JP6331125B2 - Target material manufacturing method - Google Patents

Target material manufacturing method Download PDF

Info

Publication number
JP6331125B2
JP6331125B2 JP2014053106A JP2014053106A JP6331125B2 JP 6331125 B2 JP6331125 B2 JP 6331125B2 JP 2014053106 A JP2014053106 A JP 2014053106A JP 2014053106 A JP2014053106 A JP 2014053106A JP 6331125 B2 JP6331125 B2 JP 6331125B2
Authority
JP
Japan
Prior art keywords
target material
cut
compacted
molded
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014053106A
Other languages
Japanese (ja)
Other versions
JP2015175032A (en
Inventor
真史 上灘
真史 上灘
惠介 井上
惠介 井上
青木 大輔
大輔 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2014053106A priority Critical patent/JP6331125B2/en
Publication of JP2015175032A publication Critical patent/JP2015175032A/en
Application granted granted Critical
Publication of JP6331125B2 publication Critical patent/JP6331125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、例えば大画面の平面表示装置等の電気配線や電極等に用いられる金属薄膜の形成に使用されるターゲット材の製造方法に関するものである。   The present invention relates to a method for producing a target material used for forming a metal thin film used for electrical wiring, electrodes, etc., for example, for a large screen flat display device.

現在、平面表示装置の一種である液晶ディスプレイ(Liquid Crystal Display、以下「LCD」という)の薄膜電極および薄膜配線等には、電気抵抗の小さいMo等の高融点の金属薄膜が用いられている。この金属薄膜を形成する方法として、スパッタリング法が好適とされ、ターゲット材が広く利用されている。そして、近年のLCDは、ガラス基板サイズが1500mm×1800mm以上となるような超大型化に伴い、金属薄膜を形成するためのターゲット材に対しても大型化が要求されている。   Currently, a high-melting-point metal thin film such as Mo having a low electric resistance is used for a thin film electrode and a thin film wiring of a liquid crystal display (hereinafter referred to as “LCD”) which is a kind of flat display device. As a method for forming the metal thin film, a sputtering method is suitable, and a target material is widely used. In recent LCDs, as the glass substrate size is increased to 1500 mm × 1800 mm or more, the target material for forming the metal thin film is required to be increased in size.

そして、上記のような超大型のLCDに金属薄膜を形成する場合には、マルチカソード方式といわれる全長が3000mm以上の長尺型のターゲット材を並べて使用するスパッタリング装置が使用されるようになってきている。   When a metal thin film is formed on the above ultra-large LCD, a sputtering apparatus that uses a long target material having a total length of 3000 mm or more, which is called a multi-cathode method, is used. ing.

融点の高いMoは、溶解鋳造法による製造が困難であるため、一般に粉末焼結法によりターゲット材が作製されている。そして、一般的に、Mo原料粉末の平均粒径が10μm以下と細かく、Mo原料粉末が凝集した形態で存在しているために、加圧容器への充填密度が上がらず、加圧焼結後に変形しやすいことから、その対策が検討されてきた。
例えば、Mo原料粉末を圧縮成形した複数の圧密体を加圧容器に入れ込み、熱間静水圧プレス(以下、「HIP」という。)により、これらの複数の圧密体同士を接合することが提案されている(例えば、特許文献1参照)。
Since Mo having a high melting point is difficult to produce by a melt casting method, a target material is generally produced by a powder sintering method. And generally, since the average particle diameter of the Mo raw material powder is as fine as 10 μm or less and the Mo raw material powder is present in an aggregated form, the packing density in the pressurized container does not increase, and after pressure sintering Since it is easy to deform, the countermeasure has been examined.
For example, it is proposed to put a plurality of compacts formed by compressing Mo raw material powder into a pressurized container and to join these compacts together by hot isostatic pressing (hereinafter referred to as “HIP”). (For example, refer to Patent Document 1).

特開2006−28536号公報JP 2006-28536 A

本発明者の検討によると、圧縮成形した圧密体の接合面の形状が平坦でなかったり、外周面の形状が曲がったりしていると、圧密体同士を接合したときに、得られるターゲット材に曲がりが生じる場合があることを確認した。この曲がりの問題は、ターゲット材に切削加工などを施して形状を修正する必要があり、歩留の低下につながる。   According to the inventor's study, when the shape of the joint surface of the compacted compact is not flat or the shape of the outer peripheral surface is bent, the target material obtained when the compacts are joined together It was confirmed that bending may occur. This problem of bending requires cutting the target material to correct the shape, leading to a decrease in yield.

本発明の目的は、上記課題に鑑み、原料粉末を圧縮成形した圧密体を積層挿入して加圧焼結した長尺型のターゲット材で曲がりを発生させることなく、形状精度に優れたターゲット材を安定的に良好な歩留で製造する方法を提供することである。   In view of the above problems, an object of the present invention is a target material that is excellent in shape accuracy without causing bending in a long target material that is pressure-sintered by laminating and inserting compacted compacts obtained by compressing raw material powder. It is to provide a method for stably producing a product with a good yield.

本発明者は、上記課題を解決する方法を種々検討した結果、先ず、原料粉末を冷間静水圧プレス(以下、「CIP」という。)で圧縮成型した圧密体を作製することを着想した。そして、この圧密体を所定形状となるように切削加工して成形体とし、該成形体を加圧容器に積層挿入して脱気封止した後にHIPにより加圧焼結することで、等方的組織である形状精度に優れた長尺型のターゲット材を容易に製造できることを見出し、本発明に到達した。   As a result of various studies on methods for solving the above problems, the present inventor first conceived of producing a compacted body obtained by compression-molding a raw material powder with a cold isostatic press (hereinafter referred to as “CIP”). Then, the compacted body is cut into a predetermined shape to form a molded body, and the molded body is laminated and inserted into a pressurized container, degassed and sealed, and then pressure-sintered with HIP, so that isotropic The present inventors have found that a long target material excellent in shape accuracy, which is a target structure, can be easily produced, and has reached the present invention.

すなわち、本発明は、原料粉末を冷間静水圧プレスで圧縮成形して圧密体を作製し、次いで前記圧密体を所定の形状寸法となるように切削加工して成形体とし、該成形体を加圧容器に積層挿入して脱気封止した後に熱間静水圧プレスにより加圧焼結して焼結体を得るターゲット材の製造方法の発明である。
本発明では、前記焼結体を長手方向で複数に切断することもできる。
また、本発明では、前記焼結体を長手方向に対する直角方向で複数に切断することもできる。
That is, in the present invention, a raw material powder is compression-molded by a cold isostatic press to produce a compacted body, and then the compacted body is cut so as to have a predetermined shape dimension to form a compacted body. It is an invention of a method for producing a target material, in which a sintered body is obtained by pressure-sintering by hot isostatic pressing after laminating and inserting into a pressure vessel and sealing with deaeration.
In the present invention, the sintered body can be cut into a plurality of pieces in the longitudinal direction.
Moreover, in this invention, the said sintered compact can also be cut | disconnected into two or more by the orthogonal | vertical direction with respect to a longitudinal direction.

本発明によれば、例えば全長が3000mm以上の長尺型のターゲット材を曲がりを発生させることなく、高い形状精度で、良好な歩留で安定して製造することが可能となる。また、これにより、超大型サイズのLCD基板に安定して金属薄膜を成膜することが可能なターゲット材を提供することができ、LCDの製造にとって有用な技術となる。   According to the present invention, for example, a long target material having a total length of 3000 mm or more can be stably manufactured with high shape accuracy and good yield without causing bending. In addition, this makes it possible to provide a target material capable of stably forming a metal thin film on an ultra-large size LCD substrate, which is a useful technique for LCD production.

本発明の製造方法の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing method of this invention. 本発明の製造方法の別の例を示す模式図である。It is a schematic diagram which shows another example of the manufacturing method of this invention.

本発明のターゲット材の製造方法では、まず、原料粉末をCIPで圧縮成形して圧密体を作製する。プレス成形等の一軸応力により圧縮成形して圧密体を得ようとすると、全体としての総荷重が大きくなり、設備上の制約が生じる場合がある。その上、圧密体内部での密度分布に差が生じる場合がある。
原料粉末を圧縮成形する手段としては、HIPも適用できる可能性があるところ、HIPで得た圧密体は、硬度が高くなり、後述する切削加工を湿式で行なう場合がある。このため、圧密体や切削粉に付着した油分を除去する工程と切削粉を粉砕する工程が必須となる上、加圧焼結時の圧密体同士の接合が困難になるという問題がある。
このため、本発明では、原料粉末を圧縮成形するために、等方的に成形圧力を付加でき、均一で高い相対密度の圧密体を得ることができるCIPを採用する。これにより、本発明は、次工程で積層挿入するのに好適な圧密体の形状に整えることができる。尚、CIPの条件は、圧密体のハンドリング時や後述する切削加工時に必要な十分な強度と相対密度を有する圧密体を得るために、加圧力10〜1000MPaの条件で行うことが好ましい。
本発明で適用する圧密体の相対密度は、50%以上にすることが好ましい。これは、予め圧密体の強度を増しておくことで、運搬等のハンドリングや切削加工時に圧密体の破損を防ぐためである。また、予め圧密体の密度を確保する理由は、複数の成形体に熱間静水圧プレスを施す際に、焼結における個々の成形体の収縮が過度に進み、圧縮による寸法変形で焼結体に曲がりや局所的な収縮等が生じる問題を抑制するためでもある。
In the method for producing a target material of the present invention, first, raw material powder is compression-molded by CIP to produce a consolidated body. When trying to obtain a compacted body by compression molding by uniaxial stress such as press molding, the total load as a whole becomes large, and there may be restrictions on equipment. In addition, there may be a difference in the density distribution inside the compact.
As a means for compression molding the raw material powder, there is a possibility that HIP can also be applied. However, the compacted body obtained by HIP has high hardness, and there is a case where a cutting process described later is performed by a wet process. For this reason, the process of removing the oil component adhering to the compacted body and the cutting powder and the process of pulverizing the cutting powder are essential, and there is a problem that it becomes difficult to join the compacted bodies during pressure sintering.
For this reason, in this invention, in order to compress-mold raw material powder, CIP which can apply a molding pressure isotropically and can obtain the compact with a uniform high relative density is employ | adopted. Thereby, this invention can arrange in the shape of the compact body suitable for carrying out lamination | stacking insertion at the next process. The CIP conditions are preferably performed under a pressure of 10 to 1000 MPa in order to obtain a consolidated body having sufficient strength and relative density required for handling the consolidated body and for cutting processing described later.
The relative density of the compacted body applied in the present invention is preferably 50% or more. This is because the strength of the compacted body is increased in advance to prevent breakage of the compacted body during handling such as transportation or cutting. In addition, the reason why the density of the compacted body is secured in advance is that, when hot isostatic pressing is performed on a plurality of compacts, the shrinkage of the individual compacts in the sintering proceeds excessively, and the compacts are deformed due to compression. This is also for suppressing problems such as bending and local shrinkage.

本発明で適用できる圧密体の形状は、例えば平板型のターゲット材であれば立方体あるいは直方体であり、円筒型のターゲット材であれば円筒体あるいは円柱体であり、特に限定されない。
また、本発明で適用できる原料粉末としては金属粉末が適用でき、例えばMo、Ti、Zr、Hf、V、Nb、Ta、Cr、Wなどの高融点金属単体や、またはそれら複数を混合したものや合金でもよく、特に限定されない。また、本発明で適用する金属粉末の平均粒径は、特に限定はしないところ、0.5〜1000μmのものを用いることが好ましい。尚、本発明でいう平均粒径は、JIS Z 8901で規定される、レーザー光を用いた光散乱法による球相当径で表す。
The shape of the compact that can be applied in the present invention is not particularly limited, for example, a flat target material is a cube or a cuboid, and a cylindrical target material is a cylinder or a column.
In addition, as the raw material powder applicable in the present invention, metal powder can be applied, for example, refractory metals such as Mo, Ti, Zr, Hf, V, Nb, Ta, Cr, W, or a mixture thereof. It may be an alloy or an alloy, and is not particularly limited. In addition, the average particle size of the metal powder applied in the present invention is not particularly limited, but it is preferable to use a metal powder having a size of 0.5 to 1000 μm. In addition, the average particle diameter as used in the field of this invention is represented by the spherical equivalent diameter by the light-scattering method using a laser beam prescribed | regulated by JISZ8901.

本発明のターゲット材の製造方法では、上記で得た圧密体を所定の形状寸法となるように切削加工して成形体とする。上記で説明したように、圧縮成形した圧密体などを積層して長尺のターゲット材を得ようとすると、圧縮成形した圧密体の接合面の形状が平坦でなかったり、外周面の形状が曲がったりしている場合に、圧密体を接合したときに得られるターゲット材に曲がりが生じる場合がある。
本発明では、上記で得たCIPで圧縮成形した圧密体の接合面となる面を平行に切削加工すること、および前記接合面以外の面を平坦に切削加工することで所定の形状寸法の成形体を得る。これにより、成形体を金属容器内に隙間なく整列して積層挿入することができ、得られる焼結体の長手方向の曲がりの抑制が可能となる。その結果、形状精度に優れた焼結体が得られるため、最終の切削加工における削り代を少なくすることができ、歩留向上に寄与する。
また、本発明で適用する圧密体が円筒形状の場合は、内周面も切削加工することが好ましい。
In the method for producing a target material of the present invention, the compacted body obtained above is cut into a molded body so as to have a predetermined shape dimension. As described above, when trying to obtain a long target material by stacking compacted compacts, etc., the shape of the joint surface of the compacted compact is not flat or the outer peripheral surface is bent. In some cases, the target material obtained when the compacted body is joined may be bent.
In the present invention, a surface to be a joint surface of the compacted body compression-molded with the CIP obtained above is cut in parallel, and a surface other than the joint surface is cut flat to form a predetermined shape and size. Get the body. As a result, the compacts can be stacked and inserted into the metal container without gaps, and the bending of the sintered body obtained in the longitudinal direction can be suppressed. As a result, a sintered body excellent in shape accuracy can be obtained, so that the machining allowance in the final cutting process can be reduced, which contributes to the improvement in yield.
Moreover, when the compacted body applied by this invention is a cylindrical shape, it is preferable to also cut an internal peripheral surface.

また、本発明では、圧密体の圧縮成形にCIPを採用しているため、切削加工で発生した粉末に粉砕や洗浄などの処理を施すことなく、圧密体を作製する際の原料粉末や他の原料粉末としてそのまま再利用することが可能となり、工数の削減に加え、ターゲット材の総歩留の低下を抑制することができる。
尚、本発明で圧密体を切削加工する際は、例えば圧密体が立方体あるいは直方体である場合にはフライス盤を用いることが好ましく、圧密体が円柱もしくは円筒形状である場合には旋盤等を用いることが好ましい。
また、ハンドリングによる圧密体や成形体の破損を防ぐために、圧密体の切削加工前または成形体の焼結前に仮焼工程を設けて、圧密体や成形体の表面を硬くして形状保持力を向上させてもよい。
Further, in the present invention, since CIP is adopted for compression molding of the compacted body, the raw material powder or other materials used for producing the compacted body without subjecting the powder generated by the cutting process to grinding or washing. As a raw material powder, it can be reused as it is, and in addition to the reduction in man-hours, the reduction in the total yield of the target material can be suppressed.
When cutting the compacted body in the present invention, for example, when the compacted body is a cube or a rectangular parallelepiped, it is preferable to use a milling machine, and when the compacted body is a cylinder or a cylindrical shape, a lathe or the like is used. Is preferred.
In addition, in order to prevent damage to the compacted body and molded body due to handling, a calcining process is provided before cutting the compacted body or before sintering the molded body to harden the surface of the compacted body and the molded body to maintain shape retention. May be improved.

次に、本発明では、上記で得た成形体を加圧容器に積層挿入して脱気封止した後にHIPにより加圧焼結して焼結体を得る。図1に長尺のターゲット材の製造に際し、成形体に直方体を適用した場合の一例を示す。
本発明では、例えば、直方体からなる成形体1を加圧容器2に積層挿入して、脱気封止する。尚、本発明では、個々の成形体1のハンドリング性を損なわない範囲で成形体1のサイズを大きくすることで、切削工数および積層工数の削減ができるため、好ましい。
また、本発明では、加圧容器2を加熱しながら脱気パイプ3から脱気する。脱気条件は、加熱温度100〜600℃の範囲で、1kPaよりも低い圧力まで減圧を行うことが好ましい。
Next, in the present invention, the molded body obtained above is laminated and inserted into a pressure vessel, deaerated and sealed, and then subjected to pressure sintering with HIP to obtain a sintered body. FIG. 1 shows an example in which a rectangular parallelepiped is applied to a molded body in the production of a long target material.
In the present invention, for example, the molded body 1 made of a rectangular parallelepiped is stacked and inserted into the pressurized container 2 to be deaerated and sealed. In the present invention, it is preferable to increase the size of the molded body 1 within a range that does not impair the handling properties of the individual molded bodies 1 because the number of cutting steps and the number of laminating steps can be reduced.
In the present invention, the pressurized container 2 is deaerated from the deaeration pipe 3 while being heated. The deaeration condition is preferably reduced to a pressure lower than 1 kPa in a heating temperature range of 100 to 600 ° C.

次に、脱気封止した加圧容器2をHIPにより加圧焼結する。HIP条件は、焼結温度を450℃以上で原料粉末の融点未満、加圧力を30〜150MPa、HIP時間を0.5〜10時間とすることが好ましい。
加圧力が150MPaを超えると、耐え得る装置が限られるという問題がある。また、焼結時間が0.5時間未満以下では、焼結を十分に進行させるのが難しく、高密度の焼結体を得にくい。一方、10時間を超える焼結時間は、製造効率において避ける方がよい。
本発明では、温度を450℃以上、加圧力を30MPa以上とすることにより、相対密度を向上させることに加え、成形体1同士の十分な接合強度を得ることができるという効果を奏する。
また、原料粉末の融点未満の温度で焼結することにより、一体成型された焼結体の組織中で結晶粒の粗大化が抑制でき、ターゲット材としてスパッタリングする際に、異常放電等の不具合の発生を低減できるという効果も得られる。本発明では、均一微細な結晶粒および十分な接合強度を有したターゲット材を得るために、HIPの焼結温度を700〜1250℃にすることがより好ましい。
Next, the depressurized and sealed pressurized container 2 is pressure-sintered with HIP. The HIP conditions are preferably a sintering temperature of 450 ° C. or higher, less than the melting point of the raw material powder, a pressure of 30 to 150 MPa, and a HIP time of 0.5 to 10 hours.
When the applied pressure exceeds 150 MPa, there is a problem that the devices that can withstand are limited. Moreover, if the sintering time is less than 0.5 hours, it is difficult to sufficiently advance the sintering, and it is difficult to obtain a high-density sintered body. On the other hand, sintering times exceeding 10 hours are better avoided in production efficiency.
In the present invention, by setting the temperature to 450 ° C. or higher and the applied pressure to 30 MPa or higher, in addition to improving the relative density, there is an effect that a sufficient bonding strength between the molded bodies 1 can be obtained.
In addition, by sintering at a temperature lower than the melting point of the raw material powder, it is possible to suppress the coarsening of crystal grains in the structure of the integrally molded sintered body. The effect that generation | occurrence | production can be reduced is also acquired. In the present invention, in order to obtain a target material having uniform fine crystal grains and sufficient bonding strength, the sintering temperature of HIP is more preferably 700 to 1250 ° C.

本発明においては、複数の成形体を加圧容器に積層挿入する際に、成形体同士の間、すなわち成形体の接合される面間に、成形体と同一組成の原料粉末を介在させてもよい。相対密度が低い圧密体の表面を切削加工すると、得られる成形体の表面粗さが粗くなることがある。このような複数の成形体のみを金属カプセルに積層挿入した場合は、成形体同士の接合面に隙間が生じてしまい、このような状態でHIPをすると、その接合面の焼結が十分に進まない可能性がある。本発明では、成形体同士の間に、成形体と同一組成の原料粉末を介在させることにより、接合面の隙間を完全に除去し、成形体全体を均一に焼結することが可能となり、得られるターゲット材の形状精度をより向上させることができる。   In the present invention, when a plurality of molded bodies are stacked and inserted into a pressurized container, a raw material powder having the same composition as the molded body may be interposed between the molded bodies, that is, between the surfaces to which the molded bodies are joined. Good. When the surface of a compacted body having a low relative density is cut, the surface roughness of the resulting molded body may become rough. When only such a plurality of molded bodies are laminated and inserted into the metal capsule, a gap is formed on the joint surface between the molded bodies. When HIP is performed in such a state, sintering of the joint surface sufficiently proceeds. There is no possibility. In the present invention, by interposing the raw material powder having the same composition as the compacts between the compacts, it is possible to completely remove the gap between the joint surfaces and uniformly sinter the entire compact. The shape accuracy of the target material to be obtained can be further improved.

また、本発明においては、例えば、長手方向で複数に切断して平板状の長尺型ターゲット材とすることもできる。このとき、複数の成形体を積層方向に全長が2000mm以上となるように加圧容器内に積層して加圧焼結したのち、その焼結体を長手方向に切断すると、外周面または切断面をターゲット材のスパッタ面にすることができ、一回の加圧焼結であっても長尺で大面積のスパッタ面を有するターゲット材が複数枚得られるため、生産効率の点でも有用である。
また、ターゲット材の厚さは、スパッタリング装置によって異なるところ、殆どの場合には20mm以下である。そこで、本発明では、加圧焼結後の焼結体を長手方向に対する直角方向で複数に切断することで、一回の加圧焼結であっても平板状のターゲット材が複数枚得られるため、生産効率の点でも有用である。
Moreover, in this invention, it can also cut | disconnect into plurality in a longitudinal direction, and can also be set as a flat target object of a flat form. At this time, after laminating a plurality of molded bodies in a pressure vessel so as to have a total length of 2000 mm or more in the laminating direction and performing pressure sintering, the sintered body is cut in the longitudinal direction to obtain an outer peripheral surface or a cut surface. Can be used as the sputtering surface of the target material, and even with a single pressure sintering, a plurality of target materials having a long and large area sputtering surface can be obtained, which is also useful in terms of production efficiency. .
The thickness of the target material varies depending on the sputtering apparatus, and in most cases is 20 mm or less. Therefore, in the present invention, by cutting the sintered body after pressure sintering into a plurality of pieces in a direction perpendicular to the longitudinal direction, a plurality of flat target materials can be obtained even by one pressure sintering. Therefore, it is useful also in terms of production efficiency.

先ず、市販の平均粒径5μmのMo粉末をゴム製の型内に充填し、20℃で成形圧225MPaのCIP処理をして円筒型の圧密体を6個作製した。
次に、上記で得た円筒型の圧密体を、図2に示す円筒型成形体1の寸法が外径=188mm、内径=138mm、高さ=125mmとなるように旋盤で切削加工を実施した。
次に、これらの円筒型の成形体1を1200℃の水素雰囲気で10時間の仮焼きをして、円筒型の成形体1の形状保持力を向上させた。このときの円筒型の成形体1の相対密度をアルキメデス法により測定した結果、75.0%であった。尚、本発明でいう相対密度とは、アルキメデス法により測定されたかさ密度を、成形体の組成比から得られる質量比で算出した元素単体の加重平均として得た理論密度で除した値に100を乗じて得た値をいう。
First, a commercially available Mo powder having an average particle size of 5 μm was filled in a rubber mold, and CIP treatment was performed at 20 ° C. under a molding pressure of 225 MPa to prepare six cylindrical compacts.
Next, the cylindrical compacted body obtained above was cut with a lathe so that the dimensions of the cylindrical molded body 1 shown in FIG. 2 were an outer diameter = 188 mm, an inner diameter = 138 mm, and a height = 125 mm. .
Next, these cylindrical molded bodies 1 were calcined in a hydrogen atmosphere at 1200 ° C. for 10 hours to improve the shape retention of the cylindrical molded body 1. The relative density of the cylindrical molded body 1 at this time was measured by the Archimedes method, and as a result, it was 75.0%. The relative density as used herein refers to a value obtained by dividing the bulk density measured by the Archimedes method by the theoretical density obtained as a weighted average of elemental elements calculated by the mass ratio obtained from the composition ratio of the molded body. The value obtained by multiplying.

上記で得た6個の円筒型の成形体1を、図2に示す円筒状の加圧容器2に積層するように全数挿入して、450℃の温度下で加熱しながら脱気パイプ3から脱気して封止した。
次に、加圧容器2を温度1250℃、圧力145MPa、保持時間5時間の条件でHIP処理を施した後、機械加工により加圧容器2を除去して全長が670mmの円筒型のターゲット材を得た。
All six cylindrical shaped bodies 1 obtained above are inserted so as to be stacked on the cylindrical pressurized container 2 shown in FIG. 2, and are heated from the deaeration pipe 3 while being heated at a temperature of 450 ° C. Degassed and sealed.
Next, the pressurized container 2 is subjected to HIP treatment under the conditions of a temperature of 1250 ° C., a pressure of 145 MPa, and a holding time of 5 hours, and then the pressurized container 2 is removed by machining to obtain a cylindrical target material having a total length of 670 mm. Obtained.

上記で得た円筒型のターゲット材は、円筒型成形体1の破損による変形や、局所的に異常収縮した等の外観上に異常な箇所は認められず、全長での曲がりは3mm未満であり、ターゲット材として良好な形状であることが確認できた。また、円筒型の焼結体から機械加工により試験片を採取し、この焼結体の密度をアルキメデス法により測定した結果、相対密度で99.0%であった。
以上の結果から、本発明の製造方法によれば、形状精度に優れたターゲット材が得られることが確認できた。
The cylindrical target material obtained above does not show any abnormal parts on the appearance such as deformation due to breakage of the cylindrical molded body 1 or abnormal shrinkage locally, and the bending at the full length is less than 3 mm. It was confirmed that the target material had a good shape. Further, a test piece was collected from the cylindrical sintered body by machining, and the density of the sintered body was measured by Archimedes method. As a result, the relative density was 99.0%.
From the above results, it was confirmed that according to the manufacturing method of the present invention, a target material excellent in shape accuracy was obtained.

1 成形体
2 加圧容器
3 脱気パイプ
1 Molded body 2 Pressure vessel 3 Deaeration pipe

Claims (3)

原料粉末を冷間静水圧プレスで圧縮成形して圧密体を作製し、次いで前記圧密体を所定の形状寸法となるように、接合面となる面を平行に切削加工すること、および前記接合面以外の面を平坦に切削加工することで成形体とし、該成形体を加圧容器に積層挿入して脱気封止した後に熱間静水圧プレスにより加圧焼結して焼結体を得ることを特徴とするターゲット材の製造方法。 The raw material powder is compression-molded by a cold isostatic press to produce a compacted body, and then the joint surface is cut in parallel so that the compacted body has a predetermined shape dimension , and the jointed surface The other surface is cut into a flat shape to form a molded body, and the molded body is stacked and inserted into a pressure vessel, deaerated and sealed, and then subjected to pressure sintering with a hot isostatic press to obtain a sintered body. A method for producing a target material. 前記焼結体を長手方向で複数に切断することを特徴とする請求項1に記載のターゲット材の製造方法。   The method for producing a target material according to claim 1, wherein the sintered body is cut into a plurality of pieces in the longitudinal direction. 前記焼結体を長手方向に対する直角方向で複数に切断することを特徴とする請求項1に記載のターゲット材の製造方法。   The method for producing a target material according to claim 1, wherein the sintered body is cut into a plurality of pieces in a direction perpendicular to the longitudinal direction.
JP2014053106A 2014-03-17 2014-03-17 Target material manufacturing method Active JP6331125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014053106A JP6331125B2 (en) 2014-03-17 2014-03-17 Target material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014053106A JP6331125B2 (en) 2014-03-17 2014-03-17 Target material manufacturing method

Publications (2)

Publication Number Publication Date
JP2015175032A JP2015175032A (en) 2015-10-05
JP6331125B2 true JP6331125B2 (en) 2018-05-30

Family

ID=54254502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014053106A Active JP6331125B2 (en) 2014-03-17 2014-03-17 Target material manufacturing method

Country Status (1)

Country Link
JP (1) JP6331125B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000203929A (en) * 1999-01-14 2000-07-25 Hitachi Metals Ltd Sputtering target and its production
JP3748221B2 (en) * 2001-10-23 2006-02-22 日立金属株式会社 Mo-based sputtering target and method for producing the same
JP2003328117A (en) * 2002-05-15 2003-11-19 Tosoh Corp Sputtering target
JP4574949B2 (en) * 2003-01-14 2010-11-04 株式会社東芝 Sputtering target and manufacturing method thereof
JP4354721B2 (en) * 2003-03-25 2009-10-28 日鉱金属株式会社 Method for producing silicon sintered body
JP2006028536A (en) * 2004-07-12 2006-02-02 Hitachi Metals Ltd Sintered mo-based target material manufacturing method
US20090010792A1 (en) * 2007-07-02 2009-01-08 Heraeus Inc. Brittle metal alloy sputtering targets and method of fabricating same
JP5808066B2 (en) * 2011-05-10 2015-11-10 エイチ.シー.スターク インク. Compound target

Also Published As

Publication number Publication date
JP2015175032A (en) 2015-10-05

Similar Documents

Publication Publication Date Title
JP5679315B2 (en) Manufacturing method of cylindrical Mo alloy target
JP2005240160A (en) METHOD OF PRODUCING Mo-BASED TARGET MATERIAL
JP5944482B2 (en) Tungsten sintered sputtering target and tungsten film formed using the target
JP2013083000A (en) METHOD OF MANUFACTURING SINTERED Mo ALLOY SPUTTERING TARGET MATERIAL
TW201704494A (en) Poly-crystalline tungsten and poly-crystalline tungsten alloy, and method of producing same
KR20130043690A (en) Tungsten target and method for producing same
JP2013204051A (en) Method for manufacturing cylindrical sputtering target material
US10079091B2 (en) Method for manufacturing sintered magnet
JP2003342720A (en) Method of producing molybdenum target for sputtering and molybdenum target
JP2015175034A (en) Method for producing sputtering target material
JP2015175035A (en) Method of manufacturing cylinder type sputtering target material
JP6475147B2 (en) Mold for discharge plasma sintering and discharge plasma sintering method
JP6331125B2 (en) Target material manufacturing method
CN105849829B (en) The method for manufacturing rare-earth magnet
JP4027733B2 (en) Target material
JP2010185137A (en) Method for producing sintered sheet material
JP6459058B2 (en) Mo alloy target
JP6947625B2 (en) Manufacturing method of sintered magnet, graphite mold for hot press and graphite mold for hot press
CN102294479B (en) Method for preparing sintered neodymium iron boron device
JP2006028536A (en) Sintered mo-based target material manufacturing method
CN106575569A (en) Radially anisotropic sintered ring magnet and manufacturing method therefor
JP2015175033A (en) Method of manufacturing cylinder type sputtering target material
CN105103246B (en) The method for manufacturing rare-earth magnet
JP6735990B2 (en) Rare earth magnet manufacturing method
JP4706980B2 (en) Manufacturing method of Mo target material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180412

R150 Certificate of patent or registration of utility model

Ref document number: 6331125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350