JP2005240160A5 - - Google Patents

Download PDF

Info

Publication number
JP2005240160A5
JP2005240160A5 JP2004055021A JP2004055021A JP2005240160A5 JP 2005240160 A5 JP2005240160 A5 JP 2005240160A5 JP 2004055021 A JP2004055021 A JP 2004055021A JP 2004055021 A JP2004055021 A JP 2004055021A JP 2005240160 A5 JP2005240160 A5 JP 2005240160A5
Authority
JP
Japan
Prior art keywords
powder
hip
pressurized container
sintered
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004055021A
Other languages
Japanese (ja)
Other versions
JP4110533B2 (en
JP2005240160A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2004055021A priority Critical patent/JP4110533B2/en
Priority claimed from JP2004055021A external-priority patent/JP4110533B2/en
Priority to CNB2005100095854A priority patent/CN1314504C/en
Priority to US11/066,228 priority patent/US20050191202A1/en
Publication of JP2005240160A publication Critical patent/JP2005240160A/en
Publication of JP2005240160A5 publication Critical patent/JP2005240160A5/ja
Application granted granted Critical
Publication of JP4110533B2 publication Critical patent/JP4110533B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

HIP法は、焼結素材を加圧容器に充填して、プレス圧力を付加する必要があるため、焼結素材である原料粉末を加圧容器に、高充填率で均一な充填を行う必要がある。そこで、プレス圧力を充填した原料粉末に与える方法が提案されている(例えば、特許文献1および2参照)
特開2002−167669号公報 特開2003−342720号公報
In the HIP method, it is necessary to fill the sintered material in a pressurized container and apply a press pressure. Therefore, it is necessary to uniformly charge the raw material powder, which is a sintered material, into the pressurized container at a high filling rate. is there. Then, the method of giving to the raw material powder with which press pressure was filled is proposed (for example, refer patent document 1 and 2).
JP 2002-167669 A JP 2003-342720 A

本発明の実施例について以下に説明する。
平均粒径12μmのMo粉末、W粉末、平均粒径100μmのNb粉末、Ti粉末、Zr粉末を準備した。表1の試料No.1〜6に示すターゲット材を製造するために、Mo粉末および各添加元素の遷移金属粉末を所定の原子%比率で秤量後、V型混合機で10分間混合して得られた原料粉末を冷間静水圧プレス(CIP)で圧縮成形した圧密体を作製した。なお、CIPの圧力条件は265MPaとした。前記圧密体をジョークラッシャーおよびディスクミルを使用して粉砕し二次粉末を作製した。その二次粉末を再度V型混合機で10分間混合した後、内径寸法で厚さ100mm×幅1000mm×高さ1300mmの軟鋼製加圧容器に充填した。充填後、加圧容器の上蓋を溶接した後に450℃の温度下で真空脱気し、熱間静水圧プレス(HIP)で加圧焼結した。HIPは、1250℃、150MPaの条件下で5時間保持した。HIP後の焼結体を切断および機械加工して、厚さ6mm×幅810mm×長さ950mmのターゲット材を6枚得た。なお、二次粉末の加圧容器への充填密度を測定し表1に示した。また、上記の圧密体、焼結体から試験片を採取し、アルキメデス法により、相対密度を測定し表1に示す。
Examples of the present invention will be described below.
Mo powder, W powder having an average particle diameter of 12 μm, Nb powder having an average particle diameter of 100 μm, Ti powder , and Zr powder were prepared. Sample No. in Table 1 In order to produce the target materials shown in 1 to 6, Mo powder and transition metal powders of each additive element were weighed at a predetermined atomic% ratio, and then the raw material powder obtained by mixing for 10 minutes with a V-type mixer was cooled. A compacted body compression-molded with an isostatic press (CIP) was produced. The CIP pressure condition was 265 MPa. The compacted body was pulverized using a jaw crusher and a disk mill to produce a secondary powder. The secondary powder was again mixed with a V-type mixer for 10 minutes, and then filled into a pressure vessel made of mild steel having an inner diameter of 100 mm thick × 1000 mm wide × 1300 mm high. After filling, the upper lid of the pressurized container was welded, vacuum degassed at a temperature of 450 ° C., and pressure sintered by hot isostatic pressing (HIP). HIP was held for 5 hours under the conditions of 1250 ° C. and 150 MPa. The sintered body after HIP was cut and machined to obtain six target materials having a thickness of 6 mm × width of 810 mm × length of 950 mm. The packing density of the secondary powder into the pressurized container was measured and shown in Table 1. Further, test pieces were collected from the above compacted body and sintered body, and the relative density was measured by Archimedes method and shown in Table 1.

JP2004055021A 2004-02-27 2004-02-27 Manufacturing method of Mo-based target material Expired - Lifetime JP4110533B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004055021A JP4110533B2 (en) 2004-02-27 2004-02-27 Manufacturing method of Mo-based target material
CNB2005100095854A CN1314504C (en) 2004-02-27 2005-02-24 Process of mfg. Mo alloyed targeting materials
US11/066,228 US20050191202A1 (en) 2004-02-27 2005-02-25 Method of producing target material of Mo alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004055021A JP4110533B2 (en) 2004-02-27 2004-02-27 Manufacturing method of Mo-based target material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008023911A Division JP4706980B2 (en) 2008-02-04 2008-02-04 Manufacturing method of Mo target material

Publications (3)

Publication Number Publication Date
JP2005240160A JP2005240160A (en) 2005-09-08
JP2005240160A5 true JP2005240160A5 (en) 2006-08-24
JP4110533B2 JP4110533B2 (en) 2008-07-02

Family

ID=34879772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004055021A Expired - Lifetime JP4110533B2 (en) 2004-02-27 2004-02-27 Manufacturing method of Mo-based target material

Country Status (3)

Country Link
US (1) US20050191202A1 (en)
JP (1) JP4110533B2 (en)
CN (1) CN1314504C (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101111627B (en) 2005-02-01 2012-05-09 东曹株式会社 Sinter, sputtering target and molding die, and production process of sintered compact
AT8697U1 (en) 2005-10-14 2006-11-15 Plansee Se TUBE TARGET
JP4831468B2 (en) * 2005-10-18 2011-12-07 日立金属株式会社 Manufacturing method of Mo target material
US7837929B2 (en) * 2005-10-20 2010-11-23 H.C. Starck Inc. Methods of making molybdenum titanium sputtering plates and targets
JP2007277671A (en) * 2006-04-11 2007-10-25 Hitachi Metals Ltd METHOD FOR PRODUCING Mo ALLOY POWDER AND METHOD FOR PRODUCING SPUTTERING TARGET MATERIAL
US20080087866A1 (en) * 2006-10-13 2008-04-17 H.C. Stark Inc. Titanium oxide-based sputtering target for transparent conductive film, method for producing such film and composition for use therein
US20100108501A1 (en) * 2007-01-12 2010-05-06 Nippon Steel Materials Co., Ltd Mo-based sputtering target plate and method for manufacturing the same
JP2008255440A (en) * 2007-04-06 2008-10-23 Hitachi Metals Ltd MoTi ALLOY SPUTTERING TARGET MATERIAL
JPWO2009119757A1 (en) * 2008-03-27 2011-07-28 日立金属株式会社 Coated fine metal particles and method for producing the same
CN101648320B (en) * 2009-05-08 2012-06-27 宁波江丰电子材料有限公司 Welding method of target materials and back plates
JP2011089188A (en) * 2009-10-26 2011-05-06 Ulvac Japan Ltd Method for producing titanium-containing sputtering target
JP5550328B2 (en) * 2009-12-22 2014-07-16 株式会社東芝 Mo sputtering target and manufacturing method thereof
WO2011125722A1 (en) * 2010-04-01 2011-10-13 三菱化学株式会社 Positive electrode material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery
US8449817B2 (en) 2010-06-30 2013-05-28 H.C. Stark, Inc. Molybdenum-containing targets comprising three metal elements
US8449818B2 (en) 2010-06-30 2013-05-28 H. C. Starck, Inc. Molybdenum containing targets
CN103140600B (en) * 2010-09-30 2015-06-10 日立金属株式会社 Method for producing molybdenum target
CN103562432B (en) 2011-05-10 2015-08-26 H·C·施塔克公司 Multistage sputtering target and relevant method thereof and article
CN102321871B (en) * 2011-09-19 2013-03-20 基迈克材料科技(苏州)有限公司 Method for producing molybdenum alloy sputtering target for flat-panel display by using hot isostatic press
TWI572725B (en) * 2011-09-26 2017-03-01 日立金屬股份有限公司 Method for producing moti target
CN103182508B (en) * 2011-12-27 2014-12-10 北京有色金属研究总院 Preparation method for alloy target material applied to M-typed cathode coating film with high current density
CN102560383B (en) * 2012-01-12 2013-10-23 宝鸡市科迪普有色金属加工有限公司 Molybdenum niobium alloy plate target material processing technology
US9334565B2 (en) 2012-05-09 2016-05-10 H.C. Starck Inc. Multi-block sputtering target with interface portions and associated methods and articles
CN103060762B (en) * 2013-01-11 2018-02-23 江西科泰新材料有限公司 The production technology of molybdenum niobium alloy target
CN103205721B (en) * 2013-03-19 2015-10-28 昆山海普电子材料有限公司 A kind of production method of titanium-aluminium alloy target material
CN103182507B (en) * 2013-03-19 2015-04-15 昆山海普电子材料有限公司 Production method of chromium-aluminium alloy target material
CN103143710B (en) * 2013-03-27 2015-12-23 宁夏东方钽业股份有限公司 A kind of preparation method of molybdenum alloy target
AT13602U3 (en) * 2013-10-29 2014-08-15 Plansee Se Sputtering target and method of preparation
CN104439236B (en) * 2014-12-23 2016-08-17 金堆城钼业股份有限公司 A kind of preparation method of zirconium oxide molybdenum alloy electrode
CN105714253B (en) * 2016-03-10 2017-11-24 洛阳爱科麦钨钼科技股份有限公司 The preparation method of large scale, fine grain molybdenum tantalum alloy-sputtering targets material
AT15356U1 (en) * 2016-09-29 2017-07-15 Plansee Se Sputtering target
CN106567048B (en) * 2016-11-10 2018-11-27 洛阳科威钨钼有限公司 A kind of manufacturing method of large size High-Purity Molybdenum alloy rotary target material
JP7205213B2 (en) * 2018-03-27 2023-01-17 日立金属株式会社 TiW alloy target and manufacturing method thereof
JP7419886B2 (en) * 2019-03-20 2024-01-23 株式会社プロテリアル Mo alloy target material and its manufacturing method
JP7419885B2 (en) * 2019-03-20 2024-01-23 株式会社プロテリアル Mo alloy target material and its manufacturing method
CN112975102B (en) * 2021-03-04 2023-06-23 宁波江丰电子材料股份有限公司 Diffusion welding method for cobalt target and copper backboard

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3445276B2 (en) * 1993-12-14 2003-09-08 株式会社東芝 Mo-W target for wiring formation, Mo-W wiring thin film, and liquid crystal display device using the same
JP3863204B2 (en) * 1995-08-25 2006-12-27 株式会社アライドマテリアル Sputtering target material and manufacturing method thereof
US6797137B2 (en) * 2001-04-11 2004-09-28 Heraeus, Inc. Mechanically alloyed precious metal magnetic sputtering targets fabricated using rapidly solidfied alloy powders and elemental Pt metal
JP3748221B2 (en) * 2001-10-23 2006-02-22 日立金属株式会社 Mo-based sputtering target and method for producing the same

Similar Documents

Publication Publication Date Title
JP2005240160A5 (en)
KR102297842B1 (en) A method of making cermet or cemented carbide powder
JP4110533B2 (en) Manufacturing method of Mo-based target material
US8916091B2 (en) Method for producing semi-finished products from NiTi shape memory alloys
JP5954196B2 (en) Cylindrical Cu-Ga alloy sputtering target and manufacturing method thereof
JP2013083000A (en) METHOD OF MANUFACTURING SINTERED Mo ALLOY SPUTTERING TARGET MATERIAL
Wang et al. Dynamic consolidation of W–Cu nanocomposites from W–CuO powder mixture
Tan et al. Investigation on 316L/316L-50W/W plate functionally graded materials fabricated by spark plasma sintering
JP3748221B2 (en) Mo-based sputtering target and method for producing the same
CN114058892A (en) Wear-resistant corrosion-resistant high-entropy alloy-based composite material and preparation method thereof
JP2019189500A (en) Method for producing diamond/silicon carbide composite with improved hardness and such composite
JP2010185137A (en) Method for producing sintered sheet material
JP4706980B2 (en) Manufacturing method of Mo target material
JP2005307225A (en) Mo TARGET MATERIAL
Silalahi et al. ULTRASONIC TREATMENT EFFECT ON THE CONSOLIDATION OF Fe-Cr PARTICLE MIXTURES AFTER COMPACTION AND SINTERING PROCESS
JP2019508576A (en) Material obtained by compacting and densifying metallic powder
KR960010597B1 (en) Method of manufacturing tough and porous getter by means of hydrogen pulverization and getters produced thereby
JP2022025568A (en) Powdery material, and sintered body using the same
JPS60138044A (en) Composite sintered structural body of cubic boron nitride and cermet and production thereof
JPH09172205A (en) Manufacture of thermoelectric material
KR100898746B1 (en) Fabrication method of a high density and single-phased RuAl intermetallic compound by powder metallurgy process
JP2000086350A (en) Production of sintered body of high melting compound and sintered body thereof
Jamaludin et al. An influence of the SS316L powder particle shape to the densification of metal injection molding (MIM) compact
JP2002180149A (en) NORMAL PRESSURE COMBUSTION SYNTHESIZING METHOD OF HIGH- DENSITY TiAl INTERMETALLIC COMPOUND
Mohmed et al. Synthesis & Characterization of Ni-Cr Binary Alloys Produced by Powder Metallurgy Technique