JP6352616B2 - X線計測装置 - Google Patents

X線計測装置 Download PDF

Info

Publication number
JP6352616B2
JP6352616B2 JP2013229908A JP2013229908A JP6352616B2 JP 6352616 B2 JP6352616 B2 JP 6352616B2 JP 2013229908 A JP2013229908 A JP 2013229908A JP 2013229908 A JP2013229908 A JP 2013229908A JP 6352616 B2 JP6352616 B2 JP 6352616B2
Authority
JP
Japan
Prior art keywords
ray
target
sample
electron beam
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013229908A
Other languages
English (en)
Other versions
JP2015090311A (ja
Inventor
昌 大庭
昌 大庭
慎二 大須賀
慎二 大須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2013229908A priority Critical patent/JP6352616B2/ja
Publication of JP2015090311A publication Critical patent/JP2015090311A/ja
Application granted granted Critical
Publication of JP6352616B2 publication Critical patent/JP6352616B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、X線計測装置に関する。
軟X線のような低エネルギー領域のX線を用いるX線計測は、材料や生体試料の3次元構造の解析等に有効な手段である。軟X線は、大気による吸収の影響を受けやすいことから、装置の内部が真空引きされ、X線の検出感度の向上が図られている(例えば、特許文献1参照)。
特許第3357164号公報
しかしながら、電子線励起型のX線源が用いられる場合には、電子線源のフィラメントから放出された可視光が、電子線励起によってターゲットから出射されたX線とともにX線光学系に混入し、X線の検出特性が低下するおそれがある。X線光学系への可視光の混入を防止するために、可視光遮断用の窓材やフィルタを設置すると、窓材やフィルタにX線も吸収されることになるので、特に、軟X線のような低エネルギー領域のX線では、十分なX線の検出強度が得られないおそれがある。
本発明は、このような問題点に鑑みてなされたものであり、軟X線のような低エネルギー領域のX線を用いる場合であっても、十分なX線の検出特性及び検出感度を得ることができるX線計測装置を提供することを目的とする。
上述した課題を解決するために、本発明のX線計測装置は、電子線を出射する電子線源と、電子線源から出射された電子線が照射され、電子線励起によってX線を出射するターゲットと、ターゲットから出射されたX線が照射される試料を支持する試料支持部と、電子線源、ターゲット及び試料支持部を収容する真空筐体と、を備え、ターゲットのターゲット面は、ターゲットから出射されたX線と、電子線源から放出された可視光とを分離するように配置されている。
このX線計測装置では、電子線源、ターゲット及び試料支持部が真空筐体に収容されている。そのため、大気による吸収の影響でX線の検出感度が低下することが抑制される。また、ターゲットのターゲット面が、X線と可視光とを分離するように配置されている。そのため、X線光学系への可視光の混入に起因してX線の検出特性が低下することが抑制される。更に、可視光遮断用の窓材やフィルタを薄くしたり、或いは不要としたりすることができるので、これによっても、X線の検出感度が低下することが抑制される。以上により、このX線計測装置によれば、軟X線のような低エネルギー領域のX線を用いる場合であっても、十分なX線の検出特性及び検出感度を得ることができる。
本発明のX線計測装置は、ターゲット面の角度を調整する角度調整部を更に備えてもよい。この構成によれば、角度調整部によってターゲット面の角度を微細に調整することが可能となるので、X線と可視光とをより確実に分離することができる。
本発明のX線計測装置では、ターゲット面の形状は、楕円面形状又は放物面形状であってもよい。この構成によれば、ターゲット面で反射された可視光のビーム形状が、X線の光路に混入し難い平行ビーム又は集光ビームになるので、X線と可視光とをより確実に分離することができる。
本発明のX線計測装置では、ターゲットは、電子線源から放出された可視光を反射させる光反射面を更に有してもよい。この構成によれば、電子線源から放出された可視光を光反射面によって反射させて、試料のフォーカス調整を行うことができる。このため、X線照射によってフォーカス調整を行う場合に比べて、フォーカス調整時に引き起こされる試料の損傷を軽減することができる。
本発明のX線計測装置は、真空筐体に収容され、試料に照射されて試料を透過したX線を検出するX線検出部を更に備えてもよい。この構成によれば、透過X線の透過画像を得ることができる。また、X線と可視光とが分離されるので、可視光の混入によるX線検出部の分解能やコントラストの低下を防止することができる。
本発明のX線計測装置は、真空筐体に収容され、X線の照射によって試料から放出された蛍光を検出する蛍光検出部を更に備えてもよい。この構成によれば、試料由来の蛍光の観察が可能となるので、試料の構成物質等の情報を得ることができる。
本発明のX線計測装置は、真空筐体に収容され、ターゲットから出射されたX線を試料に集光させる集光光学系を更に備えてもよい。この構成によれば、試料に照射されるX線の光密度を向上させて、計測感度を向上させることができる。また、微細なビームスポットが得られることから、微細領域の観察が可能となる。
本発明のX線計測装置は、真空筐体に収容され、試料に照射されて試料を透過したX線を結像させる結像光学系を更に備えてもよい。この構成によれば、試料を通過したX線像を拡大して計測することができる。
本発明によれば、軟X線のような低エネルギー領域のX線を用いる場合であっても、十分なX線の検出特性及び検出感度を得ることができるX線計測装置を提供することが可能となる。
第1の実施形態のX線計測装置の構成図である。 第1の実施形態のX線計測装置の角度調整部の斜視図である。 第1の実施形態のX線計測装置のターゲット面の変形例を示す図である。 第2の実施形態のX線計測装置の構成図である。 第3の実施形態のX線計測装置の構成図である。
以下、添付図面を参照しながら本発明によるX線計測装置の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
(第1の実施形態)
図1に示されるように、X線計測装置1Aは、真空筐体10を備えている。真空筐体10は、領域10A、領域10B及び領域10Cが一体化された構造をしている。真空筐体10は、領域10Aにおいて、電子線励起型の電子線源11、加速電極(不図示)及びターゲット12Aを収容している。また、真空筐体10は、領域10Cにおいて、集光光学系13、試料支持部14、X線検出部15A及び蛍光検出部16を収容している。ターゲット12Aは、ターゲット面12aを有する。また、集光光学系13は、反射光学系によって構成され、X線L1を集光する。試料支持部14は、試料17を支持している。真空筐体10は、真空引きされ、筐体内部の真空度が向上している。
電子線源11では、陰極(不図示)として、タングステンやLaB等からなるフィラメントが用いられ、陰極から出射された電子線E1は、陽極(不図示)に印加される高電圧によって所定のエネルギーに加速されている。加速後の電子線E1は、ターゲット12Aに入射される。ターゲット12Aは、電子線E1の入射を受け、X線L1を出射する。X線L1は、集光光学系13によって集光されつつ、試料17に照射される。X線L1の集光スポットのサイズは、ターゲット12Aから出射されるX線L1のビームサイズと、集光光学系13に用いられる反射光学系の倍率とによって決められる。
X線L1の照射を受けて、試料17からは、試料17を通過したX線(透過X線)L2が発生する。更に、試料17からは、可視、紫外あるいはX線領域の蛍光F1が発生する。透過X線L2は、X線検出部15Aにより検出され、蛍光F1は、可視、紫外あるいはX線の各波長領域の光に感度を有する蛍光検出部16により検出される。X線計測装置1Aでは、透過X線L2の透過画像、及び、可視、紫外あるいはX線領域の蛍光F1の蛍光画像が得られる。試料17は2次元的な走査を受ける。
電子線源11の陰極は、電子線E1を出射させるが、同時に、可視光V1も放出させる。陰極から放出された可視光V1は、電子線E1とともに、ターゲット12Aのターゲット面12aに向かい、ターゲット面12aによって反射される。このため、後述のターゲット面12aの角度調整がなされない場合、ターゲット面12aを反射した可視光V1が、X線L1とともに、集光光学系13に入射する。その結果、X線検出部15Aには、透過X線L2に加えて、試料17を通過した可視光V1が入射される。
なお、ターゲット面12aを反射した可視光V1が、試料17に照射されると、可視光の他に、可視領域の蛍光や散乱光をも発生させる。このため、X線検出部15A及び蛍光検出部16では、可視領域の蛍光や散乱光も検出される。即ち、X線検出部15Aでは、所望の透過X線L2に加えて、可視光、蛍光及び散乱光が検出される。また、蛍光検出部16では、所望の蛍光F1に加えて、可視領域の蛍光及び散乱光が検出される。
第1の実施形態では、可視光V1が集光光学系13に入射しないように、ターゲット12Aのターゲット面12aの角度が調整される。X線計測装置1Aは、図2に示されるようなターゲット面12aの角度調整部20を備えている。角度調整部20は、ターゲット支持ロッド21、真空フランジ22及び回転導入端子23を有する。ターゲット支持ロッド21は、ターゲット12Aを支持している。また、ターゲット支持ロッド21は、真空フランジ22を介して、回転導入端子23に結合されている。真空フランジ22は、フランジ22Aと22Bとから成り、フランジ22Aと22Bとによって、真空筐体10と大気とが隔たれている。ターゲット支持ロッド21は、ターゲット12Aに結合される位置で真空筐体10内に設置され、回転導入端子23は、ターゲット支持ロッド21に結合された状態で、大気内に設置されている。大気側に居る操作者の操作によって、回転導入端子23が回転されると、その回転がターゲット支持ロッド21に伝わり、その結果、ターゲット12Aが回転し、ターゲット面12aの角度が調整される。ターゲット面12aの角度は、ターゲット面12aを反射した可視光V1が集光光学系13に入射しないように調整される。可視光V1の集光光学系13への入射量は、例えば、X線検出部15Aに入射する可視光の検出量によってモニターされる。
第1の実施形態では、電子線源11においてLaBのフィラメントが用いられる場合、真空筐体10の領域10Aの内部は、例えば、10−7torr以上の高真空度が保たれることが好ましい。一方、集光光学系13や試料支持部14では、電子線源11に対して好ましい程度の真空度を保つことが困難な場合がある。このため、領域10Cの内部は、領域10Aの内部と比べて、真空度が低下する場合がある。第1の実施形態では、領域10Bの内部に、領域10Aの内部と領域10Cの内部との隔離用フィルタ18が設置されている。ただし、隔離用フィルタ18は、真空下で用いられるため、機械的強度に対する許容度が高い。また、可視光V1の集光光学系13への混入が抑制されることから、隔離用フィルタ18は、可視光遮断率に対する許容度も高い。従って、隔離用フィルタ18では、例えば、できるだけX線の透過率が高くなる材質が選択され、また、可視光遮断用の窓材に比べて厚みが薄くなる。なお、隔離用フィルタ18は、例えば、ゲートバルブのような態様によって、真空筐体10内に抜き差しされることが可能となっている(不図示)。これは、真空筐体10内が大気圧の状態から排気する際にも、隔離用フィルタ18が真空筐体10内に設置されていると、隔離用フィルタ18に対して高い機械的強度が望まれるからである。真空筐体10内が大気圧の状態から排気する際には、隔離用フィルタ18は真空筐体10内には設置されない。隔離用フィルタ18は、真空筐体10内が真空下となった際に、真空筐体10内に差し込まれて設置される。領域10Aの真空度が領域10Cの真空度が等しい場合等、真空筐体10内の真空状態によっては、隔離用フィルタ18は真空筐体10内に設置されなくてもよい。
第1の実施形態のX線計測装置1Aによって得られる効果について説明する。第1の実施形態のX線計測装置1Aでは、電子線源11、ターゲット12A及び試料支持部14が真空筐体10に収容されている。そのため、大気による吸収の影響でX線L1の検出感度が低下することが抑制されている。また、ターゲット12Aのターゲット面12aが、X線L1と可視光V1とを分離するように配置されている。そのため、X線光学系への可視光V1の混入に起因してX線L1の検出特性が低下することが抑制されている。このX線計測装置によれば、軟X線のような低エネルギー領域のX線を用いる場合であっても、十分なX線の検出特性及び検出感度を得ることができる。
また、第1の実施形態のX線計測装置1Aは、ターゲット面12aの角度を調整する角度調整部20を更に備えることができる。この構成によれば、角度調整部20によってターゲット面12aの角度を微細に調整することが可能となるので、X線L1と可視光V1とをより確実に分離することができる。
また、第1の実施形態のX線計測装置1Aは、真空筐体10に収容され、試料17に照射されて試料17を透過したX線L2を検出するX線検出部15Aを更に備えることができる。この構成によれば、透過X線L2の透過画像を得ることができる。また、X線L1と可視光V1とが分離されるので、可視光V1の混入によるX線検出部15Aの分解能やコントラストの低下を防止することができる。
また、第1の実施形態のX線計測装置1Aは、真空筐体10に収容され、X線L1の照射によって試料17から放出された蛍光F1を検出する蛍光検出部16を更に備えることができる。この構成によれば、試料由来の蛍光の観察が可能となるので、試料17の構成物質等の情報を得ることができる。
また、第1の実施形態のX線計測装置1Aは、真空筐体10に収容され、ターゲット12Aから出射されたX線L1を試料17に集光させる集光光学系13を更に備えることができる。この構成によれば、試料17に照射されるX線L1の光密度を向上させて、計測感度を向上させることができる。また、微細なビームスポットが得られることから、微細領域の観察が可能となる。
また、第1の実施形態によれば、真空筐体10内の真空度の差異に基づいて隔離用フィルタ18が設けられているが、可視光遮断用の窓材やフィルタを薄くしたり、或いは不要としたりすることができるので、これによっても、X線の検出感度が低下することが抑制される。このX線計測装置1Aによれば、軟X線のような低エネルギー領域のX線を用いる場合であっても、十分なX線の検出特性及び検出感度を得ることができる。生物細胞等の観察の場合には、水の窓と呼ばれる284〜543eVの低いエネルギー領域の軟X線が用いられるが、第1の実施形態によれば、軟X線での観察に十分な検出強度が得られる。
なお、図3(a)及び図3(b)に示されるように、ターゲット面12aの形状が変更されると、反射される可視光V1のビーム形状が変化する。図中、破線は、ターゲット面12aの形状が平面である場合の可視光V1ビームを示す。破線で示される通り、ターゲット面12aの形状が平面である場合、可視光V1は、ターゲット面12aを反射した後も、電子線源11からの拡散ビームの形状を保持したままである。図3(a)では、ターゲット面12aの形状は、平面から放物面形状に変更されている。図3(b)では、ターゲット面12aの形状は、平面から楕円面形状に変更されている。可視光V1は、図3(a)の放物面形状のターゲット面12aでの反射後は、平行ビームに変更され、図3(b)の楕円面形状のターゲット面12aで反射後は、集光ビームに変更されている。図3(a)及び図3(b)において、平行ビームと集光ビームとは、実線で表示されている。
第1の実施形態のX線計測装置1Aでは、ターゲット面12aの形状が、楕円面形状又は放物面形状であることができる。この構成によれば、ターゲット面12aで反射された可視光V1のビーム形状が、X線L1の光路に混入し難い平行ビーム又は集光ビームになるので、X線L1と可視光V1とをより確実に分離することができる。
(第2の実施形態)
図4に示されるように、第2の実施形態のX線計測装置1Bは、透過X線L2を結像させる結像光学系19Bが設けられている点、及び、X線検出部15A及び蛍光検出部16の替わりにX線検出部15Bが設けられている点で、第1の実施形態のX線計測装置1Aと主に相違している。結像光学系19Bによって結像される透過X線L2は、例えば、CCD素子等のX線検出素子であるX線検出部15Bによって検出される。X線検出部15Bは、後段に設けられた信号読出部(不図示)に接続される。信号読出部は、真空筐体10の外部に設置され、信号読出部とX線検出部15Bとの連結には真空フランジが用いられる。信号読出部では、X線検出部15Bからの信号が読み出され電気回路によって信号処理される。
第2の実施形態のX線計測装置1Bは、真空筐体10に収容され、試料17に照射されて試料17を透過したX線L1を結像させる結像光学系19Bを更に備えることができる。この構成によれば、試料17を通過したX線像を拡大して計測することができる。
(第3の実施形態)
図5に示されるように、第3の実施形態のX線計測装置1Cでは、ターゲット12Aに替えてターゲット12Bが設けられている点で、第1の実施形態のX線計測装置1Aと主に相違している。X線検出部15Bは、第2の実施形態と同様の構成を有する。第3の実施形態のX線計測装置1Cでは、可視光V1によって、試料17のフォーカス調整が行われる。ターゲット12Bは、ターゲット面12aに加えて光反射面12bを有する。第3の実施形態では、光反射面12bは、ターゲット面12aの裏面に位置している。可視光V1によって試料17のフォーカス調整が行われる際は、X線が発生しないようにターゲット12Bには加速電圧が印加されない。
試料17のフォーカス調整にあたっては、図5(a)に示されるように、光反射面12bが、電子線源11に対向する態様で配置されている。電子線源11から放出された可視光V1は、光反射面12bによって反射され、集光光学系13に入射される。入射後の可視光V1は、試料17及び結像光学系19Bを経て、X線検出部15Bに入射される。X線検出部15Bには、可視光領域に対しても光感度を有する検出部が用いられ、X線検出部15Bの検出信号がモニターされて、試料17のフォーカス調整が図られる。なお、可視光V1によるフォーカス調整にあたっては、隔離用フィルタ18は可視光V1の光路上から退避される。
可視光V1によるフォーカス調整の後は、図5(b)に示されるように、角度調整部20の操作によって、ターゲット面12aが電子線源11に対向するように回転される。電子線源11からの電子線E1を受けて、ターゲット面12aによって、X線L1が出射される。隔離用フィルタ18は、必要に応じてX線L1の光路上に設置される。第3の実施形態では、可視光V1によって試料17のフォーカス調整が完了しているので、ターゲット12Bの回転操作のみで、X線計測が開始可能である。ただし、図5(b)のX線計測時は、第1の実施形態と同様に、可視光V1が集光光学系13に入射しないように、ターゲット面12aの角度が調整される。また、ターゲット面12aの形状として放物面形状あるいは楕円面形状が好適な場合には、放物面形状あるいは楕円面形状を有するターゲット面12aが用いられる。ターゲット面12aが可視光V1に対して十分な反射効率を有している場合は、ターゲット12Bが回転されることなく、ターゲット面12aが、光反射面12bの替わりとして、試料17のフォーカス調整に使用される。
第3の実施形態のX線計測装置1Cでは、ターゲット12Bは、電子線源11から放出された可視光V1を反射させる光反射面12bを更に有することができる。この構成によれば、電子線源11から放出された可視光V1を光反射面12bによって反射させて、試料17のフォーカス調整を行うことができる。このため、X線照射によってフォーカス調整を行う場合に比べて、フォーカス調整時に引き起こされる試料17の損傷を軽減することができる。また、X線によるフォーカス調整では、X線源の光強度が十分でないと、フォーカス調整に長時間を要するが、可視光V1が使用される場合は、短時間でもフォーカス調整が可能である。X線源を用いての長時間のフォーカス調整が不要となるため、X線源の寿命が延びる。第3の実施形態によれば、長期間の使用等によってX線計測装置1Cの光軸がずれた場合にも、可視光V1によって容易に光軸調整が可能である。
以上、本発明によるX線計測装置について、詳細に説明したが、本発明によるX線計測装置は、上述した実施形態に限られるものではなく、他に様々な変形が可能である。例えば、ターゲット12Bが、三角柱のような形状の部材において、ターゲット面12aと光反射面12bとの二面を有する構造であっても、好適にフォーカス調整が可能なX線計測装置を提供することができる。
1A、1B、1C…X線計測装置、10…真空筐体、11…電子線源、12A、12B…ターゲット、12a…ターゲット面、12b…光反射面、13…集光光学系、14…試料支持部、15A、15B…X線検出部、16…蛍光検出部、17…試料、19B…結像光学系、20…角度調整部、E1…電子線、L1、L2…X線、V1…可視光

Claims (7)

  1. 電子線を出射すると共に可視光を放出する電子線源と、
    前記電子線源から出射された前記電子線及び前記電子線源から放出された前記可視光が照射され、電子線励起によってX線を出射するターゲットと、
    前記ターゲットから出射された前記X線が照射される試料を支持する試料支持部と、
    前記ターゲットから出射された前記X線を前記試料に集光させる集光光学系と、
    前記電子線源、前記ターゲット前記試料支持部及び前記集光光学系を収容する真空筐体とを備え、
    前記ターゲットのターゲット面は、前記ターゲットから出射された前記X線と、前記電子線源から放出された前記可視光とを分離し、且つ、前記ターゲットから出射された前記X線が前記集光光学系に入射し、且つ、前記ターゲット面で反射された前記可視光が前記集光光学系に入射しないように配置されている、X線計測装置。
  2. 前記ターゲット面の角度を調整する角度調整部を更に備える、請求項1記載のX線計測装置。
  3. 前記ターゲット面の形状は、楕円面形状又は放物面形状である、請求項1又は2記載のX線計測装置。
  4. 前記ターゲットは、前記電子線源から放出された前記可視光を反射させる光反射面を更に有する、請求項1〜3のいずれか一項記載のX線計測装置。
  5. 前記真空筐体に収容され、前記試料に照射されて前記試料を透過した前記X線を検出するX線検出部を更に備える、請求項1〜4のいずれか一項記載のX線計測装置。
  6. 前記真空筐体に収容され、前記X線の照射によって前記試料から放出された蛍光を検出する蛍光検出部を更に備える、請求項1〜5のいずれか一項記載のX線計測装置。
  7. 前記真空筐体に収容され、前記試料に照射されて前記試料を透過した前記X線を結像させる結像光学系を更に備える、請求項1〜6のいずれか一項記載のX線計測装置。
JP2013229908A 2013-11-06 2013-11-06 X線計測装置 Expired - Fee Related JP6352616B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013229908A JP6352616B2 (ja) 2013-11-06 2013-11-06 X線計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013229908A JP6352616B2 (ja) 2013-11-06 2013-11-06 X線計測装置

Publications (2)

Publication Number Publication Date
JP2015090311A JP2015090311A (ja) 2015-05-11
JP6352616B2 true JP6352616B2 (ja) 2018-07-04

Family

ID=53193897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013229908A Expired - Fee Related JP6352616B2 (ja) 2013-11-06 2013-11-06 X線計測装置

Country Status (1)

Country Link
JP (1) JP6352616B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7004303B2 (ja) 2018-03-15 2022-01-21 株式会社アースニクスエム X線反射型計測装置
JP2019158725A (ja) 2018-03-15 2019-09-19 株式会社アースニクスエム X線複合型計測装置
KR102203806B1 (ko) * 2018-09-10 2021-01-15 한국과학기술연구원 전기화학적 흐름 전지, 이를 이용한 실시간 x-선 흡수법 측정 시스템, 및 상기 흐름 전지에 사용되는 전극 구조체

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250122A (ja) * 1987-04-07 1988-10-18 Nissin Electric Co Ltd X線露光装置
JPH0361841A (ja) * 1989-07-31 1991-03-18 Kagaku Keisatsu Kenkyusho X線吸収スペクトル測定用アタッチメント
JPH08203970A (ja) * 1995-01-27 1996-08-09 Hitachi Ltd X線利用半導体評価装置
US7499521B2 (en) * 2007-01-04 2009-03-03 Xradia, Inc. System and method for fuel cell material x-ray analysis
US9080947B2 (en) * 2010-03-31 2015-07-14 National Institute For Materials Science X-ray irradiation device and analysis device

Also Published As

Publication number Publication date
JP2015090311A (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
Gann et al. Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis
US7245696B2 (en) Element-specific X-ray fluorescence microscope and method of operation
US20150055745A1 (en) Phase Contrast Imaging Using Patterned Illumination/Detector and Phase Mask
CN110530907B (zh) X射线吸收测量系统
JP2001305077A (ja) 半導体基板上の構造の検査方法
US11686692B2 (en) High throughput 3D x-ray imaging system using a transmission x-ray source
JP2005106815A (ja) X線マイクロアナライザーの光学的心合せ
JP2009002805A (ja) 小角広角x線測定装置
JP6352616B2 (ja) X線計測装置
JP2001512568A (ja) 軟x線顕微透視装置
EP1996971B1 (en) Scanning apparatus for reading storage phosphor plates
JP6120962B2 (ja) マルチモジュール型光子検出器及びその使用
US8421007B2 (en) X-ray detection system
JP2014240770A (ja) 放射線検出装置および放射線分析装置
JP2010175389A (ja) 走査型x線顕微鏡および走査型x線顕微鏡像の観察方法
JP2002528859A (ja) 毛細管光学系を含むx源を有するx線照射装置
JP2011209118A (ja) X線顕微鏡及びx線を用いた顕微方法。
JP2007033207A (ja) 蛍光x線三次元分析装置
EP1049928B1 (en) Apparatus for x-ray analysis in grazing exit conditions
JP5759257B2 (ja) X線装置
JP2014196925A (ja) 蛍光x線分析装置及びそれに用いられる深さ方向分析方法
WO2023238287A1 (ja) 検査装置、検査素子および検査方法
JP2001307669A (ja) 軟x線発生装置及びx線検査装置
CN116583744A (zh) 使用透射x射线源的高产量3D x射线成像系统
JP4511997B2 (ja) X線画像読取り装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180607

R150 Certificate of patent or registration of utility model

Ref document number: 6352616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees