JP3748221B2 - Mo-based sputtering target and method for producing the same - Google Patents

Mo-based sputtering target and method for producing the same Download PDF

Info

Publication number
JP3748221B2
JP3748221B2 JP2001324671A JP2001324671A JP3748221B2 JP 3748221 B2 JP3748221 B2 JP 3748221B2 JP 2001324671 A JP2001324671 A JP 2001324671A JP 2001324671 A JP2001324671 A JP 2001324671A JP 3748221 B2 JP3748221 B2 JP 3748221B2
Authority
JP
Japan
Prior art keywords
target
powder
oxygen content
sputtering target
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001324671A
Other languages
Japanese (ja)
Other versions
JP2003129232A (en
Inventor
英司 平川
繁 谷口
克典 岩崎
惠介 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001324671A priority Critical patent/JP3748221B2/en
Publication of JP2003129232A publication Critical patent/JP2003129232A/en
Application granted granted Critical
Publication of JP3748221B2 publication Critical patent/JP3748221B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特に大型化に適したMo系スパッタリング用ターゲットおよびその製造方法に関するものである。
【0002】
【従来の技術】
従来、スパッタリング用ターゲットの製造には、粉末冶金法あるいは溶製法が用いられてきた。溶製法によるものは、鋳造した鋳塊から所定のターゲット形状を切り出すか、あるいは熱間加工もしくは冷間加工により鋳塊を所定の形状に加工する方法が一般的である。また、一体物のターゲットではなく、溶製法により製造した別種のターゲット片を組み合わせターゲット全体として所望の組成となるようにした複合ターゲットも知られている。例えば特開平6−204226号に示されるように、放射状に配置するタイプや、直方体のターゲットを横並びに配置したターゲット等である。
【0003】
粉末冶金法によるものは、合金を粉砕して得られた粉末を高温高圧ガス雰囲気中で熱間静水圧プレス処理して製造する方法が知られている。例えば特開昭61−60803号がその例である。粉末冶金法は、溶製法では製造困難な高融点系の材料や、偏析が生じ易くターゲット内において均一な組織が得られ難い合金系の材料に用いられる。また、粉末の成形性を利用して、ターゲットの最終形状に近い形状に成形した圧粉体を圧密化し、若干の仕上げ加工のみでターゲットを製造するというニアネットプロセスでの製造も行われている。
【0004】
【発明が解決しようとする課題】
ターゲットに要求される一般的な特性は、成膜された膜の組成、組織を均一にするために、ターゲットが目的の組成を有し、偏析がなく、結晶粒子が微細であることである。一方、近年液晶関係を中心に製品の大型化、コスト低減を目的にしたターゲットの大型化が進んでおり、大型のMo系ターゲットの需要が増加している。大型のターゲットは、大きなものでは1000mm×700mm、φ300mm程度以上のものがあり、製造上も大型の装置が必要となる。また、特性上も従来同様、均一微細な組織、そして低酸素化も大きく要求され、製造条件が厳しくなっている。
【0005】
上述したように、大型のMo系ターゲットにおいても均一微細な組織が要求されるが、溶製法では大型化するほど鋳塊内での偏析防止が難しくなり、均一微細な組織を得難くなる。これを解決するために熱間加工等で組織の均一微細化を施す方法もあるが、大型の装置を必要とし、組成系によっては熱間加工が困難な場合もあり、すべての組成について適用できるわけではなかった。
【0006】
一方、粉末冶金法では、粉末を製造できれば殆どの成分系について製造可能である。この場合、単一成分、あるいは合金の粉末であれば問題ないが、二種類以上の粉末を混合して充填する場合には、粉末の粒度分布、比重、形状の差により分離を生じる場合がある。これは小型のターゲットでも発生する問題であるが、大型のターゲットではより顕著に現れるため大きな問題である。
【0007】
さらに、粉末冶金法の場合、充填作業を行う上で、大型化するほど粉末の均一な充填が困難になり、充填密度の差が生じ易く、このため圧密化の際に収縮率の差が生じ変形が起こる。特にMo系ターゲットの場合は、使用する原料粉末の粒度が一般に10μm以下と細かく、また粉末が凝集した形態で存在しているために、充填密度が上がらず、例えば40%程度と低いことから、上記変形発生への対策が重要である。
【0008】
一般的に板状であるターゲットでは反りやコーナー部の変形等が生じ易い。このため、製造に際してはこの変形を見込んで矯正工程の追加や加工代の増加等を行う必要があり、さらには粉末の充填を均一に行うために、作業中の充填高さの測定等に工数を要し、作業性も悪く、生産上大きな問題であった。
【0009】
そして、粉末冶金法による別の課題として、その製造されたターゲットの酸素含有量を低減し難い問題がある。例えば熱間静水圧プレス処理を用いて製造する場合、原料粉末を所定の加圧容器(カプセル)に充填して処理を行うが、粉末は密閉されているため処理中に酸素を除去することは不可能である。そのためターゲットの酸素含有量は原料粉末の状態以下のものを得ることが困難である。
【0010】
本発明の目的は、大型化に適し、酸素量の低減化を達成したMo系スパッタリング用ターゲットおよびその製造方法を提供することである。
【0011】
【課題を解決するための手段】
本発明者は、ターゲットの大型化に伴う偏析、製造時の変形の問題を検討した結果、粉末の圧密体からなる複数のブロックを接合することで、特にMo系ターゲットの偏析、製造時の変形を大きく改善できることを見いだした。そして、その準備するブロックを見直すことでMo系ターゲットの低酸素化が達成でき、本発明に到達した。
【0012】
すなわち、本発明は、原料粉末を圧縮成形した後、水素雰囲気中で焼結してなる実質的に同組成である複数のブロックを、加圧容器に入れ込み、熱間静水圧プレスにより前記複数のブロック同士を接合して、酸素含有量が100ppm以下のターゲット材を得るMo系スパッタリング用ターゲットの製造方法である。
【0015】
【発明の実施の形態】
本発明の重要な特徴の一つは、Mo系スパッタリング用ターゲットに注目し、その粉末の圧密体からなる複数のブロックを接合したターゲットとしたところにある。すなわち、粉末から直接一体物のターゲットを製造するのではなく、一旦圧密体としてから接合によりターゲットとなすものである。
【0016】
これにより、粉末独自の利点である、組織の均一性を保ちつつ、粉末ターゲットを直接大型化する際の問題であった、特にMo系ターゲットについて問題であった、変形や密度不足を解消することができる。さらに、加圧容器への充填作業もブロックを敷設するだけの容易な作業となり、充填密度を均一化するための充填高さの測定等の工数を必要とせず、作業性が格段に向上する。また、圧密体のハンドリング装置を用いることで自動化も可能である。
【0017】
そして、本発明のさらなる特徴は、粉末冶金法で問題であった、酸素含有量の多いことに対し、その低減化に対処したところにある。すなわち、酸素含有量が100ppm以下のMo系スパッタリング用ターゲットである。
【0018】
本発明における粉末の圧密体としては、プレス成形体およびその焼結体、冷間静水圧プレス(CIP)体およびその焼結体、熱間静水圧(HIP)体等の粉体を圧縮あるいは圧縮焼結したものが利用できる。この時、その圧密体を焼結体とし、特に水素雰囲気中で焼結したものとすることで、酸素含有量を低減でき、結果、酸素含有量が100ppm以下、更には80,60ppm以下といったターゲットの達成が可能である。好ましくは、CIP処理後、水素雰囲気中で焼結して得られた圧密体であり、CIP処理により充填密度が改善され、HIP処理後のターゲット材の変形抑制に効果がある。
【0019】
本発明は、純MoターゲットもしくはMoに1種または2種以上の他元素を含む合金ターゲットについて効果を発揮する。合金ターゲットについてその一例を示しておくと、MoにCr,W,Zrの1種または2種以上の元素を含むターゲットであり、Mo量を原子量比にて50%以上としたMo系ターゲットである。
【0020】
このような本発明のMo系ターゲットについて、粉末の圧密体からなる複数のブロックを実質的に同組成とすることは、均一組成の大型ターゲットを得るという点で有利である。合金ターゲットの場合は、粉末として合金粉末の圧密体や、合金となる元素の単体粉末同士、あるいは合金粉末を混合した圧密体を使用することができる。
【0021】
接合方法は、等方的に加圧して圧密体の高密度化も同時に行える点において、加圧容器に入れ込み、熱間静水圧プレスにより接合することが望ましい。
【0022】
【実施例】
(実施例1)
Mo粉末とW粉末を原子量比65:35の混合比でV型混合機により混合し、CIP装置で120mm×95mm×18mmのブロックに成形した後、水素雰囲気中で焼結して、圧密体2を得た。これを図1に示すような1200mm×950mmの加圧容器1に敷設充填し、加圧容器を密閉、真空引き用パイプ3により真空引きした後(図2)、HIP処理により接合・圧密化した。この時、HIP処理後の容器の反りは5mm以下であった。また、HIP体の中心部の密度は99%以上、周辺部も密度99%以上と全体に均一な密度であった。ミクロ組織も中央部と周辺部で差はなく、酸素含有量は80ppmであった。
【0023】
この素材からターゲットを切り出し、1080mm×930mm×8mmのターゲットを作製して、そのスパッタリングテストを行ったところ、膜組成のばらつきが少なく、スパッタ時間による組成変化も少ない良好な結果が得られた。
【0024】
比較として、同様の混合粉末を1200mm×950mmの容器に小型のスコップを用いて充填し、同様に、真空引き、密閉、HIP処理した。この時、HIP処理後の容器には10mm程度の反りが生じており、HIP体の角部に充填不足に起因する変形が生じていた。また、酸素含有量は600ppmであった。
【0025】
(実施例2)
純Mo粉末をCIP処理により113mm×84mm×20mmのブロック状に成形した後、水素雰囲気中で焼結して、圧密体とした。これら圧密体を1130mm×1030mmの容器内に敷設充填し、容器を密閉、真空引きした後、HIP処理により接合・圧密化した。この時、HIP処理後の容器の反りは4mm以下であった。また、HIP体の中心部の密度は99%以上、周辺部も密度99%以上と全体に均一な密度であった。ミクロ組織も中央部と周辺部で差はなく、酸素含有量は50ppmであった。そして、この素材から切り出すことで、1080mm×930mm×10mmのターゲットを作製できた。
【0026】
比較として、同様の粉末を1130mm×1030mmの容器に小型のスコップを用いて充填し、同様に、真空引き、密閉、HIP処理した。この時、HIP処理後の容器は30mm程度の反りを生じており、また、角部に変形を生じていた。そのため、1080mm×930mm×10mmのターゲット切り出すことができず、容器を一回り大きいものに変更せざるを得なかった。なお、酸素含有量は500ppmであった。
【0027】
【発明の効果】
本発明によれば、粉末焼結法で問題であった、2種類以上の粉末を混合・充填する際の粒度分布、比重、形状の差による分離を防止でき、酸素含有量の低減も達成できる。さらに、個々の圧密体の密度は一定であるため、密度差に起因する収縮時の反りやコーナー部の変形等を防止できる。したがって、余分な矯正工程や加工代を低減でき、製造コストを低減できる。さらには、粉末の充填を均一に行うための充填高さの測定等も不要になり、大幅に作業性が向上する。特に、本発明は粉末充填面積が大きい大型ターゲットにおいて効果的である。
【図面の簡単な説明】
【図1】本発明による圧密体の敷設状態を示す図である。
【図2】本発明による加圧容器の密閉状態を示す図である。
【符号の説明】
1.加圧容器、2.圧密体、3.真空引き用パイプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a Mo-based sputtering target particularly suitable for upsizing and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, powder metallurgy or melting methods have been used for the production of sputtering targets. In general, the melting method is a method in which a predetermined target shape is cut out from a cast ingot, or the ingot is processed into a predetermined shape by hot working or cold working. In addition, a composite target is known that is not a single-piece target but a combination of different types of target pieces manufactured by a melting method so that the entire target has a desired composition. For example, as disclosed in Japanese Patent Laid-Open No. 6-204226, there are a radial type, a target in which rectangular parallelepiped targets are arranged side by side, and the like.
[0003]
As for the powder metallurgy method, a method is known in which a powder obtained by pulverizing an alloy is manufactured by hot isostatic pressing in a high-temperature high-pressure gas atmosphere. For example, Japanese Patent Laid-Open No. 61-60803 is an example. The powder metallurgy method is used for a high-melting-point material that is difficult to manufacture by a melting method and an alloy-based material in which segregation easily occurs and a uniform structure is difficult to obtain in a target. In addition, by using the moldability of powder, the green compact molded into a shape close to the final shape of the target is consolidated, and a near-net process is also performed in which the target is manufactured with only a slight finishing process. .
[0004]
[Problems to be solved by the invention]
The general characteristics required for the target are that the target has the desired composition, no segregation, and crystal grains are fine in order to make the composition and structure of the formed film uniform. On the other hand, in recent years, there has been an increase in the size of targets for the purpose of increasing the size of products and reducing costs mainly in the liquid crystal display, and the demand for large Mo-based targets has increased. A large target includes a large target having a size of about 1000 mm × 700 mm and φ300 mm or more, and a large apparatus is required for manufacturing. In addition, in terms of characteristics, a uniform fine structure and low oxygen are also demanded as in the conventional case, and manufacturing conditions are severe.
[0005]
As described above, even in a large Mo-based target, a uniform and fine structure is required. However, in the melting method, as the size increases, it becomes difficult to prevent segregation in the ingot and it is difficult to obtain a uniform and fine structure. In order to solve this problem, there is a method of uniformly refining the structure by hot working or the like, but a large apparatus is required, and depending on the composition system, hot working may be difficult and can be applied to all compositions. That wasn't true.
[0006]
On the other hand, in the powder metallurgy method, as long as powder can be produced, it can be produced for most component systems. In this case, there is no problem as long as it is a single component or alloy powder, but when two or more types of powders are mixed and filled, separation may occur due to differences in the particle size distribution, specific gravity, and shape of the powder. . This is a problem that occurs even with a small target, but is a big problem because it appears more prominently with a large target.
[0007]
Furthermore, in the case of powder metallurgy, the larger the size, the more difficult it becomes to uniformly fill the powder, and the difference in packing density tends to occur. Therefore, there is a difference in shrinkage rate during consolidation. Deformation occurs. In particular, in the case of a Mo-based target, the particle size of the raw material powder to be used is generally as fine as 10 μm or less, and since the powder exists in an aggregated form, the packing density does not increase, for example, as low as about 40%, It is important to take measures against the above deformation.
[0008]
In general, a target having a plate shape is likely to warp or deform a corner portion. For this reason, it is necessary to add a correction process or increase the machining allowance in anticipation of this deformation at the time of manufacturing.Furthermore, in order to uniformly fill the powder, it is necessary to measure the filling height during the work. It was a big problem in production.
[0009]
Another problem with the powder metallurgy method is that it is difficult to reduce the oxygen content of the manufactured target. For example, when manufacturing using hot isostatic pressing, the raw material powder is filled into a predetermined pressurized container (capsule) and processed. However, since the powder is hermetically sealed, it is possible to remove oxygen during processing. Impossible. Therefore, it is difficult to obtain a target having an oxygen content equal to or lower than that of the raw material powder.
[0010]
An object of the present invention is to provide a Mo-based sputtering target suitable for increasing the size and achieving a reduction in the amount of oxygen, and a method for manufacturing the same.
[0011]
[Means for Solving the Problems]
As a result of examining the problem of segregation accompanying the enlargement of the target and deformation at the time of production, the present inventor has joined a plurality of blocks made of a compacted powder body, in particular, segregation of the Mo-based target, deformation during production. I found that I can greatly improve. And by reviewing the prepared block, the oxygen-based reduction of the Mo-based target can be achieved, and the present invention has been achieved.
[0012]
That is, in the present invention, after compressing and molding the raw material powder, a plurality of blocks having substantially the same composition formed by sintering in a hydrogen atmosphere are placed in a pressure vessel, and the plurality of the blocks are subjected to hot isostatic pressing. This is a method for manufacturing a Mo-based sputtering target in which blocks are joined to obtain a target material having an oxygen content of 100 ppm or less.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
One of the important features of the present invention is that the focus is on the Mo-based sputtering target, and the target is formed by joining a plurality of blocks made of a compacted body of the powder. That is, instead of manufacturing a single-piece target directly from the powder, the target is formed by bonding once after being consolidated.
[0016]
This eliminates deformation and lack of density, which was a problem when directly increasing the size of the powder target while maintaining the uniformity of the structure, which is a unique advantage of the powder, especially for the Mo-based target. Can do. Further, the filling operation into the pressurized container is also an easy operation of only laying the blocks, and it does not require man-hours such as measurement of the filling height for making the filling density uniform, and the workability is remarkably improved. Further, automation is possible by using a compacted body handling apparatus.
[0017]
And the further characteristic of this invention exists in the place which coped with the reduction | decrease with respect to the large oxygen content which was a problem in the powder metallurgy method. That is, the Mo-based sputtering target having an oxygen content of 100 ppm or less.
[0018]
As the powder compact in the present invention, a compact such as a press-molded body and its sintered body, a cold isostatic press (CIP) body and its sintered body, and a hot isostatic pressure (HIP) body are compressed or compressed. Sintered ones can be used. At this time, the compacted body is made into a sintered body, and in particular, sintered in a hydrogen atmosphere, so that the oxygen content can be reduced. As a result, the oxygen content is 100 ppm or less, further 80, 60 ppm or less. Can be achieved. Preferably, it is a consolidated body obtained by sintering in a hydrogen atmosphere after the CIP treatment, the packing density is improved by the CIP treatment, and it is effective in suppressing deformation of the target material after the HIP treatment.
[0019]
The present invention is effective for a pure Mo target or an alloy target containing one or more other elements in Mo. As an example of the alloy target, Mo is a target containing one or more elements of Cr, W, Zr in Mo, and a Mo-based target in which the Mo amount is 50% or more in atomic weight ratio. .
[0020]
For such a Mo-based target of the present invention, it is advantageous to obtain a large target having a uniform composition by making a plurality of blocks made of a powder compact into substantially the same composition. In the case of an alloy target, a compacted body of an alloy powder, a single powder of elements to be alloyed, or a compacted body in which alloy powders are mixed can be used as the powder.
[0021]
It is desirable that the joining method is carried out by hot isostatic pressing in a pressurized container in that it can be pressurized isotropically to simultaneously increase the density of the compacted body.
[0022]
【Example】
Example 1
Mo powder and W powder are mixed by a V-type mixer at a mixing ratio of atomic weight ratio of 65:35, formed into a block of 120 mm × 95 mm × 18 mm by a CIP apparatus, and then sintered in a hydrogen atmosphere to obtain a compact 2 Got. This was laid and filled in a 1200 mm × 950 mm pressurized container 1 as shown in FIG. 1, and the pressurized container was sealed and evacuated by a evacuating pipe 3 (FIG. 2), and then joined and consolidated by HIP treatment. . At this time, the warpage of the container after the HIP treatment was 5 mm or less. In addition, the density of the central part of the HIP body was 99% or more, and the density of the peripheral part was also 99% or more. There was no difference in the microstructure between the central part and the peripheral part, and the oxygen content was 80 ppm.
[0023]
When a target was cut out from this material, a 1080 mm × 930 mm × 8 mm target was prepared and a sputtering test was performed, a favorable result was obtained in which there was little variation in film composition and little change in composition due to sputtering time.
[0024]
For comparison, the same mixed powder was filled into a 1200 mm × 950 mm container using a small scoop, and was similarly evacuated, sealed, and HIP treated. At this time, warpage of about 10 mm occurred in the container after HIP treatment, and deformation due to insufficient filling occurred in the corner of the HIP body. The oxygen content was 600 ppm.
[0025]
(Example 2)
Pure Mo powder was formed into a 113 mm × 84 mm × 20 mm block by CIP treatment, and then sintered in a hydrogen atmosphere to obtain a consolidated body. These compacts were laid and filled in a 1130 mm × 1030 mm container, and the container was sealed and evacuated, and then joined and consolidated by HIP treatment. At this time, the warpage of the container after the HIP treatment was 4 mm or less. In addition, the density of the central part of the HIP body was 99% or more, and the density of the peripheral part was also 99% or more. There was no difference in the microstructure between the central part and the peripheral part, and the oxygen content was 50 ppm. And by cutting out from this material, a target of 1080 mm × 930 mm × 10 mm could be produced.
[0026]
For comparison, the same powder was filled into a 1130 mm × 1030 mm container using a small scoop, and was similarly evacuated, sealed, and HIP treated. At this time, the container after the HIP treatment was warped by about 30 mm, and the corners were deformed. Therefore, the target of 1080 mm × 930 mm × 10 mm could not be cut out, and the container had to be changed to a one size larger. The oxygen content was 500 ppm.
[0027]
【The invention's effect】
According to the present invention, separation due to differences in particle size distribution, specific gravity, and shape when mixing and filling two or more types of powder, which was a problem in the powder sintering method, can be prevented, and a reduction in oxygen content can also be achieved. . Furthermore, since the density of the individual compacts is constant, it is possible to prevent warping during shrinkage and deformation of the corners due to the density difference. Therefore, an extra correction process and processing cost can be reduced, and manufacturing cost can be reduced. Furthermore, the measurement of the filling height for uniformly filling the powder becomes unnecessary, and the workability is greatly improved. In particular, the present invention is effective for a large target having a large powder filling area.
[Brief description of the drawings]
FIG. 1 is a view showing a laying state of a compacted body according to the present invention.
FIG. 2 is a view showing a sealed state of a pressurized container according to the present invention.
[Explanation of symbols]
1. 1. pressurized container, 2. compacted body; Pipe for vacuuming

Claims (1)

原料粉末を圧縮成形した後、水素雰囲気中で焼結してなる実質的に同組成である複数のブロックを、加圧容器に入れ込み、熱間静水圧プレスにより前記複数のブロック同士を接合して、酸素含有量が100ppm以下のターゲット材を得ることを特徴とするMo系スパッタリング用ターゲットの製造方法 After compression molding the raw material powder , a plurality of blocks having substantially the same composition formed by sintering in a hydrogen atmosphere are put into a pressure vessel, and the plurality of blocks are joined together by hot isostatic pressing. A method for producing a Mo-based sputtering target, wherein a target material having an oxygen content of 100 ppm or less is obtained .
JP2001324671A 2001-10-23 2001-10-23 Mo-based sputtering target and method for producing the same Expired - Lifetime JP3748221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001324671A JP3748221B2 (en) 2001-10-23 2001-10-23 Mo-based sputtering target and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001324671A JP3748221B2 (en) 2001-10-23 2001-10-23 Mo-based sputtering target and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003129232A JP2003129232A (en) 2003-05-08
JP3748221B2 true JP3748221B2 (en) 2006-02-22

Family

ID=19141357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001324671A Expired - Lifetime JP3748221B2 (en) 2001-10-23 2001-10-23 Mo-based sputtering target and method for producing the same

Country Status (1)

Country Link
JP (1) JP3748221B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI385262B (en) * 2004-02-27 2013-02-11 Howmet Corp Method of making sputtering target
JP4110533B2 (en) * 2004-02-27 2008-07-02 日立金属株式会社 Manufacturing method of Mo-based target material
US7832619B2 (en) * 2004-02-27 2010-11-16 Howmet Corporation Method of making sputtering target
JP4721090B2 (en) * 2004-04-16 2011-07-13 日立金属株式会社 Manufacturing method of Mo-based target material
JP4591749B2 (en) * 2004-04-16 2010-12-01 日立金属株式会社 Manufacturing method of Mo target material
US20060042728A1 (en) * 2004-08-31 2006-03-02 Brad Lemon Molybdenum sputtering targets
US20060201589A1 (en) * 2005-03-11 2006-09-14 Honeywell International Inc. Components comprising metallic material, physical vapor deposition targets, thin films, and methods of forming metallic components
US7652223B2 (en) * 2005-06-13 2010-01-26 Applied Materials, Inc. Electron beam welding of sputtering target tiles
US7837929B2 (en) 2005-10-20 2010-11-23 H.C. Starck Inc. Methods of making molybdenum titanium sputtering plates and targets
CN101611165B (en) * 2007-01-12 2012-03-21 新日铁高新材料 Process for producing molybdenum-based sputtering target plate
US8449817B2 (en) 2010-06-30 2013-05-28 H.C. Stark, Inc. Molybdenum-containing targets comprising three metal elements
US8449818B2 (en) 2010-06-30 2013-05-28 H. C. Starck, Inc. Molybdenum containing targets
JP2012237056A (en) * 2011-04-28 2012-12-06 Hitachi Metals Ltd METHOD FOR PRODUCING MoCr TARGET MATERIAL AND THE MoCr TARGET MATERIAL
KR20160021299A (en) 2011-05-10 2016-02-24 에이치. 씨. 스타아크 아이앤씨 Multi-block sputtering target and associated methods and articles
US9334565B2 (en) 2012-05-09 2016-05-10 H.C. Starck Inc. Multi-block sputtering target with interface portions and associated methods and articles
JP6331125B2 (en) * 2014-03-17 2018-05-30 日立金属株式会社 Target material manufacturing method
CN114574821B (en) * 2022-01-31 2023-05-23 安泰科技股份有限公司 Preparation method of large-size molybdenum target

Also Published As

Publication number Publication date
JP2003129232A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
JP3748221B2 (en) Mo-based sputtering target and method for producing the same
JP4110533B2 (en) Manufacturing method of Mo-based target material
EP1727643B1 (en) Method of making sputtering target
KR100721691B1 (en) Method of making high density sputtering targets
CN110257784A (en) A kind of preparation process of high-compactness molybdenum niobium alloy sputtering target material
JP2012237056A (en) METHOD FOR PRODUCING MoCr TARGET MATERIAL AND THE MoCr TARGET MATERIAL
CN110527957A (en) A kind of aluminium chromium-boron alloy target and preparation method thereof
JP2003342720A (en) Method of producing molybdenum target for sputtering and molybdenum target
CN107640744A (en) A kind of unsaturated hydride powder of high-mouldability and preparation method thereof
JP4721090B2 (en) Manufacturing method of Mo-based target material
JP2003226964A (en) Method of producing tungsten target for sputtering
US20100178525A1 (en) Method for making composite sputtering targets and the tartets made in accordance with the method
JP2006028536A (en) Sintered mo-based target material manufacturing method
JP2000203929A (en) Sputtering target and its production
EP2268434A1 (en) A method for making composite sputtering targets and the targets made in accordance with the method
JP4591749B2 (en) Manufacturing method of Mo target material
JPH02259029A (en) Manufacture of aluminide
JPS63255331A (en) Formation of ti-al intermetallic-compound member
CN111041261A (en) Novel pressing and sintering method of particle reinforced molybdenum/tungsten-based composite material
JPH03173705A (en) Production of high density sintered body
JP4706980B2 (en) Manufacturing method of Mo target material
JPS6058289B2 (en) Manufacturing method of high chromium alloy material
KR102609282B1 (en) Hot isostatic pressure powder metallurgy canning container for preventing can pollution by diffusion and the hot isostatic pressure metallurgy method using the same
JPS6386831A (en) Manufacture of working stock of aluminum-base sintered alloy
US6060017A (en) Method for sintering a metallic powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3748221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

EXPY Cancellation because of completion of term