、
39 係止リング、 40 圧縮コイルバネ、
41 ナット、 42 スラスト軸受、
43 押上板、 44 圧縮コイルバネ、
45 スリーブ、 46 ガイド棒、
47 逃がし孔、 48 仮支持棒、
49 ステージ支持部材、 50 リニア駆動機構、
51 基台、 52 支持アーム、
53 弾性ヒンジ、 53A ヒンジ部、
54 可動アーム、 55 被測定物ホルダー、
56 リニアアクチュエータ、 56A 本体部、
56B 押圧部、 57 受部、
58 カウンターウエイト、 59 レール、
60 可動体、 61 送りねじ機構、
62 支持アーム、 63 支持板、
64 傾動板、 65 弾性ヒンジ、
65A ヒンジ部、 66 リニアアクチュエータ、
66A 本体部、 66B 押圧部、
67 垂直板、 68 弾性ヒンジ、
68A ヒンジ部、 69 ミラー支持部材、
70 リニアアクチュエータ、 70A 本体部、
70B 押圧部、 71 受部、
72 取付板、 73 引張コイルバネ、
74 引張コイルバネ。

Claims (9)

  1. 略鉛直に配した被測定物の被測定面を、光軸を略水平に向けたフィゾー型干渉計で計測し、被測定面よりも狭い領域の部分形状データを互に隣接するデータ間に重合領域を設けて複数取得するとともに、隣接する部分形状データ間の相対角度を取得した後、隣接する部分形状データを前記相対角度と重合領域の一致度を利用してスティッチング処理を施し、被測定面の全体形状を測定するための超精密形状測定装置であって、
    主支持架台の内部に副支持架台を配置するとともに、該副支持架台の上下部を前記主支持架台に対して鉛直方向に回動軸芯を持つ十字バネでそれぞれ連結してヨーイング軸を形成し、前記主支持架台に対して副支持架台をヨーイング可能とし、
    被測定面の短辺がフィゾー型干渉計の参照面の直径よりも小さく且つ長辺が参照面の直径より大きい被測定物と、基準平面ミラーとをフィゾー型干渉計の参照面に対して略平行に並べるとともに、前記被測定物を前記副支持架台の載置板上にXステージを介して保持し、前記基準平面ミラーを前記副支持架台の載置板上に設けた少なくともヨーイング可能な傾斜ステージ上に保持した配置としたことを特徴とする超精密形状測定装置。
  2. 前記主支持架台は、上板と下板を複数の主支柱で上下に間隔を隔てて固定した剛構造であり、前記副支持架台は、前記主支持架台の上板と下板の間に収まる大きさを有し、天板と前記載置板を複数の副支柱で上下に間隔を隔てて固定した剛構造であり、前記主支持架台の上板の下面に固定した固定体と前記副支持架台の天板との上面に固定した可動体の間を前記十字バネで連結するとともに、前記主支持架台の下板の上面に固定した固定体と前記副支持架台の載置板の下面に固定した可動体の間を前記十字バネで連結し、リニアアクチュエータの本体部を前記主支持架台に固定するとともに、押圧部を前記副支持架台に固定した可動体の側面に圧接して、ヨーイング駆動してなる請求項1記載の超精密形状測定装置。
  3. 前記主支持架台の上板の下面近傍に前記副支持架台の天板の上面に固定した吊板を接触することなく配置し、該吊板から上方に前記ヨーイング軸と同心状に垂設した吊支棒を前記主支持架台の上板の開口を通して上方へ貫通させるとともに、該開口の上部に前記ヨーイング軸と同心状に設けたスラスト軸受と前記吊支棒の先端に設けた係止リングとの間に圧縮コイルバネを配置して前記副支持架台の荷重を上方から支持してなる請求項2記載の超精密形状測定装置。
  4. 前記副支持架台の載置板の下面に、前記ヨーイング軸と同心状に設けたスラスト軸受を介して押上板を回転可能に配置するとともに、前記主支持架台の下板と該押上板の間に複数の圧縮コイルバネを配置して前記副支持架台の荷重を下方から支持してなる請求項2記載の超精密形状測定装置。
  5. 前記Xステージの可動台にX軸方向に延びる基台を固定し、該基台の一側部にX軸方向に間隔を隔てて立設した一対の支持アームの上端部に、ヒンジ部の屈曲中心線をX軸方向に向けて固定した弾性ヒンジを介して一対の可動アームを吊下げ状態で連結するとともに、該両可動アームの下端に前記基台に接触しないように被測定物ホルダーを固定し、前記可動台にリニアアクチュエータの本体部を固定するとともに、前記被測定物ホルダーの中間部に設けた受部にリニアアクチュエータの押圧部を圧接し、被測定物ホルダーに保持した被測定物をローリング可能としてなる請求項1〜4何れか1項に記載の超精密形状測定装置。
  6. 前記載置板には前記Xステージと平行してX方向リニア駆動機構を設けるとともに、該リニア駆動機構で前記可動台と該可動台上の機構部の荷重とにバランスするカウンターウエイトを前記可動台と逆方向に駆動し、前記載置板上の重心の変動を抑制してなる請求項5記載の超精密形状測定装置。
  7. 前記基準平面ミラーの傾斜ステージは、前記フィゾー型干渉計の参照面と対向する位置で前記載置板上に配置し、X軸方向に間隔を隔てて前記載置板に固定した一対の倒L字形の支持アームの先端部間に支持板を固定し、該支持板の上位に平行に配置した傾動板の一端部をヒンジ部の屈曲中心線をX軸方向に向けて固定した弾性ヒンジを介して連結するとともに、前記支持アームに本体部を固定したリニアアクチュエータの押圧部を前記傾動板の遊端側下面に圧接してローリング可能とし、更に前記傾動板の上面に固定した垂直板の一端部にヒンジ部の屈曲中心線をZ軸方向に向けた弾性ヒンジを介してミラー支持部材を連結するとともに、前記垂直板に本体部を固定したリニアアクチュエータの押圧部を前記ミラー支持部材の背面に延設した受部に圧接し、該ミラー支持部材に保持した基準平面ミラーをヨーイング可能とし、前記弾性ヒンジのヒンジ部の屈曲中心線が前記基準平面ミラーの反射面中心を通るように設定してなる請求項1〜6何れか1項に記載の超精密形状測定装置。
  8. 前記弾性ヒンジのヒンジ部の屈曲中心線から半径方向に伸ばした線に直交する接線方向に、前記リニアアクチュエータの押圧部の駆動方向を設定し、該押圧部と前記受部を常に点接触させてなる請求項5又は7記載の超精密形状測定装置。
  9. 各駆動部に変位を検出する変位センサーを設けてなる請求項1〜8何れか1項に記載の超精密形状測定装置。
JP2014206784A 2014-10-07 2014-10-07 超精密形状測定装置 Active JP6368971B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014206784A JP6368971B2 (ja) 2014-10-07 2014-10-07 超精密形状測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014206784A JP6368971B2 (ja) 2014-10-07 2014-10-07 超精密形状測定装置

Publications (3)

Publication Number Publication Date
JP2016075603A JP2016075603A (ja) 2016-05-12
JP2016075603A5 JP2016075603A5 (ja) 2017-09-28
JP6368971B2 true JP6368971B2 (ja) 2018-08-08

Family

ID=55949829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014206784A Active JP6368971B2 (ja) 2014-10-07 2014-10-07 超精密形状測定装置

Country Status (1)

Country Link
JP (1) JP6368971B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6768442B2 (ja) * 2016-10-12 2020-10-14 株式会社キーエンス 形状測定装置
CN115468864B (zh) * 2022-10-31 2023-03-24 核工业西南物理研究院 一种高温超导带材弯曲特性测试装置及其测试方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0894779A (ja) * 1994-09-28 1996-04-12 Mitsubishi Chem Corp 微小回転ステージ
JPH1062136A (ja) * 1996-08-22 1998-03-06 Nikon Corp 形状測定方法及び形状測定装置
JP2000338430A (ja) * 1999-05-28 2000-12-08 Mitsubishi Electric Corp ミラー傾動機構
JP2005157051A (ja) * 2003-11-27 2005-06-16 Fuji Photo Film Co Ltd 直動移動体駆動装置
JP5070370B2 (ja) * 2007-05-23 2012-11-14 株式会社ジェイテック 超精密形状測定方法及びその装置

Also Published As

Publication number Publication date
JP2016075603A (ja) 2016-05-12

Similar Documents

Publication Publication Date Title
Henselmans et al. The NANOMEFOS non-contact measurement machine for freeform optics
JP3210963B2 (ja) ボールステップゲージ
CN101251435B (zh) 大型光学镜面子孔径拼接工作站
CN106802135B (zh) 自由曲面光学元件的在位检测装置及检测方法
JP5961264B2 (ja) 透明部品用運動学的固定具
CN106164641A (zh) 光学元件的测定用夹具、偏心测定装置以及偏心测定方法
JP6368971B2 (ja) 超精密形状測定装置
JP4682082B2 (ja) X線集光装置
CN113203553B (zh) 一种透镜中心误差测定系统及测定方法
Good et al. Performance verification testing for HET wide-field upgrade tracker in the laboratory
Spaan et al. Isara 400 ultra-precision CMM
JP5070370B2 (ja) 超精密形状測定方法及びその装置
JP3265360B2 (ja) 反射光学系の支持調整装置
JP6800442B2 (ja) 三次元形状計測システム
Bos et al. Nanometre-accurate form measurement machine for E-ELT M1 segments
CN109551520B (zh) 高效率六自由度并联机器人精密测试装置
Yellowhair Advanced technologies for fabrication and testing of large flat mirrors
JP2011145135A (ja) レンズ中心厚測定器およびレンズ中心厚測定方法
TWI375139B (ja)
EP2754992A1 (en) Optical profilometer
JP3210965B2 (ja) ボールステップゲージのボール間隔測定方法
Owens et al. Constellation-X SXT optical alignment Pathfinder 2: design, implementation, and alignment
JP2017044633A (ja) 形状計測装置、形状計測方法及び部品の製造方法
Ribó et al. The Fizeau System Instrument at ALBA Optics Laboratory
Assoufid et al. Development of a Linear Stitching Interferometric System for Evaluation of Very Large X‐ray Synchrotron Radiation Substrates and Mirrors

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170807

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180621

R150 Certificate of patent or registration of utility model

Ref document number: 6368971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350