JP2010185137A - Method for producing sintered sheet material - Google Patents

Method for producing sintered sheet material Download PDF

Info

Publication number
JP2010185137A
JP2010185137A JP2010005930A JP2010005930A JP2010185137A JP 2010185137 A JP2010185137 A JP 2010185137A JP 2010005930 A JP2010005930 A JP 2010005930A JP 2010005930 A JP2010005930 A JP 2010005930A JP 2010185137 A JP2010185137 A JP 2010185137A
Authority
JP
Japan
Prior art keywords
sintered
spacer
raw material
material powder
relative density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010005930A
Other languages
Japanese (ja)
Inventor
Hidetaka Yakabe
秀隆 矢ヶ部
Katsunori Iwasaki
克典 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2010005930A priority Critical patent/JP2010185137A/en
Publication of JP2010185137A publication Critical patent/JP2010185137A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method where many pieces of sintered sheet materials are produced from a sintered compact obtained by single HIP treatment, by which the loss of raw materials is reduced, and simultaneously, sintered sheet materials having high sintered density are efficiently produced. <P>SOLUTION: In the method for producing sintered sheet materials, a packed bed of raw material powder and a spacer with a relative density of 50 to 85% partitioning the packed bed are alternately arranged at the inside of a pressure vessel; thereafter, hot hydrostatic press treatment is performed to the pressure vessel so as to obtain a sintered compact, and the spacer part of the sintered compact is cut away so as to obtain a plurality of sintered sheet materials. Further, it is particularly effective when a high melting point metal having a melting point higher than that of iron is used as the raw material powder. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、一度の熱間静水圧プレス処理によって、多数の焼結板材を得る焼結板材の製造方法に関するものである。   The present invention relates to a method for producing a sintered plate material, in which a large number of sintered plate materials are obtained by a single hot isostatic pressing process.

熱間静水圧プレス(以下、HIPと略す)処理は、加圧空間を特定温度に加熱することで高圧環境を形成し、加圧空間に配置した処理品に、特定温度で高圧且つ等方的な圧力を作用させる技術である。
HIP処理の適用は多岐にわたるが、その用途の一例として粉末冶金における焼結プロセスへの適用がある。具体的には、軟鉄やステンレス製などの圧密用の焼結容器に原料粉末を充填した後、容器内を脱気、封止して、これをHIP装置内の加圧空間で加圧焼結するものである。この方法によれば、均一微細な組織を得ることができるとともに、溶製法では製造の困難な高融点の金属材料を得ることも可能である。
Hot isostatic pressing (hereinafter abbreviated as HIP) treatment forms a high-pressure environment by heating the pressurized space to a specific temperature, and the treated product placed in the pressurized space is pressurized and isotropic at the specified temperature. It is a technology that applies a large pressure.
There are various applications of the HIP treatment, and an example of its use is application to a sintering process in powder metallurgy. Specifically, after filling the sintering powder for compaction such as soft iron or stainless steel with raw material powder, the inside of the container is deaerated and sealed, and this is pressure sintered in the pressure space in the HIP device. To do. According to this method, a uniform and fine structure can be obtained, and a high melting point metal material that is difficult to manufacture by a melting method can be obtained.

また、HIP処理によって効率的に所望サイズの焼結体を得る方法として、一度のHIP処理で得た焼結体を切断して多数の焼結板材を得る方法も提案されている(例えば、特許文献1参照)。
また、原料粉末の予備成形体を形成し、焼結容器内にこの予備成形体間にスペーサーを介して積層した後にHIP処理を行なって一度のHIP処理で多数の焼結板材を得る方法も提案されている(例えば、特許文献2参照)。
Further, as a method for efficiently obtaining a sintered body having a desired size by HIP treatment, a method for obtaining a large number of sintered plate materials by cutting the sintered body obtained by one HIP treatment has been proposed (for example, patents). Reference 1).
Also proposed is a method of forming a preform of raw material powder, laminating the preforms in a sintering container via a spacer, and then performing HIP treatment to obtain a large number of sintered plate materials by one HIP treatment. (For example, refer to Patent Document 2).

特開2005−113188号公報JP-A-2005-113188 特開昭63−290272号公報JP-A-63-290272

特許文献1に開示される方法は、一度に多数枚の焼結板材が得られ、生産効率の観点からも好ましいものである。しかし、特許文献1に記載する方法では、焼結体を切断して複数枚の焼結板材を作製する際に、切断しろが発生してその部分が除去されるために、製品の歩留りが低く望ましくない。特に焼結板材の原料として高価な高融点の金属材料を使用する場合には、切断しろの除去部分の発生はコスト上大きな問題となる。
また、特許文献2に開示される方法は、予備成形体間にスペーサーを介して積層してHIP処理することで一度に多数枚の焼結板材が得られる優れた方法である。しかし、スペーサーを介して積層してHIP処理をする場合には、焼結板材の一部で焼結密度が上がらない場合があることを確認した。
The method disclosed in Patent Document 1 is preferable from the viewpoint of production efficiency because a large number of sintered plate materials can be obtained at one time. However, in the method described in Patent Document 1, when a sintered body is cut to produce a plurality of sintered plate materials, a cutting margin is generated and the portion is removed, so that the product yield is low. Not desirable. In particular, when an expensive high-melting-point metal material is used as a raw material for the sintered plate material, the generation of a portion for removing the cutting margin becomes a serious problem in terms of cost.
In addition, the method disclosed in Patent Document 2 is an excellent method in which a large number of sintered plate materials can be obtained at a time by stacking the preforms via spacers and performing HIP treatment. However, it has been confirmed that when the HIP process is performed by laminating via a spacer, the sintered density may not increase at a part of the sintered plate material.

本発明の目的は、上記課題に鑑み、一度のHIP処理によって得られる焼結体から多数枚の焼結板材を製造する方法において、原料のロスを低減すると同時に高い焼結密度の焼結板材を効率的に製造する方法を提供することである。   In view of the above problems, an object of the present invention is to produce a large number of sintered plate materials from a sintered body obtained by a single HIP process. It is to provide a method for producing efficiently.

本発明者等は、HIP処理によって得られる焼結体における切断部分を、HIP処理前の加圧容器中で予め原料粉末と同程度の相対密度のスペーサーとして構成し、得られた焼結体ではそのスペーサー部を切断除去することで、原料のロスを低減すると同時に高い焼結密度でバラツキの抑制された多数枚の焼結板材が得られることを見いだし、本発明に到達した。   The inventors of the present invention have configured the cut portion in the sintered body obtained by the HIP treatment as a spacer having a relative density similar to that of the raw material powder in a pressurized container before the HIP treatment. By cutting and removing the spacer portion, it was found that a large number of sintered plate materials with reduced sintering loss and high dispersion were obtained, and the present invention was achieved.

すなわち本発明は、焼結容器内に原料粉末の充填層と該充填層を仕切る相対密度50〜85%のスペーサーとを交互に配置した後、前記焼結容器に熱間静水圧プレス処理を施して焼結体を得、該焼結体のスペーサー部を切断除去して複数枚の焼結板材を得る焼結板材の製造方法である。   That is, according to the present invention, a packed bed of raw material powder and spacers having a relative density of 50 to 85% partitioning the packed bed are alternately arranged in the sintered container, and then subjected to a hot isostatic pressing process on the sintered container. Thus, a sintered body is obtained, and a spacer portion of the sintered body is cut and removed to obtain a plurality of sintered sheets.

本発明においては、原料粉末として、鉄よりも融点の高い高融点金属を用いる場合に特に有効である。   In the present invention, it is particularly effective when a refractory metal having a higher melting point than iron is used as the raw material powder.

本発明によれば、焼結体を切断して複数枚の焼結板材を得る際に原料ロスを低減できるため、高価な金属材料の焼結板材を得る方法として、欠くことのできない技術となる。   According to the present invention, since loss of raw materials can be reduced when a sintered body is cut to obtain a plurality of sintered plate materials, it is an indispensable technique as a method for obtaining an expensive metal material sintered plate material. .

本発明の原料粉末及びスペーサーの充填方法の一例を示す模式図である。It is a schematic diagram which shows an example of the filling method of the raw material powder and spacer of this invention. 本発明の原料粉末及びスペーサーの充填方法の一例を示す模式図である。It is a schematic diagram which shows an example of the filling method of the raw material powder and spacer of this invention. Mo焼結板材の相対密度と加圧容器の位置関係を示す図である。It is a figure which shows the relative density of Mo sintered board, and the positional relationship of a pressurized container.

本発明の重要な特徴は、HIP処理による焼結体の切断部分をスペーサーで構成し、切断しろとしてのスペーサーを切断することで、複数枚の焼結板材を得る際に原料の切断ロスを低減できることを見出した点である。
また、HIP処理に際しては、HIP用の焼結容器に特定温度で高圧かつ等方的な圧力が付与される。本発明者が、焼結容器に原料粉末の充填層とその充填層を仕切るスペーサーを交互に配置して、HIP処理を行なったところ、原料粉末の焼結容器への充填密度とスペーサーの相対密度に大きな差がある場合には、焼結容器内の中心部の焼結密度が上がらず、焼結容器内の壁面付近部との焼結密度にバラツキが発生するという問題を発見した。そこで、本発明においては、スペーサーの相対密度を原料粉末の充填密度とほぼ同等となる50〜85%に制御する。このスペーサーの相対密度の制御も本発明における重要な特徴である。
An important feature of the present invention is that the cutting part of the sintered body by HIP processing is composed of spacers, and the spacers as cutting margins are cut to reduce the cutting loss of raw materials when obtaining a plurality of sintered plate materials It is a point that I found out.
In addition, during the HIP process, a high pressure and isotropic pressure is applied to the HIP sintering container at a specific temperature. When the inventor alternately arranged the packing layer of the raw material powder and the spacer partitioning the packing layer in the sintering container and performed the HIP treatment, the packing density of the raw material powder into the sintering container and the relative density of the spacer When there is a large difference between the two, there is a problem that the sintering density at the central portion in the sintering container does not increase, and the sintering density with the vicinity of the wall surface in the sintering container varies. Therefore, in the present invention, the relative density of the spacers is controlled to 50 to 85%, which is substantially equal to the packing density of the raw material powder. Control of the relative density of the spacer is also an important feature in the present invention.

以下、さらに具体的な例を含めて説明する。
図1に本発明の焼結容器内に原料粉末の充填層と充填層を仕切るスペーサーとを交互に配置した状態の一例を示し説明する。まず、図1(a)に示すように、焼結容器1にスペーサー2を設置し、図1(b)に示すように、設置したスペーサーと焼結容器で形成される空間に原料粉末3を充填することで充填層を形成し、焼結容器内に原料粉末とスペーサーとを交互に配置する。その後、図1(c)に示すように、脱気孔5付きの蓋体4を焼結容器に溶接し、脱気孔から焼結容器内を脱気して脱気孔を封止する。封止した加圧容器をHIP装置内に配置し、HIP処理を行って、焼結体を得る。得られた焼結体は、原料の焼結部とスペーサー部を有しているので、このスペーサー部を切断除去することで、複数枚の焼結板材が得られる。
なお、別の焼結容器内に原料粉末の充填層と充填層を仕切るスペーサーとを交互に配置した状態の一例を示す図2のように、原料粉末を焼結容器内に所定の厚さになるように充填して充填層を形成した上に、スペーサーを設置し、更にその上に原料粉末の充填を繰り返して、原料粉末とスペーサーを交互に配置することもできる。
Hereinafter, further specific examples will be described.
FIG. 1 illustrates an example of a state in which a packed bed of raw material powders and spacers that partition the packed bed are alternately arranged in the sintering container of the present invention. First, as shown in FIG. 1 (a), a spacer 2 is installed in the sintering container 1, and as shown in FIG. 1 (b), the raw material powder 3 is placed in a space formed by the installed spacer and the sintering container. By filling, a packed layer is formed, and the raw material powder and the spacer are alternately arranged in the sintering container. Thereafter, as shown in FIG. 1C, the lid 4 with the deaeration holes 5 is welded to the sintering container, and the inside of the sintering container is deaerated from the deaeration holes to seal the deaeration holes. The sealed pressurized container is placed in the HIP apparatus and subjected to HIP treatment to obtain a sintered body. Since the obtained sintered body has a sintered portion of a raw material and a spacer portion, a plurality of sintered plate materials can be obtained by cutting and removing the spacer portion.
In addition, as shown in FIG. 2 which shows an example of the state which alternately arrange | positioned the filling layer of raw material powder and the spacer which partitions a filling layer in another sintering container, raw material powder is made into predetermined thickness in a sintering container. It is also possible to arrange the raw material powder and the spacer alternately by repeating the filling of the raw material powder on the spacer after the filling layer is formed so as to form the filling layer.

また、本発明においては、スペーサーの相対密度の設定が重要となる。HIP処理では、処理材に等方的に圧力が付与されるが、原料粉末と別材質のスペーサーとを同時にHIP処理する際には、その表面部と中心部で焼結の進行に差が生じると考えられる。特に、焼結容器に配置される原料粉末の相対密度に比べてスペーサーの相対密度が高い場合には焼結進行に顕著な差が発生し、中心部の焼結体の相対密度は上がらない。
そこで、加圧容器に充填する原料粉末の充填密度とスペーサーの相対密度をほぼ同等にしてHIP処理を施すことが、焼結体の密度バラツキを抑制する上で重要になる。原料粉末の充填密度は、その組成、原料粉末の形状・粒径によって異なるが、原料粉末の加圧容器への充填密度は凡そ50〜85%であるため、スペーサーの相対密度の範囲も50〜85%とする。尚、スペーサーの相対密度は、アルキメデス法により測定した密度とスペーサー原料の理論密度の相対比で表される密度を言い、相対密度(%)=100×測定密度/理論密度で表される。
In the present invention, the setting of the relative density of the spacer is important. In the HIP treatment, pressure is applied to the treated material isotropically, but when the raw material powder and the spacer of another material are simultaneously subjected to the HIP treatment, there is a difference in the progress of sintering between the surface portion and the central portion. it is conceivable that. In particular, when the relative density of the spacer is higher than the relative density of the raw material powder arranged in the sintering container, a significant difference occurs in the progress of the sintering, and the relative density of the sintered body at the center does not increase.
Therefore, it is important to perform the HIP treatment by making the packing density of the raw material powder to be filled in the pressurized container substantially the same as the relative density of the spacer in order to suppress the density variation of the sintered body. The packing density of the raw material powder varies depending on its composition and the shape and particle size of the raw material powder. However, since the packing density of the raw material powder into the pressurized container is about 50 to 85%, the relative density range of the spacer is also 50 to 50%. 85%. In addition, the relative density of a spacer means the density represented by the relative ratio of the density measured by Archimedes method, and the theoretical density of a spacer raw material, and is represented by relative density (%) = 100x measured density / theoretical density.

また、焼結容器内に配置する原料粉末は、HIP処理による焼結後に所望の形状が得られるように設定すれば良く、原料粉末の充填密度から収縮量を計算して決定できる。また、スペーサーも相対密度50〜85%であるため焼結後の収縮量を考慮して形状を設定する必要がある。また、スペーサーはHIP処理後に切断除去するため、切断工具の幅よりも大きくなるような厚さとすることが原料の切断ロスを低減する上で望ましい。   The raw material powder to be arranged in the sintering vessel may be set so that a desired shape is obtained after sintering by HIP treatment, and can be determined by calculating the amount of shrinkage from the packing density of the raw material powder. Further, since the spacer also has a relative density of 50 to 85%, it is necessary to set the shape in consideration of the shrinkage after sintering. In addition, since the spacer is cut and removed after the HIP process, it is desirable to make the spacer larger than the width of the cutting tool in order to reduce the cutting loss of the raw material.

HIP処理は、焼結容器が溶融しない温度で可能な範囲の高圧を発生させることで、原料粉末を高密度に焼結可能な優位な焼結処理方法である。焼結容器の材質としては、軟鉄SPCCやステンレス等の材質が適用でき、これらの鉄基材質を適用した場合であれば、1000℃〜1400℃程度の温度、50〜150MPaの圧力、0.5〜10hの保持時間が用いられることが多い。
この条件により、例えば鉄よりも融点の高い高融点金属のMo、Wなどを原料粉末として相対密度98%以上の焼結体を得ることができる。また、上記の高融点金属を主体とし、Ti、Nb、Zr等の高融点金属からなる複数の元素の粉末を混合して充填して焼結する合金の焼結体とすることも可能である。
The HIP process is an advantageous sintering process that can sinter the raw material powder at a high density by generating a high pressure within a possible range at a temperature at which the sintering container does not melt. As the material of the sintering container, materials such as soft iron SPCC and stainless steel can be applied. If these iron base materials are applied, a temperature of about 1000 ° C. to 1400 ° C., a pressure of 50 to 150 MPa, 0.5 A holding time of -10 h is often used.
Under these conditions, a sintered body having a relative density of 98% or more can be obtained using, for example, refractory metal Mo or W having a melting point higher than that of iron as raw material powder. It is also possible to make a sintered body of an alloy that is mainly composed of the above-mentioned refractory metal and is mixed and filled with a powder of a plurality of elements made of a refractory metal such as Ti, Nb, Zr and the like. .

また、HIP処理により得られた焼結体のスペーサー部の切断除去方法としては、ワイヤー放電加工や鋸切断があり、スペーサーの材質に合わせて適宜選定すると良い。   Further, as a method for cutting and removing the spacer portion of the sintered body obtained by the HIP process, there are wire electric discharge machining and saw cutting, and it is preferable to select appropriately according to the material of the spacer.

本発明のスペーサーは、焼結容器に原料粉末とともに配置されてHIP処理される。また、HIP処理後に切断除去される。そのため、スペーサーの材質は、HIP処理の高温高圧下で溶融せず、原料粉末よりも安価である必要がある。このような材料として、例えば、Fe、Cu、Cr又は、これらを主体とする合金がある。これらの元素は比較的安価なためスペーサーとして適した材料である。
また、原料粉末とスペーサーがHIP処理による焼結時に反応する場合は、スペーサーを金属箔で覆っても良い。金属箔としては、ステンレス箔やNb箔等があり、原料粉末との反応性や金属箔の融点を考慮して適宜材質を選定すると良い。特にNb箔は原料粉末中の酸素を吸収するので、低酸素濃度の焼結体を作製する場合には好適である。
The spacer of the present invention is disposed in the sintering container together with the raw material powder and subjected to HIP processing. Further, it is cut and removed after the HIP process. Therefore, the material of the spacer needs to be less expensive than the raw material powder without melting under the high temperature and high pressure of the HIP process. Examples of such a material include Fe, Cu, Cr, and alloys mainly composed of these. Since these elements are relatively inexpensive, they are suitable materials as spacers.
Moreover, when the raw material powder and the spacer react during sintering by HIP treatment, the spacer may be covered with a metal foil. Examples of the metal foil include stainless steel foil and Nb foil. The material may be appropriately selected in consideration of the reactivity with the raw material powder and the melting point of the metal foil. In particular, since the Nb foil absorbs oxygen in the raw material powder, it is suitable for producing a sintered body having a low oxygen concentration.

また、スペーサーとしては、焼結容器内で原料粉末の充填層を仕切ることが可能で、相対密度が50〜85%であれば適用可能である。例えば、部分的に空隙を有する所望の相対密度のポーラス状板材や、粉末材料を所望の相対密度に圧縮成形した板材あるいは焼結した板材が適用可能である。
なお、スペーサーの作製方法は、相対密度50〜85%のスペーサーが得られる方法であれば適用可能である。例えば、スペーサーの原料となる粉末を焼結時間や焼結温度を調節したHIPやホットプレスで所望の相対密度の板状等の焼結体とする方法がある。その他の方法として、スペーサーの原料粉末を冷間でプレス成形して所望の相対密度の板状等の成形体としても良い。
Moreover, as a spacer, it is possible to partition the packed layer of raw material powder in a sintering container, and it is applicable if the relative density is 50 to 85%. For example, a porous plate material having a desired relative density partially having voids, a plate material obtained by compression molding a powder material to a desired relative density, or a sintered plate material can be applied.
In addition, the manufacturing method of a spacer is applicable if it is a method by which a spacer with a relative density of 50 to 85% is obtained. For example, there is a method in which a powder as a raw material of the spacer is made into a sintered body having a desired relative density, such as a plate, by HIP or hot press in which the sintering time and the sintering temperature are adjusted. As another method, the raw material powder of the spacer may be cold-molded to form a plate or the like having a desired relative density.

Fe粉末を超硬製の金型に充填し、表1に示す各加圧圧力の条件で冷間プレスを施してFe成形体を作製し、切断・機械加工して145.5×5.6×158(mm)のスペーサーを得、作製したスペーサーの相対密度をアルキメデス法により測定した。   Fe powder is filled in a cemented carbide die, cold pressed under the conditions of each pressurizing pressure shown in Table 1 to produce a Fe compact, and cut and machined to 145.5 × 5.6. A spacer of × 158 (mm) was obtained, and the relative density of the produced spacer was measured by the Archimedes method.

また、Fe粉末を軟鋼製の焼結容器内に充填し、表2に示す各加圧圧力、加熱温度、保持時間の条件で熱間静水圧プレス(HIP)による加圧焼結を施し得られたFe焼結体を切断・機械加工して145.5×5.6×158(mm)のスペーサーを得、作製したスペーサーの相対密度をアルキメデス法により測定した。   Also, Fe powder can be filled in a sintered vessel made of mild steel and subjected to pressure sintering by hot isostatic pressing (HIP) under the conditions of each pressure, heating temperature and holding time shown in Table 2. The Fe sintered body was cut and machined to obtain a spacer of 145.5 × 5.6 × 158 (mm), and the relative density of the prepared spacer was measured by the Archimedes method.

次に、軟鋼製の焼結容器(145.5×145.5×高さ175mm)に上記で作製した試料2のスペーサー(145.5×5.6×158mm)の最大面が焼結容器底面に対して垂直になるような方向で図1に示すように配置し、スペーサーと焼結容器で形成される空間(8.4mm間隔)に原料粉末として粒度分布(d50)が100μmのMo粉末を充填した。この際のMo原料粉末の充填密度は59%であった。
また、試料3、4のスペーサーについても上記と同様に焼結容器内に配置し、同様の粒度分布のMo粉末を充填した。いずれのMo原料粉末の充填密度も59%であった。
なお、試料1のスペーサーは相対密度が低く形状を保持することが困難であり、スペーサーとして使用することができなかった。
Next, the maximum surface of the spacer (145.5 × 5.6 × 158 mm) of the sample 2 prepared above in the mild steel sintered container (145.5 × 145.5 × height 175 mm) is the bottom surface of the sintered container. As shown in FIG. 1, the Mo powder having a particle size distribution (d50) of 100 μm is used as a raw material powder in the space formed by the spacer and the sintering vessel (at intervals of 8.4 mm). Filled. At this time, the packing density of the Mo raw material powder was 59%.
Further, the spacers of Samples 3 and 4 were also placed in the sintering container in the same manner as described above, and filled with Mo powder having the same particle size distribution. The packing density of any Mo raw material powder was 59%.
In addition, the spacer of the sample 1 had a low relative density, and it was difficult to hold | maintain a shape, and could not be used as a spacer.

次に、上記でMo原料粉末とスペーサーを交互に配置した各焼結容器に図1(c)に示すように蓋体を溶接し、蓋体の脱気孔から真空脱気し焼結容器を封止した。封止した焼結容器をHIP装置内に設置して、加圧圧力140MPa、加熱温度1250℃、保持時間5時間の条件でHIP処理を施し焼結体を得た。得られた焼結体のスペーサー部を鋸切断機で切断除去して10枚に分断し、各々表面を研削による機械加工を施して、110×120×5(mm)のMo焼結板材とした。アルキメデス法により作製した各々10枚のMo焼結板材の密度を測定し相対密度を算出した。算出した相対密度結果について焼結容器内の位置と相対密度の関係を図3に示す。   Next, a lid is welded to each sintering vessel in which the Mo raw material powder and the spacer are alternately arranged as shown in FIG. Stopped. The sealed sintered container was placed in a HIP apparatus, and subjected to HIP treatment under a pressure of 140 MPa, a heating temperature of 1250 ° C., and a holding time of 5 hours to obtain a sintered body. The spacer part of the obtained sintered body was cut and removed with a saw cutter and divided into 10 pieces, and each surface was subjected to machining by grinding to obtain a Mo sintered plate material of 110 × 120 × 5 (mm). . The relative density was calculated by measuring the density of each of the 10 sintered Mo plates produced by the Archimedes method. FIG. 3 shows the relationship between the position in the sintering container and the relative density for the calculated relative density result.

また、比較例として、145.5×158×5.6(mm)、相対密度100%のSPCC(JIS G3141冷間圧延鋼板)製のスペーサー(試料5)を使用する以外は、上記と同様の条件で焼結容器にスペーサーとMo原料粉末を交互に配置し、HIP処理を施して焼結体を得た。なお、Mo原料粉末の充填密度は59%であった。得られた焼結体のスペーサー部を鋸切断機で切断除去して10枚に分断し、各々表面を研削機械加工を施して、110×120×5(mm)のMo焼結板材とした。アルキメデス法により作製した10枚のMo焼結板材の密度を測定し相対密度を算出した。算出した相対密度結果について焼結容器内の位置と相対密度の関係を図3に示す。   As a comparative example, the same as above except that a spacer (sample 5) made of SPCC (JIS G3141 cold rolled steel sheet) having a relative density of 100% × 158 × 5.6 (mm) is used. Under the conditions, spacers and Mo raw material powder were alternately arranged in the sintering container, and subjected to HIP treatment to obtain a sintered body. The packing density of the Mo raw material powder was 59%. The spacer portion of the obtained sintered body was cut and removed with a saw cutter and divided into 10 pieces, and each surface was subjected to grinding machining to obtain a 110 × 120 × 5 (mm) Mo sintered plate material. The relative density was calculated by measuring the density of 10 Mo sintered sheets produced by the Archimedes method. FIG. 3 shows the relationship between the position in the sintering container and the relative density for the calculated relative density result.

図3から、試料2〜4のスペーサーを使用した場合には、得られた焼結板材は焼結容器内での位置に関わらず98%以上の相対密度を実現できることが確認できる。一方、相対密度が高い試料5のスペーサーを使用した場合は、加圧容器中央部になるにつれて相対密度が低下し、特に中央部の焼結板材の相対密度は相対密度が98%に満たないことが分かる。   From FIG. 3, when the spacers of Samples 2 to 4 are used, it can be confirmed that the obtained sintered plate material can realize a relative density of 98% or more regardless of the position in the sintering container. On the other hand, when the spacer of the sample 5 having a high relative density is used, the relative density decreases as it reaches the central part of the pressurized container, and the relative density of the sintered plate material in the central part is less than 98%. I understand.

1.焼結容器、2.スペーサー、3.原料粉末、4.蓋体、5.脱気孔 1. 1. sintering container; Spacer, 3. Raw material powder, 4. Lid, 5. Deaeration

Claims (2)

焼結容器内に原料粉末の充填層と該充填層を仕切る相対密度50〜85%のスペーサーとを交互に配置した後、前記焼結容器に熱間静水圧プレス処理を施して焼結体を得、該焼結体のスペーサー部を切断除去して複数枚の焼結板材を得ることを特徴とする焼結板材の製造方法。   After alternately placing a packed bed of raw material powder and spacers having a relative density of 50 to 85% in the sintered container to partition the packed bed, the sintered container is subjected to hot isostatic pressing to obtain a sintered body. A method for producing a sintered plate material comprising obtaining a plurality of sintered plate materials by cutting and removing the spacer portion of the sintered body. 原料粉末として、鉄よりも融点の高い高融点金属を用いることを特徴とする請求項1に記載の焼結板材の製造方法。   The method for producing a sintered plate material according to claim 1, wherein a refractory metal having a melting point higher than that of iron is used as the raw material powder.
JP2010005930A 2009-01-15 2010-01-14 Method for producing sintered sheet material Pending JP2010185137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010005930A JP2010185137A (en) 2009-01-15 2010-01-14 Method for producing sintered sheet material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009006661 2009-01-15
JP2010005930A JP2010185137A (en) 2009-01-15 2010-01-14 Method for producing sintered sheet material

Publications (1)

Publication Number Publication Date
JP2010185137A true JP2010185137A (en) 2010-08-26

Family

ID=42765964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010005930A Pending JP2010185137A (en) 2009-01-15 2010-01-14 Method for producing sintered sheet material

Country Status (1)

Country Link
JP (1) JP2010185137A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2492125C1 (en) * 2012-03-01 2013-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) Spacecraft to clean near-earth space of garbage
JP2018076233A (en) * 2018-02-13 2018-05-17 住友金属鉱山株式会社 Filling device
WO2019188713A1 (en) * 2018-03-29 2019-10-03 株式会社アライドマテリアル Molybdenum material and method for producing same
CN111300599A (en) * 2020-03-30 2020-06-19 苏州汉尼威电子技术有限公司 Processing technology of ultramicro nano section for preparing cutter
CN111409174A (en) * 2020-03-30 2020-07-14 苏州汉尼威电子技术有限公司 Manufacturing process of ultramicro nano water jet sand pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2492125C1 (en) * 2012-03-01 2013-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) Spacecraft to clean near-earth space of garbage
JP2018076233A (en) * 2018-02-13 2018-05-17 住友金属鉱山株式会社 Filling device
WO2019188713A1 (en) * 2018-03-29 2019-10-03 株式会社アライドマテリアル Molybdenum material and method for producing same
CN111300599A (en) * 2020-03-30 2020-06-19 苏州汉尼威电子技术有限公司 Processing technology of ultramicro nano section for preparing cutter
CN111409174A (en) * 2020-03-30 2020-07-14 苏州汉尼威电子技术有限公司 Manufacturing process of ultramicro nano water jet sand pipe

Similar Documents

Publication Publication Date Title
CN103320756B (en) The preparation method of high purity, high-compactness, large-size molybdenum alloy target
KR102297842B1 (en) A method of making cermet or cemented carbide powder
US6048432A (en) Method for producing complex-shaped objects from laminae
JP2010185137A (en) Method for producing sintered sheet material
US8916091B2 (en) Method for producing semi-finished products from NiTi shape memory alloys
US9689067B2 (en) Method for producing molybdenum target
JP2011041983A (en) Device and method for hot isostatic pressing container
JP2019519667A (en) Method of manufacturing metal or ceramic component and component
CN113979764A (en) Method for preparing grid microstructure ceramic-metal composite product based on additive
CN101559491A (en) Integral molding die of large scale sintering porous cone pipe and isotropic molding method therewith
JP2015183244A (en) Sputtering target and production method thereof
JP2013204051A (en) Method for manufacturing cylindrical sputtering target material
CN105345007A (en) Preparation method for highly dense chromium-tungsten alloy target
RU2332279C2 (en) Method of making complex figure thin-walled sintered bars from heavy alloys based on tungsten
JP2008069385A (en) Method for producing sintered metal member
JP2006028536A (en) Sintered mo-based target material manufacturing method
CN105364074A (en) Preparation method for high-compactness chromium-tungsten alloy target material
JP3993066B2 (en) Method for producing sputtering target
EP4299212A1 (en) A method for creating an object
JP2010100935A (en) Method for manufacturing sintered flat plate
JP2009013471A (en) Ru TARGET MATERIAL, AND METHOD FOR PRODUCING THE SAME
CN114918413B (en) Device, system and method for preparing block body in high flux
CA2033489C (en) Method of making plate-shaped material
JP4706980B2 (en) Manufacturing method of Mo target material
JP2005240060A (en) Compact, in-magnetic-field compacting apparatus, and method for manufacturing magnetostrictive element