JP2019054024A - Radiator - Google Patents

Radiator Download PDF

Info

Publication number
JP2019054024A
JP2019054024A JP2017175307A JP2017175307A JP2019054024A JP 2019054024 A JP2019054024 A JP 2019054024A JP 2017175307 A JP2017175307 A JP 2017175307A JP 2017175307 A JP2017175307 A JP 2017175307A JP 2019054024 A JP2019054024 A JP 2019054024A
Authority
JP
Japan
Prior art keywords
heat
air
radiator
electronic component
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017175307A
Other languages
Japanese (ja)
Other versions
JP6883498B2 (en
Inventor
崇 北川原
Takashi Kitagawara
崇 北川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2017175307A priority Critical patent/JP6883498B2/en
Publication of JP2019054024A publication Critical patent/JP2019054024A/en
Application granted granted Critical
Publication of JP6883498B2 publication Critical patent/JP6883498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

To provide a radiator capable of efficiently dissipating heat generated from an electronic component with a simple configuration and also capable of reducing an occupied area on a circuit board.SOLUTION: A radiator 1 in contact with an electronic component 7 to dissipate heat generated from the electronic component 7 includes a heat dissipation plate 2 having a plurality of wind-receiving heat dissipation surfaces formed to be bent so as to be orthogonal in each air flow direction depending on air flows that change by on-off switching of an air-cooling fan. A wind-receiving heat dissipation surface 2A is orthogonal to a rising air flow generated around the heat dissipation plate 2, and a wind-receiving heat dissipation surface 2B is orthogonal to cooling air blown from the cooling fan. In these wind-receiving heat dissipation surfaces 2A, 2B, through holes 4 for passing the air flow to a downstream side are formed.SELECTED DRAWING: Figure 1

Description

本発明は、電子部品からの発熱を放熱する放熱器に関する。   The present invention relates to a radiator that radiates heat generated from an electronic component.

サイリスタやパワートランジスタなど発熱量の大きい電子部品からの発熱を放熱するために放熱器(ヒートシンク)が利用されている。例えば、取付基板に所定間隔をおいて立設された複数の放熱板を有し、当該放熱板の各々に形成された貫通孔に管状体を挿入した放熱器が提案されている。この放熱器には、放熱板に対向配置した空冷ファンから管状体に冷却風が送風されるとともに、側面側に配置した他の空冷ファンから隣接する放熱板間に冷却風が送風される(特許文献1を参照)。   A heat sink (heat sink) is used to dissipate heat generated from electronic components that generate a large amount of heat, such as thyristors and power transistors. For example, there has been proposed a radiator having a plurality of heat radiating plates erected on a mounting substrate at a predetermined interval and having a tubular body inserted into a through hole formed in each of the heat radiating plates. In this radiator, cooling air is blown to the tubular body from an air cooling fan arranged opposite to the heat sink, and cooling air is blown between adjacent heat sinks from another air cooling fan arranged on the side surface (patent) Reference 1).

また、電子機器などで使用されるマイクロプロセッサを冷却するための放熱器が提案されている。例えば、マイクロプロセッサの表面に当接する底面と、通風孔の形成された4つの側面と、天井面に空冷ファンとを備えた箱型の放熱器が提案されている(特許文献2を参照)。   Further, a heat radiator for cooling a microprocessor used in an electronic device or the like has been proposed. For example, a box-shaped radiator having a bottom surface that contacts the surface of a microprocessor, four side surfaces in which ventilation holes are formed, and an air cooling fan on the ceiling surface has been proposed (see Patent Document 2).

特開平10−4165号公報Japanese Patent Laid-Open No. 10-4165 特開平10−294582号公報JP-A-10-294582

しかしながら、従来の放熱器は、十分な放熱効果(空冷性能)が得られるものの、複雑な構造なので生産効率が悪く、かつ、回路基板上での占有面積が大きくなるので回路設計の自由度が制限されてしまうといった種々の不都合が生じている。   However, although the conventional heatsink can provide a sufficient heat dissipation effect (air cooling performance), it has a complicated structure, resulting in poor production efficiency and a large occupied area on the circuit board, which limits the degree of freedom in circuit design. There are various inconveniences such as this.

本発明は、簡素な構成で電子部品からの発熱を効率よく放熱するとともに、回路基板上での占有面積を小さくすることが可能な放熱器を提供することを目的とするものである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a radiator that can efficiently radiate heat generated from an electronic component with a simple configuration and can reduce an occupied area on a circuit board.

本発明は、以下のような放熱器を提供する。   The present invention provides the following radiator.

すなわち、本発明の実施形態に係る放熱器は、下記の構成を有する。
電子部品に当接して当該電子部品からの発熱を放熱する放熱器であって、
空冷ファンのオン・オフ切り替えによって変化する気流に応じて各気流方向と実質的に直交するよう屈曲形成された複数の受風放熱面を有し、前記複数の受風放熱面のうち互いに異なる方向に延びる前記受風放熱面ごとに貫通孔が形成された放熱板によって構成した
ことを特徴とする。
That is, the heat radiator according to the embodiment of the present invention has the following configuration.
A radiator that contacts an electronic component and dissipates heat from the electronic component,
There are a plurality of wind receiving and radiating surfaces that are bent so as to be substantially perpendicular to the direction of each air flow according to the air flow that changes depending on the on / off switching of the air cooling fan, and different directions among the plurality of wind receiving and radiating surfaces It is comprised by the heat sink with which the through-hole was formed for every said wind-receiving heat radiating surface extended in this.

この構成によれば、空冷ファンのオン時に複数の受風放熱面の少なくとも1つが空冷ファンの冷却風の気流方向と実質的に直交する一方、空冷ファンのオフ時に空冷ファンの冷却風の気流方向と実質的に直交しない他の面が空冷ファンのオフ時に存在する上昇気流等の自然発生している気流の方向と実質的に直交する。そして、各気流方向と直交する受風放熱面には気流が通過可能な貫通孔が形成されているので、気流を滞留させることなく当該受風放熱面に形成された貫通孔から下流側に気流が通過し、優れた放熱効率を発揮する。しかも、気流方向と実質的に直交しない他の面(受風放熱面に対し屈曲形成された面)も副次的な放熱面として放熱板の放熱能力向上に寄与する。その結果、空冷ファンの作動有無にかかわらず、電子部品からの発熱を効果的に放熱することができる。さらに、放熱器自体は、屈曲形成された複数の受風放熱面から構成される簡素かつコンパクトな構成なので、生産効率に優れ、回路基板上での占有面積を比較的小さくすることができる。   According to this configuration, at least one of the plurality of wind receiving and radiating surfaces when the air cooling fan is on is substantially orthogonal to the air flow direction of the cooling air of the air cooling fan, while the air flow direction of the cooling air of the air cooling fan is off when the air cooling fan is off. The other surface that is not substantially orthogonal to the airflow is substantially orthogonal to the direction of the naturally occurring airflow such as the upward airflow that exists when the air cooling fan is off. And since the through-hole through which the airflow can pass is formed in the wind receiving and radiating surface orthogonal to each air flow direction, the air flow is downstream from the through hole formed in the wind receiving and radiating surface without causing the air flow to stay. Passes and exhibits excellent heat dissipation efficiency. In addition, other surfaces that are not substantially orthogonal to the airflow direction (surfaces that are bent with respect to the wind receiving and radiating surface) also contribute to improving the radiating performance of the radiating plate as a secondary radiating surface. As a result, it is possible to effectively dissipate heat generated from the electronic components regardless of whether the air cooling fan is operated. Furthermore, since the radiator itself is a simple and compact configuration composed of a plurality of bent wind-receiving and radiating surfaces, it is excellent in production efficiency and can occupy a relatively small area on the circuit board.

上記構成において、前記放熱板は、その周囲に生じている上昇気流と実質的に直交する前記受風放熱面を含むことが好ましい。   The said structure WHEREIN: It is preferable that the said heat sink contains the said wind-receiving heat radiation surface substantially orthogonal to the ascending airflow which has arisen in the circumference | surroundings.

この構成によれば、空冷ファンをオフにした場合、電子部品の発熱を含む放熱板周囲の昇温された空気によって放熱板周囲には上昇気流が発生する。この場合、上昇気流と実質的に直交する放熱板の受風放熱面が、気流を滞留させることなく当該受風放熱面に形成された貫通孔から下流側に空気を通過させるので、優れた放熱効率を発揮し、ひいては放熱板の放熱能力向上に大きく寄与する。また、受風放熱面と連続して屈曲形成された他の面は、気流と直交しないので、副次的な放熱面として放熱板の放熱能力に寄与する。   According to this configuration, when the air-cooling fan is turned off, a rising air flow is generated around the heat sink due to the heated air around the heat sink including heat generated by the electronic component. In this case, since the wind receiving and radiating surface of the heat sink substantially orthogonal to the rising air flow allows air to pass downstream from the through-hole formed in the wind receiving and radiating surface without retaining the air flow, excellent heat dissipation It exhibits efficiency and contributes greatly to improving the heat dissipation capacity of the heat sink. Moreover, since the other surface bent continuously with the wind receiving heat radiating surface is not orthogonal to the air flow, it contributes to the heat radiating capability of the heat radiating plate as a secondary heat radiating surface.

また、上記構成において、前記放熱板から延設され、前記放熱板を回路基板に設置可能にするとともに前記回路基板から当該放熱板を離間させる脚部を有することが好ましい。   Further, in the above-described configuration, it is preferable to have a leg portion that extends from the heat radiating plate, allows the heat radiating plate to be installed on the circuit board, and separates the heat radiating plate from the circuit board.

この構成によれば、脚部によって放熱板を回路基板に設置するとともに回路基板と放熱板との間に間隙が形成されるので、当該間隙を介して空気を下流に効率よく通過させることができる。その結果、電子部品の冷却効率が高められる。また、放熱板と回路基板の間隙部分に、当該間隙の高さよりも低い高さの電子部品を実装することができる。すなわち、回路基板上における放熱器の占有面積を小さくし、電子部品の実装効率を高めることができる。   According to this configuration, since the heat sink is installed on the circuit board by the legs and the gap is formed between the circuit board and the heat sink, air can be efficiently passed downstream through the gap. . As a result, the cooling efficiency of the electronic component is increased. In addition, an electronic component having a height lower than the height of the gap can be mounted in the gap between the heat sink and the circuit board. That is, the area occupied by the radiator on the circuit board can be reduced, and the mounting efficiency of the electronic components can be increased.

また、上記構成において、前記電子部品を装着する前記放熱板の所定領域に貫通孔を有しないことが好ましい。   Moreover, in the said structure, it is preferable not to have a through-hole in the predetermined area | region of the said heat sink with which the said electronic component is mounted | worn.

この構成によれば、放熱板と電子部品を面接触させるので、電子部品で生じた熱を効率よく放熱板に伝達させて放熱することができる。   According to this configuration, since the heat sink and the electronic component are brought into surface contact, the heat generated in the electronic component can be efficiently transmitted to the heat sink and radiated.

本発明の放熱器によれば、簡素な構成で電子部品からの発熱を効率よく放熱可能であるとともに、回路基板上での占有面積を小さくすることを可能にする。   According to the radiator of the present invention, it is possible to efficiently dissipate heat generated from the electronic component with a simple configuration, and it is possible to reduce the occupied area on the circuit board.

本発明の放熱器の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the heat radiator of this invention. 本発明の放熱器の正面図である。It is a front view of the heat radiator of the present invention. 本発明の放熱器の左側面図である。It is a left view of the heat radiator of this invention. 本発明の放熱器の右側面図である。It is a right view of the heat radiator of this invention. 本発明の放熱器の背面図である。It is a rear view of the heat radiator of this invention. 本発明の放熱器の平面図である。It is a top view of the heat radiator of this invention. 本発明の放熱器による電子部品の冷却を示す模式図である。It is a schematic diagram which shows cooling of the electronic component by the heat radiator of this invention. 変形例の放熱器の正面側からの斜視図である。It is a perspective view from the front side of the heat radiator of a modification. 他の変形例の放熱器器の正面側からの斜視図である。It is a perspective view from the front side of the heat radiator of another modification. 他の変形例の放熱器の背面側からの斜視図である。It is a perspective view from the back side of the heat radiator of another modification. 他の変形例の放熱器の正面側からの斜視図である。It is a perspective view from the front side of the heat radiator of another modification. 他の変形例の放熱器の背面側からの斜視図である。It is a perspective view from the back side of the heat radiator of another modification. 他の変形例の放熱器による電子部品の冷却を示す模式図である。It is a schematic diagram which shows cooling of the electronic component by the heat radiator of another modification.

以下、本発明の実施形態について、添付図面に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1に示すように、本実施形態の放熱器1は、放熱板2と放熱板2に延設された脚部3とから構成されている。   As shown in FIG. 1, the radiator 1 according to the present embodiment includes a radiator plate 2 and leg portions 3 extending from the radiator plate 2.

放熱板2は、図2〜図4に示すように、矩形状で大型の第1面2Aと第1面2Aの一方の側端縁から屈曲形成された小型の第2面2Bの2面を有する。第1面2Aおよび第2面2Bは、本発明の受風放熱面として機能する。また、放熱板2は、第1面2Aの他方の側端縁から屈曲形成された第2面2Bより小形の第3面2Cを有する。   As shown in FIGS. 2 to 4, the heat radiating plate 2 has two surfaces of a rectangular first large surface 2 </ b> A and a small second surface 2 </ b> B formed by bending from one side edge of the first surface 2 </ b> A. Have. The first surface 2A and the second surface 2B function as a wind receiving and radiating surface of the present invention. Moreover, the heat sink 2 has a third surface 2C that is smaller than the second surface 2B that is bent from the other side edge of the first surface 2A.

本実施形態では、1枚の亜鉛めっき鋼板の薄板をプレス加工によってベースとなる第1面2Aから第2面2Bおよび第3面2Cを屈曲形成している。亜鉛めっき鋼板は、例えば厚み1mmのはんだ濡れ性に優れたものを使用している。なお、放熱板2の材料は、亜鉛めっき鋼板に限定されず、熱伝導率に優れたアルミニウムや銅など種々の金属を使用することも可能である。   In the present embodiment, the first surface 2A to the second surface 2B and the third surface 2C, which serve as a base, are formed by bending a thin sheet of a galvanized steel sheet. For example, a galvanized steel sheet having a thickness of 1 mm and excellent solder wettability is used. In addition, the material of the heat sink 2 is not limited to a galvanized steel plate, It is also possible to use various metals, such as aluminum and copper excellent in thermal conductivity.

放熱板2の第1面2Aは、図2に示すように、上側の略3分の1に複数個の貫通孔4が形成された第1領域と下側の略3分の2に3個の貫通孔5が形成された第2領域とを有する。第1領域の貫通孔4は、打ち抜き加工によって上下2段の二次元状に形成されている。貫通孔4は、後述するように、その周囲に生じている上昇気流を通過させる。本実施形態において、貫通孔4は、次のように設定されている。隣接する上側の2個の貫通孔4と両貫通孔4の間の下側にある1個の貫通孔4の各中心を結んで形成した三角形が正三角形になるように設定されている。例えば、本実施形態では、幅が約51mmの第1面2Aに直径4mmの貫通孔4を形成している。これら貫通孔4の中心間の距離(ピッチ)は、6mmに設定されている。なお、貫通孔4の直径、個数、ピッチなどは、使用する放熱板2の材料、形状、寸法、材料の厚みなどによって適宜に設定変更される。   As shown in FIG. 2, the first surface 2 </ b> A of the heat sink 2 has a first region in which a plurality of through holes 4 are formed in approximately one third on the upper side and three in the lower third. And a second region in which the through hole 5 is formed. The through holes 4 in the first region are formed in a two-dimensional two-stage shape by punching. As will be described later, the through-hole 4 allows the ascending air current generated therethrough to pass therethrough. In the present embodiment, the through hole 4 is set as follows. A triangle formed by connecting the centers of two adjacent through holes 4 on the upper side and one through hole 4 on the lower side between the two through holes 4 is set to be an equilateral triangle. For example, in this embodiment, the through hole 4 having a diameter of 4 mm is formed in the first surface 2A having a width of about 51 mm. The distance (pitch) between the centers of these through holes 4 is set to 6 mm. The diameter, the number, the pitch, and the like of the through holes 4 are appropriately changed depending on the material, shape, dimensions, material thickness, etc. of the heat sink 2 to be used.

第2領域には、正面側からのバーリング加工によって3個の貫通孔5が形成され、背面側には、図5および図6に示すように、フランジ6が形成されている。すなわち、貫通孔5は、電子部品7を放熱板2にねじ8によって固定するためのものである。なお、貫通孔5の個数、位置、寸法は、装着する電子部品7に応じて、適宜に設定変更される。また、本実施形態では、1個の電子部品7を第1面2Aに装着しているが、例えば、同じ形状の電子部品7を2個以上、または、後述のように異なる形状の電子部品7を2個以上装着(図8を参照)することも可能である。   Three through holes 5 are formed in the second region by burring from the front side, and a flange 6 is formed on the back side as shown in FIGS. 5 and 6. That is, the through hole 5 is for fixing the electronic component 7 to the heat radiating plate 2 with the screw 8. Note that the number, position, and dimensions of the through holes 5 are appropriately changed according to the electronic component 7 to be mounted. In the present embodiment, one electronic component 7 is mounted on the first surface 2A. For example, two or more electronic components 7 having the same shape or electronic components 7 having different shapes as described later are used. Two or more can be mounted (see FIG. 8).

放熱板2の第2面2Bは、第1面2Aの一方の側端縁から第1面2Aに直交するよう屈曲形成されている。第2面2Bは、第1面2Aの略半分の高さに設定されており、かつ、第1面2Aと同形状の貫通孔4が、縦一列に等間隔に形成されている。また、第2面2Bの下部には、脚部3が延在している。   The second surface 2B of the heat radiating plate 2 is bent so as to be orthogonal to the first surface 2A from one side edge of the first surface 2A. The second surface 2B is set to be approximately half the height of the first surface 2A, and the through holes 4 having the same shape as the first surface 2A are formed at equal intervals in a vertical row. Moreover, the leg part 3 is extended under the 2nd surface 2B.

放熱板2の第3面2Cは、第1面2Aの他方の側端縁から第1面2Aに直交するよう屈曲形成されている。第3面2Cは、第1面2Aの略8分の1の高さに設定されている。なお、本実施形態では、第3面2Cに貫通孔5は、形成されていない。なお、第3面2Cの下部には、第2面2Bと同形状の脚部3が延在している。   The third surface 2C of the heat radiating plate 2 is bent so as to be orthogonal to the first surface 2A from the other side edge of the first surface 2A. The third surface 2C is set to be approximately one-eighth of the first surface 2A. In the present embodiment, the through hole 5 is not formed in the third surface 2C. A leg 3 having the same shape as the second surface 2B extends below the third surface 2C.

脚部3は、放熱板2の下端から所定長さ突出するように構成され、放熱板2を回路基板12に設置可能にしている。放熱器1を回路基板12に設置したとき、第1面2Aの両側端で対向する一対の脚部3によって、第1面2Aの下端と回路基板12との間に間隙を形成する。   The leg 3 is configured to protrude a predetermined length from the lower end of the heat radiating plate 2 so that the heat radiating plate 2 can be installed on the circuit board 12. When the radiator 1 is installed on the circuit board 12, a gap is formed between the lower end of the first surface 2 </ b> A and the circuit board 12 by the pair of leg portions 3 facing each other at both ends of the first surface 2 </ b> A.

また、脚部3は、貫通孔9および突起部10を有する。貫通孔9は、貫通孔4よりも小さい。貫通孔9は、次のように機能する。放熱器1を回路基板12に実装してはんだ付けするとき、貫通孔9は放熱板2への熱拡散を防止し、ひいてははんだ付け部分の温度低下を抑制させる。すなわち、貫通孔9は、脚部3のはんだ濡れ性の低下を抑制する。   The leg 3 has a through hole 9 and a protrusion 10. The through hole 9 is smaller than the through hole 4. The through hole 9 functions as follows. When the heat radiator 1 is mounted on the circuit board 12 and soldered, the through hole 9 prevents thermal diffusion to the heat radiating plate 2 and consequently suppresses the temperature drop of the soldered portion. That is, the through hole 9 suppresses a decrease in solder wettability of the leg portion 3.

突起部10は、脚部3の下部に形成されており、図1に示すように、電子部品7のリード端子と同様に、回路基板12に貫通形成された設置孔13に挿入される。この突起部10には、設置孔13に係合するテーパ状の切欠き11(図3および図4を参照)が幅方向の対向する位置に形成されている。なお、本実施形態では、一方の脚部には貫通孔4を有する面を設けていないが、他の脚部3と同様に受風放熱面として機能する貫通孔4を形成した面を設け、当該面から脚部3を延在させてもよい。   The protruding portion 10 is formed at the lower portion of the leg portion 3 and is inserted into an installation hole 13 formed through the circuit board 12 in the same manner as the lead terminal of the electronic component 7 as shown in FIG. The protrusion 10 is formed with a tapered notch 11 (see FIGS. 3 and 4) that engages with the installation hole 13 at a position facing in the width direction. In this embodiment, the surface having the through hole 4 is not provided in one leg, but the surface in which the through hole 4 functioning as a wind receiving and radiating surface is provided in the same manner as the other leg 3, The leg 3 may be extended from the surface.

なお、本実施形態では、放熱板2の第1面2Aの両側端縁に各1箇所、第2面2Bおよび第3面2Cの各1箇所に切欠き14が形成されている。これら切欠き14は、第2面2Bおよび第3面2Cを屈曲する際に生じる放熱板2の歪みを防止するためのものである。なお、放熱板2の材料や屈曲角度に応じて歪みが生じにくい場合、切欠き14を設けなくてもよい。   In the present embodiment, a notch 14 is formed at each of the two side edges of the first surface 2A of the heat radiating plate 2 and at one location of each of the second surface 2B and the third surface 2C. These notches 14 are for preventing distortion of the heat sink 2 that occurs when the second surface 2B and the third surface 2C are bent. Note that the notch 14 may not be provided if distortion is unlikely to occur depending on the material of the heat sink 2 and the bending angle.

次に、上記実施形態の放熱器1による電子部品7の放熱について、図7を参照しながら説明する。   Next, heat dissipation of the electronic component 7 by the radiator 1 of the above embodiment will be described with reference to FIG.

<実施例>
実施例では、1個の空冷ファン(図示せず)が設置された場合である。放熱器1は、起立姿勢に回路基板12に取り付けられている。また、放熱器1は、空冷ファンからの冷却風の気流方向に対して放熱板2の第1面2Aが冷却風の気流方向と実質的に平行になるように配置されている。このため、放熱板2の第2面2Bおよび第3面2Cが冷却風の気流方向と実質的に直交する。また、貫通孔4が形成されていない第3面2Cが気流方向の上流側に配置される。これにより、第3面2Cより面積が大きな第2面2Bが、第1面2Aより後に冷却風に晒され、第1面2Aによる副次的な放熱が第2面2Bにより阻害されるのが抑制される。このとき、第1面2Aは、天面となっている。なお、空冷ファンは、図示しない温度センサによって検知された温度に応じて、CPU(中央処理装置)などの制御部によってオン・オフを切替制御される。
<Example>
In this embodiment, one air cooling fan (not shown) is installed. The radiator 1 is attached to the circuit board 12 in a standing posture. Further, the radiator 1 is arranged such that the first surface 2A of the heat radiating plate 2 is substantially parallel to the airflow direction of the cooling air with respect to the airflow direction of the cooling air from the air cooling fan. For this reason, the 2nd surface 2B and 3rd surface 2C of the heat sink 2 are substantially orthogonal to the airflow direction of cooling air. Moreover, the 3rd surface 2C in which the through-hole 4 is not formed is arrange | positioned in the upstream of the airflow direction. As a result, the second surface 2B having a larger area than the third surface 2C is exposed to the cooling air after the first surface 2A, and secondary heat dissipation by the first surface 2A is inhibited by the second surface 2B. It is suppressed. At this time, the first surface 2A is a top surface. The air cooling fan is controlled to be turned on and off by a control unit such as a CPU (Central Processing Unit) in accordance with a temperature detected by a temperature sensor (not shown).

空冷ファンがオン(作動)の場合、放熱器1は、空冷ファンから送風される冷却風を受風放熱面として機能する第2面2Bで受けながら、第2面2Bに形成された貫通孔4から下流側に冷却風を通過させる。空冷ファンがオフ(停止)の場合、電子部品7からの発熱を含む放熱器1の周囲の昇温された空気が、上昇気流となって第1面2Aの貫通孔4を通過する。すなわち、第2面2Bは、空冷ファンからの冷却風の気流方向と実質的に直交し、第1面2Aは、上昇気流と実質的に直交する。このように、本実施形態では、互いに異なる方向に延びる受風放熱面、すなわち第1面2Aおよび第2面2Bに気流が通過可能な貫通孔が形成されており、空冷ファンのオン・オフ切り替えに伴う各気流を受風するとともに気流を滞留させることなく貫通孔から通過させるので、電子部品7からの発熱を効果的に放熱することができる。   When the air cooling fan is on (actuated), the radiator 1 receives the cooling air blown from the air cooling fan at the second surface 2B functioning as a wind receiving and heat radiating surface, and the through hole 4 formed in the second surface 2B. Cooling air is passed downstream from When the air cooling fan is off (stopped), the heated air around the radiator 1 including the heat generated from the electronic component 7 becomes an ascending current and passes through the through hole 4 of the first surface 2A. That is, the second surface 2B is substantially orthogonal to the airflow direction of the cooling air from the air cooling fan, and the first surface 2A is substantially orthogonal to the ascending airflow. As described above, in the present embodiment, the wind receiving and radiating surfaces extending in different directions, that is, the first surface 2A and the second surface 2B are formed with through holes through which airflow can pass, and the air cooling fan is switched on and off. Since each airflow associated with the airflow is received and the airflow is allowed to pass through without being retained, heat generated from the electronic component 7 can be effectively radiated.

本実施形態では、空冷ファンがオンの場合、電子部品7からの発熱は、電子部品7の装着面である第1面2Aから副次的に放熱されるとともに、当該第1面2Aから第2面2Bおよび第3面2Cに伝達され、主として受風放熱面である第2面2Bから効率的に放熱される。また、空冷ファンがオフの場合、電子部品7からの発熱は、主に第1面2Aから放熱される。第1面2Aには、複数の貫通孔が形成されているので、放熱板2の周囲に生じた上昇気流が滞留せず、円滑に気流方向(上昇方向)の下流側に通過し、放熱効率を高めることができる。   In the present embodiment, when the air-cooling fan is on, the heat generated from the electronic component 7 is secondarily dissipated from the first surface 2A, which is the mounting surface of the electronic component 7, and the second surface to the second surface 2A. The heat is transmitted to the surface 2B and the third surface 2C, and is efficiently radiated from the second surface 2B which is mainly the wind receiving and radiating surface. When the air cooling fan is off, heat generated from the electronic component 7 is mainly radiated from the first surface 2A. Since a plurality of through holes are formed in the first surface 2A, the rising airflow generated around the heat radiating plate 2 does not stay and smoothly passes downstream in the airflow direction (upward direction), and the heat dissipation efficiency Can be increased.

また、上述のように、本実施例の放熱器1は、簡素な構成で電子部品7の放熱効率を高めることができる。放熱器1は、1枚の放熱板2を屈曲させて複数の受風放熱面を設けた簡素な構成であるので、生産効率に優れ、回路基板上での占有面積を小さくすることができる。   Further, as described above, the radiator 1 of the present embodiment can increase the heat dissipation efficiency of the electronic component 7 with a simple configuration. Since the heat radiator 1 has a simple configuration in which a single heat radiating plate 2 is bent to provide a plurality of wind receiving and heat radiating surfaces, it is excellent in production efficiency and can occupy a small area on the circuit board.

さらに、放熱器1は、脚部3によって回路基板12に装着されるとともに、第1面2Aと回路基板12の間に間隙を設けているので、回路基板12と放熱器1との間の上昇気流の通過を可能にするとともに、当該間隙の高さよりも低い高さの電子部品7を回路基板12に実装することも可能にする。   Furthermore, the radiator 1 is mounted on the circuit board 12 by the leg 3 and a gap is provided between the first surface 2A and the circuit board 12, so that the rise between the circuit board 12 and the radiator 1 is increased. In addition to allowing airflow to pass, the electronic component 7 having a height lower than the height of the gap can be mounted on the circuit board 12.

以上、本発明の好適な実施の形態について説明したが、本発明は上述の実施形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な設計変更が可能なものである。例えば、以下のような実施形態も含む。   The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various design changes can be made as long as they are described in the claims. For example, the following embodiments are also included.

(1)上記実施形態では、脚部3によって回路基板12と放熱板2の第1面2Aとの間に間隙を形成する構成であったが、間隙を形成しない構成であってもよい。例えば、図8に示すように、第1面2Aの下部が、回路基板12と接触または近接するように拡張する。また、電子部品7の装着面から下側の領域(第3領域)に複数の貫通孔4が形成されている。これにより、回路基板12の表面近くの気流の通過を可能にしながらも第1面2Aの表面積(放熱面積)を拡大することができる。なお、本実施形態において、第3領域に形成する貫通孔4のサイズは、第1領域と同じに設定しているが、異なるサイズであってもよいし、また、貫通孔4の個数も異なっていてもよい。   (1) In the above embodiment, the gap is formed between the circuit board 12 and the first surface 2A of the heat sink 2 by the legs 3, but a configuration in which no gap is formed may be used. For example, as shown in FIG. 8, the lower portion of the first surface 2 </ b> A is expanded so as to be in contact with or close to the circuit board 12. A plurality of through holes 4 are formed in a lower region (third region) from the mounting surface of the electronic component 7. Thereby, the surface area (heat radiation area) of the first surface 2A can be increased while allowing the airflow near the surface of the circuit board 12 to pass therethrough. In the present embodiment, the size of the through hole 4 formed in the third region is set to be the same as that of the first region, but may be a different size, and the number of the through holes 4 is also different. It may be.

(2)上記実施形態では、受風放熱面および副次的な放熱面として機能する面を2つしか設けていないが、3つ以上であってもよい。例えば、図9および図10に示すように、第2面2Bを第1面2Aと同じ高さまで拡張するとともに、第1面2Aの上部と下部を延在して背面側に屈曲し、第4面2Dおよび第5面2Eを形成する。第4面2Dおよび第5面2Eは、背面側の奥行長さを第2面2Bと同じに設定している。なお、本実施形態では、第4面2Dおよび第5面2Eには貫通孔4が形成されていない。   (2) In the above embodiment, only two surfaces functioning as the wind receiving heat radiation surface and the secondary heat radiation surface are provided, but three or more surfaces may be provided. For example, as shown in FIGS. 9 and 10, the second surface 2B is expanded to the same height as the first surface 2A, and the upper and lower portions of the first surface 2A are extended to bend to the back side, The surface 2D and the fifth surface 2E are formed. The fourth surface 2D and the fifth surface 2E are set to have the same depth length on the back side as the second surface 2B. In the present embodiment, the through hole 4 is not formed in the fourth surface 2D and the fifth surface 2E.

この構成によれば、図7に示す放熱器1と同じ姿勢で当該変形例の放熱器1を回路基板12に設置し、空冷ファンをオフ(停止)した状態のとき、第4面2Dおよび第5面2Eは、上昇気流と直交しないので、第1面2Aよりも放熱効率が劣るが、副次的な放熱面として放熱板の放熱能力向上に寄与する。また、空冷ファンをオン(作動)した場合、第4面2Dおよび第5面2Eは、空冷ファンの冷却風の気流方向と直交して配置され、冷却風に晒されることで、放熱効率の増加に寄与する。   According to this configuration, when the radiator 1 of the modified example is installed on the circuit board 12 in the same posture as the radiator 1 shown in FIG. 7 and the air cooling fan is turned off (stopped), the fourth surface 2D and the fourth surface 2D Since the 5th surface 2E is not orthogonal to the ascending airflow, the heat dissipation efficiency is inferior to that of the first surface 2A, but contributes to the improvement of the heat dissipation capability of the heat sink as a secondary heat dissipation surface. In addition, when the air cooling fan is turned on (actuated), the fourth surface 2D and the fifth surface 2E are arranged orthogonal to the air flow direction of the cooling air of the air cooling fan and are exposed to the cooling air, thereby increasing the heat dissipation efficiency. Contribute to.

(3)上記各実施形態では、放熱板2に形成した貫通孔4は、打ち抜き加工によって形成しているが、図11および図12に示すように、略円弧状に切り込みを入れて、切り込み部分を背面側に屈曲させて冷却フィン15を形成してもよい。   (3) In each of the above embodiments, the through hole 4 formed in the heat radiating plate 2 is formed by punching. However, as shown in FIGS. 11 and 12, a cut is made in a substantially arc shape. May be bent to the back side to form the cooling fin 15.

この構成によれば、冷却フィン15によって放熱板の面積が拡張されるので放熱器1の放熱効率が向上する。したがって、貫通孔4に冷却風を通過させて得る冷却効果との相乗効果によって放熱効率が更に向上する。   According to this configuration, since the area of the heat sink is expanded by the cooling fins 15, the heat dissipation efficiency of the radiator 1 is improved. Therefore, the heat dissipation efficiency is further improved by a synergistic effect with the cooling effect obtained by passing the cooling air through the through hole 4.

(4)上記各実施形態では、1つの空冷ファンが設置された場合の構成について説明したが、複数の空冷ファンが設置された場合にも対応することができる。例えば、放熱器1は、次のように構成される。以下、図13に基づいて説明する。   (4) In each of the above-described embodiments, the configuration when one air-cooling fan is installed has been described, but it is possible to cope with the case where a plurality of air-cooling fans are installed. For example, the radiator 1 is configured as follows. Hereinafter, a description will be given based on FIG.

本実施形態では、空冷ファンが2箇所に設置されており、放熱板2のベースとなる第1面2Aが一方の第1空冷ファンからの冷却風の気流方向と直交し、第2面2Bが他方の第2空冷ファンからの冷却風の気流方向と直交するように放熱器1が回路基板12に設置されている。なお、回路基板12は、起立姿勢で設置されている。したがって、図13において、第4面2Dが天面となっている。   In this embodiment, the air cooling fan is installed in two places, the 1st surface 2A used as the base of the heat sink 2 is orthogonal to the airflow direction of the cooling air from one 1st air cooling fan, and the 2nd surface 2B is The radiator 1 is installed on the circuit board 12 so as to be orthogonal to the airflow direction of the cooling air from the other second air cooling fan. The circuit board 12 is installed in a standing posture. Accordingly, in FIG. 13, the fourth surface 2D is the top surface.

第1面2A、第2面2Bおよび第4面2Dの形状は、略正方形である。各面2A、2B、2Dに貫通孔4が、二次元状に形成されている。電子部品7は、第2面2Bに装着されている。なお、第2面2Bの電子部品7の装着部分には貫通孔4が形成されていない。   The shapes of the first surface 2A, the second surface 2B, and the fourth surface 2D are substantially square. Through holes 4 are formed two-dimensionally on each surface 2A, 2B, 2D. The electronic component 7 is mounted on the second surface 2B. Note that the through hole 4 is not formed in the mounting portion of the electronic component 7 on the second surface 2B.

本実施形態では、脚部3は、上記実施形態の突起部10と同じ脚部が第2面2Bおよび第4面2Dに設けられているが、回路基板12に埋設されているので図示されていない。   In the present embodiment, the leg 3 is illustrated as being the same as the protrusion 10 of the above embodiment on the second surface 2B and the fourth surface 2D, but is embedded in the circuit board 12. Absent.

次に、本実施形態の放熱器1によって、電子部品7を冷却する動作について説明する。第1空冷ファンのみをオンにした場合、第1面2Aが第1空冷ファンから送風される冷却風を受けながら、貫通孔4から下流側に冷却風を通過させる。すなわち、貫通孔4を通過した冷却風は、第1面2A、第2面2B、第4面2Dおよび回路基板12によって4方向を囲われた空間に流れ込む。その後、冷却風は、放熱板2(放熱面)を有しない方向、第2面2Bおよび第4面2Dの貫通孔4を通過して外部に拡散する。   Next, the operation | movement which cools the electronic component 7 with the heat radiator 1 of this embodiment is demonstrated. When only the first air cooling fan is turned on, the first surface 2A passes the cooling air from the through hole 4 to the downstream side while receiving the cooling air blown from the first air cooling fan. That is, the cooling air that has passed through the through-hole 4 flows into a space surrounded by four directions by the first surface 2A, the second surface 2B, the fourth surface 2D, and the circuit board 12. Thereafter, the cooling air diffuses outside through the through-holes 4 in the second surface 4B and the fourth surface 2D in the direction not having the heat radiating plate 2 (heat radiating surface).

一方で、第2空冷ファンのみをオンにした場合、第2面2Bが第2空冷ファンから送風される冷却風を受けながら、貫通孔4から下流側に冷却風を通過させる。貫通孔4を通過した冷却風は、第1空冷ファンの作動時と同様に、貫通孔4などを通過して外部に拡散する。   On the other hand, when only the second air cooling fan is turned on, the second surface 2B passes the cooling air from the through hole 4 to the downstream side while receiving the cooling air blown from the second air cooling fan. The cooling air that has passed through the through-hole 4 passes through the through-hole 4 and the like and diffuses to the outside in the same manner as when the first air cooling fan is operating.

第1空冷ファンおよび第2空冷ファンの両方をオフにした場合、第1面2A、第2面2B、第4面2Dおよび回路基板12によって4方向を囲われた空間内の空気が、電子部品7等の発熱によって昇温されて上昇気流となり、第4面2Dの貫通孔4を通過する。すなわち、空気は、空間内で滞留せずに第4面2Dの貫通孔4を通過して外部に拡散する。   When both the first air cooling fan and the second air cooling fan are turned off, the air in the space enclosed in the four directions by the first surface 2A, the second surface 2B, the fourth surface 2D, and the circuit board 12 becomes an electronic component. The temperature rises due to heat generation such as 7 and becomes an ascending current, and passes through the through hole 4 of the fourth surface 2D. That is, the air does not stay in the space and diffuses outside through the through hole 4 of the fourth surface 2D.

上述のように、一方の空冷ファンの作動時、および、両空冷ファンの停止時のいずれの場合であっても、空気が放熱板2および回路基板12によって囲われた空間に滞留せずに円滑に流れるので、電子部品7からの発熱を効率よく放熱することができる。   As described above, air does not stay in the space surrounded by the heat radiating plate 2 and the circuit board 12 even when one of the air cooling fans is operating or when both the air cooling fans are stopped. Therefore, the heat generated from the electronic component 7 can be efficiently radiated.

また、この回路基板12を備えた製品が、縦および横向きのいずれにも設置可能、或は可搬型の場合、製品の天面が変わったとしても空冷ファン停止時に発生する上昇気流となった空気を3面のいずれかで受けながら貫通孔4を通過させることができる。すなわち、製品の姿勢および設置状態に関わらず、電子部品7からの発熱を効率よく放熱することができる。   In addition, when the product including the circuit board 12 can be installed vertically or horizontally, or is portable, even if the top surface of the product is changed, the air is generated as an updraft generated when the air cooling fan is stopped. Can be passed through the through-hole 4 while being received by any one of the three surfaces. That is, the heat generated from the electronic component 7 can be efficiently radiated regardless of the posture and installation state of the product.

(5)上記各実施形態では、放熱板2のベースとなる第1面2Aに対して他の第2面2Bおよび第4面2Dを直角に屈曲させていたが、屈曲させる角度は直角に限定されずに回路設計および空冷ファンの設置角度に応じて、冷却風と受風放熱面とが直交するように適宜に設定変更される。   (5) In the above embodiments, the other second surface 2B and the fourth surface 2D are bent at a right angle with respect to the first surface 2A serving as the base of the heat radiating plate 2, but the bending angle is limited to a right angle. Instead, the setting is appropriately changed so that the cooling air and the air receiving / radiating surface are orthogonal to each other in accordance with the circuit design and the installation angle of the air cooling fan.

1 放熱器
2 放熱板
2A 第1面
2B 第2面
2C 第3面
3 脚部
4 貫通孔
5 貫通孔
6 フランジ
7 電子部品
8 ねじ
9 貫通孔
10 突起部
11 切欠き
12 回路基板
13 設置孔
14 切欠き
DESCRIPTION OF SYMBOLS 1 Heat radiator 2 Heat sink 2A 1st surface 2B 2nd surface 2C 3rd surface 3 Leg part 4 Through-hole 5 Through-hole 6 Flange 7 Electronic component 8 Screw 9 Through-hole 10 Protrusion part 11 Notch 12 Circuit board 13 Installation hole 14 Notch

Claims (4)

電子部品に当接して当該電子部品からの発熱を放熱する放熱器であって、
空冷ファンのオン・オフ切り替えによって変化する気流に応じて各気流方向と実質的に直交するよう屈曲形成された複数の受風放熱面を有し、前記複数の受風放熱面のうち互いに異なる方向に延びる受風放熱面ごとに前記気流が通過可能な貫通孔が形成された放熱板によって構成した
ことを特徴とする放熱器。
A radiator that contacts an electronic component and dissipates heat from the electronic component,
There are a plurality of wind receiving and radiating surfaces that are bent so as to be substantially perpendicular to the direction of each air flow according to the air flow that changes depending on the on / off switching of the air cooling fan, and different directions among the plurality of wind receiving and radiating surfaces A heat radiator characterized in that it is constituted by a heat radiating plate in which a through-hole through which the air flow can pass is formed for each wind receiving and heat radiating surface extending in the air.
前記放熱板は、その周囲に生じている上昇気流と実質的に直交する前記受風放熱面を含む
ことを特徴とする請求項1に記載の放熱器。
The heat radiating plate according to claim 1, wherein the heat radiating plate includes the wind receiving and radiating surface substantially orthogonal to an ascending air current generated around the heat radiating plate.
前記放熱板から延設され、前記放熱板を回路基板に設置可能にするとともに前記回路基板から当該放熱板を離間させる脚部を有する
ことを特徴とする請求項1または請求項2に記載の放熱器。
The heat dissipation according to claim 1, further comprising a leg portion that extends from the heat dissipation plate, allows the heat dissipation plate to be installed on a circuit board, and separates the heat dissipation plate from the circuit board. vessel.
前記電子部品を装着する前記放熱板の所定領域に前記貫通孔を有しない
ことを特徴とする請求項1ないし請求項3のいずれかに記載の放熱器。
The radiator according to any one of claims 1 to 3, wherein the through hole is not provided in a predetermined region of the heat radiating plate on which the electronic component is mounted.
JP2017175307A 2017-09-13 2017-09-13 Heatsink Active JP6883498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017175307A JP6883498B2 (en) 2017-09-13 2017-09-13 Heatsink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017175307A JP6883498B2 (en) 2017-09-13 2017-09-13 Heatsink

Publications (2)

Publication Number Publication Date
JP2019054024A true JP2019054024A (en) 2019-04-04
JP6883498B2 JP6883498B2 (en) 2021-06-09

Family

ID=66015073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017175307A Active JP6883498B2 (en) 2017-09-13 2017-09-13 Heatsink

Country Status (1)

Country Link
JP (1) JP6883498B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112110635A (en) * 2020-09-01 2020-12-22 武汉重远炉窑工程技术服务有限公司 Cooling device for prolonging service life of glass kiln

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112110635A (en) * 2020-09-01 2020-12-22 武汉重远炉窑工程技术服务有限公司 Cooling device for prolonging service life of glass kiln

Also Published As

Publication number Publication date
JP6883498B2 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
US7443676B1 (en) Heat dissipation device
US6446708B1 (en) Heat dissipating device
JP5949988B1 (en) Electronic equipment
JP2011066399A (en) Heat dissipation device
US20130083483A1 (en) Heat dissipation device and electronic device using same
JP2016178208A (en) Heat sink, heat dissipation structure, cooling structure and device
US6657865B1 (en) Heat dissipating structure
GB2511367A (en) Bi-directional heat dissipation structure
JP6883498B2 (en) Heatsink
US20120024514A1 (en) Plate cooling fin with slotted projections
US20140076521A1 (en) Bidirectional heat dissipation structure
JP2010165761A (en) Electronic component cooling structure
JP5177794B2 (en) Radiator
JP2010219085A (en) Heat sink for natural air cooling
JP5896124B2 (en) heatsink
JP2010087016A (en) Heat sink for natural air cooling
JP2015216143A (en) Heat radiation structure of heating element
JP2020061395A (en) Heat sink
JP5939329B1 (en) Cooling structure and apparatus
JP6414326B2 (en) Stack heat dissipation structure and power conversion device including stack having the stack heat dissipation structure
JP2007102533A (en) Heat radiator for information processor
JP2019125669A (en) heatsink
KR20150045651A (en) Heat spreader blocking noise and electronic apparatus having the same
JP2012023146A (en) Heat sink
JP5400690B2 (en) heatsink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210510

R150 Certificate of patent or registration of utility model

Ref document number: 6883498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250