JP6340176B2 - 光デバイス - Google Patents

光デバイス Download PDF

Info

Publication number
JP6340176B2
JP6340176B2 JP2013165965A JP2013165965A JP6340176B2 JP 6340176 B2 JP6340176 B2 JP 6340176B2 JP 2013165965 A JP2013165965 A JP 2013165965A JP 2013165965 A JP2013165965 A JP 2013165965A JP 6340176 B2 JP6340176 B2 JP 6340176B2
Authority
JP
Japan
Prior art keywords
optical
optical device
faraday
shaft portion
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013165965A
Other languages
English (en)
Other versions
JP2015034900A (ja
Inventor
博章 小野
博章 小野
大田 猶子
猶子 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohoku Kogyo Co Ltd
Original Assignee
Kohoku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohoku Kogyo Co Ltd filed Critical Kohoku Kogyo Co Ltd
Priority to JP2013165965A priority Critical patent/JP6340176B2/ja
Priority to CN201480044749.4A priority patent/CN105492961A/zh
Priority to PCT/JP2014/070847 priority patent/WO2015020140A1/ja
Priority to EP14834497.1A priority patent/EP3032321B1/en
Priority to US14/911,198 priority patent/US10025122B2/en
Publication of JP2015034900A publication Critical patent/JP2015034900A/ja
Application granted granted Critical
Publication of JP6340176B2 publication Critical patent/JP6340176B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0102Constructional details, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0136Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/092Operation of the cell; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

この発明は光デバイスに関し、具体的にはファラデー回転子を用いた光デバイスの小型化技術に関する。
光ファイバを伝送媒体とした光通信網には、電気信号を光信号に変換して光通信網に送出するためのトランシーバや、受信した光信号を電気信号に変換するためのレシーバなどの各種装置(以下、光通信装置)が設置されている。
これらの光通信デバイスにおける光信号の出口や入り口には、例えば、光信号の強度を所定の強度に変調する光アッテネータや、受信した光信号が光源側に逆流する「戻り光」の発生を防止するための光アイソレータなどの光デバイスが接続されている。そして、これらの光デバイスの多くは、周知のファラデー回転子を主体として構成されている。
ファラデー回転子は、磁性ガーネット単結晶などの磁気光学材料からなるファラデー素子と、このファラデー素子に磁界を印加するための磁気印加手段を含んで構成されている。磁気印加手段は、磁界の方向と大きさを可変制御することが可能であり、普通、ファラデー素子における光の入出射面に対して垂直な方向に永久磁界を印加してファラデー素子を磁気飽和させるための永久磁石と、その永久磁石の磁界方向と直交する可変磁界をファラデー素子に印加するための電磁石とから構成されている。なお、以下の特許文献1や2には従来のファラデー回転子の構成や動作などについて記載されている。また、特許文献3には、ファラデー回転子を用いた従来の光アッテネータ、およびその光アッテネータの特性を向上させるための技術などについて記載されている。
特開平9−236784号公報 特開平6−51255号公報 特開2000−249997号公報
光通信装置や光デバイスには、その設置スペースを削減するために、小型化が要求されている。このような要求に対しては、光デバイスや光通信装置自体の小型化とともに、複数の装置やデバイスを一体化することが考えられる。すなわち、光通信の伝送路において、光通信装置の前段や後段には、各種光デバイスが接続されているので、光デバイスを光通信装置と一体化すれば、光通信網内における光デバイスの設置スペースを削減することができる。しかしながら、光デバイスは、一般的に、光学部品(複屈折素子、ファラデー素子など)を収納したケースの両端に光ファイバコリメータが連結されて、短い光ファイバが前後方向に導出されている、所謂「ピグテイル型」になっている。そして、このピグテイル型の光デバイスの光ファイバは、普通、光通信網を構成する光ファイバと融着などの方法によって接続されている。したがって光通信装置に光デバイスを内蔵させようとすると、光デバイスに接続されている光ファイバを引き回すスペースが必要となる。光通信装置内にその引き回しスペースを確保しようとすれば、自ずと光通信装置のサイズが大きくなる。
そこで、光デバイスをフリースペース型にすることが考えられる。すなわち、光通信装置内における光信号の伝送路を光ファイバではなく、空間を伝搬するコリメート光(ビーム)とするとともに、光通信装置内のビームの進路上に光デバイスを構成する光学部品を設置するのである。このフリースペース型光デバイスでは、光ファイバが不要であるため、その光ファイバの取り回しスペースを削減することができる。また、光ファイバの融着箇所にて発生していた損失が原理的に無くなるため、光信号の伝搬効率が向上するという利点もある。
このようにフリースペース型光デバイスは、光通信網における光デバイスの設置スペースを無くすことができる。しかしながら、その光デバイスを収納する光通信装置に対しても小型化が要求されており、とくに、ファラデー回転子を備えた光デバイスについては、光通信装置内に設置することが難しくなってきている。具体的には、光路に沿う直線方向のサイズについては、光ファイバの引き回しに要していた分のサイズを削減することができるものの、ファラデー回転子には、ファラデー素子を磁気飽和させるためのバイアス磁界を印加する永久磁石と、可変磁界を発生させてファラデー回転角を制御するための電磁石が付帯している。そのため、磁界の印加方向である光路に対して直交する方向のサイズを小さくすることが難しい。もちろん、小型化とともに、光デバイスとしての性能も維持することが必要となる。
そこで本発明は、ファラデー回転子を備えた光デバイスにおいて、性能を低下させることなく小型化を達成することを主な目的としている。
上記目的を達成するための本発明は、ファラデー回転子を備えた光デバイスであって、
前記ファラデー回転子は、磁気光学材料から構成されるファラデー素子と二つの永久磁石と電磁石とを備え、
光の進行方向を前後方向として、前記ファラデー素子は、前後に前記光の入出射面を有するとともに、左右に互いに平行な面を有し、
前記二つの永久磁石は、平板状で、異なる磁極同士が対面するように前記ファラデー素子の左右のそれぞれの側面に取り付けられて、当該ファラデー素子に対して左右一方向に永久磁界を印加し、
前記永久磁石が取り付けられた状態の前記ファラデー素子を前後方向の全長に亘って保持する軸部を備え、
前記電磁石は、前後方向を軸として前記軸部の周囲に導線が巻回されてなるコイルを含んで構成されて、前記ファラデー素子に対して前後方向の可変磁界を印加し、
前記軸部は、下方を底面として上方が開放する箱状であり、前面と後面に、前記光の光路を通す孔が形成されている、
ことを特徴とする光デバイスとしている
前記コイルの前端側に、中空円筒状の永久磁石からなる円筒磁石が同軸となるように配置されつつ、箱状の前記軸部の前記前面に接続され、
前記円筒磁石の内側に、磁気光学材料から構成されて前後に光の入出射面を有する補償膜が配置され、
前記円筒磁石の中空筒内に発生する前後方向の磁界によって得られる前記補償膜のファラデー回転角と、当該円筒磁石の後方への漏洩磁界によって得られる前記ファラデー素子のファラデー回転角との和が90°であり、
前記電磁石による可変磁界の方向は、前記漏洩磁界を打ち消す方向である、
ことを特徴とする光デバイスとすれば好適である。
そして、前記ファラデー素子は、磁気光学材料からなる磁気光学結晶膜が前後方向に偶数枚積層されてなるとともに、前後で隣接し合う前記磁気光学結晶膜は、結晶面が互いに180°となる光デバイスとすればより好ましい。
さらに、前記補償膜と前記ファラデー素子との間に前後が開口する枠状のスペーサが介在している光デバイスとしてもよい。上記いずれかに記載の光デバイスは、前記軸部の前端および後端が、前記コイルの前端および後端よりも前方および後方に突出し、当該軸部の突出した部位を下方から下支えして前記コイルの軸を水平に維持する支持台を備えていてもよい。
本発明の光デバイスによれば、性能を維持しつつ小型化を達成している。それによって、フリースペース型として光通信に関わる各種装置に内蔵させることで、光通信網から光デバイスの設置スペースを削減することができる。
本発明の第1の実施例に係る光デバイスを示す図である。 上記第1の実施例に係る光デバイスのサイズを示す図である。 本発明の第2の実施例に係る光デバイスを示す図である。 上記第2の実施例に係る光デバイスの動作を説明するための図である。 上記第2の実施例に係る光デバイスの特性を示す図である。 本発明の第3の実施例に係る光デバイスを示す図である。 上記第3の実施例に係る光デバイスの変形例を示す図である。 上記第3の実施例に係る光デバイスのその他の変形例を示す図である。 上記第1〜第3の実施例、および第3の実施例の変形例に係る光デバイスのサイズを比較するための図である。 本発明のその他の実施例に係る光デバイスを示す図である。
本発明の実施例について、以下に添付図面を参照しつつ説明する。なお、以下の説明に用いた図面において、同一又は類似の部分に同一の符号を付して重複する説明を省略することがある。
===第1の実施例===
図1に本発明の第1の実施例に係る光デバイス1aの構造を示した。図1(A)は当該光デバイス1aの外観を示す斜視図であり、(B)は内部構造を示すための一部破断斜視図である。(C)は光デバイス1aを構成する光学素子30aを示す斜視図である。なお、以下では、光デバイス1aにおける各部位の相対的な位置関係を明確にするために、当該光デバイスを通過する光の進行方向に沿って前後方向を規定した上で、図中に示したように前後左右上下の各方向を規定することとする。したがって、図1(A)〜(C)は、光デバイス1aを右上前方から見たときの斜視図となる。
まず、(A)に示したように、光デバイス1aは、前後方向に円筒軸を有する中空円筒状の樹脂からなる軸部10と、軸部10の外周に同軸に配置された中空円筒状のコイル部と、軸部10の中空円筒内に保持された光学素子30aとから構成されている。光学素子30aは、前後にビームの入出射面を備えた複数の光学部品(31〜33)を主体として構成されている。そして、軸部10の前後いずれかの端面(11、12)の開口から入力されたビームが光学素子30aを構成する各光学部品(31〜33)を透過して他方の端面(12、11)の開口から出力するように構成されている。
(B)は軸部10とコイル部20を左方から見たときの断面図(以下、縦断面図とも言う)であり、当該(B)に示したように、コイル部20の実体は軸部10を軸として導線21が巻回されたコイルであり、コイル部20は、そのコイルの表面を絶縁テープ22で覆ったものである。また軸部10の内部に収納されている光学素子30aは、光学部品として、ファラデー回転子を構成する磁気光学材料からなるファラデー素子31と、ルチル単結晶などからなる複屈折素子(32、33)を含むとともに、ファラデー素子31に永久磁界を印加するための永久磁石35を含んで構成されている。
光学素子30aにおける各光学部品(31〜33)は、前後方向から見たときの平面形状が左右上下方向に各辺を有する正方形である。光学素子30aは、その各光学部品(31〜33)を前後方向に積層したものである。具体的には、(C)に示したように、前端と後端に複屈折素子(32、33)が配置され、その前後の複屈折素子(32、33)の間に角柱状のファラデー素子31が配置されている。前後の複屈折素子(32、33)は、実質的に同じものであり、前後一方の端面が前後方向を法線とする平坦面で、他方の面が斜面となっている、所謂「楔形複屈折素子」である。この前後二つの複屈折素子(32、33)は、互いに対向する内側の面が平坦面で、外側に向かう面が斜面となっている。また、前後二つの複屈折素子(32、33)は、双方の斜面の方向が互いに反対となるように、前後方向を軸として180゜回転させた配置関係となっている。
ファラデー素子31は、平板状の磁気光学結晶膜34を前後方向に偶数枚積層させて前後方向を軸とした角柱状に成形したものである。ファラデー素子31の左右のそれぞれの側面には、異なる磁極同士が対面するように平板状の永久磁石35が接着剤などを用いて取り付けられている。そして、ファラデー素子31と永久磁石35とコイル部20とによってファラデー回転子が構成される。ファラデー素子31には、永久磁石35によって左右に一方向のバイアス磁界が印加されるともに、コイル部20によって前後方向に向かう可変磁界が印加される。
なお、ファラデー素子31において前後で隣り合う磁気光学結晶膜34は、結晶方位が互いに反対方向を向くように積層されている。それによって、薄い板状の永久磁石35で強大な永久磁界を発生させることができなくても、各磁気光学結晶膜34を磁気飽和に近い状態にさせることができる。また、個々の磁気光学結晶膜34が完全に磁気飽和されていなくてもても、前後の磁気光学結晶膜34によって磁気光学特性が相殺され、ファラデー素子31全体としては、実質的に磁気飽和された状態となる。もちろん、強大な磁界を発生できる板状の永久磁石やヴェルデ常数が極めて大きな磁気光学物質があれば、磁気光学結晶部を一体的な角柱状の磁気光学物質で構成することも可能である。なお、第1の実施例に係る光デバイス1aは、光アッテネータとして動作し、光部品(31〜33)の配置、および基本的な動作、光デバイス1aを前後に透過するビームの光路などについては、特許文献1〜3などに記載されている従来の光アッテネータと同様である。しかし第1の実施例に係る光デバイス1aでは、可変磁界を発生するコイル部20の内部に磁気光学結晶膜34からなる角柱状のファラデー素子31とバイアス磁界を印加するための平板状の永久磁石35とが配置された構造に特徴を有し、この特徴により、光デバイス1aを光通信装置内に設置するときに特に問題となる上下左右方向のサイズを、実質的にコイル部20の外径にまで縮小することができる。
図2に、実際に作製した第1の実施例に係る光デバイス1aを前方から見たときの各部位のサイズを示した。光学素子30aを構成する光部品(31〜33)は、前後方向から見たときの平面形状が一辺の長さa=1mmの正方形である。ファラデー素子31の左右に取り付けられている永久磁石は薄板状(例えば、厚さ10μm)で、軸部10の内周φ1は、光学素子30aの外周と接する大きさとなっている。軸部10の外径φ2は2.02mmで、その軸部10の外周に導線が厚さt=1mmとなるように巻回されてコイル部20が形成されている。したがって、光デバイス1aは、総体的に外径φ3が約4.02mmの極めて細い円筒状となっており、小型化が進む各種光通信装置の内部にもフリースペース型として設置することができるようになっている。
===第2の実施例===
第1の実施例に係る光デバイス1aは、最も基本的な構成を備えた実施例であった。しかし、光デバイスは、光通信装置に組み込まれる際の態様、求められる性能などに応じ、基本の構成に幾つかの光部品を付加した実施形態もある。そこで、第2の実施例に係る光デバイスとして、基本構成に数点の光部品を付加した光デバイスを挙げる。
図3は第2の実施例に係る光デバイス1bの構造図である。図3(A)は当該光デバイス1bの外観を示す斜視図であり、(B)は一部破断斜視図である。(C)は光デバイス1bを構成する光学素子30bを示す斜視図である。この第2の実施例においても第1の実施例と同様に光デバイス1bにおける前後上下左右の各方向を規定している。第2の実施例に係る光デバイス1bは、ファラデー回転子(20、31、35)におけるファラデー回転角の波長依存性や温度依存性を補償するための構成(以下、補償部とも言う)を備えた光アッテネータである。そしてこの光デバイス1bは、(A)に示したように、コイル部20の前方に中空円筒状のフェライト系永久磁石(以下、円筒磁石とも言う)40が連結された外観形状を有している。また、(B)に示したようにコイル部20は、第1の実施例と同様に中空円筒状の軸部10の周囲に導線21が巻回されてなるコイルの表面に絶縁テープを被装したものであり、円筒磁石40と軸部10は同軸に配置されているともに、双方の中空部は同じ内径を有し、コイル部20と円筒磁石40が連結された状態では、双方の中空部が連続的な一つの中空円筒を形成する。そして、その中空円筒部分に光学素子30bが収納されている。
光学素子は、(C)に示したように、光学部品として、前方から後方に向かって、偏光子として機能する楔型複屈折素子32、磁気光学結晶膜からなる補償膜37、ファラデー素子31、検光子として機能する楔形複屈折素子33、および位相差を補償するための厚板状の板複屈折素子36の順で配置された構造を有している。
ここで光学素子30bや各光学部品(31〜33、36、37)についてより詳しく説明すると、ファラデー素子31は、第1の実施例と同様に偶数枚の磁気光学結晶膜34を前後方向に積層して角柱状に形成したものであり、その左右側面には平板状の永久磁石35が取り付けられている。すなわち、第2の実施例における光学素子30bは、第1の実施例における光学素子30aに対し、前方の複屈折素子32とファラデー素子31との間に、磁気光学結晶からなる補償膜37が挿入されている点が異なっている。また、ここに示した光デバイス1bは偏波無依存型であり、偏光子と検光子に複屈折素子(32、33)を使用していることから、光学素子30bに入射したビームは、常光と異常光に対応する互いに直交する二つの直線偏光としてこの光学素子30b内を通過することになる。周知のごとく、常光と異常光との間には位相差に起因する偏波モード分散(PMD)が生じる。そこで、この例では、後方の複屈折素子33のさらに後方に位相差板として機能する厚板状の複屈折素子(以下、位相子とも言う)36が追加されている。なお、光学部品ではないが、補償膜37とファラデー素子31との間に前後に開口する矩形枠状のスペーサ38が挿入されている。
上記構成の光学素子30bにおいて、補償膜37は、円筒磁石40内に配置され、この円筒磁石40と補償膜37とによって補償部が構成される。補償膜37は、前方から入射した直線偏光を、円筒磁石40による前後方向の永久磁界に応じた角度だけ回転させた上で後方に出射する。この回転角は、ファラデー素子31におけるファラデー回転角の波長依存温度依存性に応じて設定されている。なお、光アッテネータにおける補償膜37による波長依存性、あるいは温度依存性に対する補償原理などについては上記特許文献3などに記載されている。
上述したように、第2の実施例に係る光デバイス1bにおいて、光学素子30bを構成する光部品(31〜33、36、37)の種類、数、配置などは従来のピグテイル型のものと同等である。しかし、第2の実施例に係る光デバイス1bでは、第1の実施例に係る光デバイス1aの概念を、補償部を備えた光デバイスに拡張したときの構成や構造、およびその構成や構造に適した可変磁界の印加方法などに特徴を有し、その特徴により、ファラデー回転子における波長および温度に対する依存性を確実に解消しつつダウンサイジングを達成している。
第2の実施例に係る光デバイス1bは、ファラデー回転子の外観形状が実質的に円筒状のコイル部20に一致し、補償部の外観形状も円筒磁石40の外観と一致して円筒状である。光デバイス1b全体では、それら円筒状のコイル部20と円筒磁石40を前後に連結させた外観形状となっている。そのため、第1の実施例と比較すれば、円筒磁石40と位相子36を追加した分だけ前後方向のサイズが大きくなるものの、光学素子30bを構成する光学部品(31〜33、36、37)の配列はピグテイル型と同じであり、光学素子30bの前後方向のサイズは大きくなったわけではない。すなわち、光学素子の前後両端に光ファイバコリメータとそれに続く光ファイバを備えたピグテイル型の光デバイスに対しては遙かに小型化されている。もちろん、上下左右方向のサイズについては、第1の実施例と同様に、円筒状のコイル部20の外径となる。
ところで、第2の実施例に係る光デバイス1bでは、補償膜37を円筒磁石40内の前後中央位置に正しく配置して前後均等に永久磁界を印加させる必要がある。そのため、自ずと、補償膜37とファラデー素子31は、互いに離間して配置されることになる。この例では、1〜1.2mmの間隔が必要となる。補償膜37は円筒磁石40の内面に固定するだけでもよいが、この例では、補償膜37とファラデー素子31との間に矩形枠状のスペーサ38を挿入し、補償膜37が正しい前後位置に配置されるようにしている。また、枠状のスペーサ38の前と後のそれぞれの縁端面に補償膜37とファラデー素子31を接着する際に接着剤が流れ出たとしても、その接着剤がスペーサ38の枠の内面に付着するため流出した接着剤によって光路が塞がれることがない。
また、この光デバイス1bでは、円筒磁石40と可変磁界を発生させるコイル部20が前後方向で密着した状態で配置されており、ファラデー素子31には、前後方向の磁界として、自身ファラデー回転角を制御するためのコイル部20による可変磁界と、補償膜37に所定のファラデー回転角を与えるための円筒磁石40による永久磁界とが印加される。そのため、円筒磁石40による永久磁界による磁束の一部がコイル部20内に漏れ磁束として流入する。そこで、第2の実施例では、この円筒磁石40とコイル部20との接続構造を考慮して補償部におけるファラデー回転角を設定している。
図4に補償膜37におけるファラデー回転角の設定方法を説明するための図を示した。この図では円筒磁石40とコイル部20が発生する磁界の状態を右方から見たときの断面図として示している。なお、ここでは円筒磁石40の前端をS極、後端をN極としたときの例を示した。この図に示したように、円筒磁石40による前後方向の磁界(M1、M2)は、当該円筒磁石40内にて補償膜37を後方から前方に通過する磁界M1と、円筒磁石40の後端から後方に向かってコイル部20内へ侵入する漏れ磁界M2とがある。ファラデー素子31はこの漏れ磁界M2によってもファラデー回転角を生じさせるため、漏れ磁界M2によって発生するファラデー回転角と補償膜37におけるファラデー回転角の合計が90°となるように設定されている。コイル部20には円筒磁石40からの漏れ磁界を打ち消す方向に可変磁界M3を発生させる。この例では、可変磁界M3は、後方から前方に向かう方向となる。それによって、ファラデー素子31の温度係数と波長係数が補償部の温度係数と波長係数によって相殺される。そしてファラデー素子31は、可変磁界M3が印加されると、当初のファラデー回転角90°から角度を減少させていき、ファラデー回転角が0°になったときに減衰量が最大となる。図5に、第2の実施例に係る光デバイス1bにおける波長依存特性と温度依存特性を示した。図5(A)は、波長依存特性を示す図であり、室温(25℃)における1530nm、1550nm、1565nmの各波長の光について、コイル部20の導線21に流れる電流と減衰率との関係をグラフ100にして示している。このグラフ100に示したように、全ての波長においてほぼ同一の特性が得られており、補償部によってファラデー素子31の波長依存性が解消されていることが確認できた。また(B)には、温度依存特性のグラフ101を示した。このグラフ101では、−5℃、25℃、70℃の各温度におけるコイルに流れる電流と減衰率との関係、および各電流値における減衰率の最大値と最小値との差(温度依存損失:TDL)が示されている。このグラフ101に示したように、どの温度でもほぼ同様の特性が得られ、TDLは最大でも5dB未満であり、補償部によってファラデー素子31における温度依存性も解消されていることが確認できた。
===第3の実施例===
上記第1および第2の実施例では、円筒形の軸部10の内部にファラデー素子31を配置した構成で、光デバイス(1a、1b)の外観形状は前後方向を軸とした円筒形であった。一方、光学素子(30a、30b)は概して角柱状である。そのため、軸部10の内面と光学素子(30a、30b)の外面との間に空隙が生じていた。したがって、この空隙をなくすことができれば光デバイスをさらに小型化することができる。また、外見形状が円筒形であるため、光デバイス(1a、1b)を平坦面に「置く」ことができない。そこで第3の実施例として、さらなる小型化を達成しつつ、設置が容易な光デバイスを挙げる。
図6は第3の実施例に係る光デバイス1cの構造を示す図である。図6(A)は当該光デバイス1cの外観を示す斜視図であり、(B)は光学素子30aと軸部10cを示す斜視図である。(C)は光デバイス1cからコイル部20を除いた状態を示す斜視図である。なお、この図6に示した光デバイス1cにおいても第1および第2の実施例と同様にして前後上下左右の各方向を規定している。(A)に示したように、第3の実施例に係る光デバイス1cは、コイル部20cが中空の角柱状となっている。軸部10cは(B)に詳しく示したように、前方から見たときの形状が下方を底部として上方が開放するコの字型となっている。そして、左右の側面に永久磁石35が取り付けられた状態のファラデー素子31が、軸部10cの底面13と左右側面14に接するように、この軸部10cの内側に配置されている。したがって、この光デバイス1cを前方から見ると、光学素子30cの外面と軸部10cの内面との間が隙間無く接した状態となる。そして、軸部10cの周りには導線が巻回されて中空角筒状のコイル部20cが形成され、ファラデー素子31と永久磁石35とコイル部20とからなるファラデー回転子が一体的な角柱状に形成される。なおこの例では、(C)に示したように、ファラデー素子31の上面39とコイル部20の導線とが直接接しないように、ファラデー素子31の上面39から軸部10cの外周に亘る領域を絶縁テープ15で覆っている。このように第3の実施例に係る光デバイス1cでは、コの字型の軸部10cの内側にファラデー素子31が隙間無く接した状態で配置されており、第1の実施例に係る光デバイス1aよりさらなる小型化が達成できる。また、コイル部20cが角柱状であり平坦面に直接置いた際に安定性が高く、光通信装置内への設置が容易となる。
<変形例>
第3の実施例には、軸部の形状が異なるいくつかの変形例が考えられる。図7に第2の実施例に係る光デバイス1bのように補償膜37を備えた光デバイス1dに対応する変形例を示した。図7(A)はその外観を示す斜視図であり、(B)は、その光デバイス1dにおける軸部10dと光学素子30dを示す斜視図である。(A)に示したように、角柱状のコイル部の前方に円筒磁石を接続し、(B)に示したように、軸部10dを上方が開放しつつ前後に光路を通す孔16が形成された箱形としている。そして、光学素子30dの後端にある位相子36からファラデー素子31までの光学部品をその箱形の軸部10d内に配置し、ファラデー素子31より前にある光学部品(32、37)やスペーサ38を箱形の軸部10dの前方に配置している。また図8に第3の実施例のその他の変形例を示した。図8(A)は軸部10eとその軸部10eの内側に配置される光学素子30aを示す図であり、(B)は当該その他の変形例に係る光デバイス1eの外観を示す図である。(A)に示したように、軸部10eを対面する二枚の板状とし、その板状の軸部10eがファラデー素子31を左右から挟持している。光学素子30aの構成は第1の実施例と同様である。そして(B)に示したように、この軸部10eを備えた光デバイス1eは、軸部10eに底面が無いので上下方向のサイズをさらに小さくすることができる。
上記各実施例に係る光デバイス(1a〜1e)のサイズを比較するために、図9にこれらの光デバイス(1a〜1e)を前方から見たときのコイル部の断面を示した。図9(A)は第1または第2の実施例に係る光デバイス(1a、1b)のサイズを示しており、(B)は図6に示した第2の実施例に係る光デバイス1cまたは図7に示した光デバイス1dのサイズを示している。また(C)は、図8に示した光デバイス1eのサイズを示している。図9(A)〜(C)に示したように、全ての光デバイス(1a〜1e)において、軸部の肉厚t1とコイル部の厚さt2を同じにした場合、図示したように、断面がコの字型の軸部(10c、10d)を備えた光デバイス(10c、10d)や、対面する二枚の板状の軸部10eを備えた光デバイス1eでは、中空円筒形の軸部10を備えた光デバイス(1a、1b)に対して上下左右のサイズを小さくすることができる。また、対面する二枚の板状の軸部10eを備えた光デバイス1eでは、コの字型の軸部(10c、10d)を備えた光デバイス(1c、1d)に対し、上下方向のサイズをさらに小さくすることができる(a1>a2=a3、b1>b2>b3)。
表1に実際に作製した各実施例に係る光デバイス(1a〜1e)の各部位のサイズを示した。
Figure 0006340176
断面がコの字型あるいは板状の軸部(10c〜10e)を備えた光デバイス(1c〜1e)に対し、中空円筒状の軸部10を備えた光デバイス(1a、および1b)では、左右方向のサイズがともに約90%となり、上下方向のサイズについてはそれぞれ約82%および約75%となった。
===その他の実施例===
上記各実施例に係る光デバイス(1a〜1e)は光アッテネータとして機能するものであったが、もちろんファラデー回転子を備えていれば光デバイスの機能はどのようなものでもよい。したがって、複屈折素子の形状は楔型に限らず、側面形状が平行四辺形などであってもよい、また、偏波依存型の光デバイスであれば、前方の複屈折素子32が不要となり、後方の複屈折素子33をポーラコアなどの偏光板に変更すればよい。
上記各実施例に係る光デバイス(1a〜1e)は、光通信装置に内蔵されることを前提としており、その光通信装置内を伝搬するビームが角柱状のファラデー素子31の中心軸に沿って進行するように設置される。しかし、光デバイス(1a〜1e)の上下方向を高さ方向とすると、各実施例に係る光デバイス(1a〜1e)が極めて小さいため、光デバイス(1a〜1e)の最下点からビームまでの高さが光デバイス(1a〜1e)に対して高過ぎる場合もあり得る。そこで、図10に示した光デバイス1fのように、軸部10fをコイル部20fに対して前後に突出させ、その突出した部分を下支えする支持台50を設け、光学素子30aの高さ位置を調整してもよい。この図9に示した例では、第2の実施例に係る光デバイス1cに対応してコの字型の軸部10fをコイル部20fに対して前後に突出させている。支持台50は左右方向からの形状が上方に開放するコの字型で、前端面51と後端面52に軸部10fの下方と側方に当接する形状の矩形の切欠部53が形成されている。もちろん、第1の実施例に係る光デバイス1aと同様に中空円筒状の軸部10であっても、支持台の前端面と後端面に半円形の切欠部を設ければ、その円筒形の軸部10を下支えすることができる。
上記各実施例に係る光デバイスはフリースペース型として各種光通信装置内に設置することを想定しているが、光ファイバコリメータを備えた一体的なケース内に収納することでピグテイル型に対応させることもできる。
この発明は、例えば、光通信技術に利用可能である。
1a〜1f 光デバイス、10,10c〜10f 軸部、
20,20c〜20f コイル部、30a,30b,30d 光学素子、
31 ファラデー素子、32,33 複屈折素子(偏光子または検光子)、
34 磁気光学結晶膜、35 板状の永久磁石、36 複屈折素子(位相子)、
37 補償膜、38 スペーサ、40 円筒形永久磁石、50 支持台

Claims (5)

  1. ファラデー回転子を備えた光デバイスであって、
    前記ファラデー回転子は、磁気光学材料から構成されるファラデー素子と二つの永久磁石と電磁石とを備え、
    光の進行方向を前後方向として、前記ファラデー素子は、前後に前記光の入出射面を有するとともに、左右に互いに平行な面を有し、
    前記二つの永久磁石は、平板状で、異なる磁極同士が対面するように前記ファラデー素子の左右のそれぞれの側面に取り付けられて、当該ファラデー素子に対して左右一方向に永久磁界を印加し、
    前記永久磁石が取り付けられた状態の前記ファラデー素子を前後方向の全長に亘って保持する軸部を備え、
    前記電磁石は、前後方向を軸として前記軸部の周囲に導線が巻回されてなるコイルを含んで構成されて、前記ファラデー素子に対して前後方向の可変磁界を印加し、
    前記軸部は、下方を底面として上方が開放する箱状であり、前面と後面に、前記光の光路を通す孔が形成されている、
    ことを特徴とする光デバイス。
  2. 前記コイルの前端側に、中空円筒状の永久磁石からなる円筒磁石が同軸となるように配置されつつ、箱状の前記軸部の前記前面に接続され、
    前記円筒磁石の内側に、磁気光学材料から構成されて前後に光の入出射面を有する補償膜が配置され、
    前記円筒磁石の中空筒内に発生する前後方向の磁界によって得られる前記補償膜のファラデー回転角と、当該円筒磁石の後方への漏洩磁界によって得られる前記ファラデー素子のファラデー回転角との和が90°であり、
    前記電磁石による可変磁界の方向は、前記漏洩磁界を打ち消す方向である、
    ことを特徴とする請求項1に記載の光デバイス。
  3. 前記ファラデー素子は、磁気光学材料からなる磁気光学結晶膜が前後方向に偶数枚積層されてなるとともに、前後で隣接し合う前記磁気光学結晶膜は、結晶面が互いに180°となることを特徴とする請求項1または2に記載の光デバイス。
  4. 前記補償膜と前記軸部の前面との間に前後が開口する枠状のスペーサが介在していることを特徴とする請求項1〜3のいずれか1項に記載の光デバイス。
  5. 前記軸部の前端および後端は、前記コイルの前端および後端よりも前方および後方に突出し、当該軸部の突出した部位を下方から下支えして前記コイルの軸を水平に維持する支持台を備えたことを特徴とする請求項1〜4のいずれか1項に記載の光デバイス。
JP2013165965A 2013-08-09 2013-08-09 光デバイス Active JP6340176B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013165965A JP6340176B2 (ja) 2013-08-09 2013-08-09 光デバイス
CN201480044749.4A CN105492961A (zh) 2013-08-09 2014-08-07 光学装置
PCT/JP2014/070847 WO2015020140A1 (ja) 2013-08-09 2014-08-07 光デバイス
EP14834497.1A EP3032321B1 (en) 2013-08-09 2014-08-07 Optical device
US14/911,198 US10025122B2 (en) 2013-08-09 2014-08-07 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013165965A JP6340176B2 (ja) 2013-08-09 2013-08-09 光デバイス

Publications (2)

Publication Number Publication Date
JP2015034900A JP2015034900A (ja) 2015-02-19
JP6340176B2 true JP6340176B2 (ja) 2018-06-06

Family

ID=52461469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013165965A Active JP6340176B2 (ja) 2013-08-09 2013-08-09 光デバイス

Country Status (5)

Country Link
US (1) US10025122B2 (ja)
EP (1) EP3032321B1 (ja)
JP (1) JP6340176B2 (ja)
CN (1) CN105492961A (ja)
WO (1) WO2015020140A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6863683B2 (ja) 2016-04-26 2021-04-21 信越化学工業株式会社 光アイソレータ
CN106773149A (zh) * 2017-03-30 2017-05-31 中山市飞云电子科技有限公司 一种高功率钇铁石榴石法拉第光旋转器

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2815509B2 (ja) 1992-07-31 1998-10-27 富士通株式会社 光アッテネータ
US5867314A (en) * 1993-12-09 1999-02-02 Fuji Electrochemical Co., Ltd. Structure of optical passive device and assembling method therefor
EP0707230B1 (en) * 1994-10-11 2001-03-07 Sumitomo Electric Industries, Ltd Optical isolator
JP3481718B2 (ja) * 1995-02-28 2003-12-22 日本電信電話株式会社 ケーブル接続部用シールテープ
JP3739471B2 (ja) 1996-03-01 2006-01-25 富士通株式会社 光可変減衰器
JP3720616B2 (ja) * 1999-02-24 2005-11-30 Fdk株式会社 ファラデー回転角可変装置
SG90135A1 (en) * 1999-03-30 2002-07-23 Canon Kk Motor
JP3881505B2 (ja) * 2000-11-08 2007-02-14 Fdk株式会社 ファラデー回転装置及びそれを用いた光デバイス
JP4056726B2 (ja) 2000-10-27 2008-03-05 松下電器産業株式会社 光信号伝送システム及びそれに用いる磁気光学変調器
US6580546B2 (en) * 2001-08-03 2003-06-17 Primanex Faraday rotator
US6950235B2 (en) * 2002-05-02 2005-09-27 Corning Incorporated Optical isolators and methods of manufacture
JP2005024974A (ja) * 2003-07-03 2005-01-27 Sumitomo Metal Mining Co Ltd 表面実装型光アイソレータ
JP2005208295A (ja) * 2004-01-22 2005-08-04 Fdk Corp 可変ファラデー回転子及びそれを用いた可変光減衰器
JP2005256569A (ja) * 2004-03-15 2005-09-22 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 建設機械のオイルフィルタ配管構造
JP4655835B2 (ja) * 2005-09-05 2011-03-23 住友金属鉱山株式会社 ファラデー回転角可変装置
US7961391B2 (en) * 2008-03-13 2011-06-14 Finisar Corporation Free space isolator optical element fixture
JP5166119B2 (ja) * 2008-05-22 2013-03-21 ミヤチテクノス株式会社 ファラデー回転子、光アイソレータおよびレーザ加工装置
JP5647828B2 (ja) * 2010-07-22 2015-01-07 Fdk株式会社 反射型可変光アッテネータ
JP2013041095A (ja) * 2011-08-15 2013-02-28 Fdk Corp 可変ファラデー回転子、および光シャッター

Also Published As

Publication number Publication date
US20160202506A1 (en) 2016-07-14
EP3032321A4 (en) 2017-04-05
US10025122B2 (en) 2018-07-17
EP3032321A1 (en) 2016-06-15
WO2015020140A1 (ja) 2015-02-12
CN105492961A (zh) 2016-04-13
JP2015034900A (ja) 2015-02-19
EP3032321B1 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
JP3779054B2 (ja) 可変光学フィルタ
CN105633781A (zh) 一种新型磁光隔离器件及其主动输出控制方法
JP5927034B2 (ja) 可変光アッテネータ
JP2016523393A (ja) 光アイソレーター
WO2002014939A1 (fr) Dispositif de rotation faraday et dispositif optique renfermant celui-ci
JP6340176B2 (ja) 光デバイス
US20050179980A1 (en) Magneto-optical component
US20050111102A1 (en) Reflection-type optical device
JP2005099737A (ja) 磁気光学光部品
JP3974041B2 (ja) 光可変減衰器、光シャッタ及び光可変等化器
JP2019012135A (ja) 光アイソレータモジュール
JP2007199112A (ja) 反射型光アッテネータ
US6795627B1 (en) Light waveguide and an optical fiber isolator
JP2002258229A (ja) 光アッテネータ
JP4293921B2 (ja) 偏波無依存型多心光アイソレータ
US9791627B1 (en) Integrated optical components with wavelength tuning and power isolation functions
JP3881264B2 (ja) 可変利得等化器
JP2001142040A (ja) 光アッテネータ
JP2001091749A (ja) 光アッテネータ
JPH08171075A (ja) 光スイッチ
JP2007047359A (ja) 光デバイス
JP2004062006A (ja) 光アイソレータ
JP2001042264A (ja) 光サーキュレータ
US7196744B1 (en) Optical transceiver package with a liquid crystal variable optical attenuator
JP2007264671A (ja) 光可変減衰器

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180202

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180514

R150 Certificate of patent or registration of utility model

Ref document number: 6340176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250