JP5177794B2 - Radiator - Google Patents

Radiator Download PDF

Info

Publication number
JP5177794B2
JP5177794B2 JP2008026853A JP2008026853A JP5177794B2 JP 5177794 B2 JP5177794 B2 JP 5177794B2 JP 2008026853 A JP2008026853 A JP 2008026853A JP 2008026853 A JP2008026853 A JP 2008026853A JP 5177794 B2 JP5177794 B2 JP 5177794B2
Authority
JP
Japan
Prior art keywords
heat
receiving plate
heating element
radiator
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008026853A
Other languages
Japanese (ja)
Other versions
JP2009188208A (en
Inventor
康生 竹内
Original Assignee
Tdkラムダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdkラムダ株式会社 filed Critical Tdkラムダ株式会社
Priority to JP2008026853A priority Critical patent/JP5177794B2/en
Publication of JP2009188208A publication Critical patent/JP2009188208A/en
Application granted granted Critical
Publication of JP5177794B2 publication Critical patent/JP5177794B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

本発明は、例えばスイッチング電源装置などに代表される各種電気機器の内部に使用され、半導体素子などの発熱体によって生じる熱を放熱させる放熱器に関する。   The present invention relates to a radiator that is used in various electric equipments typified by, for example, a switching power supply device and radiates heat generated by a heating element such as a semiconductor element.

近年電子部品の高性能化、小型化につれ、集積度や実装密度は増大し、電子部品の発熱が多くなってきている。装置内の温度上昇は、各電子部品の寿命や動作の信頼性に影響を及ぼすので、冷却対策が課題となっている。発熱をともなう半導体素子などは、その発熱体に接触して発熱体からの熱を受ける受熱板を通じて、放熱フィンなどの放熱部に熱を導き、ここで送風装置などからの風をさせて放熱部を冷却することにより、温度上昇を低減している放熱器を有している。   In recent years, as the performance and size of electronic components have increased, the degree of integration and mounting density has increased, and the heat generation of electronic components has increased. Since the temperature rise in the apparatus affects the life of each electronic component and the reliability of operation, cooling measures are an issue. A semiconductor element that generates heat, for example, directs heat to a heat-dissipating part such as a heat-dissipating fin through a heat receiving plate that contacts the heat-generating element and receives heat from the heat-generating element. The radiator has reduced the temperature rise by cooling.

図3Aおよび図3Bは、従来の放熱器の構造を示したものである。同図において、51は絶縁体からなる基材の片面または両面に、銅箔などの配線パターン(図示せず)を形成し、さらにこの配線パターンの適所に、導電性のメッキスルーホール52を設けてなるプリント基板である。また、53は複数のリード端子54を有する発熱体である。発熱体53の各リード端子54は対応するスルーホール52にそれぞれ挿通され、リード端子54とスルーホール52との間に半田を溶融付着させることで、プリント基板51と発熱体53との電気的な接続が図られる。   3A and 3B show the structure of a conventional radiator. In the figure, 51 is a wiring pattern (not shown) such as a copper foil formed on one or both sides of a base material made of an insulator, and a conductive plated through hole 52 is provided at an appropriate position of the wiring pattern. Printed circuit board. Reference numeral 53 denotes a heating element having a plurality of lead terminals. Each lead terminal 54 of the heating element 53 is inserted into the corresponding through hole 52, and solder is melted and adhered between the lead terminal 54 and the through hole 52, so that the electrical connection between the printed circuit board 51 and the heating element 53 is achieved. Connection is made.

一方、61は発熱体53からの熱を放散させるための放熱器である。この放熱器61は、当該発熱体53と並ぶようにプリント基板51上に立設される受熱板62と、当該受熱板62の一側面62Aに一体成形された複数の放熱部としての放熱フィン63a,63b,63cとを備えている。この放熱フィン63a,63b,63cは、受熱板62の厚さ方向の一側面62Aより等間隔に複数突出して設けられており、同一の突出長さL4’で形成されている。そして、発熱体53は受熱板62の一側面62Aと接してねじ64によって固定される。   On the other hand, 61 is a radiator for dissipating heat from the heating element 53. The heat radiator 61 includes a heat receiving plate 62 erected on the printed circuit board 51 so as to be aligned with the heat generating body 53, and heat radiating fins 63a as a plurality of heat radiating portions integrally formed on one side surface 62A of the heat receiving plate 62. , 63b, 63c. The heat radiating fins 63a, 63b, 63c are provided so as to protrude from the side surface 62A in the thickness direction of the heat receiving plate 62 at equal intervals, and are formed with the same protruding length L4 '. The heating element 53 is in contact with one side surface 62A of the heat receiving plate 62 and is fixed by screws 64.

以上より従来の放熱器61は、半導体素子からなる発熱体53の熱が、熱伝導性に優れた材料からなる放熱器61によって受熱板62から放熱フィン63a,63b,63cに速やかに伝熱し、ここで送風装置からの風を放熱フィン63a,63b,63cに当てて熱交換を行なうことにより、発熱体53を冷却し空気中に放熱するようになっている。放熱フィン63a,63b,63cへの伝熱作用は、まず発熱体53の近くに位置する放熱フィン63cに伝熱し、そこで送風装置からの送風により空気中に放熱され、さらにこの部位で放熱しきれなかった熱が、発熱体53から次第に離れた放熱フィン63bや放熱フィン63aへと順に伝熱して送風により放熱していく(特許文献1参照)。
特開2005−175225号公報
As described above, in the conventional radiator 61, the heat of the heating element 53 made of a semiconductor element is quickly transferred from the heat receiving plate 62 to the radiation fins 63a, 63b, 63c by the radiator 61 made of a material having excellent thermal conductivity. Here, the heat from the blower is applied to the radiating fins 63a, 63b, and 63c to perform heat exchange, thereby cooling the heating element 53 and radiating heat into the air. The heat transfer action to the heat radiating fins 63a, 63b, and 63c first transfers heat to the heat radiating fins 63c located near the heating element 53, where it is radiated into the air by the air blown from the blower, and further radiated at this part. The heat that did not exist is transferred to the heat dissipating fins 63b and the heat dissipating fins 63a that are gradually separated from the heating element 53, and dissipated by blowing air (see Patent Document 1).
JP 2005-175225 A

上記構成の放熱器61においては、発熱体53を中心として、この発熱体53から発生した熱が、受熱板54を放射状に伝わることになる。具体的には、受熱板54の基部から先ず発熱体53に最も近い放熱フィン63cに伝熱し、そこで放熱フィン63cの周辺を通過する空気と熱交換して放熱する。また、放熱フィン63cで放熱しきれなかった熱は、発熱体53から2番目に近い別な放熱フィン63bに伝熱し、そこで放熱フィン63bの周辺を通過する空気と熱交換して空気中に放熱する。さらに放熱フィン63bで放熱しきれなかった熱は、発熱体53から最も遠い位置にある放熱フィン63aに伝熱し、同様に放熱フィン63aの周辺を通過する空気と熱交換して空気中に放熱するようになっている。   In the heat radiator 61 configured as described above, the heat generated from the heating element 53 is transmitted radially through the heat receiving plate 54 with the heating element 53 as the center. Specifically, heat is first transferred from the base of the heat receiving plate 54 to the heat dissipating fins 63c closest to the heat generating body 53, where heat is exchanged with the air passing around the heat dissipating fins 63c to dissipate heat. Further, the heat that could not be radiated by the radiating fin 63c is transferred from the heating element 53 to another radiating fin 63b that is the second closest to the heat radiating fin 63b. To do. Further, the heat that could not be radiated by the radiating fin 63b is transferred to the radiating fin 63a located farthest from the heating element 53, and similarly, heat is exchanged with the air passing around the radiating fin 63a to radiate it into the air. It is like that.

しかし、放熱フィン63a,63bの幅方向両側部は、熱源である発熱体53から最も離れた部位にあって、発熱体53からの熱が届きにくく、放熱に寄与しにくい部分となっている。そのため、この部位における放熱フィン63a,63bが無駄になって、放熱器を組み込む電気機器の小型化を妨げている。   However, both sides in the width direction of the radiating fins 63a and 63b are located farthest from the heating element 53, which is a heat source, so that heat from the heating element 53 is difficult to reach and is difficult to contribute to heat dissipation. For this reason, the radiation fins 63a and 63b in this portion are wasted, and the miniaturization of an electric device incorporating the radiator is hindered.

また、送風装置により放熱器61の一方向から強制風を送り込む場合、送風の向きによっては冷却性能が低下する場合があった。例えば、図3Aを用いて説明すると、図示しない送風装置からの冷却風Aが、各放熱フィン63a,63b,63cに沿ってではなく、矢印に示すような放熱フィン63a,63b,63cの斜め上方向から送り込まれている状況では、発熱体53から最も大きく離れた放熱フィン63aの幅方向一側部に、冷却風Aが集中してあたるようになっている。こうなると、放熱に寄与しにくい部位である放熱フィン63aの幅方向一側部が邪魔をして、発熱体53からの熱が最初に伝わる放熱フィン63cに、冷却風が効果的にあたりにくくなり、放熱器61としての放熱性能が低下するという問題があった。   In addition, when forced air is sent from one direction of the radiator 61 by the blower, the cooling performance may be lowered depending on the direction of the blow. For example, referring to FIG. 3A, the cooling air A from a blower (not shown) is not obliquely above the radiating fins 63a, 63b, 63c but obliquely above the radiating fins 63a, 63b, 63c as indicated by arrows. In a situation where the air is fed from the direction, the cooling air A is concentrated on one side in the width direction of the radiating fin 63a farthest from the heating element 53. When this happens, one side in the width direction of the heat radiating fin 63a, which is a part that hardly contributes to heat radiation, obstructs the cooling fin 63c from which heat from the heating element 53 is first transmitted, and the cooling air is less likely to hit effectively. There was a problem that the heat dissipation performance as the heat radiator 61 deteriorated.

そこで本発明は、発熱体に近い放熱部に冷却風が効果的にあたるようにして、放熱性能を低下させることなく、小型化を実現可能な放熱器を提供することをその目的とする。   Therefore, an object of the present invention is to provide a radiator that can be reduced in size without deteriorating heat dissipation performance by effectively applying cooling air to a heat radiating portion close to a heating element.

本発明の請求項1における放熱器は、発熱体に接触して前記発熱体からの熱を受ける受熱板と、前記受熱板の幅方向に沿って一側面に並設された複数の放熱部とからなり、前記受熱板と前記放熱部の幅方向の長さが、前記発熱体から離れた位置にあるほど次第に短く形成される。   A radiator according to claim 1 of the present invention includes a heat receiving plate that contacts the heat generating element and receives heat from the heat generating element, and a plurality of heat dissipating parts that are arranged side by side along the width direction of the heat receiving plate. The length in the width direction of the heat receiving plate and the heat radiating portion is gradually shortened as the distance from the heating element increases.

本発明の請求項2における放熱器は、前記受熱板の他側面にも少なくとも1つ以上の放熱部が設置される。   In the heat radiator according to claim 2 of the present invention, at least one heat radiating portion is also installed on the other side surface of the heat receiving plate.

請求項1の発明では、半導体素子などの発熱体に接触して伝熱される受熱板の一側面に、複数の放熱部が並設されると共に、その受熱板と放熱部の幅方向の長さが、発熱体の中心から離れた位置にあるほど次第に短く形成される。このように、発熱体の中心から離れた位置にあって、放熱に寄与しにくい受熱板や放熱部の部分を切断することで、放熱部の斜め方向から冷却風が送り込まれるような場合であっても、発熱体からの熱が最初に伝わる放熱フィンに冷却風が効果的にあたるようになり、発熱体から伝わった熱を効果的に冷却して、放熱効率を高めることができる。   In the first aspect of the present invention, a plurality of heat radiating portions are arranged in parallel on one side of the heat receiving plate that is transferred to heat by contacting a heating element such as a semiconductor element, and the length in the width direction of the heat receiving plate and the heat radiating portion. However, the distance from the center of the heating element is gradually shortened. In this way, the cooling air is sent from an oblique direction of the heat radiating part by cutting the heat receiving plate and the heat radiating part which are located away from the center of the heat generating element and hardly contribute to heat radiation. However, the cooling air is effectively applied to the radiating fin to which the heat from the heating element is first transmitted, and the heat transmitted from the heating element can be effectively cooled to increase the heat radiation efficiency.

実際、発熱体から受熱板を通じて放熱部に伝わる熱は、発熱体から放熱部までの位置が離れれば離れるほど伝わりにくく、放熱に寄与しにくい。そこで、放熱に寄与しにくい受熱板や放熱部の部分を短くしても、放熱機能に影響することはほとんどなく、こうした部分を切断することで、放熱器の小型化が可能になる。したがって、発熱体に近い放熱部に冷却風が効果的にあたるようにして、放熱性能を低下させることなく、小型化を実現可能な放熱器を提供できる。   In fact, the heat transmitted from the heat generating element to the heat radiating part through the heat receiving plate is less likely to be transmitted as the position from the heat generating element to the heat radiating part increases, and it is difficult to contribute to heat dissipation. Therefore, even if the heat receiving plate and the heat radiating portion that are unlikely to contribute to heat radiation are shortened, the heat radiating function is hardly affected. By cutting such a portion, the radiator can be miniaturized. Therefore, it is possible to provide a radiator that can be reduced in size without deteriorating the heat dissipation performance by effectively applying cooling air to the heat radiating portion close to the heating element.

また請求項2の発明では、受熱板の一側面だけではなく他側面にも放熱部を同様に設置しているので、放熱器としての放熱性能すなわち冷却効率をさらに高めることができる。また、例えば電子機器への搭載において、スペース的に放熱器の高さを抑える必要が出てきた場合でも、放熱部を受熱板の他側面に設けることで、放熱性能を維持しつつ放熱器の高さを抑えることができる。   Further, in the invention of claim 2, since the heat radiating portion is similarly installed not only on one side of the heat receiving plate but also on the other side, the heat radiating performance as a radiator, that is, the cooling efficiency can be further enhanced. In addition, for example, when mounting on an electronic device, it is necessary to suppress the height of the radiator in terms of space, by providing a heat radiating part on the other side of the heat receiving plate, while maintaining the heat radiation performance, The height can be suppressed.

以下、添付図面を参照しながら、本発明における放熱器の好ましい実施例を説明する。なお、以下の各実施例について、同一部分には同一符号を付し、その共通する箇所の説明は重複を避けるため極力省略する。   Hereinafter, preferred embodiments of a radiator according to the present invention will be described with reference to the accompanying drawings. In the following embodiments, the same portions are denoted by the same reference numerals, and description of common portions is omitted as much as possible to avoid duplication.

図1Aおよび図1Bは、本発明の第1実施例における放熱器1を示している。この放熱器1は発熱体53からの熱を放散させるためのもので、プリント基板51上に立設される受熱板2と、その受熱板2の厚さ方向の一側面2Aに一体成形された複数の放熱部である放熱フィン3a,3b,3cとを備えている。放熱フィン3a,3b,3cと受熱板2は、軽量で熱伝導性にすぐれたアルミニウムなどの部材で一体成形される。また、放熱フィン3a,3b,3cは、受熱板2の一側面2Aよりくし歯状に、発熱体53の上部から受熱板2の上端にかけて、所定のピッチで並列に複数突出して設けられており、同一の突出長さL4で形成されている。そして、発熱体53は受熱板2の一側面2Aと接してねじ64によって固定される。   1A and 1B show a radiator 1 according to a first embodiment of the present invention. The radiator 1 is for radiating heat from the heating element 53, and is integrally formed on the heat receiving plate 2 standing on the printed circuit board 51 and one side surface 2A of the heat receiving plate 2 in the thickness direction. A plurality of heat radiation fins 3a, 3b, 3c are provided. The heat radiating fins 3a, 3b, 3c and the heat receiving plate 2 are integrally formed of a member such as aluminum that is lightweight and excellent in thermal conductivity. Further, the heat radiation fins 3a, 3b, 3c are provided in a comb-like shape from one side 2A of the heat receiving plate 2 so as to protrude in parallel at a predetermined pitch from the upper part of the heat generating body 53 to the upper end of the heat receiving plate 2. , Are formed with the same protruding length L4. The heating element 53 is in contact with one side surface 2A of the heat receiving plate 2 and is fixed by screws 64.

プリント基板51は従来例と同様に、絶縁体からなる基材の片面または両面に、銅箔などの配線パターン(図示せず)を形成し、さらにこの配線パターンの適所に、導電性のメッキスルーホール52を設けて構成される。発熱体53の各リード端子54は対応するスルーホール52にそれぞれ挿通され、リード端子54とスルーホール52との間に半田を溶融付着させることで、プリント基板51と発熱体53との電気的な接続が図られる。   As in the conventional example, the printed circuit board 51 is formed with a wiring pattern (not shown) such as a copper foil on one or both surfaces of a base material made of an insulator, and further, a conductive plated-through is placed at an appropriate position of the wiring pattern. A hole 52 is provided. Each lead terminal 54 of the heating element 53 is inserted into the corresponding through hole 52, and solder is melted and adhered between the lead terminal 54 and the through hole 52, so that the electrical connection between the printed circuit board 51 and the heating element 53 is achieved. Connection is made.

前記放熱器1の受熱板2は、プリント基板51に接する部分から上端にかけて所定の高さを有し、その高さ方向の上部に放熱フィン3a,3b,3cを一体的に形成する一方で、下部に発熱体53を配置するようにしている。さらに本実施例では、受熱板2と熱的に接続する発熱体53を中心として、この発熱体53から受熱板2の端縁までの放射方向の距離ができるだけ等しくなるように、プリント基板51と平行な受熱板2および放熱フィン3a,3b,3cの幅(横)方向の長さL1,L2,L3が、発熱体53から離れた位置にあるほど次第に短く形成される。ここでは、矩形状の受熱板2の左右端面を斜め方向に且つ直線状に切断することで、発熱体53から最も離れた位置にある放熱フィン3aの幅方向の長さL1が、当該放熱フィン3aよりも発熱体53の近傍に位置する放熱フィン3bの幅方向の長さL2よりも短かく、また放熱フィン3bの幅方向の長さL2が、当該放熱フィン3bよりも発熱体53の近傍に位置する放熱フィン3cの幅方向の長さL3よりも短かく形成される。このように、放熱器1として発熱体53から遠く、放熱に寄与しにくい不要な部分を予め切断することで、放熱器全体の放熱性能に影響を及ぼすことなく、従来のものよりも小型化を実現することが可能になる。   The heat receiving plate 2 of the radiator 1 has a predetermined height from the portion in contact with the printed circuit board 51 to the upper end, and integrally forms the radiation fins 3a, 3b, 3c on the upper portion in the height direction, A heating element 53 is arranged at the bottom. Furthermore, in the present embodiment, the printed circuit board 51 and the printed circuit board 51 are arranged so that the radial distance from the heating element 53 to the edge of the heat receiving plate 2 is as equal as possible, with the heating element 53 thermally connected to the heat receiving plate 2 as the center. The lengths L1, L2, and L3 in the width (lateral) direction of the parallel heat receiving plate 2 and the heat radiation fins 3a, 3b, and 3c are gradually shortened as the distance from the heating element 53 increases. Here, by cutting the left and right end surfaces of the rectangular heat receiving plate 2 in an oblique direction and linearly, the length L1 in the width direction of the heat dissipating fin 3a located farthest from the heat generating element 53 becomes the heat dissipating fin. The length L2 in the width direction of the heat dissipating fin 3b located near the heat generating body 53 is shorter than 3a, and the length L2 in the width direction of the heat dissipating fin 3b is closer to the heat generating body 53 than the heat dissipating fin 3b. Is formed shorter than the length L3 in the width direction of the radiating fin 3c. Thus, by cutting in advance an unnecessary portion that is far from the heating element 53 as the heat radiator 1 and does not contribute to heat radiation, the heat radiation performance of the entire heat radiator is not affected, and the size can be reduced as compared with the conventional one. Can be realized.

なお、上記構成においては、放熱フィン3a,3b,3cの幅方向の長さL1,L2,L3が、発熱体53から離れた位置にあるほど両側から次第に短くなっていくように、受熱板2の左右端面を段階状に形成してもよい。また、発熱体53から受熱板2の端縁までの放射方向の距離を極力等しくするために、受熱板2の左右端面を直線状にではなく、湾曲状に形成してもよい。この場合も、受熱板2および放熱フィン3a,3b,3cの幅方向の長さL1,L2,L3は、L1<L2<L3の関係を保つようにする。さらに、発熱体53と受熱板2との熱伝導性を高めるために、この発熱体53と受熱板2との間にサーマルコンパウンドなどを介在させてもよい。   In the above configuration, the heat receiving plate 2 is configured such that the lengths L1, L2, and L3 in the width direction of the radiating fins 3a, 3b, and 3c are gradually shortened from both sides as the distance from the heating element 53 increases. The left and right end faces may be formed stepwise. In order to make the radial distance from the heating element 53 to the edge of the heat receiving plate 2 as equal as possible, the left and right end surfaces of the heat receiving plate 2 may be formed in a curved shape instead of a straight line. Also in this case, the lengths L1, L2, and L3 in the width direction of the heat receiving plate 2 and the heat radiation fins 3a, 3b, and 3c are maintained in a relationship of L1 <L2 <L3. Further, a thermal compound or the like may be interposed between the heating element 53 and the heat receiving plate 2 in order to increase the thermal conductivity between the heating element 53 and the heat receiving plate 2.

次に、上記構成の放熱器1について、その作用を説明する。半導体素子からなる発熱体53の熱が、熱伝導性に優れた材料からなる放熱器1によって受熱板2から放熱フィン3a,3b,3cに速やかに伝熱し、ここで送風装置からの風を放熱フィン3a,3b,3cに当てて熱交換を行なうことにより、発熱体53を冷却し空気中に放熱するようになっている。放熱フィン3a,3b,3cへの伝熱作用は、まず発熱体53の近くに位置する放熱フィン3bに伝熱し、そこで図示しない送風装置からの送風により空気中に放熱され、さらにこの部位で放熱しきれなかった熱が、発熱体53から次第に離れた放熱フィン3bや放熱フィン3aへと順に伝熱して送風により放熱していく。送風装置からの冷却風が、放熱フィン3a,3b,3cに沿って横方向に流れる場合は、各放熱フィン3a,3b,3cに伝達した熱を満遍なく奪うことが可能になる。   Next, the effect | action is demonstrated about the heat radiator 1 of the said structure. The heat of the heating element 53 made of a semiconductor element is quickly transferred from the heat receiving plate 2 to the heat radiating fins 3a, 3b, 3c by the heat radiator 1 made of a material having excellent heat conductivity, and here, the heat from the blower is radiated. Heat exchange is applied to the fins 3a, 3b, 3c to cool the heating element 53 and dissipate heat into the air. The heat transfer action to the heat radiating fins 3a, 3b, 3c first transfers heat to the heat radiating fins 3b located near the heat generating body 53, where the heat is radiated into the air by air blown from a blower (not shown) and further radiated at this portion. The heat that could not be exhausted is transferred to the heat dissipating fins 3b and the heat dissipating fins 3a that are gradually separated from the heat generating body 53, and is dissipated by blowing air. When the cooling air from the blower flows in the lateral direction along the radiation fins 3a, 3b, 3c, the heat transmitted to the radiation fins 3a, 3b, 3c can be taken evenly.

一方、図1Aに示すように、送風装置からの冷却風Aが、各放熱フィン3a,3b,3cに沿って平行にではなく、矢印のような放熱フィン3a,3b,3cの斜め上方向から送り込まれる場合も想定される。しかしこの場合は、受熱板2および放熱フィン3a,3b,3cの幅方向の長さL1,L2,L3が、発熱体53から離れた位置にあるほど次第に短かくなるように、受熱板2および放熱フィン3a,3b,3cの左右端面が斜めに切断されている関係で、各放熱フィン3a,3b,3cの左右端面周囲に冷却風が抵抗なく流れ、発熱体53の近傍に位置する放熱フィン3cに冷却風があたりやすくなる。したがって、発熱体53からの熱が最初に伝わる放熱フィン3cに冷却風が効果的にあたり、放熱器1として放熱性能を低下させることなく、小型化を実現することが可能になる。   On the other hand, as shown in FIG. 1A, the cooling air A from the air blower is not parallel along the radiation fins 3a, 3b, 3c, but from diagonally above the radiation fins 3a, 3b, 3c as indicated by arrows. It is also assumed that it will be sent. However, in this case, the lengths L1, L2, and L3 in the width direction of the heat receiving plate 2 and the heat radiation fins 3a, 3b, and 3c are gradually shortened as the distance from the heating element 53 increases. Since the left and right end surfaces of the heat radiation fins 3a, 3b, 3c are obliquely cut, the cooling air flows without resistance around the left and right end surfaces of the heat radiation fins 3a, 3b, 3c, and the heat radiation fins are located in the vicinity of the heating element 53. Cooling air easily hits 3c. Therefore, the cooling air effectively strikes the heat dissipating fins 3c to which heat from the heat generating element 53 is transmitted first, and the heat dissipating device 1 can be downsized without deteriorating the heat dissipating performance.

このように、本実施例における放熱器1は、発熱体53に接触してこの発熱体53からの熱を受ける受熱板2と、受熱板2の幅方向に沿って一側面に並設された複数の放熱部たる放熱フィン3a,3b,3cとからなり、受熱板2と放熱フィン3a,3b,3cの幅方向の長さL1,L2,L3が、発熱体53から離れた位置にあるほど次第に短く形成される。   As described above, the heat radiator 1 in this embodiment is arranged side by side along the width direction of the heat receiving plate 2 and the heat receiving plate 2 that contacts the heat generating member 53 and receives heat from the heat generating member 53. It consists of heat radiation fins 3a, 3b, 3c as a plurality of heat radiation portions, and the length L1, L2, L3 in the width direction of the heat receiving plate 2 and the heat radiation fins 3a, 3b, 3c is more distant from the heating element 53. It gradually becomes shorter.

この場合、半導体素子などの発熱体53に接触して伝熱される受熱板2の一側面2Aに、複数の放熱フィン3a,3b,3cが並設されると共に、その受熱板2と放熱フィン3a,3b,3cの幅方向の長さL1,L2,L3が、発熱体53の中心から離れた位置にあるほど次第に短く形成される。このように、発熱体53の中心から離れた位置にあって、放熱に寄与しにくい受熱板2や放熱フィン3a,3b,3cの部分を切断することで、放熱フィン3a,3b,3cの斜め方向から冷却風が送り込まれるような場合であっても、発熱体53からの熱が最初に伝わる放熱フィン3cに冷却風が効果的にあたるようになり、発熱体53から伝わった熱を効果的に冷却して、放熱効率を高めることができる。   In this case, a plurality of heat radiation fins 3a, 3b, 3c are arranged in parallel on one side surface 2A of the heat receiving plate 2 that is in contact with the heat generating body 53 such as a semiconductor element to transfer heat, and the heat receiving plate 2 and the heat radiation fin 3a. , 3b, 3c, the lengths L1, L2, L3 in the width direction are gradually formed shorter as the distance from the center of the heating element 53 increases. As described above, the heat receiving plate 2 and the heat radiating fins 3a, 3b, and 3c that are located away from the center of the heat generating body 53 and do not contribute to heat radiation are cut so that the heat radiating fins 3a, 3b, and 3c are inclined. Even when the cooling air is sent from the direction, the cooling air is effectively applied to the radiation fins 3c to which the heat from the heating element 53 is first transmitted, and the heat transmitted from the heating element 53 is effectively transmitted. Cooling can improve the heat dissipation efficiency.

実際、発熱体53から受熱板2を通じて放熱フィン3a,3b,3cに伝わる熱は、発熱体53から放熱フィン3a,3b,3cまでの位置が離れれば離れるほど伝わりにくく、放熱に寄与しにくい。そこで、放熱に寄与しにくい受熱板2や放熱フィン3a,3b,3cの部分を短くしても、放熱機能に影響することはほとんどなく、こうした不要な部分を切断することで、放熱器1の小型化が可能になる。したがって、発熱体53に近い放熱フィン3a,3b,3cに冷却風が効果的にあたるようにして、放熱性能を低下させることなく、小型化を実現可能な放熱器を提供できる。   In fact, the heat transmitted from the heat generating body 53 to the heat radiation fins 3a, 3b, 3c through the heat receiving plate 2 is less likely to be transmitted as the distance from the heat generating body 53 to the heat radiation fins 3a, 3b, 3c increases, and it is difficult to contribute to heat radiation. Therefore, even if the heat receiving plate 2 and the heat radiation fins 3a, 3b, and 3c, which do not easily contribute to heat radiation, are shortened, the heat radiation function is hardly affected. Miniaturization is possible. Therefore, it is possible to provide a heat radiator that can be reduced in size without deteriorating the heat radiation performance by effectively applying cooling air to the heat radiation fins 3a, 3b, 3c close to the heating element 53.

図2Aおよび図2Bは、本発明の第2実施例における放熱器1を示している。放熱器1の構造は、第1実施例とほぼ同様であり、違いは、受熱板2の厚さ方向の一側面2Aだけではなく、厚さ方向の他側面2Bにも、放熱フィン3d,3eが同様に一体形成されていることである。すなわち、第1実施例では受熱板2の一側面2Aにのみ複数の放熱フィン3a,3b,3cを設けたが、ここでの放熱器1は、受熱板2の一側面2Aに複数の放熱フィン3a,3b,3cを設けるだけでなく、その受熱板2の他側面2Bにも同様に複数の放熱フィン3d,3eを設けている。放熱フィン3d,3eは、受熱板2の他側面2Bよりくし歯状に、所定のピッチで並列に複数突出して設けられており、ここでは同一の突出長さL7で形成されている。なお、複数の放熱フィン3d,3eは所定のピッチである限り、受熱板2の他側面2Bのどの位置に設けてもよい。   2A and 2B show a radiator 1 in the second embodiment of the present invention. The structure of the radiator 1 is almost the same as that of the first embodiment, and the difference is that not only the one side surface 2A in the thickness direction of the heat receiving plate 2 but also the other side surface 2B in the thickness direction is the radiation fins 3d, 3e. Is integrally formed in the same manner. That is, in the first embodiment, the plurality of heat radiation fins 3a, 3b, 3c are provided only on one side surface 2A of the heat receiving plate 2. However, the heat radiator 1 here has a plurality of heat radiation fins on one side surface 2A of the heat reception plate 2. In addition to the provision of 3a, 3b, 3c, a plurality of heat radiation fins 3d, 3e are also provided on the other side 2B of the heat receiving plate 2 in the same manner. The heat radiation fins 3d and 3e are provided in a comb-like shape from the other side surface 2B of the heat receiving plate 2 so as to protrude in parallel at a predetermined pitch, and here are formed with the same protrusion length L7. The plurality of heat radiation fins 3d and 3e may be provided at any position on the other side surface 2B of the heat receiving plate 2 as long as the pitch is a predetermined pitch.

そしてこの実施例でも、プリント基板51と平行な受熱板2および放熱フィン3a,3b,3c,3d,3eの幅(横)方向の長さL1,L2,L3,L5,L6が、発熱体53から離れた位置にあるほど次第に短く形成される。ここでは、矩形状の受熱板2の左右端面を斜め方向に且つ直線状に切断することで、受熱板2の一側において、発熱体53から最も離れた位置にある放熱フィン3aの幅方向の長さL1が、当該放熱フィン3aよりも発熱体53の近傍に位置する放熱フィン3bの幅方向の長さL2よりも短かく、また放熱フィン3bの幅方向の長さL2が、当該放熱フィン3bよりも発熱体53の近傍に位置する放熱フィン3cの幅方向の長さL3よりも短かく形成されると共に、受熱板2の他側において、発熱体53から最も離れた位置にある放熱フィン3dの幅方向の長さL5が、当該放熱フィン3dよりも発熱体53の近傍に位置する放熱フィン3eの幅方向の長さL6よりも短かく形成される。このように、放熱器1として発熱体53から遠く、放熱に寄与しにくい不要な部分を予め切断することで、放熱器全体の放熱性能に影響を及ぼすことなく、従来のものよりも小型化を実現することが可能になる。それ以外の放熱器1としての構成は、第1実施例と共通している。   Also in this embodiment, the length L1, L2, L3, L5, L6 in the width (lateral) direction of the heat receiving plate 2 and the radiation fins 3a, 3b, 3c, 3d, 3e parallel to the printed circuit board 51 are the heating elements 53. The closer to the position, the shorter it is formed. Here, the left and right end surfaces of the rectangular heat receiving plate 2 are cut obliquely and linearly, so that one side of the heat receiving plate 2 in the width direction of the heat dissipating fins 3a located farthest from the heating element 53 is used. The length L1 is shorter than the length L2 in the width direction of the heat dissipating fin 3b located in the vicinity of the heat generating element 53, and the length L2 in the width direction of the heat dissipating fin 3b is shorter than the heat dissipating fin 3a. The heat dissipating fin 3c is formed shorter than the length L3 in the width direction of the heat dissipating fin 3c located near the heat generating element 53 rather than 3b, and is located farthest from the heat generating element 53 on the other side of the heat receiving plate 2. The length L5 in the width direction of 3d is formed to be shorter than the length L6 in the width direction of the heat radiation fin 3e located in the vicinity of the heat generating body 53 than the heat radiation fin 3d. Thus, by cutting in advance an unnecessary portion that is far from the heating element 53 as the heat radiator 1 and does not contribute to heat radiation, the heat radiation performance of the entire heat radiator is not affected, and the size can be reduced as compared with the conventional one. Can be realized. The rest of the configuration as the radiator 1 is common to the first embodiment.

本実施例では、放熱器1の受熱板2が発熱体53と接続しているので、発熱体53からの熱が、受熱板2と接続している部分から、発熱体53の最も近くに位置する放熱フィン3cに伝熱し、そこで放熱フィン3cの周辺を通過する空気と熱交換して放熱され、さらにこの放熱フィン3cで放熱しきれなかった熱が、発熱体53から次第に離れた別の放熱フィン3e,3b,3d,3aへと順に伝熱し放熱される。ここで、送風装置からの冷却風が、放熱フィン3a,3b,3c,3d,3eに沿って横方向に流れる場合は、各放熱フィン3a,3b,3c,3d,3eに伝達した熱を満遍なく奪うことが可能になるが、図2Aに示すように、送風装置からの冷却風Aが、矢印のように放熱フィン3a,3b,3c,3d,3eの斜め上方向から送り込まれる場合であっても、受熱板2および放熱フィン3a,3b,3c,3d,3eの幅方向の長さL1,L2,L3,L5,L6が、発熱体53から離れた位置にあるほど次第に短かくなるように、受熱板2および放熱フィン3a,3b,3c,3d,3eの左右端面が斜めに切断されているので、各放熱フィン3a,3b,3c,3d,3eの左右端面周囲に冷却風が抵抗なく流れ、発熱体53の近傍に位置する放熱フィン3cや放熱フィン3dに冷却風があたりやすくなる。したがってこの場合も、発熱体53からの熱が最初に伝わる放熱フィン3cや放熱フィン3dに冷却風が効果的にあたり、放熱器1として放熱性能を低下させることなく、小型化を実現することが可能になる。
また、受熱板2の一側面2Aだけではなく、受熱板2の他側面2Bにも放熱フィン3d,3eを設けているので、放熱器1としての放熱性能すなわち冷却効率をさらに高めることができる。また、例えば電子機器への搭載において、スペース的に放熱器の高さを抑える必要が出てきた場合でも、スペース的に高さを抑える必要が出てきた場合でも、放熱フィン3d,3eを受熱板2の他側面2Bに設けることで、放熱性能を維持しつつ放熱器1の高さを抑えることができる。
In this embodiment, since the heat receiving plate 2 of the radiator 1 is connected to the heat generating body 53, the heat from the heat generating body 53 is located closest to the heat generating body 53 from the portion connected to the heat receiving plate 2. Heat is transferred to the heat dissipating fins 3c, where heat is exchanged with the air passing through the periphery of the heat dissipating fins 3c to dissipate heat, and the heat that could not be dissipated by the heat dissipating fins 3c is gradually dissipated from the heating element 53. Heat is transferred to the fins 3e, 3b, 3d, and 3a in order to radiate heat. Here, when the cooling air from the blower flows in the lateral direction along the radiation fins 3a, 3b, 3c, 3d, 3e, the heat transmitted to the radiation fins 3a, 3b, 3c, 3d, 3e is evenly distributed. Although it is possible to take away, as shown in FIG. 2A, the cooling air A from the air blower is sent from the diagonally upward direction of the radiation fins 3a, 3b, 3c, 3d, 3e as indicated by arrows. In addition, the lengths L1, L2, L3, L5, and L6 in the width direction of the heat receiving plate 2 and the heat radiation fins 3a, 3b, 3c, 3d, and 3e are gradually shortened as the distance from the heating element 53 increases. Since the left and right end surfaces of the heat receiving plate 2 and the radiation fins 3a, 3b, 3c, 3d, 3e are cut obliquely, there is no resistance to the cooling air around the left and right end surfaces of the radiation fins 3a, 3b, 3c, 3d, 3e. Flow, located near the heating element 53 Cooling air easily hits the heat dissipating fins 3c and the heat dissipating fins 3d. Therefore, also in this case, it is possible to effectively reduce the size of the radiator 1 without reducing the heat radiation performance by the cooling air effectively hitting the radiation fins 3c and the radiation fins 3d to which the heat from the heating element 53 is first transmitted. become.
Moreover, since the heat radiating fins 3d and 3e are provided not only on the one side surface 2A of the heat receiving plate 2 but also on the other side surface 2B of the heat receiving plate 2, the heat radiating performance as the heat radiator 1, that is, the cooling efficiency can be further enhanced. In addition, for example, in mounting on an electronic device, even if it is necessary to suppress the height of the radiator in terms of space or if it is necessary to suppress the height in terms of space, the heat radiation fins 3d and 3e are received by heat. By providing on the other side 2B of the plate 2, the height of the radiator 1 can be suppressed while maintaining the heat dissipation performance.

以上のように実施例2では、受熱板2の他側面2Bにも少なくとも1つ以上の放熱フィン3d,3eが設置されるので、この放熱フィン3d,3eを利用して熱交換を行なうことで、放熱性能すなわち冷却効率をさらに高めることができる放熱器を提供できる。さらに、スペース的に高さを抑える必要が出てきた場合でも、放熱フィン3d,3eを受熱板2の他側面2Bに設けることで、放熱性能を維持しつつ放熱器1の高さを抑えることができる。   As described above, in the second embodiment, at least one radiation fin 3d, 3e is also installed on the other side surface 2B of the heat receiving plate 2. Therefore, heat exchange is performed by using the radiation fin 3d, 3e. Thus, it is possible to provide a radiator that can further improve the heat dissipation performance, that is, the cooling efficiency. Furthermore, even when it is necessary to suppress the height in terms of space, the height of the radiator 1 can be suppressed while maintaining the heat dissipation performance by providing the radiation fins 3d and 3e on the other side 2B of the heat receiving plate 2. Can do.

なお、別な変形例として、例えば受熱板2の一側面2Aと他側面2Bで、対称的に放熱フィン3a,3b,3cと放熱フィン3d,3eをそれぞれ設置してもよい。また、第1実施例や第2実施例に共通して、受熱板2の他側面2Bに発熱体53を取り付けできるようにしてもよく、この場合も上記各実施例と同様の作用効果を発揮することができる。   As another modification, for example, the heat radiation fins 3a, 3b, 3c and the heat radiation fins 3d, 3e may be provided symmetrically on the one side surface 2A and the other side surface 2B of the heat receiving plate 2, respectively. Further, in common with the first embodiment and the second embodiment, the heating element 53 may be attached to the other side surface 2B of the heat receiving plate 2, and in this case as well, the same effects as the above-described embodiments are exhibited. can do.

なお、本実施例は上記各実施形態に限定されるものではなく、種々の変形実施が可能である。例えば、放熱部としては実施例中のような板状の放熱フィンに代わり、複数のピンを所定の密度で配置したものを適用しても良い。   In addition, a present Example is not limited to said each embodiment, A various deformation | transformation implementation is possible. For example, as the heat radiating portion, a plate in which a plurality of pins are arranged at a predetermined density may be applied instead of the plate-shaped heat radiating fins in the embodiment.

本発明の第1実施例を示す放熱器の正面図である。It is a front view of the heat radiator which shows 1st Example of this invention. 本発明の第1実施例を示す放熱器の側面図である。It is a side view of the heat radiator which shows 1st Example of this invention. 本発明の第2実施例を示す放熱器の正面図である。It is a front view of the heat radiator which shows 2nd Example of this invention. 本発明の第2実施例を示す放熱器の側面図である。It is a side view of the heat radiator which shows 2nd Example of this invention. 従来の実施例を示す放熱器の正面図である。It is a front view of the heat radiator which shows the conventional Example. 従来の実施例を示す放熱器の側面図である。It is a side view of the heat radiator which shows the conventional Example.

符号の説明Explanation of symbols

2 受熱板
2A 一側面
2B 他側面
3a,3b,3c,3d,3e 放熱フィン(放熱部)
53 発熱体
2 Heat receiving plate 2A One side 2B Other side 3a, 3b, 3c, 3d, 3e Radiation fin (heat radiation part)
53 Heating element

Claims (2)

発熱体に接触して前記発熱体からの熱を受ける受熱板と、前記受熱板の幅方向に沿って一側面に並設された複数の放熱部とからなり、前記受熱板と前記放熱部の幅方向の長さが、前記発熱体から離れた位置にあるほど次第に短く形成されることを特徴とする放熱器。   A heat receiving plate that contacts the heat generating element and receives heat from the heat generating element, and a plurality of heat radiating portions arranged in parallel on one side surface along the width direction of the heat receiving plate, the heat receiving plate and the heat radiating portion The heat radiator characterized by being formed so that the length of the width direction is gradually shortened, so that it is in the position away from the said heat generating body. 前記受熱板の他側面にも少なくとも1つ以上の放熱部が設置されることを特徴とする請求項1記載の放熱器。   The heat radiator according to claim 1, wherein at least one heat radiating portion is installed on the other side of the heat receiving plate.
JP2008026853A 2008-02-06 2008-02-06 Radiator Expired - Fee Related JP5177794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008026853A JP5177794B2 (en) 2008-02-06 2008-02-06 Radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008026853A JP5177794B2 (en) 2008-02-06 2008-02-06 Radiator

Publications (2)

Publication Number Publication Date
JP2009188208A JP2009188208A (en) 2009-08-20
JP5177794B2 true JP5177794B2 (en) 2013-04-10

Family

ID=41071162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008026853A Expired - Fee Related JP5177794B2 (en) 2008-02-06 2008-02-06 Radiator

Country Status (1)

Country Link
JP (1) JP5177794B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5712697B2 (en) * 2010-03-24 2015-05-07 三菱エンジニアリングプラスチックス株式会社 Heat dissipation structure of heat dissipation member and heating element
JP2013069756A (en) * 2011-09-21 2013-04-18 Toshiba Mitsubishi-Electric Industrial System Corp Cooling device of semiconductor element
JP2023048717A (en) * 2021-09-28 2023-04-07 パナソニックIpマネジメント株式会社 washing machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10200022A (en) * 1997-01-14 1998-07-31 Matsushita Electric Ind Co Ltd Heat radiator of heat generating semiconductor element
JP2003218295A (en) * 2002-01-21 2003-07-31 Nippon Densan Corp Heat sink and cooling device having the same
JP2003243581A (en) * 2002-02-15 2003-08-29 Fujikura Ltd Heat sink
JP2003264388A (en) * 2002-03-08 2003-09-19 Toshiba Kyaria Kk Electric component device

Also Published As

Publication number Publication date
JP2009188208A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
JP4655987B2 (en) Electronics
JP5388598B2 (en) Element heat dissipation structure
KR20090054979A (en) Motor control device
US7957143B2 (en) Motor controller
JP2010187504A (en) Inverter device
JP2018186143A (en) Circuit board module and electronic apparatus
JP2008270609A (en) Heat radiating apparatus for electronic component
JP2006351976A (en) Circuit module and circuit device
JP5670447B2 (en) Electronics
JP5177794B2 (en) Radiator
JP4438526B2 (en) Power component cooling system
JP2014146702A (en) Electronic apparatus and housing
JP6652144B2 (en) Electronic parts, manufacturing method of electronic parts, mechanical parts
JP2009017624A (en) Motor controller
JPH10107192A (en) Heat sink
JP6907672B2 (en) Heat dissipation device
TWM607598U (en) Heat dissipation apparatus
JP2015216143A (en) Heat radiation structure of heating element
JP2007005715A (en) Heat sink device and heat dissipating method
JP2016019333A (en) Cooling structure of power conversion system
JP2012023166A (en) Flexible printed wiring board and heater element radiation structure
TWI736445B (en) Heat dissipating device
JP2011171686A (en) Metal-based printed board with heat radiation part
JP2005143265A (en) Electric connection box
JP6815347B2 (en) Semiconductor module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Ref document number: 5177794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121230

LAPS Cancellation because of no payment of annual fees