JP2005093630A - Heat radiation structure of electronic equipment - Google Patents

Heat radiation structure of electronic equipment Download PDF

Info

Publication number
JP2005093630A
JP2005093630A JP2003323939A JP2003323939A JP2005093630A JP 2005093630 A JP2005093630 A JP 2005093630A JP 2003323939 A JP2003323939 A JP 2003323939A JP 2003323939 A JP2003323939 A JP 2003323939A JP 2005093630 A JP2005093630 A JP 2005093630A
Authority
JP
Japan
Prior art keywords
heat
housing
circuit board
printed circuit
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003323939A
Other languages
Japanese (ja)
Other versions
JP4285738B2 (en
Inventor
Yoshito Tanaka
義人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2003323939A priority Critical patent/JP4285738B2/en
Publication of JP2005093630A publication Critical patent/JP2005093630A/en
Application granted granted Critical
Publication of JP4285738B2 publication Critical patent/JP4285738B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat radiation structure of electronic equipment for miniaturizing the structure as a whole and radiating heat efficiently at all times. <P>SOLUTION: In the electronic equipment comprising a printed-circuit board 11 in which electrical heating components are mounted on the surface, and an enclosure 10 for accommodating the printed-circuit board 11; a support member 12 in an elastic body for supporting the printed-circuit board 11 inside the enclosure is mounted, in contact with the enclosure at a specified position in the enclosure with a fixed area, and a heat-conductive path is formed from the electrical heating components 15 to the enclosure 10 via the support member 12, thus miniaturizing the entire structure and achieving the radiation structure of the electronic equipment for radiating heat efficiently at all times. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、発熱型電子部品を実装したプリント基板を内部に備えた電子機器の放熱構造に関し、特に全体の小型化を達成しつつ発熱型電子部品の効率的な放熱を可能にした電子機器の放熱構造に関する。   The present invention relates to a heat dissipation structure for an electronic device including a printed circuit board on which a heat generating electronic component is mounted, and particularly to an electronic device that enables efficient heat dissipation of the heat generating electronic component while achieving overall downsizing. It relates to a heat dissipation structure.

一般に、電子機器に収容されるプリント基板にはいわゆるLSIと呼ばれる大規模集積回路やパワートランジスタ等の発熱型電子部品(以下、「発熱部品」とする)が実装されている。そのため、電子機器内部に放熱経路を確保する必要がある。そして、この放熱経路は、熱伝導、熱伝達、放射で構成されている。   In general, a printed circuit board accommodated in an electronic device is mounted with a heat generation type electronic component (hereinafter referred to as “heat generation component”) such as a so-called LSI or a large-scale integrated circuit or a power transistor. Therefore, it is necessary to secure a heat dissipation path inside the electronic device. And this heat radiation path is comprised by heat conduction, heat transfer, and radiation.

筐体内には一般に図6に示すような十分な通風路が確保されて、この通風路において空気の流れが生じている。そのため、発熱部品から空気を介して伝達された熱は筐体に設けられた通気孔50cを介して筐体外部に放熱される。具体的には、図6に示すように熱源である発熱部品55で発生した熱は主には発熱部品が収容された筐体内部の空気を介して熱伝達される(図中、発熱部品近傍上方の熱伝達を表す太線矢印参照)。また、発熱部品55で発生した熱の一部は熱伝導によりリード線を経由しプリント基板上に伝わる。プリント基板51に伝えられた熱のほとんどは筐体内部の空気を介して熱伝達されて通気口50cより外部へ放熱されるが、一部は筺体へ熱伝達される。このように、様々な熱伝達経路を経て筺体に達した熱は、筺体表面から外部空気へ熱伝達、放射により放熱される。   In general, a sufficient ventilation path as shown in FIG. 6 is secured in the housing, and air flows in the ventilation path. Therefore, the heat transmitted from the heat generating component via the air is radiated to the outside of the casing through the vent hole 50c provided in the casing. Specifically, as shown in FIG. 6, heat generated by the heat generating component 55 as a heat source is mainly transferred through the air inside the housing in which the heat generating component is accommodated (in the figure, in the vicinity of the heat generating component). (See thick arrow representing heat transfer above)). Further, part of the heat generated in the heat generating component 55 is transmitted to the printed circuit board via the lead wire by heat conduction. Most of the heat transferred to the printed circuit board 51 is transferred through the air inside the housing and radiated to the outside through the vent 50c, but part of the heat is transferred to the housing. Thus, the heat that has reached the housing through various heat transfer paths is dissipated by heat transfer and radiation from the housing surface to the external air.

一方、発熱部品55で発した熱の残りの一部は、電子機器内部の熱伝導によって筐体50に伝わる(図中、プリント基板51及び支持柱57の熱伝導を表す細線矢印参照)。さらに、熱の残りの一部は放射により筺体へ伝わる(図中、発熱部品55近傍の熱放射矢印参照)。そして、筐体50に達した熱は周囲の空気(筐体50の取り付けられた装置内部空気)を介して熱伝達によって放熱される(図中、筐体上方の熱伝達矢印参照)。   On the other hand, the remaining part of the heat generated by the heat generating component 55 is transmitted to the housing 50 by heat conduction inside the electronic device (see thin line arrows representing heat conduction of the printed circuit board 51 and the support pillar 57 in the figure). Further, the remaining part of the heat is transmitted to the housing by radiation (see the heat radiation arrow in the vicinity of the heat generating component 55 in the figure). The heat reaching the housing 50 is dissipated by heat transfer through the surrounding air (air inside the apparatus to which the housing 50 is attached) (see the heat transfer arrow above the housing in the figure).

このような電子機器の放熱構造を示した具体的な公知例としては、ファンの回転による筐体内部空気の対流を促進して熱伝達効率を高めたものと、プリント基板から熱伝導体を介して筐体外部に設けた放熱板に熱を伝えて当該放熱板から外気へ放熱する構造のもの(例えば、特許文献1参照)が知られている。   Specific known examples of such a heat dissipation structure of an electronic device include one that promotes convection of the air inside the casing by the rotation of a fan to increase heat transfer efficiency, and a printed circuit board through a heat conductor. There is a known structure (for example, refer to Patent Document 1) in which heat is transmitted to a heat radiating plate provided outside the housing to radiate heat from the heat radiating plate to the outside air.

特開平7−106782号公報(第2−3頁、図2)Japanese Patent Laid-Open No. 7-106782 (page 2-3, FIG. 2)

しかしながら、従来の放熱構造によると以下の問題点があった。   However, the conventional heat dissipation structure has the following problems.

まず、筐体内部空気の熱伝達を利用した従来の放熱構造は、通気による熱伝達を利用して主に放熱しているため、放熱量は筺体内部の気流の流れに左右される。このため、通風路の空間を小さくすると、空気の流れの抵抗が大きくなり通気が妨げられて放熱されなくなる。従って、通風路を確保した構造としなければならず電子機器全体の小型化が図れない。   First, in the conventional heat dissipation structure using heat transfer of the air inside the casing, heat is mainly dissipated using heat transfer by ventilation, so the amount of heat release depends on the flow of airflow inside the housing. For this reason, if the space of the ventilation path is reduced, the resistance of the air flow is increased, the ventilation is hindered, and heat is not dissipated. Therefore, the structure must ensure a ventilation path and the entire electronic device cannot be reduced in size.

また、自然空冷技術では、放熱量の基準を温度仕様が一番厳しい部品に合わせる必要があるため、その他の部品では、十分すぎる放熱量となっている。   In the natural air cooling technology, since it is necessary to match the standard of heat dissipation to the parts with the strictest temperature specifications, the heat dissipation is too much for other parts.

従って、放熱において基本的なものである自然空冷技術を主に利用した前者の従来における電子機器の放熱構造は、その構造自体が放熱効率を限界まで高めているとは言えず、電子機器の小型化の支障となっていた。   Therefore, the former conventional electronic device heat dissipation structure that mainly uses natural air cooling technology, which is fundamental in heat dissipation, cannot be said to increase the heat dissipation efficiency to the limit. It was an obstacle to the transformation.

一方、特許文献1に示す構造は、筐体外部の所定位置に設けた一定の放熱面積を有する放熱板に熱伝導体を介して熱を伝えるだけで、筐体を放熱体の一部として積極的に利用しているものではない。また、筐体外部に特別に放熱板を設けているので、電子機器全体の大きさがその分大きくなっている。さらに、当該電子機器を設置する際に放熱板周囲に外気が十分触れる場所に設置しなければならず、設置スペース上の制約を受ける。   On the other hand, the structure shown in Patent Document 1 actively transmits heat to a heat radiating plate having a certain heat radiating area provided at a predetermined position outside the housing through the heat conductor as a part of the heat radiating body. It is not something you use. Further, since the heat radiating plate is specially provided outside the housing, the size of the entire electronic device is increased accordingly. Furthermore, when installing the electronic apparatus, it must be installed in a place where the outside air can be sufficiently touched around the heat sink, which is restricted by installation space.

本発明の目的は、電子機器全体の構造を小型化でき、かつ常に効率的に放熱可能な電子機器の放熱構造を提供することにある。   An object of the present invention is to provide a heat dissipation structure for an electronic device that can reduce the overall structure of the electronic device and can always efficiently dissipate heat.

上述した課題を解決するために、本発明にかかる電子機器の放熱構造は、表面に発熱部品を実装したプリント基板と、プリント基板を収容する筐体を備えた電子機器の放熱構造において、プリント基板を筐体内部に支持する弾性体の熱伝導性支持部材が筐体内部の所定位置に当該筐体と一定の面積で接触したまま取り付けられ、支持部材を介して発熱部品から筐体までの熱伝導経路を形成している。   In order to solve the above-described problems, a heat dissipation structure for an electronic device according to the present invention includes a printed circuit board having a heat generating component mounted on a surface thereof, and a heat dissipation structure for an electronic device including a housing for accommodating the printed circuit board. The heat conductive support member of the elastic body that supports the inside of the housing is attached to a predetermined position inside the housing while being in contact with the housing with a certain area, and the heat from the heat-generating component to the housing is supported via the support member. A conduction path is formed.

かかる構成をとることで発熱部品と筐体とを主に熱伝導で接続することができ、発熱部品の熱を筐体内部の空気を介さずに筐体に熱伝導及び放射するので、熱伝達に際して必要とされる筐体内部の通風路を小さくできる。これにより、筐体全体を小さくすることができ、電子機器の小型化を実現することが可能となる。また、筐体全体を発熱体とみなすことができるようになるので、一部に放熱板を備えた電子機器のように設置スペース上の制約を受けることはない。   By adopting such a configuration, the heat generating component and the housing can be connected mainly by heat conduction, and the heat of the heat generating component is conducted and radiated to the housing without passing through the air inside the housing. In this case, the required ventilation path inside the housing can be reduced. Thereby, the whole housing | casing can be made small and it becomes possible to implement | achieve size reduction of an electronic device. In addition, since the entire housing can be regarded as a heating element, there is no restriction on installation space unlike an electronic device having a heat sink in part.

また、本発明の請求項2に記載の電子機器の放熱構造は、表面に発熱部品を実装したプリント基板と、プリント基板を収容する筐体を備えた電子機器の放熱構造において、プリント基板を筐体内部に支持する弾性体の熱伝導性支持部材が筐体内部の所定位置に当該筐体と一定の面積で接触したまま取り付けられ、支持部材を介して発熱部品から筐体までの第1の熱伝導経路を形成すると共に、発熱部品と筐体との間に弾性体の熱伝導性スペーサが当該発熱電子部品及び当該筐体双方と一定の面積で接触したまま介在し、当該スペーサを介して発熱部品から筐体までの第2の熱伝導経路を形成している。   According to a second aspect of the present invention, there is provided a heat dissipating structure for an electronic device, wherein the heat dissipating structure of the electronic device includes a printed circuit board having a heat generating component mounted on the surface and a housing for accommodating the printed circuit board. A heat conductive support member, which is an elastic body that supports the inside of the body, is attached to a predetermined position inside the housing while being in contact with the housing with a certain area, and the first member from the heat generating component to the housing is supported via the support member. In addition to forming a heat conduction path, an elastic heat conductive spacer is interposed between the heat generating component and the housing while keeping contact with both the heat generating electronic component and the housing with a certain area, and through the spacer A second heat conduction path from the heat generating component to the housing is formed.

請求項1に記載の電子機器の放熱構造に加えて、発熱部品から筐体までを弾性体の熱伝導性スペーサを介して直接結合したことにより、発熱部品から筐体へ直接熱伝導を図ることができる。その結果、請求項1に記載の電子機器の放熱構造よりも更に電子機器内部の温度上昇を抑え、かつ内部温度を均一化することができるので、放熱効率がより一層向上する。   In addition to the heat dissipation structure of the electronic device according to claim 1, direct heat conduction from the heat generating component to the housing is achieved by directly connecting the heat generating component to the housing through an elastic heat conductive spacer. Can do. As a result, since the temperature rise inside the electronic device can be further suppressed and the internal temperature can be made uniform as compared with the heat dissipation structure of the electronic device according to claim 1, the heat dissipation efficiency is further improved.

以上説明したように、本発明にかかる電子機器の放熱構造によると、電子機器の筐体内部の空気が流動せず、内部空気への熱伝達による放熱ができなくても放熱できるため、電子機器の筐体内部空間から通風路をなくしてその分の省スペースを図って全体を小型化できる。また、発熱部品をプリント基板、筐体に接続し、筐体全体を一つの発熱体とみなすことで、発熱部品から直接筐体を介して電子機器外部へ放熱できるので、電子機器内部の温度上昇を抑えつつ内部温度を均一化でき、電子機器の放熱効率が向上する。これによって電子機器内部の空間が小さく内部空気の流動が起こらないような小型化した電子機器、すなわち内部空気の熱伝達による放熱が期待できないような小型電子機器であっても十分放熱することができる。   As described above, according to the heat dissipation structure for an electronic device according to the present invention, the air inside the housing of the electronic device does not flow, and heat can be dissipated even if heat cannot be released by heat transfer to the internal air. The entire space can be reduced by eliminating the ventilation path from the interior space of the housing and saving space accordingly. In addition, by connecting the heat-generating component to the printed circuit board and the case and considering the entire case as a single heating element, heat can be radiated from the heat-generating component directly to the outside of the electronic device, so the temperature inside the electronic device rises. The internal temperature can be made uniform while suppressing the heat dissipation efficiency of the electronic equipment. As a result, it is possible to sufficiently dissipate even a small electronic device in which the space inside the electronic device is small and internal air does not flow, that is, a small electronic device in which heat dissipation due to heat transfer of the internal air cannot be expected. .

以下、本発明の一実施形態にかかる電子機器の放熱構造について図面に基づいて説明する。   Hereinafter, a heat dissipation structure for an electronic device according to an embodiment of the present invention will be described with reference to the drawings.

本発明の一実施形態にかかる電子機器の放熱構造1は、図1に示すように、表面に発熱型の電子部品(以下、単に「発熱部品」という)15を実装したプリント基板11と、プリント基板11を収容する筐体10からなり、プリント基板11を筐体内部に支持する弾性体の支持部材12が筐体内部の所定位置に当該筐体10と一定の面積で接触したまま取り付けられている。   As shown in FIG. 1, a heat dissipation structure 1 for an electronic device according to an embodiment of the present invention includes a printed circuit board 11 having a heat generating electronic component (hereinafter simply referred to as “heat generating component”) 15 mounted on a surface, An elastic support member 12 that includes a housing 10 that accommodates the substrate 11 and supports the printed circuit board 11 inside the housing is attached to a predetermined position inside the housing while being in contact with the housing 10 with a certain area. Yes.

筐体10は例えばアルミニウムなどの熱伝導性に優れた材質からなる上ケース10aと下ケース10bを嵌合した薄型の箱体をなしており、種々の電子部品(図中では発熱部品15のみ図示)が実装されたプリント基板11と、当該プリント基板11を支持する支持部材12を両ケースで挟みこんで収容している。   The housing 10 has a thin box body in which an upper case 10a and a lower case 10b made of a material having excellent thermal conductivity such as aluminum are fitted, and various electronic components (only the heat generating component 15 is shown in the figure). ) And a support member 12 that supports the printed board 11 are sandwiched and accommodated between the cases.

プリント基板11は筐体10に対応した幅及び奥行きを有し、当該プリント基板11が筐体内部の高さ方向ほぼ中央に位置するように伝熱ゴム等の弾性体でできた支持部材12で支持されている。   The printed circuit board 11 has a width and a depth corresponding to the housing 10 and is a support member 12 made of an elastic body such as heat transfer rubber so that the printed circuit board 11 is located at substantially the center in the height direction inside the housing. It is supported.

プリント基板11に搭載された発熱部品15は、本実施形態の場合、LSI(大規模集積回路)であるが、サーミスタ、トライアック等の能動型素子などからなる発熱部品であっても良い。また、プリント基板11には図示した発熱部品15の他にここでは図示しないが抵抗やコンデンサ等の通常の電子部品も多数実装されている。また、発熱部品15にはヒートシンク15aが取り付けられている(図1では簡略的に図示)。一方、プリント基板11の表面にはヒートスプレットパターンや配線パターン(以下、まとめて「ヒートスプレットパターン11a」とする)が印刷されている。なお、ヒートスプレットパターン11aはプリント基板上において発熱部品15からプリント基板11の周囲縁部に延在している。そして、発熱部品15の熱を一旦ヒートシンク15aにためてからヒートスプレットパターン11aを介して基板全体に伝熱するか、直接ヒートスプレットパターン11aを介してプリント基板11の周囲縁部まで効率的に伝熱するようになっている。なお、図1においてはプリント基板11の断面ハッチング部に沿ってヒートスプレットパターン11aが描かれているが、これは説明の都合上模式的にこの構成要素を描いたもので、実際のヒートスプレットパターン11aは優れた熱伝導特性を得られるようにプリント基板上に最適なパターン形状で適宜形成される。   In the present embodiment, the heat generating component 15 mounted on the printed circuit board 11 is an LSI (Large Scale Integrated Circuit), but may be a heat generating component made of an active element such as a thermistor or a triac. In addition to the heat-generating component 15 shown in the figure, a number of ordinary electronic components such as resistors and capacitors are mounted on the printed board 11 although not shown here. Further, a heat sink 15a is attached to the heat generating component 15 (illustrated schematically in FIG. 1). On the other hand, a heat spread pattern and a wiring pattern (hereinafter collectively referred to as “heat spread pattern 11 a”) are printed on the surface of the printed circuit board 11. The heat spread pattern 11a extends from the heat generating component 15 to the peripheral edge of the printed board 11 on the printed board. Then, the heat of the heat generating component 15 is once accumulated in the heat sink 15a and then transferred to the entire board via the heat spread pattern 11a, or efficiently transferred directly to the peripheral edge of the printed board 11 via the heat spread pattern 11a. It is supposed to heat up. In FIG. 1, the heat spread pattern 11 a is drawn along the cross-sectional hatched portion of the printed circuit board 11. 11a is appropriately formed in an optimal pattern shape on the printed circuit board so as to obtain excellent heat conduction characteristics.

プリント基板11の両端縁部は幅方向全体にわたって上述したように支持部材12を介して筐体10に密着固定されている。支持部材12は、熱伝導性ゴムなどの伝熱性に優れた弾性体からなり、図1に示すように断面各型C字状をなしている。そして、支持部材12の溝部12bにプリント基板11の縁部11bがはめ込まれて支持部材12の溝部12bとプリント基板11の縁部11bとが一定の面積で接触している。また、支持部材12の外壁面はその上下面と一側面が筐体10の上ケース10aと下ケース10bに一定の面積で接触している。なお、支持部材12の溝部12bの溝幅はプリント基板11の厚みよりも小さく、プリント基板11を支持部材12にはめ込むと支持部材12の溝部12bがプリント基板11の側縁に密着するのが好ましい。また、支持部材12の上下面の間隔も筐体内部の高さよりも大きく、支持部材12を上下ケース10a,10bで挟み込んだ際、支持部材12の上下面が筐体10の上ケース10aと下ケース10bに密着するのが好ましい。また、プリント基板11を支持部材12の溝部12bにはめ込んで筐体10に収容したとき、支持部材12の側面が筐体10に密着する程度の寸法関係を各構成要素が有するのが好ましい。これによって、プリント基板11と支持部材12及び支持部材12と筐体10との間に余分な空気層を生じさせることなく十分な密着面積を確保することができ、プリント基板11、支持部材12、筐体10の間に主だった熱伝導経路を形成できる(図1における熱伝導を示す太線矢印参照)。   Both end edges of the printed circuit board 11 are closely fixed to the housing 10 via the support member 12 as described above over the entire width direction. The support member 12 is made of an elastic body having excellent heat conductivity such as a heat conductive rubber, and has a C-shaped cross section as shown in FIG. And the edge part 11b of the printed circuit board 11 is engage | inserted in the groove part 12b of the supporting member 12, and the groove part 12b of the supporting member 12 and the edge part 11b of the printed circuit board 11 are contacting in a fixed area. Further, the upper and lower surfaces and one side surface of the outer wall surface of the support member 12 are in contact with the upper case 10a and the lower case 10b of the housing 10 with a certain area. Note that the groove width of the groove portion 12 b of the support member 12 is smaller than the thickness of the printed circuit board 11, and the groove portion 12 b of the support member 12 is preferably in close contact with the side edge of the printed circuit board 11 when the printed circuit board 11 is fitted into the support member 12. . Further, the distance between the upper and lower surfaces of the support member 12 is also larger than the height inside the housing, and when the support member 12 is sandwiched between the upper and lower cases 10a and 10b, the upper and lower surfaces of the support member 12 are in contact with the upper case 10a and the lower case 10a. It is preferable to be in close contact with the case 10b. Moreover, it is preferable that each component has a dimensional relationship such that the side surface of the support member 12 is in close contact with the housing 10 when the printed circuit board 11 is fitted in the groove 12 b of the support member 12 and accommodated in the housing 10. Thereby, a sufficient adhesion area can be secured without generating an extra air layer between the printed circuit board 11 and the support member 12 and between the support member 12 and the housing 10, and the printed circuit board 11, the support member 12, A main heat conduction path can be formed between the housings 10 (see the thick arrows indicating heat conduction in FIG. 1).

次に、かかる構造に基づく作用について説明する。上述したように、本実施形態にかかる電子機器の放熱構造1は、熱源である発熱部品15からヒートシンク15aやプリント基板11のヒートスプレットパターン11aに熱を伝えてプリント基板全体に熱を拡散させていく。プリント基板11から筺体10に主には支持部材12から筺体10に熱伝導により熱が伝わり、筐体全体が擬似的に発熱体となって外部に放熱する(図1における熱伝導を示す太線矢印参照)。これに加えて、副次的にはプリント基板表面全体から筐体10に熱放射や熱伝達により熱が伝わり、外部に放熱する(図1における熱放射や熱伝達を示す細線矢印参照)。   Next, the operation based on this structure will be described. As described above, the heat dissipation structure 1 of the electronic device according to the present embodiment transmits heat from the heat generating component 15 that is a heat source to the heat sink 15a or the heat spread pattern 11a of the printed board 11 to diffuse the heat to the entire printed board. Go. Heat is transmitted from the printed circuit board 11 to the housing 10 mainly from the support member 12 to the housing 10 by heat conduction, and the entire housing becomes a pseudo heat generating body and dissipates to the outside (thick arrows indicating heat conduction in FIG. 1). reference). In addition to this, secondarily, heat is transmitted from the entire printed circuit board surface to the housing 10 by heat radiation or heat transfer, and is radiated to the outside (see thin line arrows indicating heat radiation and heat transfer in FIG. 1).

以上のように、従来の電子機器の放熱構造5における放熱経路と比較して、熱源である発熱部品15と筐体10とを熱伝導で接続し、熱伝導の割合を大きくすることで、従来のように筐体内部における空気の介在のみに依存する熱伝達に頼った放熱構造をとらなくて済むようになる。これは、図5中で熱伝達を表す太線矢印で伝熱と放熱が行われている状態から、図1中で熱伝導を表す太線矢印で伝熱と放熱が行われている状態に移行していることからも理解できる。その結果、放熱効率を極限まで高めることができ、電子機器自体の小型化も達成できるようになる。これは、図5における筐体全体の大きさに比べて、図1における筐体全体の大きさが小型化していることからも理解できる。   As described above, compared with the heat dissipation path in the heat dissipation structure 5 of the conventional electronic device, the heat generating component 15 that is a heat source and the housing 10 are connected by heat conduction, and the ratio of heat conduction is increased. Thus, it becomes unnecessary to adopt a heat dissipation structure that relies on heat transfer that depends only on the presence of air inside the housing. This is a transition from the state where heat transfer and heat dissipation are performed with thick arrows representing heat transfer in FIG. 5 to the state where heat transfer and heat dissipation are performed with thick arrows representing heat conduction in FIG. I can understand that. As a result, the heat dissipation efficiency can be increased to the limit, and the electronic device itself can be miniaturized. This can also be understood from the fact that the size of the entire housing in FIG. 1 is smaller than the size of the entire housing in FIG.

また、筐体全体の大きさを小さくして、プリント基板11と筐体10との間のすき間を狭くすることで、設計上この隙間に放射を遮るものが介在することがなくなり、プリント基板11に伝わった熱が放射する際に放射による放熱効率を低下させなくて済む。   Further, by reducing the size of the entire housing and narrowing the gap between the printed circuit board 11 and the housing 10, there is no interposition of a material that blocks radiation in the gap in design, and the printed circuit board 11. When the heat transmitted to radiates, it is not necessary to reduce the heat radiation efficiency by radiation.

なお、上述の実施形態にかかる電子機器の放熱構造は、ヒートスプレットパターン11aや支持部材12を介して発熱部品15から筐体10への伝熱経路を形成すると共に当該支持部材12によってプリント基板11の固定をも兼ねていたが、これに加えて筐体内面を適当な材料で塗装することでプリント基板11からの放射を筐体10に効果的に吸熱するようにしても良い。同様に筐体外面を適当な材料で塗装することで、一旦筐体10に吸熱された熱を筐体外部に効率良く放射するようにしても良い。このような構成をさらに加えることで更なる副次的な放熱効果を得ることが期待できる。   The heat dissipation structure of the electronic device according to the above-described embodiment forms a heat transfer path from the heat generating component 15 to the housing 10 via the heat spread pattern 11a and the support member 12, and the printed circuit board 11 by the support member 12. However, in addition to this, radiation from the printed board 11 may be effectively absorbed into the housing 10 by painting the inner surface of the housing with an appropriate material. Similarly, by coating the outer surface of the housing with an appropriate material, the heat once absorbed by the housing 10 may be radiated efficiently to the outside of the housing. It can be expected that a further secondary heat dissipation effect can be obtained by further adding such a configuration.

続いて、上述した本発明の一実施形態にかかる電子機器の放熱構造の変形例について説明する。なお、上述の実施形態と同等の構成については同等の符号を付して詳細な説明を省略する。   Then, the modification of the thermal radiation structure of the electronic device concerning one Embodiment of this invention mentioned above is demonstrated. In addition, about the structure equivalent to the above-mentioned embodiment, an equivalent code | symbol is attached | subjected and detailed description is abbreviate | omitted.

上述した一実施形態の変形例に関する電子機器の放熱構造2は、上述の実施形態に加えて発熱部品15と筺体10との間に熱伝導性を有する弾性体を介在させている点に特徴がある。すなわち、図2に示すように、表面に発熱部品を実装したプリント基板11と、プリント基板11を収容する筐体10を備えた電子機器の放熱構造において、プリント基板11を筐体内部に支持する弾性体の熱伝導性支持部材12が筐体内部の両側に当該筐体10と一定の面積で接触したまま取り付けられ、支持部材12を介して発熱部品15から筐体10までの第1の熱伝導経路を形成する点では上述の実施形態にかかる放熱構造と共通している。しかしながら、本変形例では、これに加えて発熱部品15と筐体10との間に熱伝導性に優れた弾性部材からなるスペーサ17が発熱電子部品15と筐体10の双方と一定の面積で接触したまま介在し、当該スペーサ17を介して発熱部品15から筐体10までの第2の熱伝導経路を形成している。   The heat dissipating structure 2 of the electronic device relating to the modified example of the embodiment described above is characterized in that an elastic body having thermal conductivity is interposed between the heat generating component 15 and the housing 10 in addition to the embodiment described above. is there. That is, as shown in FIG. 2, in a heat dissipation structure of an electronic device including a printed circuit board 11 with a heat generating component mounted on the surface and a housing 10 that accommodates the printed circuit board 11, the printed circuit board 11 is supported inside the housing. A heat conductive support member 12 made of an elastic body is attached to both sides of the inside of the housing while being in contact with the housing 10 with a certain area, and a first heat from the heat generating component 15 to the housing 10 via the support member 12. In the point which forms a conduction path, it is common with the heat dissipation structure concerning the above-mentioned embodiment. However, in this modified example, in addition to this, the spacer 17 made of an elastic member having excellent thermal conductivity between the heat generating component 15 and the housing 10 has a constant area with both the heat generating electronic component 15 and the housing 10. The second heat conduction path from the heat generating component 15 to the housing 10 is formed via the spacer 17 while being in contact.

発熱部品15から当該スペーサ17を介して筐体10へ直接放熱することで、外部への放熱量を増加させプリント基板表面から筐体10への熱伝達の割合を上述の実施形態に較べてさらに減少させる。これによって筐体内部の温度上昇をさらに抑えることができる。このようにプリント基板表面全体から筐体10への空気を介在した熱伝達の割合を減らしつつ放熱量を増加させることで、内部空気の流動による熱伝達を利用した放熱への依存度がさらに小さくなるので、電子機器全体のさらなる小型化が達成できる。また、筐体内部温度の均一化といった効果も奏する。   By directly dissipating heat from the heat generating component 15 to the housing 10 via the spacer 17, the amount of heat radiation to the outside is increased, and the rate of heat transfer from the surface of the printed circuit board to the housing 10 is further compared to the above-described embodiment. Decrease. As a result, the temperature rise inside the housing can be further suppressed. Thus, by reducing the rate of heat transfer through the air from the entire printed circuit board surface to the housing 10 while increasing the heat dissipation amount, the dependence on heat dissipation using heat transfer due to the flow of internal air is further reduced. Therefore, further downsizing of the entire electronic device can be achieved. In addition, there is an effect that the temperature inside the housing is made uniform.

なお、上述の実施形態及びその変形例に関する放熱構造においては、図面に示すようにプリント基板11の両端縁部を支持部材12にはめ込む構造を有していたが、必ずしもこれに限定されず、プリント基板11の周囲縁部全体を支持部材12にはめ込むようにしても良い。例えば、矩形形状を有するプリント基板11の4辺の縁部を全て支持部材12にはめ込み、当該支持部材12を筐体10の上ケース10aと下ケース10bで挟むことで熱伝導による放熱効果を更に高めることができる。しかしながら、プリント基板11の両端縁部を支持部材12にはめ込んだ上述の実施形態の構成であっても、プリント基板上の部品実装スペースを十分確保しつつ発熱部品15から筐体10まで主だった熱伝導経路を形成できるという点では十分な効果を奏し得る。   In addition, in the heat dissipation structure regarding the above-mentioned embodiment and its modification, as shown to a drawing, it had the structure which inserts the both ends edge part of the printed circuit board 11 in the support member 12, However, It is not necessarily limited to this, Print The entire peripheral edge of the substrate 11 may be fitted into the support member 12. For example, all the edges of the four sides of the printed circuit board 11 having a rectangular shape are fitted into the support member 12, and the support member 12 is sandwiched between the upper case 10a and the lower case 10b of the housing 10 to further increase the heat dissipation effect due to heat conduction. Can be increased. However, even in the configuration of the above-described embodiment in which both edge portions of the printed circuit board 11 are fitted into the support member 12, the heat generating component 15 to the housing 10 are mainly provided while securing a component mounting space on the printed circuit board. A sufficient effect can be achieved in that a heat conduction path can be formed.

続いて、上述した電子機器の放熱構造に関する従来構造と本実施形態にかかる放熱構造を比較して本実施形態にかかる放熱構造の有用性を確認したので、以下に説明する。この比較試験においては、従来の放熱構造(以下、「これを「本比較例」とする)として、主放熱方式が通気による熱伝達を利用し、放熱経路としては発熱電子部品から内部空気を介して通気口から電子機器筐体外部に放熱する構造を有したものとした。そして、これらの比較試験から本比較例の特徴としては以下の点を有することを裏付けることができた。
(1)通気による伝達が放熱のほとんどを占める。
(2)通気量に放熱性能が左右される。
(3)通気をスムーズにするため十分な空間が必要である。
(4)空気の流れのむらにより温度のバラツキが大きい。
Subsequently, the usefulness of the heat dissipation structure according to the present embodiment was confirmed by comparing the conventional structure related to the heat dissipation structure of the electronic device described above and the heat dissipation structure according to the present embodiment. In this comparative test, as a conventional heat dissipation structure (hereinafter referred to as “this comparative example”), the main heat dissipation method uses heat transfer by ventilation, and the heat dissipation path passes through internal air from the heat generating electronic components. In addition, a structure for radiating heat from the vent to the outside of the electronic device casing is provided. And from these comparative tests, it has been proved that the present comparative example has the following features.
(1) Transmission by ventilation accounts for most of heat dissipation.
(2) The heat dissipation performance depends on the air flow rate.
(3) Sufficient space is required for smooth ventilation.
(4) Temperature variation is large due to uneven air flow.

一方、上述した実施形態の放熱構造(以下、「これを「本実施例」とする)として、主放熱方式に熱伝導を利用し、放熱経路としては部品からプリント基板及伝熱ゴムでできた支持部材を介して筐体から外部に放熱する構造とした。そして、これらの比較試験から本実施例の特徴としては以下の点を有することを裏付けることができた。
(1)発熱電子部品をプリント基板、筐体に接続し、筐体全体をひとつの発熱体に見立てて電子機器外部への効率的な放熱を図っている。
(2)内部温度が均一化され筐体全体で熱伝達できるため、小型化に向いている。
On the other hand, as the heat dissipation structure of the above-described embodiment (hereinafter referred to as “this example”), heat conduction was used for the main heat dissipation method, and the heat dissipation path was made of parts and printed circuit boards and heat transfer rubber. A structure in which heat is radiated from the housing to the outside via the support member is adopted. And from these comparative tests, it has been proved that the features of this example have the following points.
(1) A heat generating electronic component is connected to a printed circuit board and a casing, and the entire casing is regarded as a single heating element for efficient heat dissipation to the outside of the electronic device.
(2) Since the internal temperature is made uniform and heat can be transferred through the entire casing, it is suitable for miniaturization.

以下、本実施例と本比較例との比較試験を幾つかの観点から行ったので、この試験内容を具体的に説明する。   Hereinafter, since the comparative test of this example and this comparative example was performed from several viewpoints, the content of this test will be specifically described.

まず、放熱対策の例から見た点での両者の比較試験について説明する。   First, a comparative test between the two in terms of heat dissipation measures will be described.

例えば、図3(a)に示すように、電子機器のプリント基板に発熱部品A,B,C,Dが実装され、電子機器を特定の動作条件で動作させたところ、C部品のみが発熱温度の仕様値をオーバーしていた場合を考える。なお、図3(b)は本比較例における放熱構造で放熱したときの各発熱部品の仕様値及び発熱温度を示し、図3(c)は本実施例における放熱構造で放熱したときの各発熱部品の仕様値及び発熱温度を示している。   For example, as shown in FIG. 3A, when heat-generating components A, B, C, and D are mounted on a printed circuit board of an electronic device and the electronic device is operated under specific operating conditions, only the C-component generates heat. Consider the case where the specification value is exceeded. FIG. 3B shows the specification value and heat generation temperature of each heat generating component when heat is radiated by the heat dissipation structure in this comparative example, and FIG. 3C shows each heat generation when heat is radiated by the heat dissipation structure in this embodiment. It shows the specification value and heat generation temperature of parts.

まず、初期状態としてC部品の仕様値オーバーがt°Cとする。なお、図3においては、各部品の左上がりのハッチング帯域が各部品の許容発熱温度を示す仕様値で、右上がりのハッチング帯域が各部品の実際の発熱温度を示している。従って、発熱部品Cのみがt°Cだけ仕様値より実際の発熱温度が高くなっていることが分かる。 First, as an initial state, it is assumed that the specification value over of the C component is t 0 ° C. In FIG. 3, the hatching band that rises to the left of each component is a specification value that indicates the allowable heat generation temperature of each component, and the hatching band that rises to the right indicates the actual heat generation temperature of each component. Accordingly, it can be seen that only the heat generating component C has an actual heat generation temperature higher than the specification value by t 0 ° C.

この場合、図3(b)に示すように、本比較例においては、t°C分(図3(b)中の細かいドットのハッチング帯域分)温度下げるように通気風量などの熱伝達を増加させる方策で冷却していた。なお、図3(b)中、細かいドットのハッチング帯域が各部品を一律に冷却する冷却温度t°Cと一致している。 In this case, as shown in FIG. 3B, in this comparative example, heat transfer such as the ventilation air flow is performed so as to lower the temperature by t 0 ° C (the hatched band of fine dots in FIG. 3B). It was cooling by measures to increase. In FIG. 3B, the hatched band of fine dots coincides with the cooling temperature t 0 ° C for uniformly cooling each component.

すなわち、本比較例においては、電子機器筐体内部を全体的に冷却し、どの部品もC部品の仕様値オーバーとしてのt°C分、温度を下げていた。そのため、本比較例が自然空冷タイプの場合は電子機器筐体のいたるところに通気口が設けられ、強制空冷タイプの場合は必要以上に大容量のファンを備え、かつ仕様値に関して十分余裕があるD部品に対しては無駄な過剰冷却を行うようになっていた(D部品に関する図3(b)中の余裕分t°C参照)。 That is, in this comparative example, the inside of the electronic device casing was cooled as a whole, and the temperature of each component was lowered by t 0 ° C as the specification value of the C component exceeded. Therefore, if this comparative example is a natural air cooling type, vents are provided everywhere in the electronic device casing, and if it is a forced air cooling type, it has a fan with a larger capacity than necessary, and there is sufficient margin for the specification value. Unnecessary excessive cooling is performed on the D component (see the margin t 1 ° C in FIG. 3B regarding the D component).

一方、本実施例では、C部品の仕様値オーバーがt°Cとすると(図3(c)中の粗いドットのハッチング帯域と細かいドットのハッチング帯域参照)、図3(c)に示すように、t°Cの大半を熱伝導により筐体に放熱して温度を下げるようにしている(図3(c)中の発熱部品Cにのみ示される粗いドットのハッチング帯域参照)。そして、それでも不足する必要冷却分を通気風量などの熱伝達を増加させることで、筐体全体を冷却している(図3(c)中の各発熱部品に示されるわずかな帯域である細かいドットのハッチング帯域参照)。これにより筐体全体の冷却が必要最小限で済み、本比較例のような余分な通気口や明らかに不必要な大容量のファンを備える必要が無くなる。 On the other hand, in this embodiment, when the specification value over C component is t 0 ° C (see the hatched band of coarse dots and the hatched band of fine dots in FIG. 3C), as shown in FIG. In addition, most of t 0 ° C is dissipated to the housing by heat conduction to lower the temperature (see the rough dot hatching band shown only in the heat generating component C in FIG. 3C). The entire casing is cooled by increasing the heat transfer such as the ventilation airflow for the necessary cooling amount that is still insufficient (the fine dots that are the slight bands shown in each heat generating component in FIG. 3C). (See hatching area for). As a result, the cooling of the entire casing is minimized, and there is no need to provide an extra vent hole or a clearly unnecessary large-capacity fan as in this comparative example.

これは、各発熱部品を一律に冷却すべき図3(c)における細かいハッチング帯域の幅が図3(b)に較べてかなり小さくなっていることからも理解できる。また、発熱部品Dに関する余裕分tが図3(b)における余裕分tよりも小さくなっている。 This can also be understood from the fact that the width of the fine hatching band in FIG. 3C where each heat generating component should be uniformly cooled is considerably smaller than that in FIG. 3B. Further, margin t 2 regarding the heat generating component D is smaller than the margin t 1 in FIG. 3 (b).

続いて、第2の比較試験として、図4及び図5に示すように、シミュレーションによる放熱効果の確認を本比較例と本実施例との間で行った。なお、本実施例に関しては、上述の実施形態にかかる電子機器の放熱構造を「本実施例1」とし、その変形例にかかる電子機器の放熱構造を「本実施例2」とした。また、本比較例の放熱構造による電子機器内部の温度分布を図4(a)に示し、本実施例1の放熱構造による電子機器内部の温度分布を図4(b)に示し、本実施例2の放熱構造による電子機器内部の温度分布を図4(c)に示した。また、各エリアは筐体内において特定の温度範囲にある領域を示している。   Subsequently, as a second comparative test, as shown in FIGS. 4 and 5, the heat dissipation effect was confirmed by simulation between this comparative example and this example. Regarding the present example, the heat dissipation structure of the electronic device according to the above-described embodiment is referred to as “Example 1”, and the heat dissipation structure of the electronic device according to the modification is referred to as “Example 2”. Further, FIG. 4A shows the temperature distribution inside the electronic device due to the heat dissipation structure of the present comparative example, and FIG. 4B shows the temperature distribution inside the electronic device due to the heat dissipation structure of the first embodiment. FIG. 4C shows the temperature distribution inside the electronic apparatus with the heat dissipation structure 2. Each area indicates a region in a specific temperature range in the housing.

比較シミュレーション1においては、図4に示すように、発熱部品としてCPUなど一般的なICの温度を比較した。   In comparison simulation 1, as shown in FIG. 4, the temperature of a general IC such as a CPU as a heat generating component was compared.

CPUなどの一般的なICの温度は、本比較例による放熱構造においては通常では74.4°Cとなるが(図4(a)中、エリア1の領域参照)、本実施例1では65.1°C(図4(b)中、エリア2の領域参照)、本実施例2では55.6°Cまで冷却させることができた(図4(c)中、エリア3の領域参照)。従って、一般的なIC程度の発熱部品では本実施例1にかかる放熱構造で十分な放熱効果が得られることが分かった。また、本比較例と較べて本実施例1,2では内部温度の平均化がなされていることが分かった。   The temperature of a general IC such as a CPU is normally 74.4 ° C. in the heat dissipation structure according to this comparative example (refer to the area 1 in FIG. 4A), but in this embodiment 1, 65 ° C. .1 ° C. (refer to the area 2 area in FIG. 4B), in Example 2, it was possible to cool to 55.6 ° C. (refer to the area 3 area in FIG. 4C). . Therefore, it has been found that a heat radiation component of the general IC can obtain a sufficient heat radiation effect with the heat radiation structure according to the first embodiment. Further, it was found that the internal temperatures were averaged in Examples 1 and 2 as compared with this Comparative Example.

続いて、比較シミュレーション2において、図5に示すように、高発熱部品として電源ICの温度を比較した。   Subsequently, in the comparative simulation 2, as shown in FIG. 5, the temperature of the power supply IC was compared as a high heat generating component.

この電源ICの場合、本比較例による放熱構造の場合、通常の発熱温度は71.0°Cとなり(図5(a)におけるエリア1’参照)、本実施例1に関する放熱構造では70.6°Cとなったが(図5(b)におけるエリア1”参照)、本実施例2に関する放熱構造では65.4°Cまで放熱させることができた(図5(c)におけるエリア2’参照)。   In the case of this power supply IC, in the case of the heat dissipation structure according to this comparative example, the normal heat generation temperature is 71.0 ° C. (see area 1 ′ in FIG. 5A). Although it became ° C (refer to area 1 ″ in FIG. 5B), the heat dissipation structure related to Example 2 was able to dissipate heat up to 65.4 ° C. (see area 2 ′ in FIG. 5C). ).

以上から明らかなように、高発熱部品に関しては本実施例1の放熱構造では放熱量が少なく放熱しきれないが、本実施例2の放熱構造では十分放熱されていることが分かった。そのため、電源ICなどの高発熱部品を放熱する場合、本実施例2の放熱構造の有用性について確認することができた。   As is clear from the above, it was found that the high heat-generating component has a small amount of heat dissipation in the heat dissipating structure of the first embodiment and cannot be dissipated sufficiently, but is sufficiently dissipated in the heat dissipating structure of the second embodiment. Therefore, it was possible to confirm the usefulness of the heat dissipating structure of Example 2 when dissipating high heat generating components such as a power supply IC.

なお、比較シミュレーション2においても、本比較例1と較べて本実施例1,2の方が高熱部以外の内部温度の平均化がなされていることが分かった。   In comparison simulation 2 as well, it was found that in Examples 1 and 2, the internal temperatures other than the high heat part were averaged compared to Comparative Example 1.

以上のように本発明の効果をシミュレーションで比較した結果、本実施例の場合に放熱量の増加が認められることが明らかとなった。すなわち、本実施例1に関する放熱構造によると、高発熱部品の放熱の点では放熱効果が不十分であるが、通常のICでは十分な放熱効果が認められることが分かった。また、本実施例2に関する放熱構造によると、高発熱部品でも放熱の効果が十分認められることが分かった。   As a result of comparing the effects of the present invention by simulation as described above, it has been clarified that an increase in the amount of heat radiation is recognized in the case of this example. That is, according to the heat dissipation structure related to Example 1, it was found that the heat dissipation effect is insufficient in terms of heat dissipation of the high heat-generating component, but a sufficient heat dissipation effect is recognized in a normal IC. Moreover, according to the heat radiating structure regarding the present Example 2, it was found that the heat radiating effect was sufficiently recognized even with high heat-generating components.

本発明は、筐体内部に大規模集積回路(LSI)やトライアック、サイリスタ等の発熱電子部品を備え、かつ全体として小型化を図る必要がある全ての電子機器の放熱構造に適用可能である。   The present invention can be applied to a heat dissipation structure of all electronic devices that are provided with heat generating electronic components such as a large-scale integrated circuit (LSI), a triac, and a thyristor inside the housing and that need to be downsized as a whole.

本発明の一実施形態にかかる電子機器の放熱構造を示した断面図である。It is sectional drawing which showed the thermal radiation structure of the electronic device concerning one Embodiment of this invention. 図1に示した電子機器の放熱構造の変形例を示した断面図である。It is sectional drawing which showed the modification of the thermal radiation structure of the electronic device shown in FIG. 図1における電子機器の放熱構造の作用を説明するための図である。It is a figure for demonstrating the effect | action of the thermal radiation structure of the electronic device in FIG. 比較試験を行ったときの本比較例の温度分布図(図4(a))、本実施例1の温度分布図(図4(b))、本実施例2の温度分布図(図4(c))である。Temperature distribution diagram of the present comparative example when a comparative test was performed (FIG. 4A), temperature distribution diagram of the first embodiment (FIG. 4B), temperature distribution diagram of the second embodiment (FIG. c)). 別の比較試験を行ったときの本比較例と本実施例1,2の温度分布を示す図4に対応する温度分布図である。FIG. 5 is a temperature distribution diagram corresponding to FIG. 4 showing the temperature distribution of this comparative example and Examples 1 and 2 when another comparative test is performed. 従来の電子機器の放熱構造を示した断面図である。It is sectional drawing which showed the heat dissipation structure of the conventional electronic device.

符号の説明Explanation of symbols

1,2 電子機器の放熱構造
10 筐体
10a 上ケース
10b 下ケース
11 プリント基板
11a ヒートスプレットパターン
12 支持部材
12b 溝部
15 発熱部品
15a ヒートシンク
17 スペーサ
DESCRIPTION OF SYMBOLS 1, 2 Heat dissipation structure of electronic device 10 Case 10a Upper case 10b Lower case 11 Printed circuit board 11a Heat spread pattern 12 Support member 12b Groove part 15 Heat generating component 15a Heat sink 17 Spacer

Claims (2)

表面に発熱部品を実装したプリント基板と、前記プリント基板を収容する筐体を備えた電子機器の放熱構造において、
前記プリント基板を前記筐体内部に支持する弾性体の熱伝導性支持部材が前記筐体内部の所定位置に当該筐体と一定の面積で接触したまま取り付けられ、前記支持部材を介して前記発熱部品から前記筐体までの熱伝導経路を形成したことを特徴とする電子機器の放熱構造。
In a heat dissipation structure of an electronic device including a printed circuit board on which heat-generating components are mounted on the surface, and a housing that accommodates the printed circuit board,
An elastic heat conductive support member that supports the printed circuit board inside the housing is attached to a predetermined position inside the housing while being in contact with the housing with a certain area, and the heat generation via the support member. A heat dissipation structure for an electronic device, wherein a heat conduction path from a component to the housing is formed.
表面に発熱部品を実装したプリント基板と、前記プリント基板を収容する筐体を備えた電子機器の放熱構造において、
前記プリント基板を前記筐体内部に支持する弾性体の熱伝導性支持部材が前記筐体内部の所定位置に当該筐体と一定の面積で接触したまま取り付けられ、前記支持部材を介して前記発熱部品から前記筐体までの第1の熱伝導経路を形成すると共に、
前記発熱部品と前記筐体との間に弾性体の熱伝導性スペーサが当該発熱電子部品及び当該筐体双方と一定の面積で接触したまま介在し、当該スペーサを介して前記発熱部品から前記筐体までの第2の熱伝導経路を形成したことを特徴とする電子機器の放熱構造。
In a heat dissipation structure of an electronic device including a printed circuit board on which heat-generating components are mounted on the surface, and a housing that accommodates the printed circuit board,
An elastic heat conductive support member that supports the printed circuit board inside the housing is attached to a predetermined position inside the housing while being in contact with the housing with a certain area, and the heat generation via the support member. Forming a first heat conduction path from the component to the housing;
An elastic thermal conductive spacer is interposed between the heat-generating component and the housing while being in contact with both the heat-generating electronic component and the housing with a certain area, and the housing from the heat-generating component through the spacer. A heat dissipation structure for electronic equipment, wherein a second heat conduction path to a body is formed.
JP2003323939A 2003-09-17 2003-09-17 Heat dissipation structure of electronic equipment Expired - Lifetime JP4285738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003323939A JP4285738B2 (en) 2003-09-17 2003-09-17 Heat dissipation structure of electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003323939A JP4285738B2 (en) 2003-09-17 2003-09-17 Heat dissipation structure of electronic equipment

Publications (2)

Publication Number Publication Date
JP2005093630A true JP2005093630A (en) 2005-04-07
JP4285738B2 JP4285738B2 (en) 2009-06-24

Family

ID=34454839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003323939A Expired - Lifetime JP4285738B2 (en) 2003-09-17 2003-09-17 Heat dissipation structure of electronic equipment

Country Status (1)

Country Link
JP (1) JP4285738B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012190065A (en) * 2011-03-08 2012-10-04 Toshiba Corp Display device and electronic apparatus
JP2014179448A (en) * 2013-03-14 2014-09-25 Nikon Corp Imaging unit and imaging apparatus
JP2014224952A (en) * 2013-05-17 2014-12-04 キヤノン株式会社 Electronic apparatus
JP2017152743A (en) * 2017-05-25 2017-08-31 株式会社ニコン Imaging unit and imaging apparatus
JP2018010974A (en) * 2016-07-14 2018-01-18 信越ポリマー株式会社 Heat conduction connector and electronic apparatus including the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012190065A (en) * 2011-03-08 2012-10-04 Toshiba Corp Display device and electronic apparatus
US8625279B2 (en) 2011-03-08 2014-01-07 Kabushiki Kaisha Toshiba Display device and electronic device
JP2014179448A (en) * 2013-03-14 2014-09-25 Nikon Corp Imaging unit and imaging apparatus
JP2014224952A (en) * 2013-05-17 2014-12-04 キヤノン株式会社 Electronic apparatus
JP2018010974A (en) * 2016-07-14 2018-01-18 信越ポリマー株式会社 Heat conduction connector and electronic apparatus including the same
JP2017152743A (en) * 2017-05-25 2017-08-31 株式会社ニコン Imaging unit and imaging apparatus

Also Published As

Publication number Publication date
JP4285738B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
US7474527B2 (en) Desktop personal computer and thermal module thereof
US7265981B2 (en) Power supply with heat sink
WO2011096218A1 (en) Heat radiation device and electronic equipment using the same
JP2016178208A (en) Heat sink, heat dissipation structure, cooling structure and device
JP2009094196A (en) Heat dissipation structure of portable communication apparatus
JP2007049015A (en) Electronic device structure and electronic device using the same
JPH10313184A (en) Heat-dissipating structure of electronic equipment
JP4285738B2 (en) Heat dissipation structure of electronic equipment
JP2006339223A (en) Heat dissipation structure of cpu
JP4438526B2 (en) Power component cooling system
JPH1195871A (en) Heat radiation structure of electronic equipment
JP2006245025A (en) Heat dissipation structure of electronic apparatus
JP2006319334A (en) Combination of fan and heatsink
JP2008103577A (en) Heat dissipating structure for power module, and motor controller equipped with the same
TWM531125U (en) Heat sink board assembly and electronic device
JP2005057070A (en) Heat radiating structure of electronic equipment
JP2008258392A (en) Electronic equipment
JP4635670B2 (en) Cooling structure of electronic equipment unit
JP4200876B2 (en) Electronic equipment cooling structure
TWI518491B (en) Server and heat dissipation assembly thereof
WO2022270024A1 (en) Electronic device
WO2023203750A1 (en) Electronic control device
JP4002249B2 (en) Heat dissipation device cooling heat dissipation device
JP2012023166A (en) Flexible printed wiring board and heater element radiation structure
JP4862385B2 (en) Electronics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20080714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4285738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

EXPY Cancellation because of completion of term