JP4706980B2 - Manufacturing method of Mo target material - Google Patents

Manufacturing method of Mo target material Download PDF

Info

Publication number
JP4706980B2
JP4706980B2 JP2008023911A JP2008023911A JP4706980B2 JP 4706980 B2 JP4706980 B2 JP 4706980B2 JP 2008023911 A JP2008023911 A JP 2008023911A JP 2008023911 A JP2008023911 A JP 2008023911A JP 4706980 B2 JP4706980 B2 JP 4706980B2
Authority
JP
Japan
Prior art keywords
target material
producing
powder
raw material
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008023911A
Other languages
Japanese (ja)
Other versions
JP2008163467A (en
Inventor
克典 岩崎
惠介 井上
典夫 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2008023911A priority Critical patent/JP4706980B2/en
Publication of JP2008163467A publication Critical patent/JP2008163467A/en
Application granted granted Critical
Publication of JP4706980B2 publication Critical patent/JP4706980B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、粉末焼結法によるMoターゲット材の製造方法に関するものである。   The present invention relates to a method for producing a Mo target material by a powder sintering method.

現在、液晶ディスプレイ(Liquid Crystal Display、以下LCDという)の薄膜電極および薄膜配線等には、電気抵抗の小さいMo等の高融点金属膜が用いられており、その金属薄膜を形成するための材料として、スパッタリング用ターゲット材が広く利用されている。そして、近年のLCDサイズの大型化に伴い、金属膜を形成するためのスパッタリング用ターゲット材に対しても大型化が要求されており、特に現在は、1m以上の長尺品やスパッタリング面積が1mを超える大型品が要求されている。 At present, refractory metal films such as Mo having a low electrical resistance are used for thin film electrodes and thin film wirings of liquid crystal displays (hereinafter referred to as LCDs), and as a material for forming the metal thin films. Sputtering target materials are widely used. With the recent increase in LCD size, it is required to increase the sputtering target material for forming a metal film, and in particular, a long product having a length of 1 m or more and a sputtering area of 1 m are currently required. Larger products exceeding 2 are required.

従来、スパッタリング面積の大型化への対応として、多数のターゲット素材をバッキングプレート上に貼り合わせる等の方法がとられてきた。しかしながら、多数のターゲット素材を貼り合わせてスパッタリング面積を大型化する方法では、スパッタリング時にターゲット素材間の隙間が存在するために発生する異常飛沫を原因とするパーティクルが生じるために一体物のターゲット素材による対応が要求されている。   Conventionally, in order to cope with an increase in the sputtering area, a method such as bonding a large number of target materials onto a backing plate has been employed. However, in the method of enlarging the sputtering area by bonding a large number of target materials, particles due to abnormal droplets generated due to the presence of gaps between the target materials during sputtering are generated. Response is required.

従来より、Mo等の高融点金属をターゲット材として製造するためには、粉末焼結法が用いられてきたが、このような大型一体物のターゲット素材を粉末焼結法で作製する際に重要なのは、高密度化の達成と大型化への対応である。粉末焼結法には、種々の方法があるが、そのうち熱間静水圧プレス(HIP)法は、プレス圧力を3次元的に高圧で付加することが可能であることから、2次元的にしかプレス圧力を付加できないホットプレス法に比べて素材を均一に高密度化できるという利点がある。   Conventionally, a powder sintering method has been used to produce a refractory metal such as Mo as a target material. However, it is important when producing a target material of such a large integrated object by a powder sintering method. It is to achieve high density and cope with large size. There are various powder sintering methods. Among them, the hot isostatic pressing (HIP) method can apply the press pressure three-dimensionally at a high pressure, so that it can be applied only two-dimensionally. There is an advantage that the material can be uniformly densified as compared with the hot press method in which press pressure cannot be applied.

HIP法は、焼結素材を加圧容器に充填して、プレス圧力を付加する必要があるため、焼結素材である原料粉末を加圧容器に、高充填率で均一な充填を行う必要がある。そこで、プレス圧力を充填した原料粉末に与える方法が提案されている(例えば、特許文献1および2参照)
特開2002−167669号公報 特開2003−342720号公報
In the HIP method, it is necessary to fill the sintered material in a pressurized container and apply a press pressure. Therefore, it is necessary to uniformly fill the pressurized container with the raw material powder, which is a sintered material, at a high filling rate. is there. Then, the method of giving to the raw material powder with which press pressure was filled is proposed (for example, refer patent document 1 and 2).
JP 2002-167669 A JP 2003-342720 A

しかしながら、上記の特許文献1および2に記載されるMo系ターゲット材の製造方法によっても、加圧焼結体の変形が大きいという課題が存在する。
本発明の目的は、加圧容器への原料粉末の充填密度を向上させ焼結体の変形を低減させたMoターゲット材の製造方法を提供することである。
However, even with the method for producing a Mo-based target material described in Patent Documents 1 and 2 described above, there is a problem that the pressure sintered body is greatly deformed.
An object of the present invention is to provide a method for producing a Mo target material that improves the packing density of the raw material powder into the pressurized container and reduces the deformation of the sintered body.

本発明者等は、Moターゲット材の製造方法を種々検討した結果、加圧容器に充填する際の原料粉末の粒径を制御することで、上記の課題を解決できることを見出し、本発明に到達した。   As a result of various investigations on the production method of the Mo target material, the present inventors have found that the above problem can be solved by controlling the particle size of the raw material powder when filling the pressurized container, and the present invention has been achieved. did.

すなわち、平均粒径20μm以下のMo原料粉末を圧縮成形した圧密体を、粉砕し該原料粉末の平均粒径以上でかつ平均粒径10mm以下の二次粉末を作製した後、該二次粉末を加圧容器に充填し、次いで加圧焼結を施し焼結体を得るMoターゲット材の製造方法である。   That is, a compact formed by compressing and molding Mo raw material powder having an average particle size of 20 μm or less is pulverized to produce a secondary powder having an average particle size equal to or greater than the average particle size and equal to or less than 10 mm. This is a method for producing a Mo target material, which is filled in a pressure vessel and then subjected to pressure sintering to obtain a sintered body.

また、好ましくは、原料粉末を冷間静水圧プレスで圧縮成形するMoターゲット材の製造方法である。
また、好ましくは、原料粉末を100MPa以上の圧力条件で冷間静水圧プレスを行うMoターゲット材の製造方法である。
また、好ましくは、Mo原料粉末を圧縮成形した圧密体の相対密度を50%以上とするMoターゲット材の製造方法である。
また、好ましくは、加圧焼結は熱間静水圧プレスであるMoターゲット材の製造方法である。
Further, preferably, the Mo target material is produced by compression molding the raw material powder by a cold isostatic press.
Moreover, preferably, it is a manufacturing method of Mo target material which performs cold isostatic pressing on the raw material powder on the pressure conditions of 100 Mpa or more.
Preferably, it is a method for producing a Mo target material in which the relative density of a compact formed by compression molding Mo raw material powder is 50% or more.
Preferably, the pressure sintering is a method for producing a Mo target material which is a hot isostatic pressing.

また、好ましくは、温度1000〜1500℃、圧力100MPa以上の条件で熱間静水圧プレスを行うMoターゲット材の製造方法である。
また、好ましくは、焼結体の相対密度を98%以上とするMoターゲット材の製造方法である。
Moreover, Preferably, it is a manufacturing method of Mo target material which performs hot isostatic pressing on the conditions of temperature 1000-1500 degreeC and pressure 100MPa or more.
Moreover, it is preferable that the Mo target material be produced by setting the relative density of the sintered body to 98% or more.

また、好ましくは、前記二次粉末を充填する加圧容器の内径寸法の最大長さが1000mm以上であるMoターゲット材の製造方法である。
また、好ましくは、前記二次粉末を充填する加圧容器は、充填深さが最も深くなる方向に対向する一方の面が、充填口として解放された直方体形状であり、かつその内径寸法の最大長さが1000mm以上の金属カプセルであるMoターゲット材の製造方法である。
また、好ましくは、焼結体の最大長さの辺を維持するように複数枚に切断するMoターゲット材の製造方法である。
Preferably, the Mo target material has a maximum length of an inner diameter of a pressurized container filled with the secondary powder of 1000 mm or more.
Preferably, the pressurized container filled with the secondary powder has a rectangular parallelepiped shape in which one surface facing in the direction in which the filling depth is deepest is released as a filling port, and has a maximum inner diameter dimension. It is a manufacturing method of Mo target material which is a metal capsule whose length is 1000 mm or more.
Preferably, it is a method for producing a Mo target material that is cut into a plurality of pieces so as to maintain the side of the maximum length of the sintered body.

本発明によれば、加圧容器への原料粉末の充填密度を向上させることで焼結体の変形を低減させたMoターゲット材の製造方法をすることが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to make the manufacturing method of Mo target material which reduced the deformation | transformation of the sintered compact by improving the filling density of the raw material powder to a pressurized container.

本発明の重要な特徴の一つは、Mo原料粉末を一度圧縮成形した圧密体とした後に、粉砕処理を行い原料粉末の平均粒径以上でかつ平均粒径10mm以下の二次粉末を作製して、加圧容器に充填することで、加圧容器への原料粉末の充填率を向上させることができた点にある。
加圧容器を使用する焼結製法でMoターゲット材を製造する場合においては、一般に微細なMo原料粉末が使用されるが、Mo原料粉末は、凝集性が高く流れ性が悪いために、加圧容器に充填する場合に、加圧容器中で充填のばらつきが生じやすい。
そこで、本発明者等が検討した結果、原料粉末をある程度大きく粒径調整をすることで加圧容器への原料粉末の充填率を向上させることが可能となることを見出した。
One of the important features of the present invention is that after the Mo raw material powder is once compressed into a compacted body, a pulverization process is performed to produce a secondary powder having an average particle size of 10 mm or less. Thus, by filling the pressurized container, the filling rate of the raw material powder into the pressurized container can be improved.
In the case of producing Mo target material by a sintering method using a pressure vessel, fine Mo raw material powder is generally used. However, Mo raw material powder has high cohesiveness and poor flowability. When filling the container, variation in filling tends to occur in the pressurized container.
Thus, as a result of studies by the present inventors, it has been found that the filling rate of the raw material powder into the pressurized container can be improved by adjusting the particle size of the raw material powder to a certain extent.

以下に、本発明の製造方法に関して詳細に説明する。
一般に使用されるMo原料粉末は、化学的製法により作製されるため平均粒径20μm以下の微細粒径を有している。本発明においては、この微細な原料粉末を一度圧縮成形して圧密体として、その後粉砕処理を行い、原料粉末の平均粒径以上でかつ平均粒径10mm以下の原料粉末の二次粉末を作製する。その後、この二次粉末を加圧容器に充填し、加圧焼結を行ってターゲット材の素材となる焼結体を得る。この二次粉末の平均粒径の下限を原料粉末の平均粒径以上とした理由は、原料粉末の平均粒径を下回っては、圧密体を作製して粉砕する意味がないためである。また、この二次粉末の平均粒径の上限を10mm以下に規定した理由は、10mmを超えるとその境界線が明瞭に現れ、一種の模様状の形態をなすためである。また、その粒界が優先的に外気雰囲気と接触するため局部的に酸素量が高くなる危険性が内在している。したがって外観上判別しにくく、平均化するためにも平均粒径10mm以下である必要がある。
なお、本発明における平均粒径とは、Mo原料粉末あるいは二次粉末の粒径分布において、個数がその総量の50%をしめるときの粒径(D50)をいう。
Below, the manufacturing method of this invention is demonstrated in detail.
Since the Mo raw material powder generally used is produced by a chemical manufacturing method, it has a fine particle size of an average particle size of 20 μm or less. In the present invention, this fine raw material powder is once compression-molded to form a compacted body, and thereafter pulverized to produce a secondary powder of the raw material powder having an average particle size of not less than 10 mm and an average particle size of not more than 10 mm. . Thereafter, the secondary powder is filled into a pressure vessel and subjected to pressure sintering to obtain a sintered body that becomes a material of the target material. The reason why the lower limit of the average particle size of the secondary powder is set to be equal to or larger than the average particle size of the raw material powder is that it is meaningless to produce a compacted body and pulverize it below the average particle size of the raw material powder. The reason why the upper limit of the average particle size of the secondary powder is specified to be 10 mm or less is that when it exceeds 10 mm, the boundary line clearly appears and forms a kind of pattern. Moreover, since the grain boundary is preferentially in contact with the outside air atmosphere, there is a risk that the amount of oxygen locally increases. Therefore, it is difficult to discriminate in appearance, and it is necessary to have an average particle size of 10 mm or less for averaging.
Incidentally, the average particle diameter in the present invention, the particle size distribution of the Mo raw material powder or the secondary powder, the number refers to the particle diameter (D 50) when occupying 50% of its total volume.

また、圧縮成形するMo原料粉末は平均粒径10μm以下、圧密体を粉砕処理した後の二次粉末は平均粒径5mm以下であることがより好ましい。
その理由は、原料粉末の粒径が小さいほど加圧焼結後の焼結体の相対密度を容易に高めることができるためである。加圧容器への充填密度を向上させる点からは、充填する粉末つまりは二次粉末の粒径を大きくすることに効果があるが、加圧焼結における焼結性の点では、密度の高い原料粉末の粒径は小さいことが望ましい。特に、本発明の焼結体を構成する主体であるMoは高融点金属で一般的な拡散温度は高温であるため、拡散を促進させるためには高温処理すると同時に接触面積を増大することが好ましい。よって、原料粉末の平均粒径としては、10μm以下であることが好ましい。また、二次粉末の平均粒径が5mm以下であることが好ましい理由は、酸素量の局所的集中をより低減できるためであり、添加元素を含む場合には添加元素の分散性をより高めることができるためである。さらに好ましい二次粉末の平均粒径は0.5〜3mmである。
More preferably, the Mo raw material powder to be compression-molded has an average particle size of 10 μm or less, and the secondary powder after the compacted body is pulverized has an average particle size of 5 mm or less.
The reason is that the smaller the particle size of the raw material powder, the easier it is to increase the relative density of the sintered body after pressure sintering. From the point of improving the packing density in the pressurized container, it is effective to increase the particle size of the powder to be filled, that is, the secondary powder, but in terms of sinterability in pressure sintering, the density is high. The particle size of the raw material powder is desirably small. In particular, Mo, which is the main constituent of the sintered body of the present invention, is a refractory metal and a general diffusion temperature is high. Therefore, in order to promote diffusion, it is preferable to increase the contact area at the same time as high-temperature treatment. . Therefore, the average particle size of the raw material powder is preferably 10 μm or less. The reason why the average particle size of the secondary powder is preferably 5 mm or less is that the local concentration of the oxygen amount can be further reduced, and when the additive element is included, the dispersibility of the additive element is further increased. It is because it can do. The average particle size of the secondary powder is more preferably 0.5 to 3 mm.

また、圧密体は、加圧容器に充填する二次粉末としての粒径を維持するためには、相対密度が50%以上になるように圧縮成形することが望ましい。
Mo原料粉末を圧縮成形する方法としては、冷間静水圧プレスが望ましく、その際の圧力条件としては、容易に上記の圧密体の相対密度を50%以上にできるため100MPa以上の圧力を付加することが望ましい。
The compacted body is preferably compression-molded so that the relative density is 50% or more in order to maintain the particle size as the secondary powder filled in the pressurized container.
As a method for compressing and molding Mo raw material powder, cold isostatic pressing is desirable, and the pressure condition at that time is that a pressure of 100 MPa or more is applied because the relative density of the above compacted body can be easily increased to 50% or more. It is desirable.

加圧焼結は、3次元的に高圧で圧力を付加することで、原料粉末を焼結させることが可能であるため熱間静水圧プレス(HIP)を適用することが望ましい。また、その際には、温度1000〜1500℃、圧力100MPa以上の条件を適用することが望ましい。
それは、この100MPaに満たない圧力、1000℃に満たない温度でHIPを行っても、ターゲット材に要求される相対密度98%以上の密度を有する焼結体が作製しづらいためである。一方、Moを中心とした焼結体を得るためにはできるだけ高い温度での処理が好ましいが、HIP温度は加圧容器に用いる材質のほか、設備面での制約が存在する。一般的なHIP装置では1500℃がほぼ上限となり、それ以上では現実性に欠ける。
In pressure sintering, it is desirable to apply a hot isostatic press (HIP) because it is possible to sinter the raw material powder by applying pressure at a high pressure three-dimensionally. In that case, it is desirable to apply conditions of a temperature of 1000 to 1500 ° C. and a pressure of 100 MPa or more.
This is because it is difficult to produce a sintered body having a relative density of 98% or more required for the target material even if HIP is performed at a pressure less than 100 MPa and a temperature less than 1000 ° C. On the other hand, in order to obtain a sintered body centered on Mo, treatment at a temperature as high as possible is preferable, but the HIP temperature has restrictions on the equipment as well as the material used for the pressurized container. In a general HIP apparatus, 1500 ° C. is almost the upper limit, and beyond that, it is not realistic.

また、本発明の製造方法は、加圧容器が大型化する場合に、原料粉末の充填密度が向上し難いので、特に内径寸法における最大長さが1000mm以上の加圧容器を用いる必要のある大型のターゲット材の製造方法に好適である。また、原料粉末の充填方法としては、原料粉末自身の比重を利用して充填率の向上が図れるため、充填深さが最も深くなる方向に対抗する一方の面が、充填口として開放された直方体形状であり、かつ内径寸法の最大長さが1000mm以上となるような加圧容器を使用することがより好ましい。   Further, in the manufacturing method of the present invention, when the pressurized container is increased in size, the packing density of the raw material powder is difficult to improve. Therefore, it is necessary to use a pressurized container having a maximum inner diameter of 1000 mm or more. It is suitable for the manufacturing method of the target material. In addition, as a filling method of the raw material powder, since the filling rate can be improved by utilizing the specific gravity of the raw material powder itself, a rectangular parallelepiped whose one surface facing the direction in which the filling depth is deepest is opened as a filling port It is more preferable to use a pressurized container having a shape and a maximum inner diameter dimension of 1000 mm or more.

また、本発明は、本発明の製造方法により得られる焼結体を最大長さの辺を維持するように切断する方法も含まれる。それは、現在、大型のターゲット材の要求が高いため、一度の加圧焼結処理で多数のターゲット材料を製造することで、コストを低減できるためである。   The present invention also includes a method of cutting the sintered body obtained by the production method of the present invention so as to maintain the side with the maximum length. This is because the demand for large target materials is currently high, and the cost can be reduced by producing a large number of target materials by a single pressure sintering process.

本発明のMo原料粉末としては、不可避的不純物を除いた残部が実質的にMoからなるものである。   As Mo raw material powder of this invention, the remainder except an unavoidable impurity consists of Mo substantially.

本発明の実施例について以下に説明する。
平均粒径12μmのMo原料粉末を準備した。表1の試料No.1に示すターゲット材を製造するために、Mo原料粉末をV型混合機で10分間混合して得られた原料粉末を冷間静水圧プレス(CIP)で圧縮成形した圧密体を作製した。なお、CIPの圧力条件は265MPaとした。前記圧密体をジョークラッシャーおよびディスクミルを使用して粉砕し二次粉末を作製した。その二次粉末を再度V型混合機で10分間混合した後、内径寸法で厚さ100mm×幅1000mm×高さ1300mmの軟鋼製加圧容器に充填した。充填後、加圧容器の上蓋を溶接した後に450℃の温度下で真空脱気し、熱間静水圧プレス(HIP)で加圧焼結した。HIPは、1250℃、150MPaの条件下で5時間保持した。HIP後の焼結体を切断および機械加工して、厚さ6mm×幅810mm×長さ950mmのターゲット材を6枚得た。なお、二次粉末の加圧容器への充填密度を測定し表1に示した。また、上記の圧密体、焼結体から試験片を採取し、アルキメデス法により、相対密度を測定し表1に示す。
Examples of the present invention will be described below.
Mo raw material powder having an average particle size of 12 μm was prepared. Sample No. in Table 1 In order to produce the target material shown in 1, a consolidated body was produced by compression molding a raw material powder obtained by mixing Mo raw material powder for 10 minutes with a V-type mixer using a cold isostatic press (CIP). The CIP pressure condition was 265 MPa. The compacted body was pulverized using a jaw crusher and a disk mill to produce a secondary powder. The secondary powder was again mixed with a V-type mixer for 10 minutes, and then filled into a pressure vessel made of mild steel having an inner diameter of 100 mm thick × 1000 mm wide × 1300 mm high. After filling, the upper lid of the pressurized container was welded, vacuum degassed at a temperature of 450 ° C., and pressure sintered by hot isostatic pressing (HIP). The HIP was held at 1250 ° C. and 150 MPa for 5 hours. The sintered body after HIP was cut and machined to obtain six target materials having a thickness of 6 mm × width of 810 mm × length of 950 mm. The packing density of the secondary powder into the pressurized container was measured and shown in Table 1. Further, test pieces were collected from the above compacted body and sintered body, and the relative density was measured by Archimedes method and shown in Table 1.

また、平均粒径6μmのMo原料粉末を準備し、表1の試料No.7に示すターゲット材を製造するため、上記と同様の方法で圧密体を作製した。前記圧密体をジョークラッシャーおよびディスクミルを使用して粉砕し二次粉末を作製した。その二次粉末を使用して上記と同様の方法で焼結体を作製した。その後、この焼結体を切断および機械加工して、厚さ6mm×幅810mm×長さ950mmのターゲット材を6枚得た。なお、二次粉末の加圧容器への充填密度を測定し表1に示した。また、上記の圧密体、焼結体から試験片を採取し、アルキメデス法により、相対密度を測定し表1に示す。   In addition, Mo raw material powder having an average particle diameter of 6 μm was prepared. In order to produce the target material shown in FIG. 7, a consolidated body was produced by the same method as described above. The compacted body was pulverized using a jaw crusher and a disk mill to produce a secondary powder. The sintered compact was produced by the method similar to the above using the secondary powder. Thereafter, this sintered body was cut and machined to obtain six target materials each having a thickness of 6 mm, a width of 810 mm, and a length of 950 mm. The packing density of the secondary powder into the pressurized container was measured and shown in Table 1. Further, test pieces were collected from the above compacted body and sintered body, and the relative density was measured by Archimedes method and shown in Table 1.

また、比較例として、表1の試料No.10に示すターゲット材を製造するため、Mo原料粉末をV型混合機で10分間混合して得られた原料粉末を圧縮成形せずに直接に上記と同一寸法の軟鋼製加圧容器に充填した。充填後、加圧容器の上蓋を溶接した後に450℃の温度下で真空脱気し、1250℃、150MPa、5時間保持するHIPを行い焼結体を作製した。その後、この焼結体を切断および機械加工して、厚さ6mm×幅610mm×長さ710mmのターゲット材を3枚得た。なお、二次粉末の加圧容器への充填密度を測定し表1に示した。また、二次粉末の上記の焼結体から試験片を採取し、アルキメデス法により、相対密度を測定し表1に示す。
また、焼結体の変形を図1の模式図に示す通り、焼結体1の長さ方向の中央部2の底面にある基準点3と端部4の底面との差から算出した変形量5として、変形量が12mm以上のものを問題あり、12mmよりも小さいものを良好として評価して同様に表1に示す。
As a comparative example, sample No. In order to produce the target material shown in Fig. 10, the raw material powder obtained by mixing the Mo raw material powder for 10 minutes with a V-type mixer was directly filled into a pressure vessel made of mild steel having the same dimensions as above without compression molding. . After filling, the upper lid of the pressurized container was welded, vacuum degassed at a temperature of 450 ° C., and HIP held at 1250 ° C., 150 MPa for 5 hours to prepare a sintered body. Thereafter, this sintered body was cut and machined to obtain three target materials having a thickness of 6 mm × width of 610 mm × length of 710 mm. The packing density of the secondary powder into the pressurized container was measured and shown in Table 1. Further, a test piece was taken from the above sintered body of the secondary powder, and the relative density was measured by Archimedes method and shown in Table 1.
Further, as shown in the schematic diagram of FIG. 1, the deformation amount of the sintered body is calculated from the difference between the reference point 3 on the bottom surface of the central portion 2 in the longitudinal direction of the sintered body 1 and the bottom surface of the end portion 4. No. 5, the deformation amount of 12 mm or more is problematic, and smaller than 12 mm is evaluated as good and similarly shown in Table 1.

表1に示した通り、本発明例の試料No.1では、原料粉末を圧縮成形した圧密体を平均粒径10mm以下に粉砕した二次粉末を作製しているため、充填密度が52%以上と非常に高い充填密度を達成している。そして、充填密度が高いことから、焼結体にした際の寸法の収縮量や変形量も低減されているため、歩留りよくターゲット材を製造できることがわかる。
また、本発明例の試料No.7から、原料粉末の平均粒径を10μm以下、二次粉末の平均粒径を1mm以下とすると、充填密度の上昇と焼結体の相対密度の上昇がさらに顕著になることが見て取れる。
一方、二次粉末を作製せずに、原料粉末を混合後、直接加圧容器に充填して加圧焼結した比較例の試料No.10では、充填密度が40%以下と低く、焼結体にした際の寸法収縮や変形量も大きいため、ターゲット材を製造する際の歩留りが劣ることが分かる。さらに、同一寸法の加圧容器を用いても、焼結体にした際の寸法収縮や変形量が大きいために、想定した寸法のターゲット材が作製できない危険性がある。
As shown in Table 1, sample No. In No. 1, since a secondary powder obtained by pulverizing a compact formed by compressing a raw material powder to an average particle size of 10 mm or less is manufactured, a very high packing density of 52% or more is achieved. And since the packing density is high, since the shrinkage amount and deformation amount of the dimension at the time of making a sintered body are reduced, it can be seen that the target material can be manufactured with high yield.
In addition, Sample No. 7, it can be seen that when the average particle size of the raw material powder is 10 μm or less and the average particle size of the secondary powder is 1 mm or less, the increase in the packing density and the increase in the relative density of the sintered body become more remarkable.
On the other hand, the sample No. 2 of the comparative example was prepared by mixing the raw material powder without filling the secondary powder, directly filling the pressure vessel, and pressure sintering. In No. 10, the packing density is as low as 40% or less, and the dimensional shrinkage and deformation amount when the sintered body is made are large, so that the yield in producing the target material is inferior. Furthermore, even if a pressurized container having the same size is used, there is a risk that a target material having an assumed size cannot be produced due to large dimensional shrinkage and deformation when the sintered body is formed.

実施例1における焼結体の変形の測定方法を示す模式図である。3 is a schematic diagram illustrating a method for measuring deformation of a sintered body in Example 1. FIG.

符号の説明Explanation of symbols

1 焼結体、2 中央部、3 基準点、4 端面、5 変形量 1 Sintered body 2 Central part 3 Reference point 4 End face 5 Deformation amount

Claims (10)

平均粒径20μm以下のMo原料粉末を圧縮成形した圧密体を、粉砕し該原料粉末の平均粒径以上でかつ平均粒径10mm以下の二次粉末を作製した後、該二次粉末を加圧容器に充填し、次いで加圧焼結を施し焼結体を得ることを特徴とするMoターゲット材の製造方法。   A compacted body obtained by compression-molding Mo raw material powder having an average particle size of 20 μm or less is pulverized to produce a secondary powder having an average particle size greater than or equal to the average particle size of 10 mm or less and then pressurizing the secondary powder. A method for producing a Mo target material, characterized by filling a container and then subjecting it to pressure sintering to obtain a sintered body. 原料粉末を冷間静水圧プレスで圧縮成形することを特徴とする請求項1に記載のMoターゲット材の製造方法。   2. The method for producing a Mo target material according to claim 1, wherein the raw material powder is compression-molded by a cold isostatic press. 原料粉末を100MPa以上の圧力条件で冷間静水圧プレスを行うことを特徴とする請求項1または2に記載のMoターゲット材の製造方法。   The method for producing a Mo target material according to claim 1 or 2, wherein the raw material powder is cold isostatically pressed under a pressure condition of 100 MPa or more. 原料粉末を圧縮成形した圧密体の相対密度を50%以上とすることを特徴とする請求項1乃至3のいずれかに記載のMoターゲット材の製造方法。   The method for producing a Mo target material according to any one of claims 1 to 3, wherein the relative density of the compacted body obtained by compression molding the raw material powder is 50% or more. 加圧焼結は熱間静水圧プレスであることを特徴とする請求項1乃至4のいずれかに記載のMoターゲット材の製造方法。   The method for producing a Mo target material according to any one of claims 1 to 4, wherein the pressure sintering is a hot isostatic pressing. 温度1000〜1500℃、圧力100MPa以上の条件で熱間静水圧プレスを行うことを特徴とする請求項5に記載のMoターゲット材の製造方法。   The method for producing a Mo target material according to claim 5, wherein hot isostatic pressing is performed under conditions of a temperature of 1000 to 1500 ° C. and a pressure of 100 MPa or more. 焼結体の相対密度を98%以上とすることを特徴とする請求項1乃至6のいずれかに記載のMoターゲット材の製造方法。   The method for producing a Mo target material according to claim 1, wherein the relative density of the sintered body is 98% or more. 前記二次粉末を充填する加圧容器の内径寸法の最大長さが1000mm以上であることを特徴とする請求項5乃至7のいずれかに記載のMoターゲット材の製造方法。   The method for producing a Mo target material according to any one of claims 5 to 7, wherein the maximum length of the inner diameter of the pressurized container filled with the secondary powder is 1000 mm or more. 前記二次粉末を充填する加圧容器は、充填深さが最も深くなる方向に対向する一方の面が、充填口として解放された直方体形状であり、かつその内径寸法の最大長さが1000mm以上の金属カプセルであることを特徴とする請求項8に記載のMoターゲット材の製造方法。   The pressurized container filled with the secondary powder has a rectangular parallelepiped shape in which one surface facing in the direction in which the filling depth is deepest is released as a filling port, and the maximum length of the inner diameter is 1000 mm or more. The method for producing a Mo target material according to claim 8, wherein the metal target is a metal capsule. 焼結体の最大長さの辺を維持するように複数枚に切断することを特徴とする請求項8に記載のMoターゲット材の製造方法。   The method for producing a Mo target material according to claim 8, wherein the Mo target material is cut into a plurality of pieces so as to maintain the side of the maximum length of the sintered body.
JP2008023911A 2008-02-04 2008-02-04 Manufacturing method of Mo target material Expired - Lifetime JP4706980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008023911A JP4706980B2 (en) 2008-02-04 2008-02-04 Manufacturing method of Mo target material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008023911A JP4706980B2 (en) 2008-02-04 2008-02-04 Manufacturing method of Mo target material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004055021A Division JP4110533B2 (en) 2004-02-27 2004-02-27 Manufacturing method of Mo-based target material

Publications (2)

Publication Number Publication Date
JP2008163467A JP2008163467A (en) 2008-07-17
JP4706980B2 true JP4706980B2 (en) 2011-06-22

Family

ID=39693299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008023911A Expired - Lifetime JP4706980B2 (en) 2008-02-04 2008-02-04 Manufacturing method of Mo target material

Country Status (1)

Country Link
JP (1) JP4706980B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9689067B2 (en) * 2010-09-30 2017-06-27 Hitachi Metals, Ltd. Method for producing molybdenum target

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256322A (en) * 1998-03-10 1999-09-21 Hitachi Metals Ltd Metal silicide target material
JP2002167669A (en) * 2000-12-01 2002-06-11 Hitachi Metals Ltd Method for manufacturing target
JP2002327264A (en) * 2001-04-26 2002-11-15 Hitachi Metals Ltd Sputtering target for forming thin film
JP2003342720A (en) * 2002-05-20 2003-12-03 Nippon Steel Corp Method of producing molybdenum target for sputtering and molybdenum target

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256322A (en) * 1998-03-10 1999-09-21 Hitachi Metals Ltd Metal silicide target material
JP2002167669A (en) * 2000-12-01 2002-06-11 Hitachi Metals Ltd Method for manufacturing target
JP2002327264A (en) * 2001-04-26 2002-11-15 Hitachi Metals Ltd Sputtering target for forming thin film
JP2003342720A (en) * 2002-05-20 2003-12-03 Nippon Steel Corp Method of producing molybdenum target for sputtering and molybdenum target

Also Published As

Publication number Publication date
JP2008163467A (en) 2008-07-17

Similar Documents

Publication Publication Date Title
JP4110533B2 (en) Manufacturing method of Mo-based target material
KR100665243B1 (en) Sputter target material and method of producing the same
JP2005240160A5 (en)
JP2013083000A (en) METHOD OF MANUFACTURING SINTERED Mo ALLOY SPUTTERING TARGET MATERIAL
CN103331449A (en) Ultrahigh-plasticity double-size-distribution superfine crystal/micrometer crystal block iron material and preparation method thereof
KR101546594B1 (en) Method for producing molybdenum target
JP3748221B2 (en) Mo-based sputtering target and method for producing the same
JP2017517627A (en) High purity refractory metal powders and their use in sputtering targets that can have disordered texture
JP4356071B2 (en) Sputtering target material and manufacturing method thereof
JP4721090B2 (en) Manufacturing method of Mo-based target material
JP4706980B2 (en) Manufacturing method of Mo target material
KR101350768B1 (en) Hard metal mold for manufacturing aspherical lens
KR102441218B1 (en) Tungsten Carbide Powder
JP2006169547A (en) METHOD FOR PRODUCING Mo ALLOY POWDER TO BE PRESSURE-SINTERED, AND METHOD FOR PRODUCING TARGET MATERIAL FOR SPUTTERING
JP4591749B2 (en) Manufacturing method of Mo target material
CN111041261A (en) Novel pressing and sintering method of particle reinforced molybdenum/tungsten-based composite material
JP3551355B2 (en) Ru target and method of manufacturing the same
KR101677921B1 (en) cemented carbide apparatus using press die and punch of manufacturing bottle cap and manufacturing method thereof
Nadakuduru et al. Mechanical behaviour of titanium, Ti-6Al-4V (wt%) alloy and Ti-47Al-2Cr (at%) alloy produced using powder compact forging
CN115287487B (en) Preparation method of nano hard alloy
JP6331125B2 (en) Target material manufacturing method
JP6809373B2 (en) Microcapsules and ceramics manufacturing methods using them
JP2019009313A (en) Manufacturing method of rare-earth magnet, and rare-earth magnet
JP2002294308A (en) Granulated powder, sintered compact, and their manufacturing method
JP2024013999A (en) Manufacturing method of titanium sintered material

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110303

R150 Certificate of patent or registration of utility model

Ref document number: 4706980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term