JP2019009313A - Manufacturing method of rare-earth magnet, and rare-earth magnet - Google Patents

Manufacturing method of rare-earth magnet, and rare-earth magnet Download PDF

Info

Publication number
JP2019009313A
JP2019009313A JP2017124491A JP2017124491A JP2019009313A JP 2019009313 A JP2019009313 A JP 2019009313A JP 2017124491 A JP2017124491 A JP 2017124491A JP 2017124491 A JP2017124491 A JP 2017124491A JP 2019009313 A JP2019009313 A JP 2019009313A
Authority
JP
Japan
Prior art keywords
powder
alloy
phase
rare earth
earth magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017124491A
Other languages
Japanese (ja)
Inventor
前田 徹
Toru Maeda
前田  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Priority to JP2017124491A priority Critical patent/JP2019009313A/en
Publication of JP2019009313A publication Critical patent/JP2019009313A/en
Pending legal-status Critical Current

Links

Abstract

To provide a manufacturing method of rare-earth magnet having high density and excellent in shape retention, and to provide a rare-earth magnet.SOLUTION: A manufacturing method of rare-earth magnet includes a preparation step of preparing a foil of Nd-Fe-B based alloy of 25 μm or less having a Nd-Fe-B phase as a main phase, a pulverization step of pulverizing foils of the Nd-Fe-B based alloy and obtaining flaky powder P thereof passed through the sieve mesh having an opening of two times or more of the thickness of the foils, a hydrogen treatment step of hydrogenating the Nd-Fe-B based alloy, a blending step of blending a solid lubricant to the powder of the Nd-Fe-B based alloy subjected to hydrogen treatment and obtaining mixed powder, a molding step of obtaining a hydrogenation compact by pressure molding the mixed powder, and a dehydrogenation step of obtaining a magnet molding having a Nd-Fe-N phase as a main phase, by performing dehydrogenation processing of the hydrogenation compact.SELECTED DRAWING: Figure 1

Description

本発明は、希土類磁石の製造方法、及び希土類磁石に関する。   The present invention relates to a method for producing a rare earth magnet and a rare earth magnet.

モータや発電機などに使用される永久磁石として、希土類元素と鉄とを含有し、希土類−鉄系化合物を主相とする希土類−鉄系合金を原料に用いた希土類磁石が広く利用されている。希土類磁石としては、代表的には、Nd−Fe−B系化合物(例、NdFe14B相)を主相とするNd−Fe−B系磁石(ネオジム磁石)や、Sm−Fe−N系化合物(例、SmFe17相)を主相とするSm−Fe−N系磁石が知られている。希土類磁石の形態としては、希土類−鉄系合金の磁粉を加圧成形して焼結した焼結磁石や、磁粉にバインダを混合し、これを加圧成形して固化したボンド磁石が主流である。最近では、希土類−鉄系合金の磁粉を加圧成形した圧粉磁石が提案されている(例えば、特許文献1を参照)。 As permanent magnets used in motors and generators, rare earth magnets containing rare earth elements and iron, and using rare earth-iron alloys with a rare earth-iron compound as the main phase are widely used. . As rare earth magnets, typically, Nd—Fe—B magnets (neodymium magnets) whose main phase is an Nd—Fe—B compound (eg, Nd 2 Fe 14 B phase), Sm—Fe—N Sm—Fe—N magnets having a main phase of a compound (eg, Sm 2 Fe 17 N 3 phase) are known. As the rare earth magnets, the mainstream is a sintered magnet obtained by pressure-molding and sintering a rare earth-iron alloy magnetic powder, and a bonded magnet obtained by mixing a magnetic powder with a binder and then pressing and solidifying the binder. . Recently, a dust magnet in which magnetic powder of a rare earth-iron alloy is pressure-molded has been proposed (see, for example, Patent Document 1).

特許文献1には、希土類磁石の製造方法が開示され、原料の希土類−鉄系合金の粉末を水素化(HD:Hydrogenation−Disproportionation)処理した後、加圧成形し、この成形体を脱水素(DR:Desorption−Recombination)処理する圧粉磁石の製造技術が記載されている。この文献に記載の製造技術によれば、希土類−鉄系合金を水素化処理することで成形性を高められ、水素化処理した合金粉末を加圧成形することで高密度の粉末成形体(磁石成形体)を得ることができ、希土類磁石の高密度化が可能である。   Patent Document 1 discloses a method for producing a rare earth magnet. A raw material rare earth-iron alloy powder is subjected to a hydrogenation (HD) treatment, and then subjected to pressure molding, and the compact is dehydrogenated ( The manufacturing technology of the dust magnet which processes DR: Desorption-Recombination is described. According to the manufacturing technique described in this document, the formability can be improved by hydrogenating a rare earth-iron-based alloy, and a high-density powder compact (magnet) can be formed by pressure-forming the hydrogenated alloy powder. Molded body) can be obtained, and the density of the rare earth magnet can be increased.

特開2015−128118号公報JP2015-128118A

希土類磁石の更なる高性能化が求められており、磁気特性に優れるだけでなく、密度が高く保形性にも優れる希土類磁石の開発が望まれている。   There is a demand for further enhancement of performance of rare earth magnets, and development of rare earth magnets not only having excellent magnetic properties but also high density and excellent shape retention is desired.

ボンド磁石では、バインダとなる樹脂を含有するため、相対密度が低くなる。そのため、Sm−Fe−N系合金の磁粉が占める割合が少なくなり、その分磁気特性が低下する問題がある。また、バインダとなる樹脂の熱安定性が低いため、磁石の使用温度が制限される場合がある。   Since the bond magnet contains a resin as a binder, the relative density is lowered. For this reason, there is a problem that the proportion of the magnetic powder of the Sm—Fe—N alloy decreases, and the magnetic properties are reduced accordingly. Moreover, since the resin used as a binder has low thermal stability, the use temperature of the magnet may be limited.

これに対し、圧粉磁石はバインダが不要であり、上述した圧粉磁石の製造技術を適用することで、ボンド磁石の上記問題点を解決することが可能である。Nd−Fe−B系圧粉磁石の場合は、原料となるNd−Fe−B系合金の粉末を水素化処理して、不均化反応によりNd−Fe−B系化合物(Nd−Fe−B相)をNdH、Fe、FeBの3相に分解することで、これらの相が混在する混晶組織としている。これにより、Nd−Fe−B相やNdH相に比較して軟らかいFe相やFeB相といったFe含有物の相が存在することで、成形性を改善している。 On the other hand, the dust magnet does not require a binder, and the above problems of the bond magnet can be solved by applying the above-described dust magnet manufacturing technology. In the case of a Nd-Fe-B-based dust magnet, the Nd-Fe-B-based alloy powder as a raw material is subjected to a hydrogenation treatment, and the Nd-Fe-B-based compound (Nd-Fe-B Phase) is decomposed into three phases of NdH 2 , Fe, and Fe 2 B, thereby obtaining a mixed crystal structure in which these phases are mixed. Thus, by phase Nd-Fe-B phase and NdH 2 phase compared to the soft Fe phase and Fe 2 B phase and said Fe-containing material is present, have improved formability.

しかしながら、従来技術では、使用する原料粉末によっては、加圧成形時の成形性が不十分で、成形体の形状を保持する保形性が低い場合がある。そのため、場合によっては、希土類磁石(圧粉磁石)の保形強度を十分に確保することが困難な場合があり、製造した希土類磁石にクラックなどの欠陥が発生することがある。   However, in the prior art, depending on the raw material powder to be used, the moldability at the time of pressure molding may be insufficient, and the shape retention property that maintains the shape of the molded body may be low. Therefore, in some cases, it may be difficult to ensure sufficient shape retention strength of the rare earth magnet (powder magnet), and defects such as cracks may occur in the manufactured rare earth magnet.

本開示は、密度を高め、保形性を向上できる希土類磁石の製造方法を提供することを目的の1つとする。また、本開示は、密度が高く、保形性に優れる希土類磁石を提供することを目的の1つとする。   An object of the present disclosure is to provide a method of manufacturing a rare earth magnet that can increase density and improve shape retention. Another object of the present disclosure is to provide a rare earth magnet having high density and excellent shape retention.

本開示に係る希土類磁石の製造方法は、
Nd、Fe及びBを含有する合金溶湯を急冷凝固して、Nd−Fe−B相を主相とし、厚さ25μm以下のNd−Fe−B系合金の薄片を用意する準備工程と、
前記Nd−Fe−B系合金の薄片を粉砕し、目開きが前記薄片の厚さの2倍以上の篩目を通過した薄片状のNd−Fe−B系合金の粉末を得る粉砕工程と、
前記Nd−Fe−B系合金を水素化処理し、その少なくとも一部を不均化反応によりNdH、Fe及びFeBの3相に分解する水素化工程と、
前記水素化処理した前記Nd−Fe−B系合金の粉末に固体潤滑剤を混合して混合粉末を得る混合工程と、
前記混合粉末を加圧成形して水素化成形体を得る成形工程と、
前記水素化成形体を脱水素処理し、再結合反応により前記水素化処理によって分解した相を再結合して、Nd−Fe−N相を主相とする磁石成形体を得る脱水素工程と、を備える。
A method for producing a rare earth magnet according to the present disclosure includes:
A preparatory step in which a molten alloy containing Nd, Fe and B is rapidly solidified to prepare a flake of an Nd—Fe—B alloy having a thickness of 25 μm or less with an Nd—Fe—B phase as a main phase;
Crushing the Nd-Fe-B-based alloy flakes to obtain a flaky Nd-Fe-B-based alloy powder that has passed through a mesh whose opening is twice or more the thickness of the flakes;
Hydrotreating the Nd-Fe-B alloy, and at least partially decomposing it into three phases of NdH 2 , Fe, and Fe 2 B by a disproportionation reaction;
A mixing step of obtaining a mixed powder by mixing a solid lubricant with the hydrogenated Nd-Fe-B alloy powder;
A molding step of pressing the mixed powder to obtain a hydrogenated molded body; and
A dehydrogenation step of dehydrogenating the hydrogenated molded body and recombining the phases decomposed by the hydrogenation treatment by a recombination reaction to obtain a magnet molded body having an Nd-Fe-N phase as a main phase. Prepare.

本開示に係る希土類磁石は、
Nd−Fe−B系合金の粉末を含む粉末成形体からなる希土類磁石であって、
相対密度が83%以上であり、
任意の断面において、観察視野内に含まれる前記粉末の中で最大径が25μm以下の微細粉末が存在する微粉領域の総面積が前記観察視野の面積の25%以上である。
The rare earth magnet according to the present disclosure is
A rare earth magnet made of a powder compact including a powder of an Nd-Fe-B alloy,
The relative density is 83% or more,
In an arbitrary cross section, the total area of the fine powder region in which fine powder having a maximum diameter of 25 μm or less exists in the powder included in the observation visual field is 25% or more of the area of the observation visual field.

上記希土類磁石の製造方法は、希土類磁石の密度を高め、保形性を向上できる。上記希土類磁石は、密度が高く、保形性に優れる。   The manufacturing method of the rare earth magnet can increase the density of the rare earth magnet and improve the shape retention. The rare earth magnet has a high density and excellent shape retention.

本発明の実施形態に係る希土類磁石において、粉末の粒径の測定方法を説明するための図である。It is a figure for demonstrating the measuring method of the particle size of a powder in the rare earth magnet which concerns on embodiment of this invention. 試料No.1−1の断面SEM観察像を示す図である。Sample No. It is a figure which shows the cross-sectional SEM observation image of 1-1. 試料No.100の断面SEM観察像を示す図である。Sample No. It is a figure which shows the cross-sectional SEM observation image of 100. FIG. 試料No.1−1の外観写真を示す図である。Sample No. It is a figure which shows the external appearance photograph of 1-1. 試料No.100の外観写真を示す図である。Sample No. It is a figure which shows the external appearance photograph of 100. FIG.

本発明者が鋭意研究を重ねた結果、急冷凝固により得られた厚さ25μm以下のNd−Fe−B系合金薄片を出発原料とし、これを粉砕した薄片状のNd−Fe−B系合金粉末を原料粉末に用いることで、磁気特性を改善できることを見出した。これは、Nd−Fe−B系合金を急冷凝固により厚さ25μm以下の薄片とした場合、非晶質又はナノ結晶質、或いは非晶質とナノ結晶質の混晶組織が得られ易く、これを水素化・脱水素処理すると、ナノサイズの微細な結晶のNd−Fe−B系相が生成され、微細な結晶組織が形成されるためである。   As a result of intensive studies by the present inventors, flaky Nd—Fe—B alloy powder obtained by pulverizing Nd—Fe—B alloy flakes having a thickness of 25 μm or less obtained by rapid solidification. It was found that the magnetic properties can be improved by using as a raw material powder. This is because when an Nd—Fe—B alloy is made into a flake having a thickness of 25 μm or less by rapid solidification, an amorphous or nanocrystalline or amorphous and nanocrystalline mixed crystal structure is easily obtained. This is because the nano-sized fine crystal Nd—Fe—B system phase is generated and the fine crystal structure is formed.

しかし、薄片状のNd−Fe−B系合金粉末は、加圧成形時の成形性に劣り、保形性が低いことが分かった。この理由は次のように考えられる。薄片状の粉末の場合、加圧成形時に粉末の長手方向が加圧方向に垂直な方向に整列し、粉末がその厚さ方向に積層された積層状態となり易い。このような積層状態では、粉末の表面同士が面接触する界面が多く、界面の面積が大きくなる。そのため、粉末粒子同士の接触抵抗(摩擦)が大きいため、加圧成形時に粉末が流動し難い。また、この界面で剥離が起き易く、剥離部分が起点となって亀裂が界面に沿って進展し易いことから、加圧成形した成形体にクラックが発生し易いなど、保形強度の低下を招く。   However, it has been found that the flaky Nd—Fe—B alloy powder is inferior in formability during pressure forming and has low shape retention. The reason is considered as follows. In the case of a flaky powder, the longitudinal direction of the powder is aligned in a direction perpendicular to the pressing direction at the time of pressure molding, and the powder tends to be laminated in the thickness direction. In such a laminated state, there are many interfaces where the surfaces of the powder are in surface contact, and the area of the interface becomes large. Therefore, since the contact resistance (friction) between the powder particles is large, the powder is difficult to flow during pressure molding. In addition, peeling is likely to occur at this interface, and cracks are likely to propagate along the interface starting from the peeling portion, leading to a decrease in shape retention strength, such as cracks being easily formed in a pressure-molded molded body. .

本発明者は、水素化処理した薄片状のNd−Fe−B系合金粉末に固体潤滑剤を混合することで、加圧成形時の粉末の流動性を高めて、保形性を向上させることができ、密度が高く、保形性に優れる希土類磁石が得られることを見出した。本発明は、以上の知見に基づいてなされたものである。最初に本発明の実施態様を列記して説明する。   The present inventor improves the shape retention by increasing the fluidity of the powder during pressure molding by mixing a solid lubricant with the hydrogenated flaky Nd-Fe-B alloy powder. It was found that a rare earth magnet having high density and excellent shape retention can be obtained. The present invention has been made based on the above findings. First, embodiments of the present invention will be listed and described.

[本発明の実施形態の説明]
(1)本発明の実施形態に係る希土類磁石の製造方法は、
Nd、Fe及びBを含有する合金溶湯を急冷凝固して、Nd−Fe−B相を主相とし、厚さ25μm以下のNd−Fe−B系合金の薄片を用意する準備工程と、
前記Nd−Fe−B系合金の薄片を粉砕し、目開きが前記薄片の厚さの2倍以上の篩目を通過した薄片状のNd−Fe−B系合金の粉末を得る粉砕工程と、
前記Nd−Fe−B系合金を水素化処理し、その少なくとも一部を不均化反応によりNdH、Fe及びFeBの3相に分解する水素化工程と、
前記水素化処理した前記Nd−Fe−B系合金の粉末に固体潤滑剤を混合して混合粉末を得る混合工程と、
前記混合粉末を加圧成形して水素化成形体を得る成形工程と、
前記水素化成形体を脱水素処理し、再結合反応により前記水素化処理によって分解した相を再結合して、Nd−Fe−B相を主相とする磁石成形体を得る脱水素工程と、を備える。
[Description of Embodiment of the Present Invention]
(1) A method for producing a rare earth magnet according to an embodiment of the present invention includes:
A preparatory step in which a molten alloy containing Nd, Fe and B is rapidly solidified to prepare a flake of an Nd—Fe—B alloy having a thickness of 25 μm or less with an Nd—Fe—B phase as a main phase;
Crushing the Nd-Fe-B-based alloy flakes to obtain a flaky Nd-Fe-B-based alloy powder that has passed through a mesh whose opening is twice or more the thickness of the flakes;
Hydrotreating the Nd-Fe-B alloy, and at least partially decomposing it into three phases of NdH 2 , Fe, and Fe 2 B by a disproportionation reaction;
A mixing step of obtaining a mixed powder by mixing a solid lubricant with the hydrogenated Nd-Fe-B alloy powder;
A molding step of pressing the mixed powder to obtain a hydrogenated molded body; and
A dehydrogenation step of dehydrogenating the hydrogenated molded body, recombining the phases decomposed by the hydrogenation treatment by a recombination reaction, and obtaining a magnet molded body having an Nd-Fe-B phase as a main phase; Prepare.

上記希土類磁石の製造方法によれば、Nd−Fe−B相を主相とするNd−Fe−B系合金(又はその粉末)を水素化処理し、この粉末を加圧成形→脱水素処理することで、バインダを含まない高密度のNd−Fe−B系合金粉末の磁石成形体(希土類磁石)を製造できる。また、上記希土類磁石の製造方法では、水素化処理した薄片状のNd−Fe−B系合金粉末に固体潤滑剤を混合することで、加圧成形時の粉末の流動性を高めて、成形体の保形性を向上させることができる。そのため、加圧成形の圧力(面圧)を低くしても、高密度化できる。したがって、上記希土類磁石の製造方法は、希土類磁石の密度を高め、保形性を向上できる。例えば、相対密度が83%以上を達成でき、希土類磁石を高密度化することで、保形強度や磁気特性(特に残留磁化)を向上できる。   According to the method for producing a rare earth magnet, a Nd—Fe—B alloy (or a powder thereof) having a Nd—Fe—B phase as a main phase is subjected to a hydrogenation treatment, and the powder is subjected to pressure forming → dehydrogenation treatment. Thus, a magnet compact (rare earth magnet) of a high-density Nd—Fe—B alloy powder that does not contain a binder can be produced. In the method for producing a rare earth magnet, the fluidity of the powder at the time of pressure molding is improved by mixing a solid lubricant with the flaky Nd—Fe—B alloy powder subjected to the hydrogenation treatment. It is possible to improve the shape retention. Therefore, the density can be increased even if the pressure (surface pressure) in pressure molding is lowered. Therefore, the manufacturing method of the rare earth magnet can increase the density of the rare earth magnet and improve the shape retention. For example, the relative density can be 83% or more, and the shape retention strength and magnetic properties (particularly residual magnetization) can be improved by increasing the density of the rare earth magnet.

保形性が向上する理由は次のように考えられる。薄片状のNd−Fe−B系合金粉末の場合は、上述したように、加圧成形時に粉末の長手方向が加圧方向に垂直な方向(横方向)に整列し、粉末がその厚さ方向に積層された積層状態となり易い。この積層部分は、薄片状の粉末の面同士が接触しているため、強固に結合していないことから剥離し易く、製造工程中の衝撃で成形体が欠けたり、破壊したりする場合がある。上記希土類磁石の製造方法では、固体潤滑剤を混合することによって粉末同士の接触抵抗が減少するため、加圧成形時に粉末が流動し易くなる。粉末が流動することによって、粉末に対して厚さ方向の圧縮力だけではなく、横方向に隣り合う粉末同士が衝突するなどして長手方向にも圧縮力が作用する。これにより粉末の粉砕が起こり、粉末が細粒化して、成形体中に微細な粉末が存在する微粉領域が多く形成される。微粉領域は、最大径が25μm以下の微細粉末が緻密に集合した領域であり、粉末粒子同士の接触面積が大きく、粉末粒子同士が強固に結びついて凝集することから、亀裂の進展などによる成形体の欠けや破壊を抑制する効果がある。このような微粉領域が増えることによって、剥離や亀裂の発生を抑制でき、保形強度が高くなる。   The reason why the shape retention is improved is considered as follows. In the case of flaky Nd—Fe—B alloy powder, as described above, the longitudinal direction of the powder is aligned in the direction perpendicular to the pressing direction (lateral direction) during pressure forming, and the powder is in the thickness direction. It is easy to become the lamination state laminated | stacked on. Since this laminated portion is in contact with the flaky powder surfaces, they are not firmly bonded, so they are easy to peel off, and the molded product may be chipped or destroyed by impact during the manufacturing process. . In the manufacturing method of the rare earth magnet, the contact resistance between the powders is reduced by mixing the solid lubricant, so that the powder easily flows during the pressure molding. When the powder flows, not only the compressive force in the thickness direction but also the compressive force acts in the longitudinal direction due to collision of powders adjacent in the lateral direction. As a result, the powder is pulverized, the powder is finely divided, and many fine powder regions where fine powder exists are formed in the compact. The fine powder region is a region in which fine powders having a maximum diameter of 25 μm or less are densely gathered, the contact area between the powder particles is large, and the powder particles are tightly connected and aggregated, so that a molded body due to the progress of cracks, etc. It has the effect of suppressing chipping and destruction. By increasing such a fine powder region, it is possible to suppress the occurrence of peeling and cracking and to increase the shape retention strength.

更に、上記希土類磁石の製造方法では、急冷凝固して得られた厚さ25μm以下のNd−Fe−B系合金薄片を出発原料とする。この場合、出発原料となるNd−Fe−B系合金の組織が非晶質又はナノ結晶質、或いは非晶質とナノ結晶質の混晶組織となり易く、これを水素化・脱水素処理すると、ナノサイズの微細な結晶のNd−Fe−B相が生成され、微細な結晶組織が形成される。これにより、保磁力が向上するなど、磁気特性に優れる希土類磁石が得られる。また、Nd−Fe−B系合金薄片を粉砕し、目開きが薄片の厚さの2倍以上の篩目を通過したNd−Fe−B系合金粉末とすることで、成形工程において粉末を金型に充填する充填作業が行い易く、粉末の充填密度(かさ密度)を高めることができる。これは、粉砕したNd−Fe−B系合金薄片を目開きが薄片の厚さの2倍以上の篩目を通過させることで、Nd−Fe−B系合金粉末が過度に微細化されず、粉末の流動性をある程度確保できるためである。粉砕工程は、成形工程の前に実施すればよく、粉砕工程と水素化工程とは順序が前後してもよい。そのため、出発原料のNd−Fe−B系合金薄片を粉砕してもよいし、先に水素化処理を行い、水素化処理したNd−Fe−B系合金薄片を粉砕してもよい。つまり、粉砕工程は、水素化工程の前後のいずれかで実施すればよい。   Further, in the method for producing a rare earth magnet, an Nd—Fe—B alloy flake having a thickness of 25 μm or less obtained by rapid solidification is used as a starting material. In this case, the structure of the Nd—Fe—B alloy as a starting material is likely to be amorphous or nanocrystalline, or a mixed crystal structure of amorphous and nanocrystalline, and when this is hydrogenated / dehydrogenated, A nano-sized fine crystalline Nd—Fe—B phase is generated, and a fine crystalline structure is formed. As a result, a rare earth magnet having excellent magnetic properties such as improved coercive force can be obtained. In addition, the Nd—Fe—B alloy flakes are pulverized to form Nd—Fe—B alloy powders whose meshes pass through a sieve having a size of at least twice the thickness of the flakes. The filling operation for filling the mold is easy to perform, and the packing density (bulk density) of the powder can be increased. This is because the Nd—Fe—B alloy powder is not excessively refined by passing the crushed Nd—Fe—B alloy flakes through a sieve having a mesh size of twice or more the thickness of the flakes, This is because the fluidity of the powder can be secured to some extent. The pulverization step may be performed before the molding step, and the order of the pulverization step and the hydrogenation step may be reversed. Therefore, the starting Nd—Fe—B alloy flakes may be pulverized, or the hydrogenated Nd—Fe—B alloy flakes may be pulverized first. That is, the pulverization process may be performed either before or after the hydrogenation process.

本発明の実施形態において、「Nd−Fe−B」相とは、Nd、Fe及びBを主成分として含有し、硬磁性を示すNd−Fe−B系化合物であり、具体的にはNdFe14B相が挙げられる。Nd−Fe−B系合金としては、NdFe14B合金が挙げられる。ここでいう「主成分」とは、各構成元素の合計含有量が全体の90原子%以上を占めることを意味する。 In the embodiment of the present invention, the “Nd—Fe—B” phase is an Nd—Fe—B-based compound that contains Nd, Fe, and B as main components and exhibits hard magnetism, specifically, Nd 2. Fe 14 B phase may be mentioned. Examples of the Nd—Fe—B alloy include an Nd 2 Fe 14 B alloy. Here, “main component” means that the total content of each constituent element occupies 90 atomic% or more of the total.

(2)上記希土類磁石の製造方法の一形態として、前記固体潤滑剤がステアリン酸亜鉛であることが挙げられる。   (2) As one form of the manufacturing method of the said rare earth magnet, it is mentioned that the said solid lubricant is a zinc stearate.

使用する固体潤滑剤は、磁石の磁気特性に大きな影響を与えるものではなく、加圧成形時のNd−Fe−B系合金粉末の流動性を高めるものであれば、特に限定されないが、粉末状で、粒子が弱い結合力で層状に重なり合って劈開性を有するものであることが好ましい。固体潤滑剤としては、例えば、ステアリン酸や、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸リチウム及びステアリン酸バリウムから選択される少なくとも1種のステアリン酸金属塩、二硫化モリブデン(MoS)、二硫化タングステン(WS)、六方晶窒化ホウ素(hBN)などが挙げられる。このような固体潤滑剤であれば、加圧成形時にNd−Fe−B系合金粉末の表面同士の間に固体潤滑剤が介在して、圧縮力が作用した際にNd−Fe−B系合金粉末が滑る(ずれる)ことによって、粉末が流動し易くなる。中でも、ステアリン酸亜鉛は、Nd−Fe−B系合金粉末との付着性が良好で、少量でも粉末の流動性を高め易く、入手容易性の点からも有利である。 The solid lubricant to be used is not particularly limited as long as it does not greatly affect the magnetic properties of the magnet and improves the fluidity of the Nd—Fe—B alloy powder during pressure forming. Thus, it is preferable that the particles overlap each other with a weak binding force and have a cleavage property. Examples of the solid lubricant include stearic acid, at least one metal stearate selected from stearic acid, zinc stearate, calcium stearate, magnesium stearate, lithium stearate and barium stearate, molybdenum disulfide (MoS 2 ). , Tungsten disulfide (WS 2 ), hexagonal boron nitride (hBN), and the like. With such a solid lubricant, the Nd—Fe—B alloy is applied when a compressive force is applied by interposing the solid lubricant between the surfaces of the Nd—Fe—B alloy powder during pressure forming. When the powder slides (slides), the powder easily flows. Among them, zinc stearate has good adhesion to the Nd—Fe—B alloy powder, is easy to improve the fluidity of the powder even in a small amount, and is advantageous from the viewpoint of availability.

(3)上記希土類磁石の製造方法の一形態として、前記固体潤滑剤の添加量を0.001質量%以上0.1質量%以下とすることが挙げられる。   (3) As one form of the manufacturing method of the said rare earth magnet, it is mentioned that the addition amount of the said solid lubricant shall be 0.001 mass% or more and 0.1 mass% or less.

固体潤滑剤の添加量を0.001質量%以上とすることで、加圧成形時のNd−Fe−B系合金粉末の流動性を効果的に高めることができる。固体潤滑剤の添加量を0.1質量%以下とすることで、固体潤滑剤による密度低下や脱水素処理時の残渣発生による磁気特性の低下を抑制できる。   By making the addition amount of the solid lubricant 0.001% by mass or more, the fluidity of the Nd—Fe—B alloy powder at the time of pressure forming can be effectively enhanced. By setting the addition amount of the solid lubricant to 0.1% by mass or less, it is possible to suppress a decrease in density due to the solid lubricant and a decrease in magnetic properties due to generation of residues during the dehydrogenation process.

(4)上記希土類磁石の製造方法の一形態として、前記加圧成形の圧力を1470MPa以下とすることが挙げられる。   (4) As one form of the manufacturing method of the said rare earth magnet, it is mentioned that the pressure of the said pressure molding shall be 1470 Mpa or less.

上記希土類磁石の製造方法では、固体潤滑剤を混合することにより、加圧成形時のNd−Fe−B系合金粉末の流動性を高めることで、加圧成形の圧力が低くても高密度化が可能である。例えば、加圧成形の圧力が1470MPa(15ton/cm)以下であっても、成形体を高密度化でき、相対密度が80%以上を達成できる。そのため、固体潤滑剤を混合しない場合に比べて、加圧成形の圧力を低くすることができ、コストダウンと生産性向上を実現できる。また、加圧成形の圧力を1470MPa以下とすることで、加圧成形後に成形体を金型から抜き出す際の抜き圧を低減したり、加圧成形に使用するプレス装置のコストダウンを図ることができる。 In the rare earth magnet manufacturing method, by mixing a solid lubricant, the fluidity of the Nd-Fe-B alloy powder at the time of pressure forming is increased, so that the density can be increased even if the pressure of the pressure forming is low. Is possible. For example, even if the pressure of pressure molding is 1470 MPa (15 ton / cm 2 ) or less, the molded body can be densified and the relative density can be 80% or more. Therefore, compared with the case where a solid lubricant is not mixed, the pressure of pressure molding can be lowered, and cost reduction and productivity improvement can be realized. Further, by setting the pressure of pressure molding to 1470 MPa or less, it is possible to reduce the punching pressure when the molded body is extracted from the mold after pressure molding, or to reduce the cost of the press device used for pressure molding. it can.

(5)本発明の実施形態に係る希土類磁石は、
Nd−Fe−B系合金の粉末を含む粉末成形体からなる希土類磁石であって、
相対密度が83%以上であり、
任意の断面において、観察視野内に含まれる前記粉末の中で最大径が25μm以下の微細粉末が存在する微粉領域の総面積が前記観察視野の面積の25%以上である。
(5) A rare earth magnet according to an embodiment of the present invention includes:
A rare earth magnet made of a powder compact including a powder of an Nd-Fe-B alloy,
The relative density is 83% or more,
In an arbitrary cross section, the total area of the fine powder region in which fine powder having a maximum diameter of 25 μm or less exists in the powder included in the observation visual field is 25% or more of the area of the observation visual field.

上記希土類磁石によれば、相対密度が83%以上であることで、高密度で残留磁化が高い。任意の断面の観察視野において、最大径が25μm以下の微細粉末が存在する微粉領域の総面積が観察視野の面積の25%以上であることで、成形体断面に占める微粉領域の総面積の比率が大きく、成形体全体に占める微粉領域の割合が多い。微粉領域では、微細粉末が緻密に集合して、粉末粒子同士の接触面積が大きく、粉末粒子同士が強固に結びついて凝集することから、亀裂の進展などによる成形体の欠けの発生や破壊が抑制される。そのため、剥離や亀裂の発生を抑制でき、保形強度が高い。したがって、上記希土類磁石は、密度が高く、保形性に優れる。   According to the rare earth magnet, since the relative density is 83% or more, the residual magnetism is high in density and high. The ratio of the total area of the fine powder region to the cross section of the molded product when the total area of the fine powder region where the fine powder having the maximum diameter of 25 μm or less exists is 25% or more of the area of the observation visual field in the observation visual field of any cross section Is large, and the proportion of the fine powder region in the entire compact is large. In the fine powder region, fine powder gathers densely, the contact area between the powder particles is large, and the powder particles are tightly connected and agglomerated, which suppresses the occurrence of chipping and breakage of the molded product due to the progress of cracks, etc. Is done. Therefore, the occurrence of peeling and cracking can be suppressed, and the shape retention strength is high. Therefore, the rare earth magnet has a high density and excellent shape retention.

「微粉領域」とは、任意の断面の観察視野内に含まれるNd−Fe−B系合金粉末の中で最大径が25μm以下の微細粉末が存在する領域であり、10個以上の微細粉末の粒子が密接して集合した粒子群の領域を指す。観察視野のサイズは、少なくとも1000個以上(好ましくは3000個以上)のNd−Fe−B系合金粉末が含まれるように設定し、例えば300μm×300μm(面積:90000μm)以上1000μm×1000μm(面積:1000000μm=1mm)以下とすることが挙げられる。Nd−Fe−B系合金粉末の粒径は、図1に示すように、粉末Pの輪郭を特定して、その輪郭に外接する最小外接矩形Rを描き、その短辺の長さを最小径a、その長辺の長さを最大径bとする。最小外接矩形Rは、一対の平行線で粉末Pの輪郭を挟んだとき、その平行線の間隔が最小距離(最小径に相当)となる平行線の組を求めた後、これに直交する一対の平行線で粉末の輪郭を挟んだとき、その平行線の間隔が最大距離(最大径に相当)となる平行線の組を求め、これら二組の平行線で囲まれる矩形として求めることができる。「微粉領域の総面積」は、微粉領域を形成する最大径が25μm以下の微細粉末の粒子群の輪郭を特定して個々の微粉領域の面積を求め、その合計面積とする。任意の断面の観察視野において、微粉領域の総面積が大きい(即ち、観察視野に占める微粉領域の面積比率が大きい)ほど、成形体全体に占める微粉領域の割合が多いことを意味する。 The “fine powder region” is a region where a fine powder having a maximum diameter of 25 μm or less exists among Nd—Fe—B alloy powders included in an observation field of an arbitrary cross section. This refers to the region of a group of particles in which particles are closely gathered. The size of the observation field is set so as to include at least 1000 or more (preferably 3000 or more) Nd—Fe—B alloy powders, for example, 300 μm × 300 μm (area: 90000 μm 2 ) or more and 1000 μm × 1000 μm (area) : 1000000 μm 2 = 1 mm 2 ) or less. As shown in FIG. 1, the particle diameter of the Nd—Fe—B alloy powder is determined by specifying the contour of the powder P, drawing a minimum circumscribed rectangle R circumscribing the contour, and setting the short side length to the minimum diameter. a, the length of the long side is the maximum diameter b. The minimum circumscribed rectangle R is obtained by obtaining a pair of parallel lines having a minimum distance (corresponding to the minimum diameter) between the parallel lines when the outline of the powder P is sandwiched between the pair of parallel lines. When the outline of the powder is sandwiched between the parallel lines, a pair of parallel lines having the maximum distance (corresponding to the maximum diameter) between the parallel lines can be obtained, and can be obtained as a rectangle surrounded by these two parallel lines. . The “total area of the fine powder region” is the total area of the individual fine powder regions obtained by specifying the contours of the fine powder particles having a maximum diameter of 25 μm or less forming the fine powder region. It means that the larger the total area of the fine powder region in the observation field of view of any cross section (that is, the larger the area ratio of the fine powder region in the observation visual field), the larger the proportion of the fine powder region in the entire molded body.

希土類磁石の相対密度は、例えば85%以上、更に87%以上であることが好ましく、これにより保形強度や磁気特性をより向上できる。   The relative density of the rare earth magnet is, for example, preferably 85% or more, and more preferably 87% or more, whereby the shape retention strength and magnetic properties can be further improved.

[本発明の実施形態の詳細]
本発明の実施形態に係る希土類磁石の製造方法、及び希土類磁石の具体例を、以下に説明する。なお、本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
A method for producing a rare earth magnet according to an embodiment of the present invention and a specific example of the rare earth magnet will be described below. In addition, this invention is not limited to these illustrations, is shown by the claim, and is intended that all the changes within the meaning and range equivalent to the claim are included.

<希土類磁石の製造方法>
本発明の実施形態に係る希土類磁石の製造方法は、以下の工程を備える。
(A)出発原料のNd−Fe−B系合金薄片を用意する準備工程。
(B)Nd−Fe−B系合金薄片を粉砕する粉砕工程。
(C)Nd−Fe−B系合金を水素化処理する水素化工程。
(D)水素化処理したNd−Fe−B系合金粉末に固体潤滑剤を混合する混合工程。
(E)固体潤滑剤を混合した混合粉末を加圧成形する成形工程。
(F)加圧成形した成形体を脱水素処理する脱水素工程。
以下では、各工程について詳しく説明する。
<Rare earth magnet manufacturing method>
The manufacturing method of the rare earth magnet according to the embodiment of the present invention includes the following steps.
(A) A preparation step of preparing a starting Nd—Fe—B alloy flake.
(B) A crushing step of crushing Nd—Fe—B alloy flakes.
(C) A hydrogenation process for hydrotreating an Nd—Fe—B alloy.
(D) A mixing step of mixing a solid lubricant with the hydrogenated Nd—Fe—B alloy powder.
(E) A molding step of pressure-molding the mixed powder mixed with the solid lubricant.
(F) A dehydrogenation step of dehydrogenating the pressure-molded compact.
Below, each process is demonstrated in detail.

(準備工程)
準備工程は、Nd、Fe及びBを含有する合金溶湯を急冷凝固して、Nd−Fe−B相を主相とし、厚さ25μm以下のNd−Fe−B系合金の薄片を用意する工程である。Nd−Fe−B系合金としては、代表的には、NdFe14B相を主相とするNdFe14B合金が挙げられる。Nd−Fe−B系合金(Nd−Fe−B相)は、余剰のFeを含有してもよく、例えば、化学量論組成よりもFeを原子比で1%以上30%以下の範囲で余剰に含有することが挙げられる。また、Nd−Fe−B系合金には、添加元素として、例えば、Co、Ga、Cu、Al、Zr、Nb、Ta、Hf、Ti、Si、Ca、Sm、Pr、Y、Ce、Dy、Tb、N、Cなどを含有してもよい。
(Preparation process)
The preparation step is a step of preparing a flake of an Nd—Fe—B alloy having a thickness of 25 μm or less by quenching and solidifying a molten alloy containing Nd, Fe and B, using the Nd—Fe—B phase as a main phase. is there. A typical example of the Nd—Fe—B alloy is an Nd 2 Fe 14 B alloy having a Nd 2 Fe 14 B phase as a main phase. The Nd—Fe—B alloy (Nd—Fe—B phase) may contain surplus Fe, for example, surplus in a range of 1% or more and 30% or less of Fe in terms of atomic ratio than the stoichiometric composition. To contain. The Nd—Fe—B alloy includes, for example, Co, Ga, Cu, Al, Zr, Nb, Ta, Hf, Ti, Si, Ca, Sm, Pr, Y, Ce, Dy, You may contain Tb, N, C, etc.

Nd−Fe−B系合金は、所定の組成となるように配合した合金溶湯を急冷凝固して薄片状(リボン状を含む)としたものである。急冷凝固により厚さ25μm以下のNd−Fe−B系合金薄片とすることで、冷却速度が速く、Nd−Fe−B系合金の組織が非晶質又はナノ結晶質、或いは非晶質とナノ結晶質の混晶組織となり易い。このような組織のNd−Fe−B系合金を出発原料とした場合、後述する磁石成形体の組織を微細な結晶組織とすることができ、磁気特性(特に保磁力)を向上できる。Nd−Fe−B系合金薄片の幅や長さは、特に限定されないが、幅が厚さの10倍以上、長さが厚さの100倍以上であることが挙げられ、例えば、幅が1〜2mm、長さが5cm以上である。   The Nd—Fe—B based alloy is obtained by rapidly solidifying a molten alloy blended so as to have a predetermined composition to form a flaky shape (including a ribbon shape). By forming a Nd—Fe—B alloy flake with a thickness of 25 μm or less by rapid solidification, the cooling rate is high and the structure of the Nd—Fe—B alloy is amorphous or nanocrystalline, or amorphous and nanocrystalline. It tends to be a crystalline mixed crystal structure. When an Nd—Fe—B alloy having such a structure is used as a starting material, the structure of a magnet compact to be described later can be a fine crystal structure, and magnetic characteristics (particularly coercive force) can be improved. The width and length of the Nd—Fe—B alloy flakes are not particularly limited, but the width is 10 times or more of the thickness and the length is 100 times or more of the thickness. For example, the width is 1 ˜2 mm, length is 5 cm or more.

Nd−Fe−B系合金薄片は、例えば、メルトスパン法により急冷凝固して作製することが挙げられる。メルトスパン法は、合金溶湯を冷却した金属製のロール上に噴射して急冷する方法であり、合金薄片が得られる。メルトスパン法では、ロールの周速を変えることで、冷却速度を制御できる。具体的には、ロールの周速を上げるほど、合金の厚さが薄くなり、冷却速度が速くなる。ロールの周速は30m/秒以上とすることが好ましく、更に35m/秒以上、40m/秒以上がより好ましい。一般に、ロールの周速が35m/秒以上の場合、合金薄片の厚さが10〜20μm程度となる。ロールの周速の上限は、製造上の観点から、例えば100m/秒以下とする。また、合金薄片の厚さが厚くなり過ぎると均質な組織を得ることが困難になることから、合金薄片の厚さは10μm以上20μm以下とすることが好ましい。   The Nd—Fe—B alloy flakes can be prepared by, for example, rapid solidification by a melt span method. The melt span method is a method in which a molten alloy is jetted onto a cooled metal roll and rapidly cooled, and an alloy flake is obtained. In the melt span method, the cooling rate can be controlled by changing the peripheral speed of the roll. Specifically, the higher the peripheral speed of the roll, the thinner the alloy and the faster the cooling rate. The peripheral speed of the roll is preferably 30 m / second or more, more preferably 35 m / second or more and 40 m / second or more. Generally, when the peripheral speed of the roll is 35 m / sec or more, the thickness of the alloy flake is about 10 to 20 μm. The upper limit of the peripheral speed of the roll is, for example, 100 m / second or less from the viewpoint of manufacturing. Moreover, since it becomes difficult to obtain a homogeneous structure when the thickness of the alloy flake becomes too thick, the thickness of the alloy flake is preferably 10 μm or more and 20 μm or less.

(粉砕工程)
粉砕工程は、Nd−Fe−B系合金の薄片を粉砕し、目開きが薄片の厚さの2倍以上の篩目を通過した薄片状のNd−Fe−B系合金の粉末を得る工程である。Nd−Fe−B系合金薄片を粉砕して粉末状にすることで、後工程の成形工程において粉末を金型に充填する充填作業が行い易くなる。粉砕したNd−Fe−B系合金薄片を目開きが薄片の厚さの2倍以上の篩目を通過させることで、粉末が過度に微細化されず、流動性をある程度確保できるため、粉末の充填密度(かさ密度)を高めることができる。また、粉末が過度に微細化されないため、粉末の酸化を抑制し易い。
(Crushing process)
The pulverization step is a step of pulverizing a thin piece of Nd-Fe-B alloy to obtain a flaky Nd-Fe-B alloy powder that has passed through a sieve whose opening is twice or more the thickness of the thin piece. is there. By pulverizing the Nd—Fe—B alloy flakes into powder, it becomes easy to perform a filling operation of filling the mold with the powder in a subsequent molding step. By passing the crushed Nd-Fe-B alloy flakes through a sieve having a mesh size of twice or more the thickness of the flakes, the powder is not excessively refined and fluidity can be secured to some extent. The packing density (bulk density) can be increased. Moreover, since powder is not refined | miniaturized excessively, it is easy to suppress the oxidation of powder.

粉砕は、Nd−Fe−B系合金粉末の粒子径(最大長さ)が、例えば300μm以下、更に200μm以下、特に106μm以下となるように行うことが好ましい。但し、粉末の粒子径(最大長さ)が25μm以下になると、粉末の流動性の低下や、酸化の影響が大きくなることから、粒子径は25μm超が好ましい。粉砕する際の雰囲気は、粉末の酸化を抑制するため、不活性雰囲気とすることが好ましく、雰囲気中の酸素濃度を5体積%以下、更に1体積%以下とすることが好ましい。不活性雰囲気としては、例えばArやNなどの不活性ガス雰囲気が挙げられる。 The pulverization is preferably performed so that the particle diameter (maximum length) of the Nd—Fe—B alloy powder is, for example, 300 μm or less, further 200 μm or less, and particularly 106 μm or less. However, when the particle size (maximum length) of the powder is 25 μm or less, the fluidity of the powder is reduced and the influence of oxidation becomes large. Therefore, the particle size is preferably more than 25 μm. The atmosphere for pulverization is preferably an inert atmosphere in order to suppress oxidation of the powder, and the oxygen concentration in the atmosphere is preferably 5% by volume or less, and more preferably 1% by volume or less. The inert atmosphere, for example, include an inert gas atmosphere such as Ar or N 2.

篩目の目開きは、例えば、薄片の厚さの3倍以上とすることが好ましく、具体的な数値範囲としては、45μm以上355μm以下、更に106μm以下とすることが挙げられる。篩目の目開きを355μm以下とすることで、粗大な粒子を取り除くことができ、粉末のかさ密度を高めることができる。   For example, the mesh opening is preferably 3 times or more the thickness of the flakes, and a specific numerical range is 45 μm or more and 355 μm or less, and further 106 μm or less. By setting the mesh opening to 355 μm or less, coarse particles can be removed and the bulk density of the powder can be increased.

(水素化工程)
水素化工程は、Nd−Fe−B系合金を水素化処理し、その少なくとも一部を不均化反応によりNdH、Fe及びFeBの3相に分解する工程である。この工程により、Nd−Fe−B相が相分解して、NdH相、Fe相及びFeB相を含む混晶組織を有する水素化合金が得られる。水素化処理では、Nd−Fe−B系合金(Nd−Fe−B相)の例えば40体積%以上、更に50体積%以上を相分解して、水素化処理したNd−Fe−B系合金がNdH相、Fe相及びFeB相の3相に分離した組織を例えば40体積%以上、更に50体積%以上含有することが挙げられる。水素化処理は、水素含有雰囲気中で、Nd−Fe−B系合金(Nd−Fe−B相)の水素不均化反応が生じる温度以上で熱処理する。水素不均化反応が開始する温度は、次のように定義できる。室温(25℃)において0.8〜1.0気圧(81.0〜101.3kPa)の内圧で水素充填した密閉容器中に、Nd−Fe−B系合金の試料を入れて昇温していく。400℃到達時の内圧をPH2(400℃)[気圧]、400〜900℃の温度領域での最小の内圧をPH2(MIN)[気圧]とする。そして、PH2(400℃)とPH2(MIN)との差をΔPH2[気圧]としたとき、内圧が{PH2(400℃)−ΔPH2×0.1}以下になるときの400〜900℃の範囲内の温度で定義できる。該当する温度が2点以上ある場合は、最も低い温度とする。このとき、PH2(MIN)が0.5気圧(50.6kPa)以下になるように試料の重量を設定することが好ましい。水素化処理の熱処理温度は、例えば550℃超1100℃以下、650℃以上950℃以下、更に700℃以上900℃以下とすることが挙げられる。水素化処理の熱処理温度が高いほど、Nd−Fe−B相の相分解が進行するが、高過ぎると、組織が粗大化する虞がある。PH2(MIN)を示す温度よりも水素化処理の熱処理温度を低い温度とすると、Nd−Fe−B相の一部のみを相分解し易い。Nd−Fe−B系合金(v相)の不均化反応がピークとなる温度は組成にもよるが、700℃程度であり、一部のみを相分解する場合は、例えば550℃超700℃未満、更に575℃以上675℃以下とすることが挙げられる。
(Hydrogenation process)
The hydrogenation process is a process in which an Nd—Fe—B alloy is hydrotreated and at least a part thereof is decomposed into three phases of NdH 2 , Fe, and Fe 2 B by a disproportionation reaction. By this step, the Nd—Fe—B phase undergoes phase decomposition, and a hydrogenated alloy having a mixed crystal structure including the NdH 2 phase, the Fe phase, and the Fe 2 B phase is obtained. In the hydrogenation treatment, for example, 40% by volume or more, and 50% by volume or more of the Nd—Fe—B based alloy (Nd—Fe—B phase) are phase decomposed, and the hydrogenated Nd—Fe—B based alloy is obtained. For example, the structure separated into three phases of NdH 2 phase, Fe phase, and Fe 2 B phase may be 40% by volume or more, and further 50% by volume or more. In the hydrogenation treatment, heat treatment is performed in a hydrogen-containing atmosphere at a temperature higher than the temperature at which the hydrogen disproportionation reaction of the Nd—Fe—B alloy (Nd—Fe—B phase) occurs. The temperature at which the hydrogen disproportionation reaction starts can be defined as follows. In a sealed container filled with hydrogen at an internal pressure of 0.8 to 1.0 atm (81.0 to 101.3 kPa) at room temperature (25 ° C.), the sample of the Nd—Fe—B alloy was put and heated. Go. The internal pressure when reaching 400 ° C. is defined as P H2 (400 ° C.) [atmospheric pressure], and the minimum internal pressure in the temperature range of 400 to 900 ° C. is defined as P H2 (MIN) [atmospheric pressure]. When the difference between P H2 (400 ° C.) and P H2 (MIN) is ΔP H2 [atmospheric pressure], 400 when the internal pressure is {P H2 (400 ° C.) − ΔP H2 × 0.1} or less. It can be defined at a temperature in the range of ~ 900 ° C. When there are two or more applicable temperatures, the lowest temperature is set. At this time, it is preferable to set the weight of the sample so that P H2 (MIN) is 0.5 atm (50.6 kPa) or less. The heat treatment temperature of the hydrogenation treatment may be, for example, more than 550 ° C. and 1100 ° C. or less, 650 ° C. or more and 950 ° C. or less, and 700 ° C. or more and 900 ° C. or less. As the heat treatment temperature of the hydrogenation treatment is higher, the phase decomposition of the Nd—Fe—B phase proceeds, but if it is too high, the structure may be coarsened. If the heat treatment temperature of the hydrogenation treatment is lower than the temperature indicating P H2 (MIN), only a part of the Nd—Fe—B phase is likely to undergo phase decomposition. The temperature at which the disproportionation reaction of the Nd—Fe—B alloy (v phase) peaks depends on the composition, but is about 700 ° C. When only a part of the phase is decomposed, for example, over 550 ° C. and 700 ° C. Less than 575 ° C. or more and 675 ° C. or less.

水素化処理の時間は、適宜設定すればよく、例えば30分以上180分以下とすることが挙げられる。水素化処理の時間が短過ぎると、Nd−Fe−B相を十分に相分解できない虞がある。一方、水素化処理の時間が長過ぎると、Nd−Fe−B相の相分解が過度に進行したり、組織が粗大化する虞がある。水素化処理の時間を変えることでも、Nd−Fe−B相が相分解する割合を変更できる。   What is necessary is just to set the time of a hydrogenation process suitably, for example to set it as 30 minutes or more and 180 minutes or less. If the hydrogenation time is too short, the Nd—Fe—B phase may not be sufficiently decomposed. On the other hand, if the time for the hydrogenation treatment is too long, the phase decomposition of the Nd—Fe—B phase may proceed excessively or the structure may become coarse. The ratio of phase decomposition of the Nd—Fe—B phase can also be changed by changing the time of the hydrotreatment.

水素化処理する際の水素含有雰囲気としては、例えば、Hガス雰囲気、又はHガスとArやNなどの不活性ガスとの混合ガス雰囲気とすることが挙げられる。また、水素含有雰囲気の雰囲気圧力(水素分圧)は、例えば20.2kPa(0.2気圧)以上1013kPa(10気圧)以下とすることが挙げられる。 Examples of the hydrogen-containing atmosphere in the hydrogenation treatment include a H 2 gas atmosphere or a mixed gas atmosphere of H 2 gas and an inert gas such as Ar or N 2 . The atmospheric pressure (hydrogen partial pressure) of the hydrogen-containing atmosphere is, for example, 20.2 kPa (0.2 atm) or more and 1013 kPa (10 atm) or less.

水素化処理の熱処理温度を低くして、Nd−Fe−B系合金(Nd−Fe−B相)の一部を相分解した場合、未分解のNd−Fe−Bが残存することから、NdH相、Fe相及びFeB相と未分解のNd−Fe−B相とを含む混晶組織となる。この場合、熱処理温度が低いため、粒成長が抑制され、Nd−Fe−B相の全部を相分解した場合に比べて相分解した組織がより微細化される。そのため、後工程の脱水素工程において、脱水素処理によって再結合した組織がより微細化され得る。 When a part of the Nd—Fe—B alloy (Nd—Fe—B phase) is phase-decomposed by lowering the heat treatment temperature of the hydrogenation treatment, undecomposed Nd—Fe—B remains, so NdH It becomes a mixed crystal structure including two phases, Fe phase and Fe 2 B phase and undecomposed Nd—Fe—B phase. In this case, since the heat treatment temperature is low, grain growth is suppressed, and the phase-decomposed structure is further refined as compared with the case where the entire Nd—Fe—B phase is phase-decomposed. Therefore, the structure recombined by the dehydrogenation process can be further refined in the subsequent dehydrogenation process.

更に、Nd−Fe−B系合金がFeを余剰に含有する場合は、脱水素処理時に余剰のFe相が析出して、Nd−Fe−B相とFe相とのナノコンポジット混晶組織が形成されることがある。この場合、水素化工程において、Nd−Fe−B系合金の一部のみを相分解して組織が微細化されていると、脱水素処理時に粗大なFe相の生成が抑制され、Fe相が微細化されるため、より微細なナノコンポジット混晶組織が形成される傾向がある。例えば、Nd−Fe−B系合金の全部を相分解した場合のFe相の平均結晶粒径は300nm程度であるのに対し、Nd−Fe−B系合金の一部を相分解した場合は、Fe相の平均結晶粒径が200nm以下、更に100nm以下を達成できる。   Furthermore, when the Nd—Fe—B alloy contains excessive Fe, an excessive Fe phase is precipitated during the dehydrogenation process, and a nanocomposite mixed crystal structure of the Nd—Fe—B phase and the Fe phase is formed. May be. In this case, in the hydrogenation process, if only a part of the Nd—Fe—B alloy is phase decomposed and the structure is refined, the formation of a coarse Fe phase is suppressed during the dehydrogenation process, and the Fe phase is reduced. Since it is refined, a finer nanocomposite mixed crystal structure tends to be formed. For example, the average crystal grain size of the Fe phase when the entire Nd—Fe—B based alloy is phase decomposed is about 300 nm, whereas when the Nd—Fe—B based alloy is partially decomposed, The average crystal grain size of the Fe phase can be 200 nm or less, and further 100 nm or less.

水素化処理によりNd−Fe−B系合金の一部を相分解する場合、水素化処理したNd−Fe−B系合金が未分解のNd−Fe−B相を20体積%以上60体積%以下含有することが好ましく、これにより成形性の確保と組織の微細化とを両立できる。Nd−Fe−B相の割合が少ないほど、Nd−Fe−B相が相分解して生成されたFe相の割合が増えることから、成形性が向上するが、熱処理温度が高いため、組織が粗大化する傾向がある。逆に、Nd−Fe−B相の割合が多いほど、未分解のNd−Fe−B相が残存する割合が増えてFe相の割合が減るため、成形性が低下するが、組織の粗大化を抑制でき、微細な組織が形成される傾向がある。Nd−Fe−B相の含有割合(体積比率)を20体積%以上60体積%以下とすることで、成形性を十分に確保しながら、組織の微細化を図り易い。Nd−Fe−B相の体積比率は35体積%以上50体積%以下がより好ましい。   When a part of the Nd—Fe—B alloy is phase decomposed by the hydrogenation treatment, the hydrogenated Nd—Fe—B alloy has an undecomposed Nd—Fe—B phase of 20% by volume to 60% by volume. It is preferable to contain, thereby ensuring both formability and miniaturization of the structure. As the proportion of the Nd—Fe—B phase is smaller, the proportion of the Fe phase generated by the phase decomposition of the Nd—Fe—B phase is increased, so that the moldability is improved. There is a tendency to become coarse. On the contrary, as the proportion of the Nd—Fe—B phase increases, the proportion of the undecomposed Nd—Fe—B phase increases and the proportion of the Fe phase decreases, so that the moldability decreases. Can be suppressed, and a fine structure tends to be formed. By setting the content ratio (volume ratio) of the Nd—Fe—B phase to 20% by volume or more and 60% by volume or less, it is easy to refine the structure while ensuring sufficient moldability. As for the volume ratio of a Nd-Fe-B phase, 35 volume% or more and 50 volume% or less are more preferable.

水素化処理後のNd−Fe−B系合金におけるNd−Fe−B相の体積比率は次のようにして求めることができる。合金断面を走査型電子顕微鏡(SEM)で組織観察すると共にエネルギー分散型X線分析装置(EDX)により組成分析することで、視野内におけるNd−Fe−B相、NdH相、Fe相、FeB相を分離抽出する。そして、視野に占めるNd−Fe−B相の面積比率を求め、その面積比率を体積比率とみなして求めることができる。組成の分析は、EDX以外でも適宜な分析装置を利用できる。 The volume ratio of the Nd—Fe—B phase in the Nd—Fe—B based alloy after the hydrogenation treatment can be determined as follows. By observing the structure of the alloy cross section with a scanning electron microscope (SEM) and analyzing the composition with an energy dispersive X-ray analyzer (EDX), Nd—Fe—B phase, NdH 2 phase, Fe phase, Fe in the field of view 2 Separate and extract phase B. And the area ratio of the Nd-Fe-B phase which occupies for a visual field can be calculated | required, and the area ratio can be calculated | required considering that it is a volume ratio. For analysis of the composition, other than EDX, an appropriate analyzer can be used.

上述した粉砕工程と水素化工程とは順序を入れ替えてもよい。出発原料のNd−Fe−B系合金薄片を粉砕した後、Nd−Fe−B系合金粉末を水素化処理してもよいし、Nd−Fe−B系合金薄片を水素化処理した後、それを粉砕してNd−Fe−B系合金粉末を得てもよい。   The order of the pulverization step and the hydrogenation step described above may be interchanged. After pulverizing the starting Nd—Fe—B alloy flakes, the Nd—Fe—B alloy powder may be hydrotreated, or after the Nd—Fe—B alloy flakes are hydrotreated, May be pulverized to obtain Nd—Fe—B alloy powder.

(混合工程)
混合工程は、水素化処理したNd−Fe−B系合金の粉末に固体潤滑剤を混合して混合粉末を得る工程である。固体潤滑剤は、磁石の磁気特性に大きな影響を与えるものではなく、後工程の成形工程において加圧成形時のNd−Fe−B系合金粉末の流動性を高めるものであれば、特に限定されないが、劈開性を有する粉末状のものであることが好ましい。固体潤滑剤には、例えば、ステアリン酸や、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸リチウム及びステアリン酸バリウムから選択される少なくとも1種のステアリン酸金属塩、MoS、WS、hBNなどが利用できる。中でも、ステアリン酸亜鉛は、Nd−Fe−B系合金粉末との付着性が良好で、少量でも粉末の流動性を高め易く、入手容易性の点でも好ましい。
(Mixing process)
The mixing step is a step of obtaining a mixed powder by mixing a solid lubricant with hydrogenated Nd—Fe—B alloy powder. The solid lubricant is not particularly limited as long as it does not greatly affect the magnetic properties of the magnet and can improve the fluidity of the Nd—Fe—B alloy powder during pressure forming in the subsequent forming step. However, it is preferable that it is a powder form which has cleavage property. Examples of the solid lubricant include stearic acid, at least one metal stearate selected from zinc stearate, calcium stearate, magnesium stearate, lithium stearate, and barium stearate, MoS 2 , WS 2 , hBN. Etc. are available. Among them, zinc stearate has good adhesion to the Nd—Fe—B alloy powder, is easy to improve the fluidity of the powder even in a small amount, and is preferable from the viewpoint of availability.

固体潤滑剤の添加量は、例えば0.001質量%以上0.1質量%以下とすることが挙げられる。ここでいう「添加量」とは、Nd−Fe−B系合金粉末に対する固体潤滑剤の質量割合である。固体潤滑剤の添加量を0.001質量%以上とすることで、加圧成形時のNd−Fe−B系合金粉末の流動性を効果的に高めることができる。固体潤滑剤の添加量を0.1質量%以下とすることで、固体潤滑剤による密度低下を抑制できる。固体潤滑剤の添加量は0.01質量%以上0.05質量%以下がより好ましい。   The addition amount of the solid lubricant is, for example, 0.001% by mass or more and 0.1% by mass or less. Here, the “addition amount” is the mass ratio of the solid lubricant to the Nd—Fe—B alloy powder. By making the addition amount of the solid lubricant 0.001% by mass or more, the fluidity of the Nd—Fe—B alloy powder at the time of pressure forming can be effectively enhanced. The density fall by a solid lubricant can be suppressed because the addition amount of a solid lubricant shall be 0.1 mass% or less. The addition amount of the solid lubricant is more preferably 0.01% by mass or more and 0.05% by mass or less.

(成形工程)
成形工程は、混合粉末を加圧成形して水素化成形体を得る工程である。具体的には、混合粉末を金型に充填し、プレス装置を用いて加圧成形することが挙げられる。加圧成形の圧力は、例えば980MPa(10ton/cm)以上1960MPa(20ton/cm)以下とすることが挙げられる。加圧成形の圧力を高くするほど、水素化成形体を高密度化できる。水素化成形体の相対密度は、例えば83%以上とすることが挙げられ、好ましくは85%以上、更に87%以上とする。高密度化することで、保形強度や磁気特性(特に残留磁化)を向上できる。成形体の相対密度の上限は、製造上の観点から、例えば95%以下とする。ここでいう「相対密度」とは、真密度に対する実際の密度([成形体の実測密度/成形体の真密度]の百分率)のことを意味する。真密度は、出発原料となるNd−Fe−B系合金の密度とする。
(Molding process)
The forming step is a step of obtaining a hydrogenated molded body by pressure-molding the mixed powder. Specifically, the mixed powder is filled in a mold and pressure-molded using a press device. The pressure applied during the pressure molding include be, for example, 980MPa (10ton / cm 2) or more 1960MPa (20ton / cm 2) or less. The higher the pressure of pressure molding, the higher the density of the hydrogenated molded body. The relative density of the hydrogenated article is, for example, 83% or more, preferably 85% or more, and more preferably 87% or more. By increasing the density, the shape retention strength and magnetic properties (particularly residual magnetization) can be improved. The upper limit of the relative density of the molded body is, for example, 95% or less from the viewpoint of manufacturing. Here, “relative density” means the actual density (percentage of [actual density of the molded body / true density of the molded body] relative to the true density). The true density is the density of the Nd—Fe—B alloy used as a starting material.

薄片状のNd−Fe−B系合金粉末の場合、加圧成形時に粉末の長手方向が加圧方向に垂直な方向(横方向)に整列し、粉末がその厚さ方向に積層された積層状態となり易く、このような積層状態では、加圧成形時に粉末の流動が起こり難い(後述する図3を参照)。本実施形態では、上述した混合工程でNd−Fe−B系合金粉末に固体潤滑剤を混合することで、粉末の流動性が向上し、加圧成形時に粉末が流動し易い。そのため、粉末が流動することによって、薄片状の粉末に対して厚さ方向の圧縮力ではなく、長手方向に圧縮力が作用することで、粉末の粉砕が起こり、粉末が細粒化して、成形体中に最大径が25μm以下の微細粉末が存在する微粉領域が多く形成される(後述する図2を参照)。これにより、剥離や亀裂の発生を抑制でき、成形体の保形性を向上させることができる。   In the case of flaky Nd-Fe-B alloy powder, the laminated state in which the longitudinal direction of the powder is aligned in the direction perpendicular to the pressing direction (lateral direction) during pressing and the powder is stacked in the thickness direction In such a laminated state, the powder does not easily flow during pressure molding (see FIG. 3 described later). In the present embodiment, by mixing the solid lubricant with the Nd—Fe—B alloy powder in the mixing step described above, the fluidity of the powder is improved, and the powder is easy to flow during pressure molding. Therefore, when the powder flows, not the compressive force in the thickness direction on the flaky powder, but the compressive force acts in the longitudinal direction, causing the powder to be crushed and the powder to be finely granulated and molded Many fine powder regions where fine powder having a maximum diameter of 25 μm or less exists in the body are formed (see FIG. 2 described later). Thereby, generation | occurrence | production of peeling and a crack can be suppressed and the shape-retaining property of a molded object can be improved.

加圧成形の圧力を高くするほど、微粉領域が形成され易く、微粉領域が増えることから、成形体の断面において微粉領域の総面積が大きくなる。成形体全体に占める微粉領域の割合が多い、即ち、成形体断面に占める微粉領域の総面積の比率が大きいほど、剥離や亀裂の発生を抑制する効果が高くなる。微粉領域の総面積は、任意の成形体断面の観察視野において、観察視野の面積の例えば25%以上、更に30%以上とすることが好ましい。一方で、微粉領域は、微細粉末の粒子が集合した領域であり、微細な空隙を含むため、微粉領域が増え過ぎると、空隙率が増加して磁化の低下を招く場合がある。成形体断面の観察視野に占める微粉領域の面積比率の上限は、特に限定されないが、製造上の観点、更には微細領域による空隙を低減して磁気特性を高めるという観点から、例えば80%以下、更に70%以下である。成形体中に最大長さ(最大径)が25μm超の薄片状の粉末が存在してもよく、この場合、任意の成形体断面の観察視野において、薄片状の粉末の総面積が観察視野の面積から微粉領域の総面積を引いた残りの面積の例えば50%以上であることが挙げられる。ここでいう「薄片状の粉末」とは、観察視野内に含まれるNd−Fe−B系合金粉末のうち、最大径が25μm超の粉末であって、最大径と最小径との比で表されるアスペクト比(最大径/最小径)が3以上で、且つ、最小径が25μm以下のものをいう。   As the pressure of the pressure molding is increased, the fine powder region is easily formed and the fine powder region is increased, so that the total area of the fine powder region is increased in the cross section of the molded body. The greater the proportion of the fine powder region in the entire molded body, that is, the greater the ratio of the total area of the fine powder region in the cross section of the molded body, the higher the effect of suppressing the occurrence of peeling and cracking. The total area of the fine powder region is preferably 25% or more, more preferably 30% or more, of the area of the observation field in the observation field of the cross section of an arbitrary molded body. On the other hand, the fine powder region is a region in which fine powder particles are gathered and includes fine voids. Therefore, if the fine powder region is excessively increased, the porosity may increase and the magnetization may be lowered. The upper limit of the area ratio of the fine powder region in the observation view of the cross section of the molded body is not particularly limited, but from the viewpoint of manufacturing, and further from the viewpoint of increasing the magnetic properties by reducing the voids due to the fine region, for example, 80% or less, Furthermore, it is 70% or less. There may be a flaky powder having a maximum length (maximum diameter) of more than 25 μm in the molded body. In this case, the total area of the flaky powder in the observation field of any cross section of the molded body For example, it is 50% or more of the remaining area obtained by subtracting the total area of the fine powder region from the area. The “flaky powder” as used herein is a powder having a maximum diameter of more than 25 μm among Nd—Fe—B alloy powders included in the observation field of view, and is represented by a ratio between the maximum diameter and the minimum diameter. The aspect ratio (maximum diameter / minimum diameter) is 3 or more and the minimum diameter is 25 μm or less.

また、一般に、加圧成形の圧力を高くするほど、金型内で局所的な応力集中などによって成形体の内部の粗密が大きくなる傾向があり、成形体の密度に不均一が生じ易くなる。本実施形態では、固体潤滑剤を混合することにより、加圧成形時の粉末の流動性を高めることで、加圧成形時に粉末が流動することによって成形体の内部に粗密が発生し難く、成形体の密度を均一にして高密度化できる。また一方で、加圧成形時の粉末の流動性を高めることで、加圧成形の圧力を低くしても高密度化が可能であり、固体潤滑剤を混合しない場合に比べて、加圧成形の圧力を低くすることができる。例えば、加圧成形の圧力を1470MPa以下としても、高密度化が可能であり、成形体の相対密度を83%以上とすることが可能である。加圧成形の圧力を低くすることで、加圧成形後に成形体を金型から抜き出す際の抜き圧を低減したり、プレス装置のコストダウンを図ることも可能である。   In general, the higher the pressure of pressure molding, the greater the density of the molded body tends to increase due to local stress concentration in the mold, and the density of the molded body tends to be uneven. In the present embodiment, by mixing the solid lubricant, the fluidity of the powder at the time of pressure molding is increased, and the powder flows at the time of pressure molding, so that it is difficult for roughness to occur inside the molded body. The body density can be made uniform and densified. On the other hand, by increasing the fluidity of the powder at the time of pressure molding, it is possible to increase the density even if the pressure of pressure molding is lowered, compared with the case where no solid lubricant is mixed, pressure molding. The pressure can be lowered. For example, even if the pressure of pressure molding is 1470 MPa or less, the density can be increased, and the relative density of the molded body can be 83% or more. By lowering the pressure of pressure molding, it is possible to reduce the punching pressure when the molded body is pulled out from the mold after pressure molding, or to reduce the cost of the press device.

(脱水素工程)
脱水素工程は、水素化成形体を脱水素処理し、再結合反応により水素化処理によって分解した相を再結合して、Nd−Fe−B相を主相とする磁石成形体を得る工程である。この工程により、NdH相、Fe相及びFeB相が再結合して、ナノサイズの微細なNd−Fe−B相が生成され、Nd−Fe−B相(代表的には、NdFe14B相)を含むナノ結晶組織を有する磁石成形体(希土類圧粉磁石)が得られる。脱水素処理は、不活性雰囲気中又は減圧雰囲気中で、水素化処理によって相分解したNdH、Fe及びFeBの再結合反応が生じる温度以上で熱処理する。脱水素処理の熱処理温度は、脱水素成形体の中心部(成形体の外表面から最も遠い部分)においてNdHが検出されない(実質的に存在しない)ような温度条件が好ましく、例えば600℃以上1000℃以下とすることが挙げられる。脱水素処理の熱処理温度が高いほど、再結合反応が進行するが、高過ぎると、組織が粗大化することがある。脱水素処理の熱処理温度は650℃以上800℃以下がより好ましい。
(Dehydrogenation process)
The dehydrogenation step is a step of obtaining a magnet molded body having a Nd-Fe-B phase as a main phase by dehydrogenating the hydrogenated molded body and recombining phases decomposed by the hydrogenation treatment by a recombination reaction. . By this step, the NdH 2 phase, the Fe phase, and the Fe 2 B phase are recombined to generate a nano-sized fine Nd—Fe—B phase, and the Nd—Fe—B phase (typically Nd 2 A magnet compact (rare earth dust magnet) having a nanocrystalline structure containing (Fe 14 B phase) is obtained. In the dehydrogenation treatment, heat treatment is performed in an inert atmosphere or a reduced-pressure atmosphere at a temperature at which a recombination reaction of NdH 2 , Fe, and Fe 2 B phase-decomposed by the hydrogenation treatment occurs. The heat treatment temperature of the dehydrogenation treatment is preferably a temperature condition such that NdH 2 is not detected (substantially does not exist) at the center of the dehydrogenation molded body (the part farthest from the outer surface of the molded body). It is mentioned that it is 1000 degrees C or less. The recombination reaction proceeds as the heat treatment temperature for the dehydrogenation process is increased. However, if the temperature is too high, the structure may become coarse. The heat treatment temperature for the dehydrogenation treatment is more preferably 650 ° C. or higher and 800 ° C. or lower.

脱水素処理の時間は、適宜設定すればよく、例えば30分以上180分以下とすることが挙げられる。脱水素処理の時間が短過ぎると、成形体の内部まで再結合反応が十分に進行しない虞がある。一方、脱水素処理の時間が長過ぎると、組織が粗大化する虞がある。   What is necessary is just to set the time of a dehydrogenation process suitably, for example to set it as 30 minutes or more and 180 minutes or less. If the dehydrogenation time is too short, the recombination reaction may not sufficiently proceed to the inside of the molded body. On the other hand, if the dehydrogenation time is too long, the structure may become coarse.

脱水素処理する際の不活性雰囲気としては、例えばArやNなどの不活性ガス雰囲気とすることが挙げられ、減圧雰囲気としては、例えば真空度が10Pa以下の真空雰囲気とすることが挙げられる。より好ましい真空雰囲気の真空度は1Pa以下、更に0.1Pa以下である。特に、減圧雰囲気(真空雰囲気)中で脱水素処理した場合、再結合反応が進行し易く、NdH相が残存し難い。成形体の密度が高い場合や成形体のサイズが大きい場合、真空雰囲気中で脱水素処理する際に急激に10Pa以下に減圧すると、成形体の表層のみ反応が進行して収縮することで空隙が閉塞し、成形体内部からの水素放出を妨げる虞がある。そこで、真空雰囲気中で脱水素処理する際は真空度を制御することが好ましい。例えば20〜101kPaの水素含有雰囲気中で脱水素温度まで昇温し、その後減圧して、例えば0.1〜20kPa程度の真空度の水素含有雰囲気を経て、最終的に10Pa以下とすることが挙げられる。 As an inert atmosphere at the time of dehydrogenation, for example, an inert gas atmosphere such as Ar or N 2 can be used. As a reduced pressure atmosphere, for example, a vacuum atmosphere having a degree of vacuum of 10 Pa or less can be used. . The vacuum degree of a more preferable vacuum atmosphere is 1 Pa or less, and further 0.1 Pa or less. In particular, when dehydrogenation is performed in a reduced pressure atmosphere (vacuum atmosphere), the recombination reaction easily proceeds, and the NdH 2 phase hardly remains. When the density of the molded body is high or the size of the molded body is large, when the pressure is rapidly reduced to 10 Pa or less during dehydrogenation in a vacuum atmosphere, the reaction proceeds only on the surface layer of the molded body and shrinks so that voids are formed. There is a possibility of blocking and hindering hydrogen release from the inside of the molded body. Therefore, it is preferable to control the degree of vacuum when the dehydrogenation process is performed in a vacuum atmosphere. For example, the temperature is raised to a dehydrogenation temperature in a hydrogen-containing atmosphere of 20 to 101 kPa, and then depressurized, and finally, for example, the pressure is reduced to 10 Pa or less through a hydrogen-containing atmosphere having a degree of vacuum of about 0.1 to 20 kPa. It is done.

脱水素処理後の磁石成形体の組織は、ナノサイズのNd−Fe−B相を含むナノ結晶組織となる。また、上述したように、出発原料のNd−Fe−B系合金がFeを余剰に含有する場合は、Nd−Fe−B相とFe相とのナノコンポジット混晶組織が形成されることがある。例えば、出発原料が余剰のFeを含有するNdFe14B合金の場合は、NdFe14B相とFe相とのナノコンポジット混晶組織が形成される。 The structure of the magnet compact after the dehydrogenation process becomes a nanocrystal structure containing a nano-sized Nd—Fe—B phase. In addition, as described above, when the Nd—Fe—B alloy as the starting material contains excessive Fe, a nanocomposite mixed crystal structure of the Nd—Fe—B phase and the Fe phase may be formed. . For example, when the starting material is an Nd 2 Fe 14 B alloy containing excess Fe, a nanocomposite mixed crystal structure of an Nd 2 Fe 14 B phase and an Fe phase is formed.

{作用効果}
上述した実施形態に係る希土類磁石の製造方法は、次の効果を奏する。
(1)水素化処理したNd−Fe−B系合金粉末を加圧成形→脱水素処理することで、バインダを含まない高密度のNd−Fe−B系合金粉末の磁石成形体(希土類磁石)を製造できる。
(2)Nd−Fe−B系合金粉末に固体潤滑剤を混合することで、加圧成形時の粉末の流動性を高めて、成形体の保形性を向上させることができる。
{Function and effect}
The manufacturing method of the rare earth magnet according to the above-described embodiment has the following effects.
(1) Pressurized Nd—Fe—B alloy powder subjected to hydrogenation → Dehydrogenation treatment to form a magnet compact of a high density Nd—Fe—B alloy powder containing no binder (rare earth magnet) Can be manufactured.
(2) By mixing a solid lubricant with the Nd—Fe—B alloy powder, the fluidity of the powder during pressure molding can be increased, and the shape retention of the compact can be improved.

{希土類磁石の製造方法の用途}
実施形態に係る希土類磁石の製造方法は、希土類圧粉磁石の製造に好適に利用できる。
{Use of rare earth magnet manufacturing method}
The method for producing a rare earth magnet according to the embodiment can be suitably used for producing a rare earth dust magnet.

<希土類磁石>
本発明の実施形態に係る希土類磁石は、上述した希土類磁石の製造方法により製造でき、Nd−Fe−B系合金の粉末を含む粉末成形体(磁石成形体)からなる。実施形態の希土類磁石の特徴の1つは、相対密度が83%以上である点である。また、別の特徴の1つは、任意の断面の観察視野において、最大径が25μm以下の微細粉末が存在する微粉領域の総面積が観察視野の面積の25%以上である点である。以下、希土類磁石の構成を詳しく説明する。
<Rare earth magnet>
The rare earth magnet according to the embodiment of the present invention can be manufactured by the above-described method for manufacturing a rare earth magnet, and includes a powder molded body (magnet molded body) containing a powder of an Nd—Fe—B alloy. One of the features of the rare earth magnet of the embodiment is that the relative density is 83% or more. Another feature is that the total area of the fine powder region where fine powder having a maximum diameter of 25 μm or less is 25% or more of the area of the observation visual field in the observation visual field of an arbitrary cross section. Hereinafter, the configuration of the rare earth magnet will be described in detail.

(相対密度)
相対密度が83%以上であることで、高密度で残留磁化が高く、磁気特性に優れる。好ましくは、相対密度が85%以上、更に87%以上である。
(Relative density)
When the relative density is 83% or more, the density is high, the residual magnetization is high, and the magnetic properties are excellent. Preferably, the relative density is 85% or more, and further 87% or more.

(微粉領域)
微粉領域は、任意の断面において、観察視野内に含まれるNd−Fe−B系合金粉末の中で最大径が25μm以下の微細粉末が存在する領域のことであり、ここでは、10個以上の微細粉末の粒子が密接して集合した粒子群の領域を指す。そして、この微粉領域の総面積が観察視野の面積の25%以上である。微粉領域では、微細粉末が緻密に集合して、粉末粒子同士の接触面積が大きく、粉末粒子同士が強固に結びつくことから、剥離が起き難く、亀裂の進展が抑制される。観察視野に占める微粉領域の面積比率が25%以上であることで、成形体断面に占める微粉領域の面積比率が大きく、成形体全体に占める微粉領域の割合が多い。そのため、剥離や亀裂の発生を抑制でき、保形強度が向上する。観察視野に占める微粉領域の面積比率が大きいほど、剥離や亀裂の発生を抑制する効果が高く、微粉領域の面積比率は、例えば30%以上、更に35%以上であることが好ましい。微粉領域の面積比率の上限は、特に限定されないが、製造上の観点から、例えば80%以下、更に70%以下である。
(Fine powder area)
The fine powder region is a region where a fine powder having a maximum diameter of 25 μm or less exists in an Nd—Fe—B-based alloy powder included in an observation field in an arbitrary cross section. Here, 10 or more fine powder regions exist. This refers to the area of a group of particles in which fine powder particles are closely gathered. And the total area of this fine powder area | region is 25% or more of the area of an observation visual field. In the fine powder region, fine powder gathers densely, the contact area between the powder particles is large, and the powder particles are firmly bonded to each other, so that peeling does not easily occur and the progress of cracks is suppressed. When the area ratio of the fine powder region in the observation visual field is 25% or more, the area ratio of the fine powder region in the cross section of the compact is large, and the proportion of the fine powder region in the entire compact is large. Therefore, the occurrence of peeling and cracking can be suppressed, and the shape retention strength is improved. The larger the area ratio of the fine powder region in the observation field, the higher the effect of suppressing the occurrence of peeling and cracking. The area ratio of the fine powder area is preferably 30% or more, and more preferably 35% or more. Although the upper limit of the area ratio of a fine powder area | region is not specifically limited, From a viewpoint on manufacture, it is 80% or less, for example, and also 70% or less.

また、本実施形態の希土類磁石は、任意の断面の観察視野において、微細領域の他、例えば、最大長さ(最大径)が25μm超の薄片状のNd−Fe−B系合金粉末を有することが挙げられる。この場合、薄片状の粉末の総面積が観察視野の面積から微粉領域の総面積を引いた残りの面積の例えば50%以上であることが挙げられる。   Further, the rare earth magnet of the present embodiment has a flaky Nd—Fe—B alloy powder having a maximum length (maximum diameter) of more than 25 μm in addition to a fine region in an observation field of an arbitrary cross section. Is mentioned. In this case, the total area of the flaky powder is, for example, 50% or more of the remaining area obtained by subtracting the total area of the fine powder region from the area of the observation field.

{作用効果}
上述した実施形態に係る希土類磁石は、次の効果を奏する。
(1)バインダを含んでおらず、相対密度が83%以上であることから、Nd−Fe−B系合金が占める割合が多く、Nd−Fe−B系合金が有する本来の磁気特性に近い性能を発揮できる。
(2)任意の断面の観察視野において、微粉領域の面積比率が25%以上であることで、剥離や亀裂の発生を抑制でき、保形性に優れる。
{Function and effect}
The rare earth magnet according to the embodiment described above has the following effects.
(1) Since it does not contain a binder and the relative density is 83% or more, the Nd—Fe—B alloy accounts for a large proportion, and the performance close to the original magnetic properties of the Nd—Fe—B alloy Can be demonstrated.
(2) In the observation field of an arbitrary cross section, the area ratio of the fine powder region is 25% or more, so that the occurrence of peeling and cracking can be suppressed, and the shape retention is excellent.

{希土類磁石の用途}
実施形態に係る希土類磁石は、モータや発電機などの各種電気機器に使用される永久磁石として好適に利用できる。
{Applications of rare earth magnets}
The rare earth magnet according to the embodiment can be suitably used as a permanent magnet used in various electric devices such as a motor and a generator.

[試験例1]
Ndを30質量%、Bを1質量%含有し、残部がFe及び不可避不純物(30質量%Nd−1質量%B−bal.Fe)の組成を有する合金溶湯をメルトスパン法により急冷凝固して、出発原料となるNd−Fe−B系合金薄片を作製した。ここでは、ロールの周速を40m/秒に設定し、Nd−Fe−B系合金薄片の厚さが約15μmとなるように制御した。Nd−Fe−B系合金薄片を不活性雰囲気中、乳鉢で粉砕し、篩目の目開きが106μmの篩にかけて、篩目を通過したNd−Fe−B系合金粉末を得た。
[Test Example 1]
A molten alloy containing 30% by mass of Nd and 1% by mass of B and the balance being Fe and inevitable impurities (30% by mass Nd-1% by mass B-bal.Fe) is rapidly solidified by a melt span method. Nd—Fe—B alloy flakes as starting materials were prepared. Here, the peripheral speed of the roll was set to 40 m / sec, and the thickness of the Nd—Fe—B alloy flakes was controlled to be about 15 μm. The Nd—Fe—B alloy flakes were pulverized in a mortar in an inert atmosphere and passed through a sieve having a sieve mesh opening of 106 μm to obtain an Nd—Fe—B alloy powder that passed through the sieve mesh.

Nd−Fe−B系合金粉末をHガス雰囲気(大気圧)中、850℃で150分間熱処理して水素化処理した。この水素化処理したNd−Fe−B系合金粉末に固体潤滑剤としてステアリン酸亜鉛を0.01質量%混合して混合粉末を得た。 The Nd—Fe—B alloy powder was hydrogenated by heat treatment at 850 ° C. for 150 minutes in an H 2 gas atmosphere (atmospheric pressure). This hydrogenated Nd—Fe—B alloy powder was mixed with 0.01% by mass of zinc stearate as a solid lubricant to obtain a mixed powder.

混合粉末を金型に充填し、1370MPa(14ton/cm)で加圧成形(一軸プレス)して、直径10mm、高さ8mmの円柱状の水素化成形体を得た。ここでは、加圧成形は室温で行い、金型の内壁面には潤滑剤(ミリスチン酸)を塗布した。 The mixed powder was filled in a mold and pressure-molded (uniaxial press) at 1370 MPa (14 ton / cm 2 ) to obtain a cylindrical hydrogenated molded body having a diameter of 10 mm and a height of 8 mm. Here, the pressure molding was performed at room temperature, and a lubricant (myristic acid) was applied to the inner wall surface of the mold.

水素化成形体を真空雰囲気(真空度が10Pa以下)中、800℃で150分間熱処理して脱水素処理し、磁石成形体を得た。得られた磁石成形体について、断面をSEM−EDX装置を用いて組織観察すると共に組成分析したところ、Nd−Fe−B系合金の粉末成形体で構成され、NdFe14B相のナノ結晶組織を有していた。この磁石成形体を試料No.1−1とする。 The hydrogenated compact was heat-treated at 800 ° C. for 150 minutes in a vacuum atmosphere (the degree of vacuum was 10 Pa or less) to obtain a magnet compact. About the obtained magnet compact, the cross-section was observed with a SEM-EDX apparatus and the composition was analyzed. As a result, it was composed of a powder compact of an Nd—Fe—B alloy, and a nanocrystal of Nd 2 Fe 14 B phase. Had an organization. This magnet compact is referred to as Sample No. 1-1.

試料No.1−1の磁石成形体の断面をSEMで観察した。ここでは、SEMで観察する断面は、成形体の中心軸を通る縦断面(加圧成形時の加圧方向に平行な断面)とした。試料No.1−1の断面SEM観察像を図2に示す。図2において、上下方向が成形体の高さ方向であり、加圧方向に一致する(後述する図3も同じ)。また、図2中、黒い部分が空隙であり、白っぽい薄片状の部分がNd−Fe−B系合金粉末(粒子)である(後述する図3も同じ)。   Sample No. The cross section of the 1-1 magnet molded body was observed with an SEM. Here, the cross section observed with the SEM was a vertical cross section passing through the central axis of the compact (a cross section parallel to the pressurizing direction during pressure molding). Sample No. A cross-sectional SEM observation image of 1-1 is shown in FIG. In FIG. 2, the vertical direction is the height direction of the molded body, and coincides with the pressing direction (the same applies to FIG. 3 described later). Moreover, in FIG. 2, a black part is a space | gap and a whitish flaky part is Nd-Fe-B type alloy powder (particle | grains) (FIG. 3 mentioned later is also the same).

比較として、Nd−Fe−B系合金粉末に固体潤滑剤(ステアリン酸亜鉛)を混合しない以外は、試料No.1−1と同様にして、同じ圧力で加圧成形した後、脱水素処理することで、磁石成形体を得た。この磁石成形体を試料No.100とする。また、試料No.1−1と同じように、磁石成形体の断面をSEMで観察した。試料No.100の断面SEM観察像を図3に示す。   For comparison, Sample No. 4 was used except that the solid lubricant (zinc stearate) was not mixed with the Nd—Fe—B alloy powder. In the same manner as in 1-1, after performing pressure molding at the same pressure, a magnet molded body was obtained by dehydrogenation treatment. This magnet compact is referred to as Sample No. 100. Sample No. Similar to 1-1, the cross section of the magnet compact was observed with an SEM. Sample No. 100 cross-sectional SEM observation images are shown in FIG.

作製した各試料の磁石成形体について、以下の評価を行った。   The following evaluation was performed about the magnet molded object of each produced sample.

(相対密度)
各成形体の相対密度を評価した。相対密度は、成形体の体積と質量とを測定して実測密度を求め、[成形体の実測密度/成形体の真密度]の百分率として求めた。真密度は、出発原料のNd−Fe−B系合金の密度(ここでは、7.6g/cm)とした。その結果を表1に示す。
(Relative density)
The relative density of each molded body was evaluated. The relative density was obtained by measuring the volume and mass of the molded body to determine the actual density, and as a percentage of [actual density of the molded body / true density of the molded body]. The true density was the density of the starting Nd—Fe—B alloy (here, 7.6 g / cm 3 ). The results are shown in Table 1.

(微細領域の面積比率)
各成形体について、微細領域の面積比率を評価した。微細領域の面積比率は次のようにして評価した。断面SEM観察像(図2、図3を参照)の観察視野内において、最大径が25μm以下の微細粉末の粒子群の輪郭を画像処理で抽出して微粉領域を求め、個々の微粉領域の面積を測定して、その合計面積を算出した。そして、観察視野の面積に対する微粉領域の合計面積の割合を算出して、観察視野に占める微粉領域の総面積の比率を求めた。その結果を表1に示す。
(Area ratio of fine area)
About each molded object, the area ratio of the fine area | region was evaluated. The area ratio of the fine regions was evaluated as follows. Within the observation field of the cross-sectional SEM observation image (see FIG. 2 and FIG. 3), the outline of the fine powder particles having a maximum diameter of 25 μm or less is extracted by image processing to obtain fine powder regions, and the area of each fine powder region Was measured and the total area was calculated. And the ratio of the total area of the fine powder area | region with respect to the area of an observation visual field was computed, and the ratio of the total area of the fine powder area | region occupied in an observation visual field was calculated | required. The results are shown in Table 1.

なお、図2及び図3では、図中の実線で囲まれた領域が微粉領域を示しており、試料No.1−1では、観察視野内において、微粉領域が10箇所存在しているのに対し、試料No.100では、微粉領域が6箇所存在していた。   2 and 3, the area surrounded by the solid line in the figure indicates the fine powder area. In 1-1, there are 10 fine powder regions in the observation field of view, whereas sample no. In 100, there were six fine powder regions.

(外観評価)
各成形体の外観を目視して、剥離、亀裂の有無について評価した。その結果を表1に示す。表1中、剥離、亀裂が確認できなかった場合をA、剥離、亀裂が確認された場合をBとした。図4及び図5は、試料No.1−1及び試料No.100の各成形体の外観写真であり、試料No.1−1では、亀裂などの目立った欠陥がないのに対し、試料No.100では、亀裂などの欠陥(図5の破線で囲む部分)が認められた。
(Appearance evaluation)
The appearance of each molded body was visually observed and evaluated for the presence or absence of peeling or cracking. The results are shown in Table 1. In Table 1, the case where peeling and a crack were not confirmed was set to A, and the case where peeling and a crack were confirmed was set to B. 4 and FIG. 1-1 and Sample No. 100 is a photograph of the appearance of each molded body of Sample No. 100. In 1-1, there is no conspicuous defect such as a crack. In 100, defects such as cracks (portions surrounded by broken lines in FIG. 5) were recognized.

(磁気特性)
各成形体の磁気特性を評価した。具体的には、着磁装置(日本電磁側器株式会社製高圧コンデンサ式SR型)を用いて4777kA/m(5T)のパルス磁場を印加して着磁処理を行ってから、BHトレーサ(理研電子株式会社製DCBHトレーサ)を用いてB−H曲線を測定し、残留磁化及び保磁力を求めた。その結果を表1に示す。
(Magnetic properties)
The magnetic properties of each compact were evaluated. Specifically, after applying a pulsed magnetic field of 4777 kA / m (5T) using a magnetizing device (high voltage capacitor SR type manufactured by Nippon Electron Seiki Co., Ltd.), a BH tracer (RIKEN) The BH curve was measured using a DCBH tracer manufactured by Denki Co., Ltd., and the remanent magnetization and coercive force were determined. The results are shown in Table 1.

表1に示す結果から、固体潤滑剤を混合した試料No.1−1は、相対密度が83%以上であり、密度が高く、高密度化を達成できる。また、試料No.1−1は、固体潤滑剤を混合していない試料No.100に対して、残留磁化及び保持力が同等以上であり、優れた磁気特性を有していることが分かる。   From the results shown in Table 1, Sample No. mixed with a solid lubricant was used. 1-1 has a relative density of 83% or more, has a high density, and can achieve high density. Sample No. 1-1 is Sample No. which is not mixed with a solid lubricant. It can be seen that the residual magnetization and coercive force are equal to or greater than 100 and have excellent magnetic properties.

試料No.1−1は、微粉領域の面積比率が25%以上を満たしており、試料No.100に比較して剥離や亀裂の発生が抑制され、保形性に優れることが分かる。   Sample No. 1-1, the area ratio of the fine powder region satisfies 25% or more. It can be seen that the occurrence of peeling and cracking is suppressed as compared with 100, and the shape retention is excellent.

試料No.1−1及び試料No.100の各成形体について、薄片状の粉末の面積比率を評価した。具体的には、断面SEM観察像(図2、図3を参照)の観察視野内において、最大径が25μm以上の薄片状の粉末を画像処理で抽出して個々の面積を測定し、観察視野に占める薄片状の粉末の総面積の比率を求めた。その結果、薄片状の粉末の面積比率は、試料No.1−1では62.2%であり、試料No.100では89.0%であった。   Sample No. 1-1 and Sample No. For each of the 100 compacts, the area ratio of the flaky powder was evaluated. Specifically, within the observation field of the cross-sectional SEM observation image (see FIGS. 2 and 3), a flaky powder having a maximum diameter of 25 μm or more is extracted by image processing to measure individual areas, and the observation field The ratio of the total area of the flaky powder occupying was calculated. As a result, the area ratio of the flaky powder was determined as Sample No. 1-1, it was 62.2%. 100 was 89.0%.

P Nd−Fe−B系合金粉末
R 最小外接矩形
a 最小径
b 最大径
P Nd-Fe-B alloy powder R Minimum circumscribed rectangle a Minimum diameter b Maximum diameter

Claims (5)

Nd、Fe及びBを含有する合金溶湯を急冷凝固して、Nd−Fe−B相を主相とし、厚さ25μm以下のNd−Fe−B系合金の薄片を用意する準備工程と、
前記Nd−Fe−B系合金の薄片を粉砕し、目開きが前記薄片の厚さの2倍以上の篩目を通過した薄片状のNd−Fe−B系合金の粉末を得る粉砕工程と、
前記Nd−Fe−B系合金を水素化処理し、その少なくとも一部を不均化反応によりNdH、Fe及びFeBの3相に分解する水素化工程と、
前記水素化処理した前記Nd−Fe−B系合金の粉末に固体潤滑剤を混合して混合粉末を得る混合工程と、
前記混合粉末を加圧成形して水素化成形体を得る成形工程と、
前記水素化成形体を脱水素処理し、再結合反応により前記水素化処理によって分解した相を再結合して、Nd−Fe−N相を主相とする磁石成形体を得る脱水素工程と、を備える希土類磁石の製造方法。
A preparatory step in which a molten alloy containing Nd, Fe and B is rapidly solidified to prepare a flake of an Nd—Fe—B alloy having a thickness of 25 μm or less with an Nd—Fe—B phase as a main phase;
Crushing the Nd-Fe-B-based alloy flakes to obtain a flaky Nd-Fe-B-based alloy powder that has passed through a mesh whose opening is twice or more the thickness of the flakes;
Hydrotreating the Nd-Fe-B alloy, and at least partially decomposing it into three phases of NdH 2 , Fe, and Fe 2 B by a disproportionation reaction;
A mixing step of obtaining a mixed powder by mixing a solid lubricant with the hydrogenated Nd-Fe-B alloy powder;
A molding step of pressing the mixed powder to obtain a hydrogenated molded body; and
A dehydrogenation step of dehydrogenating the hydrogenated molded body and recombining the phases decomposed by the hydrogenation treatment by a recombination reaction to obtain a magnet molded body having an Nd-Fe-N phase as a main phase. A method for producing a rare earth magnet.
前記固体潤滑剤がステアリン酸亜鉛である請求項1に記載の希土類磁石の製造方法。   The method for producing a rare earth magnet according to claim 1, wherein the solid lubricant is zinc stearate. 前記固体潤滑剤の添加量を0.001質量%以上0.1質量%以下とする請求項1又は請求項2に記載の希土類磁石の製造方法。   The method for producing a rare earth magnet according to claim 1 or 2, wherein the solid lubricant is added in an amount of 0.001 mass% to 0.1 mass%. 前記加圧成形の圧力を1470MPa以下とする請求項1から請求項3のいずれか1項に記載の希土類磁石の製造方法。   The method for producing a rare earth magnet according to any one of claims 1 to 3, wherein a pressure of the pressure molding is 1470 MPa or less. Nd−Fe−B系合金の粉末を含む粉末成形体からなる希土類磁石であって、
相対密度が83%以上であり、
任意の断面において、観察視野内に含まれる前記粉末の中で最大径が25μm以下の微細粉末が存在する微粉領域の総面積が前記観察視野の面積の25%以上である希土類磁石。
A rare earth magnet made of a powder compact including a powder of an Nd-Fe-B alloy,
The relative density is 83% or more,
A rare earth magnet having a total area of a fine powder region in which a fine powder having a maximum diameter of 25 μm or less exists in the observation field in an arbitrary cross section is 25% or more of the area of the observation field.
JP2017124491A 2017-06-26 2017-06-26 Manufacturing method of rare-earth magnet, and rare-earth magnet Pending JP2019009313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017124491A JP2019009313A (en) 2017-06-26 2017-06-26 Manufacturing method of rare-earth magnet, and rare-earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017124491A JP2019009313A (en) 2017-06-26 2017-06-26 Manufacturing method of rare-earth magnet, and rare-earth magnet

Publications (1)

Publication Number Publication Date
JP2019009313A true JP2019009313A (en) 2019-01-17

Family

ID=65026927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017124491A Pending JP2019009313A (en) 2017-06-26 2017-06-26 Manufacturing method of rare-earth magnet, and rare-earth magnet

Country Status (1)

Country Link
JP (1) JP2019009313A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022511484A (en) * 2019-10-16 2022-01-31 エルジー・ケム・リミテッド Manufacturing method of sintered magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022511484A (en) * 2019-10-16 2022-01-31 エルジー・ケム・リミテッド Manufacturing method of sintered magnet
JP7164250B2 (en) 2019-10-16 2022-11-01 エルジー・ケム・リミテッド Manufacturing method of sintered magnet

Similar Documents

Publication Publication Date Title
JP5218869B2 (en) Rare earth-iron-nitrogen alloy material, method for producing rare earth-iron-nitrogen alloy material, rare earth-iron alloy material, and method for producing rare earth-iron alloy material
WO2011068169A1 (en) Powder for magnet
WO2008065903A1 (en) R-Fe-B MICROCRYSTALLINE HIGH-DENSITY MAGNET AND PROCESS FOR PRODUCTION THEREOF
JP5059955B2 (en) Magnet powder
WO2011145477A1 (en) Powder for magnetic member, powder compact, and magnetic member
JP7416476B2 (en) magnet manufacturing
JP6598700B2 (en) Rare earth magnet manufacturing method and rare earth magnet
JP2011100881A (en) Method for manufacturing nanocomposite magnet
JP2018186255A (en) Manufacturing method of rare-earth magnet
JP6691666B2 (en) Method for manufacturing RTB magnet
JP6198103B2 (en) Manufacturing method of RTB-based permanent magnet
JP2019009313A (en) Manufacturing method of rare-earth magnet, and rare-earth magnet
WO2017090635A1 (en) Rare earth magnet, and method of producing rare earth magnet
JP6691667B2 (en) Method for manufacturing RTB magnet
JP2014192460A (en) Method of manufacturing r-t-x based powder-compacted magnet, and r-t-x based powder-compacted magnet
JP6471594B2 (en) Rare earth magnet material and method for producing rare earth magnet material
JP2015026795A (en) Powder for magnets, rare earth magnet, method for manufacturing powder for magnets, and method for manufacturing rare earth magnet
WO2019078148A1 (en) Rare-earth magnet material and rare-earth magnet
JP6447804B2 (en) Method for manufacturing magnet compact
JP2016100519A (en) Production method of magnetic powder, production method of dust magnet member, and dust magnet member
JP2019009314A (en) Manufacturing method of rare-earth magnet, and rare-earth magnet
JP6613117B2 (en) Rare earth magnet and method for producing rare earth magnet
JP4930813B2 (en) Powder for magnetic member, powder molded body, and magnetic member
JP2017139385A (en) Production method of rare-earth magnet
JP2017216298A (en) Rare earth magnet material and method for manufacturing rare earth magnet material