JP6361276B2 - 光多重装置及び光ofdm信号の生成方法 - Google Patents

光多重装置及び光ofdm信号の生成方法 Download PDF

Info

Publication number
JP6361276B2
JP6361276B2 JP2014101374A JP2014101374A JP6361276B2 JP 6361276 B2 JP6361276 B2 JP 6361276B2 JP 2014101374 A JP2014101374 A JP 2014101374A JP 2014101374 A JP2014101374 A JP 2014101374A JP 6361276 B2 JP6361276 B2 JP 6361276B2
Authority
JP
Japan
Prior art keywords
optical
signal
subcarrier
power
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014101374A
Other languages
English (en)
Other versions
JP2015220528A (ja
Inventor
亮 岡部
亮 岡部
渡辺 茂樹
茂樹 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2014101374A priority Critical patent/JP6361276B2/ja
Priority to EP15160766.0A priority patent/EP2945302B1/en
Priority to US14/672,527 priority patent/US9602201B2/en
Publication of JP2015220528A publication Critical patent/JP2015220528A/ja
Application granted granted Critical
Publication of JP6361276B2 publication Critical patent/JP6361276B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5057Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0298Wavelength-division multiplex systems with sub-carrier multiplexing [SCM]

Description

本件は、光多重装置及び光OFDM信号の生成方法に関する。
通信の需要の増加に伴って、光ファイバの伝送帯域が最大限に活用されるように、光信号を高密度に多重する技術が研究されている。このような技術として、例えば、ナイキスト波長多重方式やコヒーレント光直交周波数分割多重(CO-OFDM: Coherent Optical-Orthogonal Frequency Divisional Multiplexer)方式が存在する。
CO−OFDM方式は、周波数軸上でスペクトル同士が隣接するサブキャリア信号間の直交性を利用することにより、サブキャリア信号間の干渉を抑制する。このため、CO−OFDM方式は、狭い周波数帯域に高密度でサブキャリア信号を多重することができるので、周波数利用効率の理論限界値(例えば、2値符号(強度変調方式)の場合は1(bit/Hz))の実現手段として期待されている。
CO−OFDM方式により多重された多重光信号(光OFDM信号)の生成には、隣接するサブキャリア信号の中心周波数の間隔が変調のシンボルレート(ボーレート)に等しくなるように、各サブキャリア信号の中心周波数を高精度に制御することが求められる。
これに対し、例えば非特許文献1には、高精度な周波数制御手段として、SSB(Single Side Band)変調と、光ファイバ内の非線形光学効果である相互位相変調(XPM: Cross(X) Phase Modulation)とを利用する点が記載されている。
Robert Elschnert, Thomas Richtert, Tomoyuki Kato, Shigeki Watanabe, Colja Schubert, "Distributed Coherent Optical OFDM Multiplexing Using Fiber Frequency Conversion and Free-Running Lasers", OFC/NFOEC2012, PDP5C.8, 2012.
光OFDM信号を生成するには、さらに、隣接するサブキャリア信号間の直交性を保証するように、各サブキャリア信号のデータシンボルのタイミング、つまり変調タイミングの高精度な制御も求められる。サブキャリア信号間で変調タイミングに差分が生ずると、スペクトルが重複する周波数領域において隣接サブキャリア信号間の干渉が発生し、通信品質が低下する。
一方、無線通信に使用される電気的なOFDM信号は、建物などによる電波の反射(マルチパス)の影響を低減するため、サブキャリア信号のシンボルレートが、光OFDM信号より低く抑えられている。このため、変調タイミング及び周波数の制御は、数GHz帯までの周波数信号であれば駆動できるDSP(Digital Signal Processor(デジタル信号処理回路))の処理能力でも可能である。OFDM信号を生成手段として、DSPを用いることにより、ハードウェアの規模が低減される。
しかし、CO−OFDM方式では、有限な光ファイバの伝送帯域を最大限に活用して大容量伝送を実現するため、無線通信の場合とは異なり、例えば数十GHzの高いシンボルレートで変調が行われる。このため、変調タイミング及び周波数の制御に要求される処理能力は、DSPの処理能力を上回り、DSPを用いて光OFDM信号を生成することは困難である。
これに対し、高精度な周波数の制御手段として、例えばXPM及びSSB変調などが存在するが、サブキャリア信号の変調タイミングの高精度な制御手段は存在しない。したがって、サブキャリア信号同士の干渉を抑制することができないという問題がある。
そこで本件は上記の課題に鑑みてなされたものであり、サブキャリア信号同士の干渉が抑制された光OFDM信号を生成する光多重装置及び光OFDM信号の生成方法を提供することを目的とする。
本明細書に記載の光多重装置は、第1サブキャリア信号に隣接するように第2サブキャリア信号を多重することにより、光OFDM信号を生成する装置であり、前記光OFDM信号から、前記第1サブキャリア信号及び前記第2サブキャリア信号のスペクトル同士のクロスポイントの周波数成分を含む所定の帯域幅の光成分を抽出して、前記光成分のパワーを検出する検出部と、前記検出部が検出したパワーが最小値となるように、または所定の閾値を下回るように、前記第2サブキャリア信号のデータシンボルのタイミングを制御する制御部とを有する。
本明細書に記載の光OFDM信号の生成方法は、第1サブキャリア信号に隣接するように第2サブキャリア信号を多重することにより、光OFDM信号を生成する光OFDM信号の生成方法において、前記光OFDM信号から、前記第1サブキャリア信号及び前記第2サブキャリア信号のスペクトル同士のクロスポイントの周波数成分を含む所定の帯域幅の光成分を抽出し、前記光成分のパワーを検出し、前記検出部が検出したパワーが最小値となるように、または所定の閾値を下回るように、前記第2サブキャリア信号のデータシンボルのタイミングを制御する方法である。
サブキャリア信号同士の干渉が抑制された光OFDM信号を生成できる。
光OFDM信号のスペクトルの一例を示す波形図である。 サブキャリア信号の一例を示す波形図である。 光OFDM信号の一例を示す波形図である。 隣接するサブキャリア信号のスペクトルの一例を示す波形図である。 データシンボルのタイミング差、及びタイミング差に対するクロスポイントのパワーの変化を示す図である。 光多重装置を用いた光伝送システムの一例を示す構成図である。 実施例に係る光多重装置の構成図である。 モニタ部の一例を示す構成図である。 データシンボルのタイミング差に対するクロスポイントのパワーの変化を、光フィルタの透過帯域ごとに示すグラフである。 光フィルタの減衰比に対するクロスポイントのパワーの変化を、光フィルタの透過帯域ごとに示すグラフである。 モニタ部の他例を示す構成図である。 モニタ部の他例を示す構成図である。 制御回路の一例を示す構成図である。 実施例に係る光OFDM信号の生成方法を示すフローチャートである。 変調タイミングの制御処理の一例を示すフローチャートである。 変調タイミングの制御処理の他例を示すフローチャートである。
(光OFDM信号の直交条件)
図1は、光OFDM信号のスペクトルの一例を示す波形図である。光OFDM信号は、搬送周波数(中心周波数)が相違する複数のサブキャリア信号S0〜S15を搬送光に多重して得られるマルチキャリア信号である。各サブキャリア信号S0〜S15は、周波数軸上、中心周波数の間隔(キャリア間隔)fで配置されている。なお、本例では、16波のサブキャリア信号S0〜S15を挙げるが、サブキャリア信号S0〜S15の数に限定はない。
スペクトル同士が周波数軸上で隣接するサブキャリア信号S0〜S15は、以下の式(1)〜(3)により表される直交条件を満たす。ここで、m,nは整数であり、T=1/fである。
Figure 0006361276
サブキャリア信号Sn(n=0,1,2,・・・,15)は、搬送周波数がnfであり、シンボル長T=1/fのデジタル信号である。時間t=0〜Tに存在する1シンボル分のサブキャリア信号Snの波形は、データシンボルの値an,bnを用いて、以下の式(4)により表される。
Figure 0006361276
図2は、サブキャリア信号Snの一例を示す波形図である。T=1/fであるので、シンボル長Tの間には、n周期分の正弦波が存在する。正弦波の振幅及び位相は、データシンボルの値an,bnに応じて、シンボルごとに変化する。
ベースバンドの光OFDM信号は、同一のタイミングでサブキャリア信号S0〜S15を合成することにより生成される。このため、ベースバンドの光OFDM信号の波形Sb(t)は、以下の式(5)のように、n=0〜N−1(N:整数(本例では16))とした式(4)の値の合計となる。
Figure 0006361276
図3は、光OFDM信号の一例を示す波形図である。波形Sb(t)は、搬送周波数nfが相違する複数のデジタル変調信号(n=0〜15)、つまりサブキャリア信号S0〜S15を組み合わせたものであり、マルチキャリア変調信号の形態を有する。光OFDM信号は、中心周波数の間隔fが一定であるだけでなく、サブキャリア信号間の干渉を抑制するためには、サブキャリア信号S0〜S15に変調されたデータシンボルのタイミングがそろっていることが条件となる。
また、光OFDM信号は、使用可能な周波数帯域に応じて、周波数変換される。周波数変換された光OFDM信号の波形S(t)は、以下の式(6)で表される。
Figure 0006361276
ここで、fcは、搬送帯域における基準となる周波数であり、サブキャリア信号S0〜S15の搬送周波数fc〜fc+(N−1)fのうち、最も低い搬送周波数である。
図4は、隣接するサブキャリア信号Sk,Sk+1(k:整数)のスペクトルの一例を示す波形図である。図4には、一例として、中心周波数がfc+kfであるサブキャリア信号Sk、及び中心周波数がfc+(k+1)fであるサブキャリア信号Sk+1が示されている。
各サブキャリア信号Sk,Sk+1のスペクトルは、中心周波数fc+kf,fc+(k+1)fを中心とした対称な波形を有する。各サブキャリア信号Sk,Sk+1のパワーは、中心周波数fc+kf,fc+(k+1)fから離れるにつれて、周期fで振動しながら減少する。
このため、一方のサブキャリア信号Sk,Sk+1の中心周波数fc+kf,fc+(k+1)fにおいて、他方のサブキャリア信号Sk+1,Skの大きさは0となる。すなわち、サブキャリア信号Sk,Sk+1の一方の大きさが、最大値であるとき、他方の大きさは、0(最小値)となる。これにより、サブキャリア信号Sk,Sk+1同士の干渉が抑制される。
しかし、上記の中心周波数に関する直交条件が満たされても、サブキャリア信号Sk,Sk+1間にデータシンボルのタイミングの差(変調タイミングの差)が存在すると、サブキャリア信号Sk,Sk+1同士が干渉する。特に、スペクトル同士の重複が顕著な中心周波数fc+kf,fc+(k+1)f間の領域A1では、干渉光が顕著に発生する。なお、スペクトル同士の重複がほとんどない中心周波数fc+kf,fc+(k+1)fの外側の領域A2では、干渉光はほとんどない。
干渉光が発生すると、領域A1のうち、サブキャリア信号Sk,Sk+1のスペクトル同士のクロスポイント(交差する位置)Pのパワーが、顕著に増加する。一方、干渉光が発生していない場合、クロスポイントPのパワーは、最小値となる。上述したように、干渉光は、変調タイミングの差に応じて生ずる。
図5(a)及び図5(b)には、データシンボルのタイミング差、及びタイミング差に対するクロスポイントのパワーの変化がそれぞれ示されている。図5(a)は、一例として、横軸を時間tとし、強度変調によりデータ「1」及び「0」(2進数)に変調されたサブキャリア信号Sk,Sk+1の波形を示す。サブキャリア信号Sk+1は、データシンボルのタイミングが、サブキャリア信号Skに対してΔtだけ遅れている。
図5(b)において、横軸は、周期Tで正規化したタイミング差Δt/Tを示し、縦軸は、クロスポイントPのパワー(dB)を示す。Δt/T=0の場合、つまりサブキャリア信号Sk,Sk+1間にデータシンボルのタイミングのずれがない場合、クロスポイントPのパワーは、最小値を示す。一方、Δt/T>0の場合、つまりサブキャリア信号Sk,Sk+1間にデータシンボルのタイミングのずれがある場合、クロスポイントPのパワーは、タイミング差Δtの絶対値が大きいほど、大きい値を示す。
(光多重装置)
実施例の光多重装置は、上記のクロスポイントPのパワーが最小値となるように変調タイミングを制御する。より具体的には、光多重装置は、変調タイミングを変化させつつ、クロスポイントPのパワーP,PX+1をサンプリングすることにより、クロスポイントPのパワーが最小値となる変調タイミングを検出する。また、他の実施例の光多重装置は、変調タイミングを変化させつつ、クロスポイントPのパワーP,PX+が所定の閾値Pthを下回る変調タイミングを検出する。これにより、サブキャリア信号同士の干渉が抑制された光OFDM信号が生成される。以下に光多重装置に関する構成を説明する。
図6は、光多重装置を用いた光伝送システムの一例を示す構成図である。光伝送システムは、搬送光源20と、クロック光源21と、合波部22と、伝送路(光ファイバ)R上に設けられた複数の光多重装置(#1〜#n)1a,1と、受信装置23とを有する。なお、図6において、グラフG1〜G4には、横軸を周波数fとした光スペクトルの一例が示されている。
搬送光源20は、周波数νの連続発振光(CW: Continuous Wave)を合波部22に出力する。連続発振光は、後段の光多重装置(#1〜#n)1a,1によりn波のサブキャリア信号S0〜SN-1が多重される搬送光として用いられる。
クロック光源21は、繰り返し周波数f/Nの正弦波で変調された周波数νCLKのパルス光を合波部22に出力する。パルス光は、後段の光多重装置(#1〜#n)1a,1がサブキャリア信号S0〜SN-1を同期して生成するための光クロック信号CLKとして用いられる。
合波部22は、例えば光カプラであり、搬送光ν及び光クロック信号CLKを合波する。搬送光ν及び光クロック信号CLKは、合波部22により多重されて伝送路Rに出力される(グラフG1参照)。
光多重装置(#1)1aは、搬送光νに、サブキャリア信号S0を多重する(グラフG2参照)。光多重装置(#2〜#n)1は、サブキャリア信号S0が多重された搬送光に、サブキャリア信号S1〜SN-1を順次に多重する(グラフG3、G4参照)。光多重装置(#2〜#n)1は、サブキャリア信号S0〜SN-1間において、周波数の直交関係が成立するように、サブキャリア信号S1〜SN-1を搬送光νにそれぞれ多重する。これにより、サブキャリア信号S0〜SN-1が多重された光OFDM信号が生成される。
受信装置23は、光OFDM信号から、サブキャリア信号S0〜SN-1を局発光でそれぞれ検波することにより受信する。検波手段としては、例えばホモダイン検波やヘテロダイン検波が挙げられる。
図7は、実施例に係る光多重装置(#j)1(j=2,3,・・・,n)の構成図である。図7において、グラフG10〜G16には、横軸を周波数fとした光スペクトルの一例が示されている。なお、図7において、実線は光信号の経路を示し、点線は電気信号の経路を示す。
光多重装置(#j)1は、光分岐部31,34,44と、光合波器32,47と、非線形光学媒質33と、クロック再生部41と、逓倍器42と、CW光源43と、光周波数シフト回路45と、光変調器46とを有する。光多重装置(#j)1は、さらに、タイミング調整回路51と、信号発生器52と、制御回路(制御部)53と、モニタ部(検出部)54とを有する。なお、光多重装置(#1)1aは、例えば他の光多重装置(#j)1から、光分岐部34、制御回路53、及びモニタ部54を除いた構成を有する。
光多重装置(#j)1は、サブキャリア信号(第1サブキャリア信号)Sj-1が多重された搬送光νと光クロック信号CLKの多重光が、伝送路Rから入力される(グラフG10参照)。サブキャリア信号Sj-1は、前段の光多重装置(#1〜#n−1)1a,1により搬送光に多重された信号である。光多重装置(#j)1は、サブキャリア信号Sj-1に隣接するサブキャリア信号(第2サブキャリア信号)Sjを搬送光νに多重する。すなわち、光多重装置(#j)1は、サブキャリア信号Sj-1に隣接するようにサブキャリア信号Sjを多重することにより、光OFDM信号を生成する。
光分岐部31は、例えば光スプリッタであり、伝送路Rから入力された多重光をクロック再生部41及び光合波部32にパワー分岐して出力する。クロック再生部41は、多重光から光クロック信号CLKを抽出し、周波数f/Nの電気的なクロック信号に変換して、逓倍器42に出力する。逓倍器42は、電気的なクロック信号の周波数をN倍することにより、周波数fの電気的なクロック信号を生成し、タイミング調整回路51及び光周波数シフト回路45に出力する。
CW光源43は、周波数νCWの連続発振光を光分岐部44に出力する(グラフG11参照)。サブキャリア信号Sjは、周波数νCWの連続発振光に基づいて生成される。光分岐部44は、例えば光スプリッタであり、連続発振光を光周波数シフト回路45及び光合波器47にパワー分岐して出力する(グラフG13参照)。
光周波数シフト回路45は、逓倍器42から入力された周波数fの電気的なクロック信号に基づいて、CW光源43から入力された周波数νCWの連続発振光を、周波数νCW+jfの連続発振光に変換する(グラフG12参照)。光周波数シフト回路45としては、SSB変調器や光周波数コム発生器が用いられる。
光周波数コム発生器は、例えばマッハツェンダ型変調器であり、光周波数コムを生成する。光周波数コムは、一定の周波数(f)間隔の光スペクトル群である。光周波数シフト回路45として光周波数コム発生器を用いる場合、例えば、光フィルタにより、光周波数コムから周波数νCW+jfの光成分を抽出することで、周波数νCWの連続発振光が、周波数νCW+jfの連続発振光に変換される。
タイミング調整回路51は、逓倍器42から入力された周波数fの電気的なクロック信号に基づいて、信号発生器52にデータ信号の出力タイミングを指示する。また、タイミング調整回路51は、制御回路53から入力された制御信号Scに基づいて、データ信号の出力タイミングに遅延時間を与える。より具体的には、タイミング調整回路51は、制御信号Scに基づいてクロック信号の位相を調整して、信号発生器52に出力する。
信号発生器52は、タイミング調整回路51から指示された出力タイミングに従って光変調器46にデータ信号を出力する。例えば、信号発生器52は、タイミング調整回路51から入力されたクロック信号に同期して送信対象のデータ信号を生成する。
光変調器46は、光周波数シフト回路45から入力された周波数νCW+jfの連続発振光を、信号発生器52から入力されたデータ信号に基づいて、周波数fに等しいシンボルレートBで変調する(グラフG14参照)。光変調器46は、有限な光ファイバ(伝送路R)の伝送帯域を最大限に活用して大容量伝送を実現するため、無線通信の場合とは異なり、例えば数十GHzの高いシンボルレートB(f)で変調を行う。
変調方式としては、強度変調、またはQPSK(Quadrature Phase Shift Keying)やQAM(Quadrature Amplitude Modulation)などの多値変調方式が挙げられる。光変調器46としては、例えばLN(LiNbO3)変調器などが用いられる。
光変調器46により変調された変調光は、光合波器47に入力され、CW光源43から出力された周波数νCWの連続発振光と合波される。これにより、周波数間隔jfの差周波を有する光ビート信号が生成される(グラフG15参照)。光ビート信号は、伝送路Rに接続された光合波器32に入力される。
サブキャリア信号Sj-1が多重された搬送光νと光ビート信号は、光合波器32により合波され、伝送路Rに接続された非線形光学媒質33に入力される。これにより、非線形光学媒質33内で相互位相変調(XPM: Cross Phase Modulation)が発生するため、サブキャリア信号Sj-1が多重された搬送光νに、周波数ν±jfのサブキャリア信号Sjが多重される(グラフG16参照)。相互位相変調は、非線形光学効果の1つであり、波長が異なる2つの光波が、非線形光学媒質33中を伝搬するとき、一方の光波の光強度に比例して、他方の光波に位相変化が生ずる現象である。
非線形光学媒質33は、例えば光ファイバである。光ファイバとしては、シングルモードファイバ、分散シフトファイバ、高非線形ファイバ、フォトニック結晶ファイバ、及びカルコゲナイドファイバなどが挙げられる。また、屈折率を高めるように、ゲルマニウムまたはビスマスなどがコアに添加されたファイバまたは導波路構造、及び、光パワー密度を高めるように、縮小されたモードフィールドを有するファイバまたは導波路構造も、非線形光学媒質33として用いられる。
また、非線形光学媒質33は、光ファイバに限定されず、他のデバイスを用いてもよい。例えば、量子井戸構造を有する半導体光アンプ、量子ドット半導体光アンプ、及びシリコンフォトニクス型導波路なども、非線形光学媒質33として用いられる。
このように、非線形光学媒質33に、光ビート信号を入力することにより、搬送光νに、サブキャリア信号Sjが、周波数νからビート信号の差周波jfだけ離れた位置に多重される。光ビート信号の差周波jfは、SSB変調器や光周波数コム発生器などの光周波数シフト回路45により、高精度に制御されている。このため、サブキャリア信号Sjは、中心周波数ν±jfを有し、隣接する他のサブキャリア信号Sj-1との間で周波数の直交関係が成立する。
上述したように、光OFDM信号は、サブキャリア信号S1〜SN-1間で周波数の直交関係が成立するだけでなく、データシンボルのタイミングがそろっていなければ、サブキャリア信号S1〜SN-1間で干渉が発生する。このため、モニタ部54及び制御回路53は、タイミング調整回路51に対し、上記のクロスポイントPのパワーに基づいて、変調タイミングのフィードバック制御を行う。
サブキャリア信号Sj-1,Sjが多重された搬送光νは、非線形光学媒質33に接続された光分岐部34により、次段の光多重装置(#j+1)1及びモニタ部54にパワー分岐されて出力される。モニタ部54は、サブキャリア信号Sj-1,SjのクロスポイントPのパワーを検出して、制御回路53に通知する。
制御回路53は、モニタ部54が検出したクロスポイントPのパワーに基づいて、タイミング調整回路51を制御する。すなわち、制御回路53は、モニタ部54が検出したクロスポイントPのパワーに応じ、サブキャリア信号Sjのデータシンボルのタイミング、つまり変調タイミングを制御する。より具体的には、制御回路53は、クロスポイントPのパワーが最小値になるように、データ信号の出力タイミングの遅延時間を示す制御信号Scをタイミング調整回路51に出力する。
図8は、モニタ部54の一例を示す構成図である。モニタ部54は、光フィルタ541と、フォトディテクタ542と、パワーメータ543とを有する。なお、図8において、グラフG21,G22には、横軸を周波数fとした光スペクトルの一例が示されている。
光フィルタ541には、光分岐部34から、サブキャリア信号Sj-1,Sjが多重された搬送光ν(グラフG21参照)が入力される。光フィルタ541は、搬送光ν(光OFDM信号)から、サブキャリア信号Sj-1,Sjのスペクトル同士のクロスポイントPの周波数成分を含む光成分Fu,Fd(グラフG22参照)を抽出する。光成分Fu,Fdは、シンボルレートB以下の帯域幅BWを有する。光成分光フィルタ541としては、薄膜蒸着型光フィルタやFBG(Fiber Bragg Grating)型光フィルタが用いられる。
光フィルタ541は、サブキャリア信号Sj-1,SjのクロスポイントPの周波数ν+(j−0.5)f、またはν−(j−0.5)fを中心周波数とする幅BWの透過帯域を有する。これにより、光フィルタ541は、搬送光νから上側波帯側の光成分Fuまたは下側波帯側の光成分Fdを抽出する。抽出された光成分Fu,Fdは、フォトディテクタ542に入力される。
フォトディテクタ542は、光フィルタ541により抽出された光成分Fu,Fdを検波して、電気信号に変換する。パワーメータ543は、フォトディテクタ542から入力された電気信号に基づいて、光成分Fu,Fdのパワーを検出する。すなわち、フォトディテクタ542は、光フィルタ541を透過した光成分Fu,Fdのパワーを検出する。検出されたパワーは、制御回路53に通知される。このように、モニタ部54は、光フィルタ541及びフォトディテクタ542を用いて、容易に光成分Fu,Fdのパワーを検出する。
上述したように、サブキャリア信号Sj-1,Sj間でデータシンボルのタイミング、つまり変調タイミングがそろっている場合、サブキャリア信号Sj-1,SjのクロスポイントPのパワーは、最小値となる(図5参照)。制御回路53は、パワーメータ543で検出されたパワーが最小値となるように、タイミング調整回路51に遅延時間を指示することにより、変調タイミングを制御する。
図9は、データシンボルのタイミング差Δtに対するクロスポイントPのパワーの変化を、光フィルタ541の透過帯域BWごとに示すグラフである。図9において、横軸は、シンボルレートの周期Tにより正規化されたタイミング差Δt/Tを示し、縦軸は、最大値に対して規格化したクロスポイントPのパワーのレベル比Lを示す。
レベル比Lは、サブキャリア信号Sj-1,Sj間で最も顕著に干渉が発生した場合(ずれが半周期T/2の場合)のパワーに対する、全く干渉がない場合のパワーの比を示す。なお、レベル比Lは、サブキャリア信号Sj-1,Sjの変調方式をQPSKとし、光フィルタ541の透過帯域BWを、B,B/2,B/4,B/8として算出された値である。
タイミング差Δt/T=0の近傍において、クロスポイントPのパワーは、光フィルタ541の透過帯域BWが狭いほど、最大値に対して相対的に小さい値を示す。このため、光フィルタ541の周波数の分解能が高いほど、クロスポイントPのパワーの最小値の検出が容易となる。すなわち、光フィルタ541の周波数の分解能が高いほど、クロスポイントPのパワーの最小値の検出精度が向上する。例えば、透過帯域BW=Bの場合、クロスポイントPのパワーのレベル比Lは、約−4(dB)であるのに対し、透過帯域BW=B/8の場合、クロスポイントPのパワーのレベル比Lは、約−20(dB)である。
上述したように、サブキャリア信号Sjの変調は、無線通信の場合とは異なり、例えば数十GHzの高いシンボルレートB(f)で行われる。このため、透過帯域BW=B/8としてクロスポイントPのパワーを検出する場合でも、帯域幅BWが十分に広い光フィルタ541が使用できる。
上述したように、例えば数十GHzの高いシンボルレートB(f)で変調を行う場合、変調タイミング及び周波数の制御に要求される処理能力が、DSPの処理能力を上回るため、DSPを用いて光OFDM信号を生成することは困難である。しかし、上記の構成によると、帯域幅BWが十分に広い光フィルタ541、つまり分解能が低い光フィルタ541を用いてサブキャリア信号Sjの変調タイミングを制御し、サブキャリア信号Sj-1,Sj間の干渉が低減された光OFDM信号を生成できる。
なお、透過帯域BW>Bの場合、検出されるクロスポイントPのパワーには、干渉が発生しない周波数領域A2(図4参照)のパワーが含まれる。周波数領域A2のパワーは、サブキャリア信号Sj-1,Sj間で最も顕著に干渉が発生した場合と、全く干渉がない場合とにおいて一定である。このため、透過帯域BW>Bの場合のクロスポイントPのパワーのレベル比Lは、透過帯域BW=Bの場合と同様である。したがって、クロスポイントPのパワーの最小値は、透過帯域BW≦Bの範囲において効果的に検出される。
また、本実施例において、光フィルタ541は、クロスポイントPの周波数ν+(j−0.5)f、ν−(j−0.5)fを中心周波数として、光成分Fu,Fdを抽出する。つまり、光成分Fu,Fdの中心周波数は、クロスポイントPの周波数ν+(j−0.5)f、ν−(j−0.5)fであるため、サブキャリア信号Sj-1,Sj間の干渉光のパワーが効果的に検出される。このため、クロスポイントPのパワーの最小値が、高精度に検出される。
図10は、光フィルタ541の減衰比に対するクロスポイントPのパワーの変化を、光フィルタの透過帯域BWごとに示すグラフである。図10において、横軸は、光フィルタ541の減衰比を示し、縦軸は、最大値に対して規格化したクロスポイントPのパワーのレベル比Lを示す。なお、レベル比Lは、サブキャリア信号Sj-1,Sjの変調方式をQPSKとし、光フィルタ541の透過帯域BWを、B,B/2,B/4,B/8として算出された値である。
図10から理解されるように、減衰比が約30(dB)以上である光フィルタ541を使用すれば、クロスポイントPのパワーの最小値を十分に検出することができる。
このように、図8に示された構成によれば、サブキャリア信号Sj-1,Sjを数十GHzの高いシンボルレートB(f)で変調を行う場合でも、クロスポイントPのパワーの最小値を検出することができる。一方、低いシンボルレートB(f)で変調を行う場合、電気的なRF(Radio Frequency)スペクトルアナライザを用いて、クロスポイントPのパワーの最小値を検出することができる。
図11は、モニタ部54の他例を示す構成図である。モニタ部54は、光フィルタ544と、フォトディテクタ545と、RFスペクトルアナライザ546とを有する。なお、図11において、グラフG31,G32には、横軸を周波数fとした光スペクトルの一例が示されている。
光フィルタ544には、光分岐部34から、サブキャリア信号Sj-1,Sjが多重された搬送光ν(グラフG31参照)が入力される。光フィルタ544は、後段のフォトディテクタ545による強度検波を可能とするため、サブキャリア信号Sj-1,Sjが多重された搬送光νから、上側波帯SBuまたは下側波帯SBdを抽出する(グラフG32参照)。仮に、サブキャリア信号Sj-1,Sjが多重された搬送光νが、そのままフォトディテクタ545に入力された場合、フォトディテクタ545は、上側波帯SBuまたは下側波帯SBdが互いに位相反転しているため、連続発振光として見え、強度検波できない。
フォトディテクタ545は、上側波帯SBuまたは下側波帯SBdを電気信号に変換して強度検波する。このとき、サブキャリア信号Sj-1,Sjの中心周波数ν+(j−1)f,ν+jfは、フォトディテクタ545の動作帯域内にあるものとする。RFスペクトルアナライザ546は、クロスポイントPのパワーを検出して、制御回路53に通知する。
また、サブキャリア信号Sj-1,Sjの周波数帯域が、フォトディテクタ545及びRFスペクトルアナライザ546の動作帯域外である場合、局発光を利用して、サブキャリア信号Sj-1,Sjの周波数帯域を低周波数帯に変換してもよい。
図12は、モニタ部54の他例を示す構成図である。モニタ部54は、局発光源547と、光合波器548と、フォトディテクタ549と、RFスペクトルアナライザ540とを有する。なお、図12において、グラフG41〜G43には、横軸を周波数fとしたスペクトルの一例が示されている。
局発光源547は、周波数νL0の局発光Lを光合波器548に出力する。光合波器548は、例えば光カプラであり、局発光源547から局発光Lが入力され、光分岐部34から、サブキャリア信号Sj-1,Sjが多重された搬送光ν(グラフG41参照)が入力される。局発光L及びサブキャリア信号Sj-1,Sjが多重された搬送光νは、光合波器548により合波されて(グラフG42参照)、フォトディテクタ549に入力される。
局発光Lの周波数νL0は、例えば、上側波帯を検波する場合、サブキャリア信号Sj-1の中心周波数ν+(j−1)fから間隔Δfをおいた位置に設定される。ここで、間隔Δfは、フォトディテクタ549及びRFスペクトルアナライザ540の動作帯域内の値である。これにより、サブキャリア信号Sj-1,Sjの周波数帯域が低周波数帯に変換され(グラフG43参照)、RFスペクトルアナライザ546は、クロスポイントPのパワーを検出できる。検出されたパワーは、制御回路53に通知する。
図13は、制御回路53の一例を示す構成図である。制御回路53は、アナログ−デジタル変換部(A/D)531と、メモリ532と、比較演算回路533と、ドライバ回路534とを有する。なお、メモリ532に代えて、ハードディスクドライブなどの他の記憶手段が用いられてもよい。
アナログ−デジタル変換部531は、モニタ部54から入力される検出信号をサンプリングすることによりデジタル信号に変換し、クロスポイントPのパワーをメモリ532に記録する。比較演算回路533は、メモリ532から、クロスポイントPのパワーを読み出し、前回読み出したパワーと比較し、比較結果をドライバ回路534に出力する。
ドライバ回路534は、入力された比較結果に応じて、制御信号Scを生成し、タイミング調整回路51に出力する。上述したように、制御信号Scは、データ信号の出力タイミングの遅延時間を示す。ドライバ回路534は、クロスポイントPのパワーが最小値になった場合、または所定の閾値Pth(最小値に近い値)を下回った場合、遅延時間を固定する。なお、比較演算回路533及びドライバ回路534としては、例えばDSPが用いられる。
このように、制御回路53は、モニタ部54が検出したパワーに応じ、サブキャリア信号Sjのデータシンボルのタイミングを制御する。これにより、サブキャリア信号Sj-1,Sj同士の干渉が抑制された光OFDM信号が生成される。
遅延時間が固定されるまでの間は、サブキャリア信号Sj-1,Sj間に干渉が生ずるため、通信品質が低下する。このため、遅延時間が固定されるまでの間をサブキャリア信号Sj-1,Sjのトレーニング期間とし、トレーニング期間中、通信サービスを停止してもよい。この場合、トレーニング期間中、信号発生器52は、データ信号として、例えば固定パタンを有するアイドルデータを光変調器46に出力し、トレーニング期間の終了後、データ信号を、アイドルデータから主信号(ユーザデータ)に切り替えてもよい。これにより、主信号のエラーが防止される。
次に、上記の光多重装置1を用いた光OFDM信号の生成方法について説明する。図14は、実施例に係る光OFDM信号の生成方法を示すフローチャートである。
まず、光多重装置1は、サブキャリア信号Sj-1が多重された搬送光νに、データ信号に基づいて所定のシンボルレートBで変調されたサブキャリア信号Sjを、サブキャリア信号Sj-1に隣接するように多重する(ステップSt1)。次に、光多重装置1は、サブキャリア信号Sj-1,Sjが多重された搬送光νをモニタ部54に入力する(ステップSt2)。
次に、モニタ部54の光フィルタ541は、入力された搬送光νから、サブキャリア信号Sj-1,Sjのスペクトル同士のクロスポイントPの周波数成分を含む光成分Fu,Fdを抽出する(ステップSt3)。光成分Fu,Fdは、所定のシンボルレートB以下の帯域幅BWを有する。次に、フォトディテクタ542は、光成分Fu,Fdを電気信号に変換して強度検波する(ステップSt4)。
次に、パワーメータ543は、光成分Fu,Fdのパワーを検出する(ステップSt5)。次に、制御回路53は、検出されたパワーに応じ、サブキャリア信号Sjのデータシンボルのタイミング、つまり変調タイミングを制御する(ステップSt6)。このようにして、光OFDM信号は生成される。
次に、制御回路53による変調タイミングの制御処理を説明する。
図15は、変調タイミングの制御処理の一例を示すフローチャートである。本例において、制御回路53は、データ信号の出力タイミング、つまり変調タイミングの遅延時間Δtを変化させつつ、クロスポイントPのパワーP,PX+1をサンプリングすることにより、クロスポイントPのパワーが最小値となる変調タイミングを検出する。
まず、アナログ−デジタル変換部531は、モニタ部54が検出したパワーPをメモリ532に記録する(ステップSt11)。次に、ドライバ回路534は、タイミング調整回路51に変調タイミングの遅延時間Δtを増加させる(ステップSt12)。
次に、アナログ−デジタル変換部531は、モニタ部54が検出したパワーPX+1をメモリ532に記録する(ステップSt13)。次に、比較演算回路533は、パワーPX+1を、前回検出されたパワーPと比較する(ステップSt14)。
X+1≦Pの場合(ステップSt14のNo)、ドライバ回路534は、P=PX+1として(ステップSt20)、再び変調タイミングの遅延時間Δtを増加させる(ステップSt12)。この場合、パワーPX+1の検出点が、図5(b)の負の領域(Δt/T<0)に存在するため、ドライバ回路534は、変調タイミングの遅延時間Δtを増加させることにより、パワーを最小値(Δt/T=0)に近づけるように制御する。
一方、PX+1>Pの場合(ステップSt14のYes)、ドライバ回路534は、P=PX+1として(ステップSt15)、変調タイミングの遅延時間Δtを減少させる(ステップSt16)。この場合、パワーPX+1の検出点が、図5(b)の正の領域(Δt/T>0)に存在するため、ドライバ回路534は、変調タイミングの遅延時間Δtを減少させることにより、パワーを最小値(Δt/T=0)に近づけるように制御する。
次に、アナログ−デジタル変換部531は、モニタ部54が検出したパワーPX+1をメモリ532に記録する(ステップSt17)。次に、比較演算回路533は、パワーPX+1を、前回検出されたパワーPと比較する(ステップSt18)。
X+1≦Pの場合(ステップSt18のNo)、ドライバ回路534は、P=PX+1として(ステップSt21)、再び変調タイミングの遅延時間Δtを減少させる(ステップSt16)。この場合、パワーPX+1の検出点が、図5(b)の正の領域に存在するため、ドライバ回路534は、変調タイミングの遅延時間Δtを減少させることにより、パワーを最小値に近づけるように制御する。
一方、PX+1>Pの場合(ステップSt18のYes)、ドライバ回路534は、変調タイミングの遅延時間Δtを確定させる(ステップSt19)。この場合、パワーPX+1の検出点が、図5(b)の正の領域から負の領域に入ったため、ドライバ回路534は、パワーの最小値を検出したものと判断し、変調タイミングの遅延時間Δtを確定させて、制御を終了する。このようにして、変調タイミングの制御処理は行われる。
上述したように、制御回路53は、モニタ部54が検出したパワーが最小値となるように、サブキャリア信号Sjの変調のタイミングを制御する。このため、サブキャリア信号Sj-1,Sj同士の干渉が効果的に低減される。
また、制御回路53は、上記の制御方法に限定されず、モニタ部54が検出したパワーが所定の閾値Pthより小さくなるように、サブキャリア信号Sjの変調のタイミングを制御してもよい。
図16は、変調タイミングの制御処理の他例を示すフローチャートである。まず、ドライバ回路534は、ネットワーク制御装置などからの指示に従って閾値Pthを設定する(ステップSt31)。変調タイミングの遅延時間(データシンボルのタイミング差)Δtは、変調方式に応じて異なるため、閾値Pthは、例えば変調方式に基づいて決定される。なお、閾値Pthは、図15に示された制御処理で得られたパワーの最小値に基づいて決定されてもよい。
次に、アナログ−デジタル変換部531は、モニタ部54が検出したパワーPをメモリ532に記録する(ステップSt32)。次に、ドライバ回路534は、タイミング調整回路51に変調タイミングの遅延時間Δtを増加させる(ステップSt33)。
次に、アナログ−デジタル変換部531は、モニタ部54が検出したパワーPX+1をメモリ532に記録する(ステップSt34)。次に、比較演算回路533は、パワーPX+1を、閾値Pthと比較する(ステップSt35)。P<Pthの場合(ステップSt35のYes)、ドライバ回路534は、変調タイミングの遅延時間Δtを確定させる(ステップSt41)。これにより、制御処理は終了する。
一方、P≧Pthの場合(ステップSt35のNo)、比較演算回路533は、パワーPX+1を、前回検出されたパワーPと比較する(ステップSt36)。
X+1≦Pの場合(ステップSt36のNo)、ドライバ回路534は、P=PX+1として(ステップSt42)、再び変調タイミングの遅延時間Δtを増加させる(ステップSt33)。この場合、パワーPX+1の検出点が、図5(b)の負の領域に存在するため、ドライバ回路534は、変調タイミングの遅延時間Δtを増加させることにより、パワーを最小値に近づけるように制御する。
一方、PX+1>Pの場合(ステップSt36のYes)、ドライバ回路534は、P=PX+1として(ステップSt37)、変調タイミングの遅延時間Δtを減少させる(ステップSt38)。この場合、パワーPX+1の検出点が、図5(b)の正の領域に存在するため、ドライバ回路534は、変調タイミングの遅延時間Δtを減少させることにより、パワーを最小値(Δt/T=0)に近づけるように制御する。
次に、アナログ−デジタル変換部531は、モニタ部54が検出したパワーPX+1をメモリ532に記録する(ステップSt39)。次に、比較演算回路533は、パワーPX+1を、閾値Pthと比較する(ステップSt40)。P≧Pthの場合(ステップSt40のNo)、比較演算回路533は、再び変調タイミングの遅延時間Δtを減少させる(ステップSt38)。
一方、PX+1<Pthの場合(ステップSt40のYes)、ドライバ回路534は、変調タイミングの遅延時間Δtを確定させる(ステップSt41)。これにより、制御処理は終了する。
本例において、制御回路53は、モニタ部54が検出したパワーが所定の閾値Pthより小さくなるように、サブキャリア信号Sjの変調のタイミングを制御する。このため、図15の例と比較すると、変調タイミングの遅延時間Δtを確定までに要する時間が、短縮される。また、閾値Pthを、サブキャリア信号Sjの変調方式に応じて設定することにより、制御処理を最適化できる。
これまで述べたように、実施例に係る光多重装置1は、第1サブキャリア信号Sj-1に隣接するように第2サブキャリア信号Sjを多重することにより、光OFDM信号を生成する。光多重装置1は、検出部(モニタ部)54と、制御部(制御回路)53とを有する。
検出部543は、光OFDM信号から、第1及び第2サブキャリア信号Sj-1,Sjのスペクトル同士のクロスポイントPの周波数成分を含む光成分Fu,Fdを抽出し、光成分Fu,Fdのパワーを検出する。制御回路53は、検出部543が検出したパワーに応じ、第2サブキャリア信号Sjのデータシンボルのタイミングを制御する。
上記の構成によると、抽出された光成分Fu,Fdは、第1サブキャリア信号Sj-1及び第2サブキャリア信号Sjのスペクトル同士のクロスポイントPの周波数成分を含む。また、制御回路53は、検出部543が検出した光成分Fu,Fdのパワーに応じ、第2サブキャリア信号Sjの変調のタイミングを制御する。
したがって、実施例に係る光多重装置1によると、サブキャリア信号Sj-1,Sj同士の干渉が抑制された光OFDM信号が生成できる。
また、実施例に係る光OFDM信号の生成方法は、第1サブキャリア信号Sj-1に隣接するように第2サブキャリア信号Sjを多重することにより、光OFDM信号を生成する方法である。光OFDM信号の生成方法は、以下の工程を含む。
工程(1):光OFDM信号から、第1サブキャリア信号Sj及び第2サブキャリア信号Sj-1のスペクトル同士のクロスポイントPの周波数成分を含む光成分Fu,Fdを抽出する。
工程(2):光成分のパワーFu,Fdを検出する。
工程(3):検出したパワーに応じ、第2サブキャリア信号Sj-1のデータシンボルのタイミングを制御する。
実施例に係る光OFDM信号の生成方法は、上記の光多重装置1と同様の構成を含むので、上述した内容と同様の作用効果を奏する。
上述した実施形態は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。
なお、以上の説明に関して更に以下の付記を開示する。
(付記1) 第1サブキャリア信号に隣接するように第2サブキャリア信号を多重することにより、光OFDM信号を生成する光多重装置において、
前記光OFDM信号から、前記第1サブキャリア信号及び前記第2サブキャリア信号のスペクトル同士のクロスポイントの周波数成分を含む光成分を抽出して、前記光成分のパワーを検出する検出部と、
前記検出部が検出したパワーに応じ、前記第2サブキャリア信号のデータシンボルのタイミングを制御する制御部とを有することを特徴とする光多重装置。
(付記2) 前記検出部は、前記光OFDM信号から、前記第1サブキャリア信号及び前記第2サブキャリア信号のスペクトル同士のクロスポイントの周波数成分を含む光成分を抽出する光フィルタと、前記光フィルタを透過した光成分のパワーを検出するフォトディテクタとを有することを特徴とする付記1に記載の光多重装置。
(付記3) 前記第1サブキャリア信号及び前記第2サブキャリア信号は、それぞれ、データ信号に基づいて所定のシンボルレートで変調されており、
前記光フィルタは、前記光OFDM信号から、前記所定のシンボルレート以下の帯域幅を有する光成分を抽出することを特徴とする付記2に記載の光多重装置。
(付記4) 第1サブキャリア信号に隣接するように第2サブキャリア信号を多重することにより、光OFDM信号を生成する光OFDM信号の生成方法において、
前記光OFDM信号から、前記第1サブキャリア信号及び前記第2サブキャリア信号のスペクトル同士のクロスポイントの周波数成分を含む光成分を抽出し、
前記光成分のパワーを検出し、
検出したパワーに応じ、前記第2サブキャリア信号のデータシンボルのタイミングを制御することを特徴とする光OFDM信号の生成方法。
(付記5) 前記光OFDM信号を光フィルタに入力することにより、前記光OFDM信号から、前記第1サブキャリア信号及び前記第2サブキャリア信号のスペクトル同士のクロスポイントの周波数成分を含む光成分を抽出し、
抽出した光成分をフォトディテクタに入力することより、前記光フィルタを透過した光成分のパワーを検出することを特徴とする付記4に記載の光OFDM信号の生成方法。
(付記6) 前記第1サブキャリア信号及び前記第2サブキャリア信号は、それぞれ、データ信号に基づいて所定のシンボルレートで変調されており、
前記光OFDM信号を光フィルタに入力することにより、前記光OFDM信号から、前記所定のシンボルレート以下の帯域幅を有する光成分を抽出することを特徴とする付記5に記載の光OFDM信号の生成方法。
1 光多重装置
53 制御部(制御回路)
54 モニタ部(検出部)
541 光フィルタ
542 フォトディテクタ
543 パワーメータ
B シンボルレート
BW 帯域幅
Sj-1 サブキャリア信号(第1サブキャリア信号)
Sj サブキャリア信号(第2サブキャリア信号)

Claims (4)

  1. 第1サブキャリア信号に隣接するように第2サブキャリア信号を多重することにより、光OFDM信号を生成する光多重装置において、
    前記光OFDM信号から、前記第1サブキャリア信号及び前記第2サブキャリア信号のスペクトル同士のクロスポイントの周波数成分を含む所定の帯域幅の光成分を抽出して、前記光成分のパワーを検出する検出部と、
    前記検出部が検出したパワーが最小値となるように、または所定の閾値を下回るように、前記第2サブキャリア信号のデータシンボルのタイミングを制御する制御部とを有することを特徴とする光多重装置。
  2. 前記検出部は、前記光OFDM信号から、前記第1サブキャリア信号及び前記第2サブキャリア信号のスペクトル同士のクロスポイントの周波数成分を含む光成分を抽出する光フィルタと、前記光フィルタを透過した光成分のパワーを検出するフォトディテクタとを有することを特徴とする請求項1に記載の光多重装置。
  3. 前記第1サブキャリア信号及び前記第2サブキャリア信号は、それぞれ、データ信号に基づいて所定のシンボルレートで変調されており、
    前記光フィルタは、前記光OFDM信号から、前記所定のシンボルレート以下の帯域幅を有する光成分を抽出することを特徴とする請求項2に記載の光多重装置。
  4. 第1サブキャリア信号に隣接するように第2サブキャリア信号を多重することにより、光OFDM信号を生成する光OFDM信号の生成方法において、
    前記光OFDM信号から、前記第1サブキャリア信号及び前記第2サブキャリア信号のスペクトル同士のクロスポイントの周波数成分を含む所定の帯域幅の光成分を抽出し、
    前記光成分のパワーを検出し、
    検出したパワーが最小値となるように、または所定の閾値を下回るように、前記第2サブキャリア信号のデータシンボルのタイミングを制御することを特徴とする光OFDM信号の生成方法。
JP2014101374A 2014-05-15 2014-05-15 光多重装置及び光ofdm信号の生成方法 Expired - Fee Related JP6361276B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014101374A JP6361276B2 (ja) 2014-05-15 2014-05-15 光多重装置及び光ofdm信号の生成方法
EP15160766.0A EP2945302B1 (en) 2014-05-15 2015-03-25 Optical multiplexing device and method of generating optical ofdm signal
US14/672,527 US9602201B2 (en) 2014-05-15 2015-03-30 Optical multiplexing device and method of generating optical OFDM signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014101374A JP6361276B2 (ja) 2014-05-15 2014-05-15 光多重装置及び光ofdm信号の生成方法

Publications (2)

Publication Number Publication Date
JP2015220528A JP2015220528A (ja) 2015-12-07
JP6361276B2 true JP6361276B2 (ja) 2018-07-25

Family

ID=52780870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014101374A Expired - Fee Related JP6361276B2 (ja) 2014-05-15 2014-05-15 光多重装置及び光ofdm信号の生成方法

Country Status (3)

Country Link
US (1) US9602201B2 (ja)
EP (1) EP2945302B1 (ja)
JP (1) JP6361276B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014201519A1 (en) * 2013-06-19 2014-12-24 The University Of Sydney A device and a method for generating an electrical signal with a suppressed frequency band
US11784719B1 (en) * 2020-04-01 2023-10-10 Cable Television Laboratories, Inc. Systems and methods for tuning a power characteristic of an optical frequency comb

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6334219B1 (en) * 1994-09-26 2001-12-25 Adc Telecommunications Inc. Channel selection for a hybrid fiber coax network
US5943606A (en) * 1996-09-30 1999-08-24 Qualcomm Incorporated Determination of frequency offsets in communication systems
GB2382937A (en) * 2001-12-04 2003-06-11 Marconi Optical Components Ltd Wavelength control for a plurality of optical transmitters
JP3892326B2 (ja) * 2002-03-26 2007-03-14 富士通株式会社 光変調器の制御装置
JP5338206B2 (ja) * 2008-08-29 2013-11-13 富士通株式会社 制御装置,偏波多重光変調器,光送信装置および偏波多重光変調器の制御方法
JP6070062B2 (ja) * 2012-10-26 2017-02-01 富士通株式会社 光送信システムおよび制御方法

Also Published As

Publication number Publication date
EP2945302B1 (en) 2019-05-01
EP2945302A1 (en) 2015-11-18
JP2015220528A (ja) 2015-12-07
US9602201B2 (en) 2017-03-21
US20150333827A1 (en) 2015-11-19

Similar Documents

Publication Publication Date Title
JP6123337B2 (ja) 光信号処理装置、送信装置、及び光信号処理方法
US9503211B2 (en) Signal detection circuit and optical transmission equipment
JP2017135614A (ja) 伝送装置、伝送システム、及び伝送制御方法
JP4813963B2 (ja) 波長分割多重伝送における光送信器、光中継器、光伝送システムおよび光送信方法
EP0924552A2 (en) Opto-electronic frequency divider circuit and method of operating same
Zhang et al. Transmission and full-band coherent detection of polarization-multiplexed all-optical Nyquist signals generated by Sinc-shaped Nyquist pulses
JPWO2010140289A1 (ja) 光通信システム、その光受信機、その光通信方法
JP6492864B2 (ja) 光分岐挿入装置および光分岐挿入方法
JP6361276B2 (ja) 光多重装置及び光ofdm信号の生成方法
US9634787B2 (en) Optical add-drop multiplexer
Proietti et al. Elastic optical networking by dynamic optical arbitrary waveform generation and measurement
US10374703B2 (en) Transmission device and signal monitoring method
EP3497825B1 (en) Encoding for optical transmission
JP6047056B2 (ja) マルチキャリア光送信器及びマルチキャリア光送信方法
JP4891016B2 (ja) 波長多重伝送におけるクロストークの補償
US10256907B2 (en) System and method for coherent detection with digital signal procession
JP6070062B2 (ja) 光送信システムおよび制御方法
JP6468629B2 (ja) Wdmコヒーレント伝送方式
WO2012032130A1 (en) Multi-carrier system and method for use in an optical network
EP2418814A1 (en) OFDM subband processing
JP2011135497A (ja) 光伝送システム
JP2005094287A (ja) 光伝送方法及びシステム並びに光送信方法及び装置
JP2005229549A (ja) 光波長多重fsk変調方法
Kato et al. Efficient signal multiplexing scheme based on optical signal processing
JP2012142819A (ja) 光時分割多重伝送方法及び光時分割多重伝送システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180611

R150 Certificate of patent or registration of utility model

Ref document number: 6361276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees