JP6354469B2 - Power supply cooling mechanism - Google Patents

Power supply cooling mechanism Download PDF

Info

Publication number
JP6354469B2
JP6354469B2 JP2014179771A JP2014179771A JP6354469B2 JP 6354469 B2 JP6354469 B2 JP 6354469B2 JP 2014179771 A JP2014179771 A JP 2014179771A JP 2014179771 A JP2014179771 A JP 2014179771A JP 6354469 B2 JP6354469 B2 JP 6354469B2
Authority
JP
Japan
Prior art keywords
heat
housing
power supply
heat sink
cooling mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014179771A
Other languages
Japanese (ja)
Other versions
JP2016054236A (en
Inventor
誉人 遠藤
誉人 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2014179771A priority Critical patent/JP6354469B2/en
Publication of JP2016054236A publication Critical patent/JP2016054236A/en
Application granted granted Critical
Publication of JP6354469B2 publication Critical patent/JP6354469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Power Conversion In General (AREA)

Description

本発明は、電源装置の冷却機構、特に、気中自然冷却方式の冷却機構に関する。   The present invention relates to a cooling mechanism for a power supply device, and more particularly to a natural air cooling system.

電源装置はその構成要素の高発熱部品を放熱するために冷却機構を有する(例えば特許文献1〜5)。ファン等を用いていない気中自然冷却方式の一般的な冷却機構は例えば図3に示したように電源装置の筐体2内にその高さ方向上下段にヒートシンク3を配置させている。このような配置のヒートシンク3の熱バランスを考えると上段のヒートシンク3の温度は下段のヒートシンク3の放熱を受けて相対的に高くなる。この両者のヒートシンク3,3の温度差によって、筐体2内の各種部品の寿命のばらつきが生じるので、部品の仕様が制約される。   The power supply device has a cooling mechanism for radiating heat from the high heat-generating components of the constituent elements (for example, Patent Documents 1 to 5). For example, as shown in FIG. 3, a general cooling mechanism using a natural air cooling system that does not use a fan or the like has a heat sink 3 arranged in the upper and lower stages in the height direction in the casing 2 of the power supply device. Considering the heat balance of the heat sinks 3 arranged in this way, the temperature of the upper heat sink 3 receives heat from the lower heat sink 3 and becomes relatively high. Due to the temperature difference between the heat sinks 3 and 3, the lifespan of various components in the housing 2 is varied, so that the specifications of the components are restricted.

この問題を解決するために前記上下段のヒートシンク3,3を互いに筐体2奥行き方向にずらして配置することにより放熱の影響を緩和する方法が採られているが、この方法は、装置寸法の増大や、内部の回路を形成する導体の複雑化など、不利な点が多々ある。   In order to solve this problem, a method of mitigating the influence of heat dissipation by arranging the upper and lower heat sinks 3 and 3 so as to be shifted in the depth direction of the casing 2 has been adopted. There are many disadvantages, such as an increase and the complexity of the conductors forming the internal circuit.

特開2004−140894号公報JP 2004-140894 A 特開平9−307038号公報Japanese Patent Laid-Open No. 9-307038 特開平10−270880号公報JP-A-10-270880 特開平5−55589号公報Japanese Unexamined Patent Publication No. 5-55589

本発明は、上記の事情に鑑みなされたもので、電源装置の冷却効果を高めつつ当該装置の小型化を図ることを課題とする。   This invention is made | formed in view of said situation, and makes it a subject to achieve size reduction of the said apparatus, improving the cooling effect of a power supply device.

そこで、本発明の冷却機構は、電源装置の筐体内に配置されて当該装置の発熱体を放熱する複数のヒートシンクと、この一つの前記ヒートシンクからの熱流を他の前記ヒートシンクに移行させずに前記筐体の側面部に案内する案内部材とを備える。   Therefore, the cooling mechanism of the present invention includes a plurality of heat sinks disposed in the casing of the power supply device to dissipate the heat generating element of the device, and the heat flow from the one heat sink without transferring to the other heat sink. And a guide member for guiding the side surface of the housing.

本発明によれば、電源装置の筐体内の一つのヒートシンクからの熱流が他方のヒートシンクに移行しなくなるので、これらのヒートシンク間の温度差が低減する。   According to the present invention, since the heat flow from one heat sink in the casing of the power supply device does not transfer to the other heat sink, the temperature difference between these heat sinks is reduced.

以上の本発明によれば電源装置の冷却効果を高めつつ当該装置の小型化が図れる。   According to the present invention described above, it is possible to reduce the size of the apparatus while enhancing the cooling effect of the power supply apparatus.

(a)は本発明の第一の実施形態における冷却機構を備えた電源装置の内部を示した上面図、(b)は同内部を示した側面図、(c)は同装置のA−A断面図。(A) is the top view which showed the inside of the power supply device provided with the cooling mechanism in 1st embodiment of this invention, (b) is the side view which showed the inside, (c) is AA of the device Sectional drawing. (a)は本発明の第二の実施形態における冷却機構を備えた電源装置の内部を示した上面図、(b)は同内部を示した側面図、(c)は同装置のA−A断面図。(A) is the top view which showed the inside of the power supply device provided with the cooling mechanism in 2nd embodiment of this invention, (b) is the side view which showed the inside, (c) is AA of the device Sectional drawing. (a)は従来の電源装置の内部を示した上面図,(b)は同内部を示した側面図,(c)は同装置のA−A断面図。(A) is the top view which showed the inside of the conventional power supply device, (b) is the side view which showed the inside, (c) is AA sectional drawing of the device.

以下に図面を参照しながら本発明の実施形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施形態1)
図1に示された本実施形態の冷却機構1は、電源装置の筐体2内に配置される複数のヒートシンク3と、筐体2内の下段側のヒートシンク3からの熱流を上段側のヒートシンク3に移行させずに筐体2の側面部23に案内する案内部材4とを備える。
(Embodiment 1)
The cooling mechanism 1 according to the present embodiment shown in FIG. 1 is configured such that a heat flow from a plurality of heat sinks 3 disposed in a housing 2 of the power supply device and a lower heat sink 3 in the housing 2 And a guide member 4 that guides the side face 23 of the housing 2 without shifting to 3.

筐体2は、矩形の筐体から成り、電源装置の構成要素である高発熱デバイスに例示される発熱体を備えたプリント基板(図示省略)を複数格納、または、複数の発熱体を備えた単一のプリント基板(図示省略)を格納している。筐体2の底面部21,天井部22及び側面部23には通気口20が形成されている。   The housing 2 is formed of a rectangular housing, and stores a plurality of printed circuit boards (not shown) including a heating element exemplified by a high heat generation device that is a component of the power supply device, or includes a plurality of heating elements. A single printed circuit board (not shown) is stored. A vent hole 20 is formed in the bottom surface portion 21, the ceiling portion 22, and the side surface portion 23 of the housing 2.

筐体2内にはヒートシンク3が前記発熱体の数に応じて具備されている。ヒートシンク3は図示省略の伝熱部を介して前記発熱体に熱的に接触された状態となっている。ヒートシンク3は筐体2の高さ方向に上下2段に配列されている。この上下2段に配列されたヒートシンク3は互いに筐体2の奥行き方向にずれることなく設置されている。   Heat sinks 3 are provided in the housing 2 according to the number of the heating elements. The heat sink 3 is in thermal contact with the heating element via a heat transfer unit (not shown). The heat sink 3 is arranged in two upper and lower stages in the height direction of the housing 2. The heat sinks 3 arranged in two upper and lower stages are installed without being shifted in the depth direction of the housing 2.

ヒートシンク3は周知のヒートシンクの構造を成す。すなわち、ヒートシンク3は、前記伝熱部を介して前記発熱体と熱的に接触する背面部31と、この背面部31から受けた熱を気中に解放するフィン形状の放熱部32と有する。このヒートシンク3は放熱部32が筐体2の所定の側面部23に向かって突出した状態で筐体2内に配置される。   The heat sink 3 has a known heat sink structure. That is, the heat sink 3 includes a back surface portion 31 that is in thermal contact with the heating element via the heat transfer portion, and a fin-shaped heat dissipation portion 32 that releases heat received from the back surface portion 31 to the air. The heat sink 3 is disposed in the housing 2 with the heat radiating portion 32 protruding toward a predetermined side surface portion 23 of the housing 2.

案内部材4は、筐体2内の下段側のヒートシンク3の背面部31と対向して立設される板状の仕切り部41と、この仕切り部41の上端部から上下段のヒートシンク3,3間にて筐体2の所定の側面部23に向かって筐体2の高さ方向斜めに配置される板状の熱絶縁部42とを備える。   The guide member 4 includes a plate-like partition portion 41 that is erected facing the back surface portion 31 of the lower heat sink 3 in the housing 2, and upper and lower heat sinks 3 and 3 from the upper end portion of the partition portion 41. A plate-shaped heat insulating part 42 is provided between the plate 2 and the case 2.

仕切り部41は周知の金属製の材料から構成されている。熱絶縁部42はポリカーボネートに例示される耐熱性の板状の材料から成り、仕切り部41の上端部から筐体2の側面部23側に筐体2の高さ方向斜め例えば水平に対して10度から20度程度に傾斜配置されている。   The partition part 41 is comprised from the well-known metal material. The heat insulating portion 42 is made of a heat-resistant plate-like material exemplified by polycarbonate, and is inclined in the height direction of the housing 2 from the upper end portion of the partition portion 41 to the side surface portion 23 side of the housing 2, for example, 10 horizontally. It is inclined from 20 degrees to 20 degrees.

図1を参照しながら本実施形態の冷却機構1の作用効果について説明する。   The effect of the cooling mechanism 1 of this embodiment is demonstrated referring FIG.

電源装置の動作による発熱体の温度上昇により筐体2内に上昇気流が生じると筐体2内の空気の流れは図1に示した白抜き矢印の通りとなる。すなわち、筐体2内の発熱体の熱がヒートシンク3に伝わると、このヒートシンク3周辺の空気が温められて空気密度が相対的に低くなり、筐体2内に上昇気流が生じる。この上昇気流を生じた空気、つまり、熱気は、案内部材4の熱絶縁部42に沿って移行して筐体2の側面部23側に案内され、この側面部23の通気口20から大気に解放される。また、上段側のヒートシンク3周辺の熱気も、その上昇気流により筐体2の天井部22側に移行し、天井部22の通気口20から大気に解放される。以上のように筐体2内の下方で生じた熱流は上段側のヒートシンク3に接触することなく筐体2の側面部23に移行して筐体2から熱気が排出される。   When an upward air flow is generated in the housing 2 due to the temperature rise of the heating element due to the operation of the power supply device, the air flow in the housing 2 is as indicated by the white arrows shown in FIG. That is, when the heat of the heating element in the housing 2 is transmitted to the heat sink 3, the air around the heat sink 3 is warmed, the air density becomes relatively low, and an updraft is generated in the housing 2. The air that has generated this updraft, that is, hot air, moves along the heat insulating portion 42 of the guide member 4 and is guided to the side surface portion 23 side of the housing 2. To be released. The hot air around the upper heat sink 3 also moves to the ceiling portion 22 side of the housing 2 due to the rising airflow, and is released to the atmosphere from the vent 20 of the ceiling portion 22. As described above, the heat flow generated in the lower portion of the housing 2 is transferred to the side surface portion 23 of the housing 2 without coming into contact with the heat sink 3 on the upper stage side, and hot air is discharged from the housing 2.

図3に示した従来の冷却機構は、筐体2内の下方に配置された発熱体やヒートシンク3の周辺の熱気がそのまま筐体2内の上段側のヒートシンク3側に移行して結果的にこの上段側のヒートシンク3の温度を上昇させ、これらヒートシンク3間の温度差が増大する。   In the conventional cooling mechanism shown in FIG. 3, the heat generated in the lower part of the housing 2 and the hot air around the heat sink 3 are transferred to the upper heat sink 3 side in the housing 2 as a result. The temperature of the upper heat sink 3 is raised, and the temperature difference between the heat sinks 3 increases.

これに対して、本実施形態の冷却機構1は、上下段のヒートシンク3,3間に案内部材4の熱絶縁部42が配置されているので、前記下方に配置された発熱体やヒートシンク3の周辺の熱気はそのまま垂直方向に上昇することなく熱絶縁部42の傾きに沿って移行する。この熱絶縁部42によって案内された熱気は、筐体2の側面部23の通気口20から排出、若しくは、上方のヒートシンク3と接触することなく筐体2の天井部22の通気口20から解放される。   On the other hand, in the cooling mechanism 1 of the present embodiment, the heat insulating portion 42 of the guide member 4 is disposed between the upper and lower heat sinks 3, 3. The surrounding hot air moves along the inclination of the heat insulating portion 42 without rising in the vertical direction. The hot air guided by the heat insulating part 42 is discharged from the vent 20 on the side part 23 of the casing 2 or released from the vent 20 on the ceiling 22 of the casing 2 without contacting the upper heat sink 3. Is done.

したがって、前記従来の冷却機構と比べて、上下段のヒートシンク3,3間の温度差が低減し、ヒートシンク3,3の温度差に起因する電源装置の部品の寿命のばらつきも低減する。そして、前記温度差が低減することにより、筐体2内温度の絶対値が下るので、電源装置の構成部品を選定する幅が広がる。また、上下段のヒートシンク3,3を筐体2内の奥行き方向にずらして配置する必要がなくなり、電源装置の小型化も図れる。   Therefore, as compared with the conventional cooling mechanism, the temperature difference between the upper and lower heat sinks 3 and 3 is reduced, and the variation in the life of the components of the power supply device due to the temperature difference between the heat sinks 3 and 3 is also reduced. And since the absolute value of the temperature in the housing | casing 2 falls by the said temperature difference reducing, the breadth which selects the component of a power supply device spreads. Further, it is not necessary to dispose the upper and lower heat sinks 3 and 3 in the depth direction in the housing 2, and the power supply device can be downsized.

特に、案内部材4は仕切り部41が下段側のヒートシンク3と対向して立設される一方で熱絶縁部42が仕切り部41の上端部から上下段のヒートシンク3,3の間にて筐体2の側面部に向かって筐体2の高さ方向斜めに配置されている。したがって、下段側のヒートシンク3から移行してきた熱流を垂直方向に案内させ、さらに上段側のヒートシンク3と接触させずに直ちに筐体2の側面部23側に案内できる。よって、下段側のヒートシンク3とこのヒートシンク3と熱的に接続されている発熱体の放熱効果が高まることに加えて上段側のヒートシンク3の温度上昇を抑制できる。   In particular, the guide member 4 is provided with a partition portion 41 facing the lower heat sink 3 and a heat insulating portion 42 between the upper end of the partition portion 41 and the upper and lower heat sinks 3 and 3. The housing 2 is disposed obliquely in the height direction toward the side surface portion 2. Therefore, the heat flow transferred from the lower heat sink 3 can be guided in the vertical direction, and can be immediately guided to the side surface portion 23 side of the housing 2 without being brought into contact with the upper heat sink 3. Therefore, in addition to enhancing the heat dissipation effect of the lower heat sink 3 and the heat generating member thermally connected to the heat sink 3, the temperature rise of the upper heat sink 3 can be suppressed.

また、ヒートシンク3,3は互いに筐体2の奥行き方向にずれることなく筐体2内に上下二段に配置されているので、電源装置の筐体2の大型化を回避できる。したがって、筐体2の小型化が実現し、電源装置に導体や取り付け用の補助枠等の構造も簡略化できる。   Further, since the heat sinks 3 and 3 are arranged in two upper and lower stages in the casing 2 without being shifted in the depth direction of the casing 2, it is possible to avoid an increase in the size of the casing 2 of the power supply device. Therefore, the housing 2 can be downsized, and the structure of the power supply device such as a conductor and an auxiliary frame for attachment can be simplified.

さらに、筐体2内のヒートシンク3,3は放熱部32が筐体2の側面部23に向かって突出した状態で配置されているので、筐体2内の放熱効果がさらに高まる。特に、下段側のヒートシンク3の背面部31は案内部材4の仕切り部41と対向しているので、このヒートシンク3の周辺で生じた上昇熱流を垂直方向に案内する風洞効果が生じ、筐体2内の放熱効果が促進される。   Furthermore, since the heat sinks 3 and 3 in the housing 2 are arranged in a state in which the heat radiating portion 32 protrudes toward the side surface portion 23 of the housing 2, the heat radiation effect in the housing 2 is further enhanced. In particular, since the rear surface portion 31 of the lower heat sink 3 faces the partition portion 41 of the guide member 4, a wind tunnel effect that guides the rising heat flow generated around the heat sink 3 in the vertical direction occurs. The heat dissipation effect inside is promoted.

(実施形態2)
図2に示された本実施形態の冷却機構10は、例えば、実施形態1の電源装置よりも電気容量が比較的大きい電源装置に適用される冷却機構であって、複数のヒートシンク3が筐体2の高さ方向及び奥行き方向に配列されるように設置されている。ヒートシンク3も実施形態1と同様に放熱部32が筐体2の側面部23に向かって突出した状態で筐体2内に設けられている。
(Embodiment 2)
The cooling mechanism 10 of the present embodiment shown in FIG. 2 is a cooling mechanism that is applied to, for example, a power supply apparatus that has a relatively larger electric capacity than the power supply apparatus of the first embodiment. 2 are arranged so as to be arranged in the height direction and the depth direction. Similarly to the first embodiment, the heat sink 3 is also provided in the housing 2 with the heat radiating portion 32 protruding toward the side surface portion 23 of the housing 2.

また、本実施形態の案内部材4は前記奥行き方向に配置されたヒートシンク3,3間において一対に備えられている。さらに、この一対の案内部材4の仕切り部41はヒートシンク3,3間において対向して配置されている。   Moreover, the guide member 4 of this embodiment is provided with a pair between the heat sinks 3 and 3 arrange | positioned in the said depth direction. Further, the partitioning portions 41 of the pair of guide members 4 are disposed to face each other between the heat sinks 3 and 3.

以上の冷却機構10によれば、実施形態1の冷却機構1と同様に、下段側のヒートシンク3から移行してきた熱流を垂直方向に案内できると共に上段側のヒートシンク3と接触させずに直ちに筐体2の側面部23側に案内できる。また、上下段に配置されるヒートシンク3,3を筐体2内の奥行き方向にずらして設置する必要がなくなり、電源装置の小型化も図れる。   According to the cooling mechanism 10 described above, similarly to the cooling mechanism 1 of the first embodiment, the heat flow transferred from the lower heat sink 3 can be guided in the vertical direction, and the casing can be immediately formed without contacting the upper heat sink 3. 2 can be guided to the side surface portion 23 side. Further, it is not necessary to displace the heat sinks 3 and 3 arranged in the upper and lower stages in the depth direction in the housing 2, and the power supply device can be reduced in size.

さらに、本実施形態においては下段側のヒートシンク3,3間に一対に設けられた案内部材4の仕切り部41が対向した状態となっている。これにより、下段側のヒートシンク3,3間で生じた上昇熱流を筐体2の天井部22の通気口20に対して直接案内する風洞効果が生じ、筐体2内の放熱効果が促進される。特に、電気容量の比較的大きい電源装置の筐体2内で生じる熱を効率的に排出できる。   Furthermore, in this embodiment, the partition 41 of the guide member 4 provided in a pair between the lower heat sinks 3 and 3 is in a state of facing. As a result, a wind tunnel effect that directly guides the rising heat flow generated between the lower heat sinks 3 and 3 to the vent 20 of the ceiling portion 22 of the casing 2 is generated, and the heat dissipation effect in the casing 2 is promoted. . In particular, heat generated in the housing 2 of the power supply device having a relatively large electric capacity can be efficiently discharged.

1,10…冷却機構
2…筐体、20…通気口、21・・・底面部、22・・・天井部、23…側面部
3…ヒートシンク、31…背面部、32…放熱部
4…案内部材、41…仕切り部、42…熱絶縁部
DESCRIPTION OF SYMBOLS 1,10 ... Cooling mechanism 2 ... Housing | casing, 20 ... Vent, 21 ... Bottom part, 22 ... Ceiling part, 23 ... Side part 3 ... Heat sink, 31 ... Back part, 32 ... Radiating part 4 ... Guidance Member, 41 ... Partition, 42 ... Thermal insulation

Claims (4)

電源装置の筐体内に配置されて当該装置の発熱体を放熱する複数のヒートシンクと、
一つの前記ヒートシンクからの熱流を他の前記ヒートシンクに移行させずに前記筐体の側面部に案内する案内部材と
を備え
前記案内部材は、
前記一つのヒートシンクと対向して立設される板状の仕切り部と、
この仕切り部の上端部から前記ヒートシンクと前記他のヒートシンクの間にて前記筐体の側面部に向かって当該筐体の高さ方向斜めに配置される板状の熱絶縁部と
を備えたこと
を特徴とする電源装置の冷却機構。
A plurality of heat sinks disposed within the casing of the power supply device to dissipate the heat generating element of the device;
A guide member that guides the heat flow from one heat sink to the side surface of the housing without transferring the heat flow to the other heat sink ;
The guide member is
A plate-like partitioning portion that is erected facing the one heat sink;
A plate-like heat insulating portion disposed obliquely in the height direction of the housing from the upper end portion of the partition portion toward the side surface portion of the housing between the heat sink and the other heat sink;
Cooling mechanism of the power supply device according to claim <br/> further comprising a.
前記複数のヒートシンクは前記筐体の高さ方向及び当該筐体の奥行き方向に配列され、
前記案内部材は前記奥行き方向に配列されたヒートシンク間にて一対に備えられ、
この一対の案内部材の仕切り部はこのヒートシンク間にて対向して配置されたこと
を特徴とする請求項に記載の電源装置の冷却機構。
The plurality of heat sinks are arranged in a height direction of the housing and a depth direction of the housing,
The guide member is provided in a pair between heat sinks arranged in the depth direction,
The cooling mechanism for a power supply device according to claim 1 , wherein the partition portions of the pair of guide members are arranged to face each other between the heat sinks.
前記高さ方向に配列された複数のヒートシンクは互いに前記筐体の奥行き方向にずれることなく設けられたこと
を特徴とする請求項に記載の電源装置の冷却機構。
The cooling mechanism for a power supply apparatus according to claim 2 , wherein the plurality of heat sinks arranged in the height direction are provided without being shifted from each other in the depth direction of the casing.
前記ヒートシンクは前記発熱体の熱を気中に放散する放熱部を有し、この放熱部は前記筐体の側面部に向かって突設されたこと
を特徴とする請求項1からのいずれか1項に記載の電源装置の冷却機構。
The heat sink has a heat dissipation portion that dissipates in the air the heat of the heating element, one of the heat radiation member from claim 1, characterized in that projecting toward the side surface portion of the housing 3 The cooling mechanism of the power supply device according to Item 1.
JP2014179771A 2014-09-04 2014-09-04 Power supply cooling mechanism Active JP6354469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014179771A JP6354469B2 (en) 2014-09-04 2014-09-04 Power supply cooling mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014179771A JP6354469B2 (en) 2014-09-04 2014-09-04 Power supply cooling mechanism

Publications (2)

Publication Number Publication Date
JP2016054236A JP2016054236A (en) 2016-04-14
JP6354469B2 true JP6354469B2 (en) 2018-07-11

Family

ID=55745343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014179771A Active JP6354469B2 (en) 2014-09-04 2014-09-04 Power supply cooling mechanism

Country Status (1)

Country Link
JP (1) JP6354469B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7309842B2 (en) * 2021-12-22 2023-07-18 レノボ・シンガポール・プライベート・リミテッド Electronics, cooling modules and heat sinks

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6149462U (en) * 1984-09-05 1986-04-03
JP4710184B2 (en) * 2001-07-19 2011-06-29 三菱電機株式会社 Power converter
JP2005045935A (en) * 2003-07-23 2005-02-17 Hitachi Ltd Power conversion apparatus

Also Published As

Publication number Publication date
JP2016054236A (en) 2016-04-14

Similar Documents

Publication Publication Date Title
CN101257782B (en) Cooling device for a soft starter device, and soft starter device
JP5355829B1 (en) Electronics
JP2014003788A (en) Control board
EP2658359B1 (en) Thermal separation of electronic control chassis heatsink fins
US20150216074A1 (en) Heat dissipation plate
JP5295043B2 (en) Heat dissipation structure of electronic control unit
JP6354469B2 (en) Power supply cooling mechanism
JP6271265B2 (en) Motor drive device
JP2017204588A (en) Circuit board
JP2017199770A (en) Heat sink and housing
JP2010087016A (en) Heat sink for natural air cooling
JP2010219085A (en) Heat sink for natural air cooling
JP5135420B2 (en) Power converter
JP4670828B2 (en) Electronics
JP2016063713A (en) Power conditioner
JP6878041B2 (en) Heat dissipation structure of heat generating parts
JP2005093630A (en) Heat radiation structure of electronic equipment
JP2009076623A (en) Electronic equipment
JP5706703B2 (en) Heat dissipation structure for electronic components
JP2019054024A (en) Radiator
JP2018032803A (en) Power conversion device
JP2007214250A (en) Induction heating apparatus
JP6888978B2 (en) Electrical and electronic equipment equipped with a heat dissipation unit
JP6386848B2 (en) Electronic equipment, support stand for electronic equipment
JP6334341B2 (en) Heat dissipation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180528

R150 Certificate of patent or registration of utility model

Ref document number: 6354469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150