JP2007199112A - 反射型光アッテネータ - Google Patents

反射型光アッテネータ Download PDF

Info

Publication number
JP2007199112A
JP2007199112A JP2006014252A JP2006014252A JP2007199112A JP 2007199112 A JP2007199112 A JP 2007199112A JP 2006014252 A JP2006014252 A JP 2006014252A JP 2006014252 A JP2006014252 A JP 2006014252A JP 2007199112 A JP2007199112 A JP 2007199112A
Authority
JP
Japan
Prior art keywords
polarization
lens
birefringent element
optical
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006014252A
Other languages
English (en)
Inventor
Hidenori Nakada
英則 中田
Teruhisa Nakamura
輝久 中村
Hiroaki Ono
博章 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2006014252A priority Critical patent/JP2007199112A/ja
Publication of JP2007199112A publication Critical patent/JP2007199112A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】出力ポートに収束しない光成分が光ファイバのコアのみならずクラッド部からも離れるように複屈折素子による分離量より長さを最適化し、偏光依存性損失を低減すると共に、光デバイス全体としての小型化の実現を図る。
【解決手段】偏波分離合成用複屈折素子10と、レンズ12と、反射鏡16とがその順序で配列され、更に可変偏波回転手段14を挿入し、入力ポート(入力ファイバ20)と出力ポート(出力ファイバ22)を設定し、可変偏波回転手段で偏波方向の回転角度を制御することにより反射光量を制御する。反射鏡を経てレンズにより収束する反射光成分のうち、偏波分離合成用複屈折素子により出力ポートに結合しない2成分の分離量をA、出力ポートの光ファイバのクラッド直径をDcd、反射光のモードフィールド径をMFDとしたとき、Dcd+MFD<A<600μmを満たすように設定する。
【選択図】図2

Description

本発明は、光通信あるいは光計測器などで使用する反射型光アッテネータに関し、更に詳しく述べると、偏波分離合成用の複屈折素子の光軸方向長さを最適化することにより、偏波依存性損失を低減化した反射型光アッテネータに関するものである。
光通信システムあるいは光計測システムなどでは、透過光量を制御するための光デバイスである可変光アッテネータを必要とする。可変光アッテネータの典型的な例は、可変偏波回転手段(可変ファラデー回転子)の光軸上の前後(入力側と出力側)に偏光子と検光子とを設置する対向型である。可変偏波回転手段は、ファラデー素子(ファラデー効果を有する磁性ガーネット単結晶膜など)に電磁石などにより外部磁界を印加し、その外部印加磁界を変化させることにより、ファラデー素子を透過する光のファラデー回転角を制御するものである。可変光アッテネータは、このファラデー回転角の制御によって、光の減衰量を可変制御する。
近年、波長多重通信が実用化され始めたことにより、挿入損失の均等化のために各波長毎に光アッテネータを組み込むことが行われている。そのような使用形態では、特に安価に製作でき、小型化できることが重要である。従来の対向型の可変光アッテネータは、入出力を対向配置する場合以外では、ファイバ引き回しのために広いスペースが必要となり実装の自由度が低い。
このような問題を解決できる技術として、偏波分離合成用複屈折素子と、レンズと、反射鏡を順に配列し、入力ポートと出力ポートを偏波分離合成用複屈折素子側に設置して、偏波分離合成用複屈折素子と反射鏡との間に配置した可変偏波回転手段で偏波方向の回転角度を制御することにより入射光の減衰量を調整可能とした反射型の可変光アッテネータが提案されている(特許文献1参照)。
しかし、一般に複屈折素子を用いた光デバイスでは、偏波を分離合成するため偏光依存性損失が生じ易く、その低減は重要課題とされている。偏光依存性損失の主な原因としては、複屈折素子により分離された2成分がファラデー回転素子によって各々偏波回転した際に生じる回転角差によるものと、複屈折素子により再度合成され出力ポートに収束する際、収束されない光成分の漏れ光による影響などがある。
特開2003−107420公報
本発明が解決しようとする課題は、複屈折素子を用いた反射型光アッテネータの偏光依存性損失を低減化することである。
本発明は、偏波方向が直交関係にある同じ光路の光を分離し異なる光路の光を合成する平行平面型の偏波分離合成用複屈折素子と、光収束性のレンズと、該レンズの焦点に位置する反射鏡とがその順序で配列され、前記偏波分離合成用複屈折素子と反射鏡の間の任意の位置に可変偏波回転手段を設置し、光ファイバを備えた入力ポートと出力ポートを前記偏波分離合成用複屈折素子側に設定し、前記可変偏波回転手段で偏波方向の回転角度を制御することにより反射光量を制御する構造であって、前記反射鏡を経てレンズにより収束する反射光成分のうち、前記偏波分離合成用複屈折素子により出力ポートに結合しない2成分の分離量をA、出力ポートの光ファイバのクラッド直径をDcd、反射光のモードフィールド径をMFDとしたとき、Dcd+MFD<A<600μmを満たすように設定されていることを特徴とする反射型光アッテネータである。ここで前記可変偏波回転手段は例えば可変ファラデー回転子であり、レンズと反射鏡の間に配置するのが好ましい。
また、より好ましくは、分離量Aを、Dcd+MFD<A<300μmとすることである。
偏波分離合成用複屈折素子とレンズとの間に、他の光学部品を挿入することもできる。挿入する光学部品としては、例えば固定ファラデー回転子や光学フィルタなどがある。
前記偏波分離合成用複屈折素子は、典型的にはTiO2 又はYVO4 であり、その光軸方向の長さは0.6〜1.6mm程度とするのが好ましい。
本発明の反射型光アッテネータは、出力ポートに収束しない反射光成分が光ファイバのコアのみならずクラッド部からも離れるように、複屈折素子の形状を最適化したので、偏光依存性損失を低減できると共に、光デバイス全体として小型化を図ることができる。
また本発明では、偏波分離合成用複屈折素子とレンズとの間に光学部品を配置することができ、例えば光学部品として可変ファラデー回転子のファラデー素子とファラデー回転方向が同じファラデー素子を組み込む固定ファラデー回転子を用いると、同じ組成の材料で作製できることから、波長依存性損失や温度依存性損失などを等しくでき、より一層良好な光学特性が得られる。
本発明に係る可変光アッテネータの典型例の概略構成を図1に示す。また、その光路を図2に示す。説明を分かり易くするために、次のように座標軸を設定する。光学部品の配列方向(入射光が進む方向)をz方向(図面では右方向)とし、それに対して直交する2方向をx方向(水平方向)、y方向(垂直方向)とする。従って、図2のAは平面を表しており、Bは正面を表しているということになる。
この可変光アッテネータは、z方向に向かう偏波方向が直交関係にある同じ光路の光をy方向に分離し−z方向に向かう異なる光路の光を合成する平行平面型の偏波分離合成用複屈折素子10と、光収束性のレンズ(例えば凸レンズ)12と、可変偏波回転手段(可変ファラデー回転子)14と、前記レンズ12の焦点に位置する反射鏡16とが、その順序で配列されている。そして、入力ポートと出力ポートを前記偏波分離合成用複屈折素子側に設定する。この例では、z方向を見て右側光路に入力ポート(入力ファイバ20)が位置し、左側光路に出力ポート(出力ファイバ22)が位置するように、2芯フェルール24を設置している。
平行平面型の偏波分離合成用複屈折素子10は、例えばTiO2 結晶(ルチル)あるいはYVO4 結晶からなる。なお、「平行平面型」とは、光の入射面と出射面が互いに平行となっている形状を意味しており、平行平板形状あるいは平行四辺形のブロック形状、直方体形状なども含まれる。
可変偏波回転手段16は、ファラデー素子34と、該ファラデー素子34に2方向から固定磁界と可変磁界による合成磁界を印加する構成である。固定磁界は、反射鏡16の背後に配置した円板状の永久磁石36によって光が進む方向に印加される。可変磁界は、電磁石38によって光が進む方向に対して垂直な方向に印加される。これら2つの磁界がファラデー素子34に印加され、その合成磁界に応じて該ファラデー素子34のファラデー回転角が変化する。
入射した光は、偏波分離合成用複屈折素子10、レンズ12を通り反射鏡16に集光して反射され、反射戻り光は、再びレンズ12、偏波分離合成用複屈折素子10を通って出射する。その過程で、光は、可変偏波回転手段16(実際にはファラデー素子34)を往復する。従って本発明では、1個の複屈折素子10がそれぞれ偏光子と検光子の2つの機能を兼用する。本発明の可変光アッテネータでは、可変偏波回転手段16で偏波方向の回転角度を制御することにより、反射出力光量が制御されることになる。
入力ファイバ20からz方向に入射する光は、偏波分離合成用複屈折素子10で常光と異常光とにy方向に光分離する。そしてレンズ12で集光し、その集光途中でファラデー素子34を通過する。ファラデー回転角が0度のときは、レンズ焦点位置の反射鏡16では偏波方向は回転せず反射する。−z方向に戻る反射光は、再びファラデー素子34及びレンズ12を通過するが、その際も偏波方向は回転しない。偏波分離合成用複屈折素子10ではすべての常光と異常光とがy方向に偏波合成され出力ファイバ22に結合する。このようにして、ファラデー回転角が0度の場合は、入力ファイバ20からの入射光量は、殆ど減衰することなくほぼ全光量が出力ファイバ22へと出射することになる。
ファラデー回転角が45度に設定されているときは、光はレンズ焦点位置の反射鏡16では偏波方向が45度回転して反射する。−z方向に戻る反射光は、再びファラデー素子34及びレンズ12を通過し、その際に偏波方向が更に45度(従って合計で90度)回転する。そして、偏波分離合成用複屈折素子10では、すべての常光と異常光とが更にy方向に分離する。従って、入力ファイバ20からの入射光は、殆ど出力ファイバ22には結合しない。つまり、入力ファイバからの入射光量の殆ど全てが減衰することになる。
可変偏波回転手段16によって偏波方向が任意の角度(例えば22.5度)回転するときは、光はレンズ焦点位置の反射鏡16では偏波方向が22.5度回転して反射する。−z方向に戻る反射光は、再びファラデー素子34及びレンズ12を通過し、その際にも偏波方向が更に同じ角度(ここでは22.5度:従って合計で45度)回転する。そして偏波分離合成用複屈折素子10で、一部の常光と異常光はy方向に偏波合成され出力ファイバ22に結合するが、残りの常光と異常光は更にy方向に偏波分離するため出力ファイバには結合しない。従って、入力ファイバ20からの入射光は減衰して(ファラデー回転角を22.5度に設定した場合は、入射光量がほぼ半減して)出力ファイバ22へ出射することになる。
このように可変偏波回転手段16で偏波方向の回転角度を制御することによって、入射光の減衰量(言い換えれば反射出力光量)を自由に調整できることになる。動作原理は以上の通りである。
しかし複屈折素子が適切に設計されていないと、偏光依存性損失を低減できない。本発明は、複屈折素子による偏光の分離量を最適化するものである。具体的に、単一モード光ファイバ(SMF)と複屈折素子(TiO2 ,YVO4 )を用いた例で示す。単一モード光ファイバ(SMF)は一般的なものであり、その仕様は次の通りである。
・モードフィールド径(MFD):10μm
・クラッド直径(Dcd):125μm
・開口数(NA):0.21
・ファイバの屈折率ng :1.5
複屈折素子を含むその他の条件を以下に示す。図3は各条件の説明図である。
・フェルールの傾斜:8°
・複屈折素子常光屈折率…TiO2 :no =2.45、YVO4 :no =1.94
・複屈折素子異常光屈折率…TiO2 :ne =2.71、YVO4 :ne =2.15
・複屈折素子傾斜角度β:85°
・複屈折素子光学軸γ:45°
・出射角度α:3.8°
・常光分離角度εo …TiO2 :−1.4°,YVO4 :−0.5°
・異常光分離角度εe …TiO2 :4.2°,YVO4 :4.9°
分離量Aは図3に示す光路分離距離である。この条件での複屈折素子の厚みLと分離量Aの関係を図4に示す。図4から分かるように、TiO2 とYVO4 の分離量Aは殆ど一致している。
これらは代表例である。この場合、出力ポートの光ファイバのクラッド直径(Dcd:125μm)+反射光のモードフィールド径(MFD:10μm)以上の分離量(135μm)を得るには、複屈折素子の厚みは0.7mm以上に設定する必要がある。但し、実際は、フェルールの傾斜θ、複屈折素子の屈折率(no,ne)、複屈折素子傾斜角度βや複屈折素子光学軸方向γによって複屈折素子の下限許容寸法は変動する。
また、上限許容寸法は、ファイバの開口数NAとレンズ焦点距離fと有効径及び複屈折素子の有効径を基に設定する。複屈折素子の長さ寸法Lをいたずらに長くするのは光デバイスの大型化やコストアップになり有効な手段とならない。
図5に示す構成の場合、NA=0.21であるため開き角度(開口角度の1/2)θrは約6°(=sin-1(NA)/2)となり、レンズの有効径をΦ0.8mmとすると、フェルールとレンズとの距離は3.83mm(=(レンズの有効径の1/2)/tan-1(θr))まで可能である。しかし、実際に光デバイスに用いるレンズの焦点距離はf=2.5〜1.3mmであるため、図5のf1で示すレンズの焦点距離f+複屈折素子により焦点距離が伸びた分△f(=L×(1−1/n(複屈折素子屈折率))が3.83mmを超えなければよい。但し、複屈折素子を長くすることはコストアップや光デバイス大型化の要因になるため、複屈折素子の長さは複数使用した場合も含め合計1.6mm以内とするのがよい。そのときの偏光の分離量は300μm程度である。
試作した反射型光アッテネータについて、複屈折素子としてTiO2 (ルチル)結晶を用い、電磁石の駆動電流(従って可変磁界の強さ)に対する減衰量並びに偏光依存性損失(PDL)の変化を測定した結果を図6に示す。図6において、実線が減衰量の変化、点線が偏光依存性損失の変化を示し、いずれも太線(a)がルチル長1.0mmの場合、細線(b)がルチル長0.5mmの場合である。ルチル長0.5mmの場合は、減衰量35dB以上が得られるが、偏光依存性損失がかなり大きくなっている。それに比べて、ルチル長1.0mmの場合は、減衰量40dB以上が得られ、しかも偏光依存性損失はかなり小さく抑えられていることが分かる。
このルチル長0.5mmの場合は、図4から分かるように分離量Aが約100μmに相当し、反射光が偏光分離してコアから離れていく2つの成分がクラッド部に入る寸法であり、他方、ルチル長1.0mmの場合は、分離量Aが約200μmに相当し、反射光の偏光分離してコアから離れている2つの成分がクラッド部から更に離れた位置に出射する寸法である。これらのことから、ルチル長0.5mmの分離量では不足し、ルチル長1.0mmにすれば十分であることが裏付けられる。
図7は、本発明に係る反射型光アッテネータの他の例を示している。この例は、図2の構成に対して更に固定ファラデー回転子18を追加した構成である。従って、基本的な構成は図2と同様となるため、説明を簡略化するために対応する部材には同一符号を付す。固定ファラデー回転子18は、図示するのを省略するが、具体的には、円筒状永久磁石の内側にファラデー素子を配置した構成とする。
偏波可変回転手段14のファラデー素子を基本膜ファラデー素子、固定ファラデー回転子18のファラデー素子を補償膜ファラデー素子として、組成が同じBi置換希土類鉄ガーネットLPE膜が使用できる。その場合、基本膜ファラデー素子は熱処理(アニール)が施され、補償膜ファラデー素子は熱処理が施されておらず前記基本膜ファラデー素子に比べて磁気異方性が大きい特性を呈するものとする。このようにすると、両ファラデー素子で、ファラデー回転角の温度依存性損失係数や波長依存性損失係数が全く同じであることから、同一ファラデー回転角のときに、それらの損失係数を完全に相殺することができる。
ところで円筒状永久磁石の内側に配置された補償膜ファラデー素子は、磁石内側の磁化分布の影響を受け、磁化飽和する部分と磁化飽和しない部分とが生じる恐れがある。このような状態になると、ファラデー素子内に磁区が生じ、消光比劣化の原因となる。更に、補償膜ファラデー素子の磁化方向の面内分布によりファラデー回転角に差が生じ、基本膜ファラデー素子との回転角差を生じることになる。しかし、上記の例のように、補償膜ファラデー素子として磁気異方性の高い特性の材料を使用すると、これらの問題も回避できる。
固定ファラデー回転子の補償膜ファラデー素子のファラデー回転角と可変偏波回転手段の基本膜ファラデー素子の可変磁界を印加していない状態でのファラデー回転角の差を±2度以内に設定すると、減衰量減少型の可変光アッテネータが得られる。また、少なくとも可変偏波回転手段の基本膜ファラデー素子のファラデー回転角は、往復で最大90度以上に設定する。そのようにすると、最大挿入損失及び最小挿入損失が得られる。
本発明に係る可変光アッテネータの概略構成図。 その光路説明図。 光ファイバと複屈折素子での光路説明図。 複屈折素子厚みLと分離量Aの関係を示すグラフ。 可変光アッテネータの光路説明図。 駆動電流−減衰量、偏光依存性損失特性線図。 本発明に係る可変光アッテネータの他の実施例の光路説明図。
符号の説明
10 偏波分離合成用複屈折素子
12 レンズ
14 可変偏波回転手段
16 反射鏡
20 入力ファイバ
22 出力ファイバ
34 ファラデー素子

Claims (5)

  1. 偏波方向が直交関係にある同じ光路の光を分離し異なる光路の光を合成する平行平面型の偏波分離合成用複屈折素子と、光収束性のレンズと、該レンズの焦点に位置する反射鏡とがその順序で配列され、前記偏波分離合成用複屈折素子と反射鏡の間の任意の位置に可変偏波回転手段を設置し、光ファイバを備えた入力ポートと出力ポートを前記偏波分離合成用複屈折素子側に設定し、前記可変偏波回転手段で偏波方向の回転角度を制御することにより反射光量を制御する構造であって、前記反射鏡を経てレンズにより収束する反射光成分のうち、前記偏波分離合成用複屈折素子により出力ポートに結合しない2成分の分離量をA、出力ポートの光ファイバのクラッド直径をDcd、モードフィールド径をMFDとしたとき、
    Dcd+MFD<A<600μm
    を満たすように設定されていることを特徴とする反射型光アッテネータ。
  2. 前記可変偏波回転手段が可変ファラデー回転子であり、レンズと反射鏡の間に配置される請求項1記載の反射型光アッテネータ。
  3. 偏波分離合成用複屈折素子とレンズとの間に、光学部品を配置する請求項2記載の反射型光アッテネータ。
  4. 光学部品が固定ファラデー回転子である請求項3記載の反射型光アッテネータ。
  5. 前記偏波分離合成用複屈折素子がTiO2 又はYVO4 であり、その光軸方向の長さが0.6〜1.6mmである請求項1乃至4のいずれかに記載の反射型光アッテネータ。
JP2006014252A 2006-01-23 2006-01-23 反射型光アッテネータ Pending JP2007199112A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006014252A JP2007199112A (ja) 2006-01-23 2006-01-23 反射型光アッテネータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006014252A JP2007199112A (ja) 2006-01-23 2006-01-23 反射型光アッテネータ

Publications (1)

Publication Number Publication Date
JP2007199112A true JP2007199112A (ja) 2007-08-09

Family

ID=38453821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006014252A Pending JP2007199112A (ja) 2006-01-23 2006-01-23 反射型光アッテネータ

Country Status (1)

Country Link
JP (1) JP2007199112A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042521A (ja) * 2007-08-09 2009-02-26 Fdk Corp 反射型可変光アッテネータ
JP2011075826A (ja) * 2009-09-30 2011-04-14 Fdk Corp 反射型光デバイス
WO2012011365A1 (ja) * 2010-07-22 2012-01-26 Fdk株式会社 反射型可変光アッテネータ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03171028A (ja) * 1989-11-30 1991-07-24 Tokin Corp 光アイソレータ
JPH04116616A (ja) * 1990-09-07 1992-04-17 Nippon Telegr & Teleph Corp <Ntt> 光アイソレータ装置
JPH0575726U (ja) * 1992-03-19 1993-10-15 並木精密宝石株式会社 光アイソレータ
JP2003107420A (ja) * 2001-09-27 2003-04-09 Fdk Corp 可変光アッテネータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03171028A (ja) * 1989-11-30 1991-07-24 Tokin Corp 光アイソレータ
JPH04116616A (ja) * 1990-09-07 1992-04-17 Nippon Telegr & Teleph Corp <Ntt> 光アイソレータ装置
JPH0575726U (ja) * 1992-03-19 1993-10-15 並木精密宝石株式会社 光アイソレータ
JP2003107420A (ja) * 2001-09-27 2003-04-09 Fdk Corp 可変光アッテネータ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042521A (ja) * 2007-08-09 2009-02-26 Fdk Corp 反射型可変光アッテネータ
JP2011075826A (ja) * 2009-09-30 2011-04-14 Fdk Corp 反射型光デバイス
WO2012011365A1 (ja) * 2010-07-22 2012-01-26 Fdk株式会社 反射型可変光アッテネータ
JP2012027192A (ja) * 2010-07-22 2012-02-09 Fdk Corp 反射型可変光アッテネータ
CN103003738A (zh) * 2010-07-22 2013-03-27 Fdk株式会社 反射型可变光衰减器
DE112011102432T5 (de) 2010-07-22 2013-05-08 Fdk Corporation Variabler optischer Dämpfer der Reflexionsbauart
US8854716B2 (en) 2010-07-22 2014-10-07 Fdk Corporation Reflection type variable optical attenuator

Similar Documents

Publication Publication Date Title
WO2002014939A1 (fr) Dispositif de rotation faraday et dispositif optique renfermant celui-ci
JP2002023111A (ja) 偏光ビームスプリッター/コンバイナ
JP3718152B2 (ja) 可変光アッテネータ
JP2007199112A (ja) 反射型光アッテネータ
JP4596460B2 (ja) 可変光アッテネータ
US7072111B2 (en) Reflection-type optical device
JP2005241992A (ja) 光アイソレータ及び光学装置
US7024073B2 (en) Reflective variable light attenuator
US11480735B2 (en) Optical isolator with optical fibers arranged on one single side
JP6340176B2 (ja) 光デバイス
JPH05313094A (ja) 光アイソレータ
JP4911519B2 (ja) 反射型可変光アッテネータ
JPH0667118A (ja) 光結合装置
JPWO2002091069A1 (ja) ファラデー回転子
JPH11264954A (ja) 光サーキュレータ及び光スイッチ
JP4794056B2 (ja) 光デバイス
US11768329B2 (en) High isolation optical splitter
US20020171934A1 (en) Fiber optical circulator
JP2869677B2 (ja) 光アイソレータ
JP2840711B2 (ja) 光アイソレータ
JP3881264B2 (ja) 可変利得等化器
JP2967257B2 (ja) 光アイソレータ
JP2005017701A (ja) 光アイソレータ及びそれを用いた光モジュール
JP2002228984A (ja) 光サーキュレータ
JPH05188324A (ja) 偏波無依存型光アイソレータアレイ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080616

A977 Report on retrieval

Effective date: 20110118

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110119

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110629

Free format text: JAPANESE INTERMEDIATE CODE: A02