JP6947625B2 - Manufacturing method of sintered magnet, graphite mold for hot press and graphite mold for hot press - Google Patents

Manufacturing method of sintered magnet, graphite mold for hot press and graphite mold for hot press Download PDF

Info

Publication number
JP6947625B2
JP6947625B2 JP2017248360A JP2017248360A JP6947625B2 JP 6947625 B2 JP6947625 B2 JP 6947625B2 JP 2017248360 A JP2017248360 A JP 2017248360A JP 2017248360 A JP2017248360 A JP 2017248360A JP 6947625 B2 JP6947625 B2 JP 6947625B2
Authority
JP
Japan
Prior art keywords
thermal expansion
coefficient
graphite
axis direction
sintered magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017248360A
Other languages
Japanese (ja)
Other versions
JP2019114715A (en
Inventor
貴彦 井戸
貴彦 井戸
裕士 奥田
裕士 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2017248360A priority Critical patent/JP6947625B2/en
Publication of JP2019114715A publication Critical patent/JP2019114715A/en
Application granted granted Critical
Publication of JP6947625B2 publication Critical patent/JP6947625B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、焼結磁石の製造方法、ホットプレス用黒鉛型およびホットプレス用黒鉛型の製造方法に関する。 The present invention relates to a method for producing a sintered magnet, a method for producing a graphite mold for hot pressing, and a method for producing a graphite mold for hot pressing.

高性能永久磁石として代表的なR−Fe−B系希土類磁石(Rは希土類元素、Feは鉄、Bはホウ素)は、三元系正方晶化合物であるR2Fe14B相を主相として含む組織を有し、優れた磁気特性を発揮する。このようなR−Fe−B系希土類磁石は、焼結磁石とボンド磁石に大別される。焼結磁石は、R−Fe−B系磁石合金の微粉末(平均粒径:数μm)をプレス装置で圧縮成形した後、焼結することによって製造される。これに対して、ボンド磁石は、通常R−Fe−B系磁石合金の粉末(粒径:例えば100μm程度)と結合樹脂との混合物(コンパウンド)を圧縮成形したり、射出成形することによって製造される。 R-Fe-B-based rare earth magnets (R is a rare earth element, Fe is iron, and B is boron), which are typical high-performance permanent magnets, have R 2 Fe 14 B phase, which is a ternary square compound, as the main phase. It has a texture containing it and exhibits excellent magnetic properties. Such R-Fe-B-based rare earth magnets are roughly classified into sintered magnets and bonded magnets. Sintered magnets are manufactured by compression-molding fine powder (average particle size: several μm) of R-Fe-B-based magnet alloy with a press device and then sintering. On the other hand, a bonded magnet is usually manufactured by compression molding or injection molding of a mixture (compound) of an R-Fe-B magnet alloy powder (particle size: about 100 μm) and a bonding resin. NS.

焼結磁石の場合、比較的粒径の小さい粉末を用いるため、個々の粉末粒子が磁気的異方性を有している。このため、プレス装置で粉末の圧縮成形を行うとき、粉末に対して、配向磁界を印加し、それによって、粉末粒子が磁界の向きに配向した圧粉体が得られ、強い磁力の磁石を得ることができる。これは、磁石がもつ同一方向に自然磁化する最小単位(単磁区粒径)程度まで粉砕することにより、外部から磁場を与え磁気モーメントの方向を揃えることにより強い磁力を得ることができるからである。 In the case of a sintered magnet, since powder having a relatively small particle size is used, each powder particle has magnetic anisotropy. Therefore, when the powder is compression-molded by the press device, an orientation magnetic field is applied to the powder, whereby a green compact in which the powder particles are oriented in the direction of the magnetic field is obtained, and a magnet having a strong magnetic force is obtained. be able to. This is because a strong magnetic force can be obtained by applying a magnetic field from the outside and aligning the directions of the magnetic moments by crushing the magnet to the smallest unit (single magnetic domain particle size) that naturally magnetizes in the same direction. ..

特許文献1には、希土類焼結磁石の製造方法が記載されている。
粉末粒子を細かくしさらに強い磁力を得るために、平均粒径10μm未満のR−Fe−B系希土類合金粉末を用意する工程と、前記R−Fe−B系希土類合金粉末を成形して圧粉体を作製する工程と、水素ガス中において前記圧粉体に対し650℃以上1000℃未満の温度で熱処理を施し、それによって水素化および不均化反応を起こす工程と、真空または不活性雰囲気中において前記圧粉体に対し650℃以上1000℃未満の温度で熱処理を施し、それによって脱水素および再結合反応を起こす工程と、を含むR−Fe−B系多孔質磁石の製造方法が提案されている。この方法ではR−Fe−B系希土類合金粉末に一旦水素を吸蔵させて微粉末にし、磁気モーメントの方向を揃えやすくしている。
Patent Document 1 describes a method for producing a rare earth sintered magnet.
In order to make the powder particles finer and obtain a stronger magnetic force, a step of preparing an R-Fe-B-based rare earth alloy powder having an average particle size of less than 10 μm and a step of molding the R-Fe-B-based rare earth alloy powder to obtain a compact powder. A step of preparing a body, a step of heat-treating the green compact in hydrogen gas at a temperature of 650 ° C. or higher and lower than 1000 ° C., thereby causing a hydrogenation and disproportionation reaction, and in a vacuum or an inert atmosphere. A method for producing an R-Fe-B-based porous magnet including a step of heat-treating the green compact at a temperature of 650 ° C. or higher and lower than 1000 ° C. to cause a dehydrogenation and recombination reaction has been proposed. ing. In this method, hydrogen is occluded once in the R-Fe-B-based rare earth alloy powder to make a fine powder, so that the directions of the magnetic moments can be easily aligned.

特許文献1では、さらに得られたR−Fe−B系多孔質磁石を600℃以上900℃未満の温度で加圧し、前記R−Fe−B系多孔質磁石を真密度の95%以上に高密度化する工程を含むR−Fe−B系磁石の製造方法が提案されている。この工程によってR−Fe−B系多孔質磁石を真密度の95%以上に高密度化できることが記載されている。 In Patent Document 1, the obtained R-Fe-B-based porous magnet is further pressurized at a temperature of 600 ° C. or higher and lower than 900 ° C., and the R-Fe-B-based porous magnet is increased to 95% or more of the true density. A method for manufacturing an R-Fe-B magnet including a step of densifying has been proposed. It is described that the R-Fe-B based porous magnet can be increased in density to 95% or more of the true density by this step.

国際公開第2007/135981号International Publication No. 2007/135981

しかしながら、上記記載された発明は、R−Fe−B系の焼結磁石の製造方法であり、希土類元素として、Nd、Dyなどが多用されている。このため、製造段階では、希少金属の使用量を少なくすることが製造原価を下げるために重要である。 However, the above-described invention is a method for producing an R-Fe-B-based sintered magnet, and Nd, Dy, and the like are often used as rare earth elements. Therefore, in the manufacturing stage, it is important to reduce the amount of rare metals used in order to reduce the manufacturing cost.

本発明では、上記課題を鑑み、形状精度が高く、材料ロスの少ないR−Fe−B系の焼結磁石の製造方法、ホットプレス用黒鉛型およびホットプレス用黒鉛型の製造方法を提供することを目的とする。 In view of the above problems, the present invention provides a method for producing an R-Fe-B-based sintered magnet having high shape accuracy and little material loss, and a method for producing a graphite mold for hot pressing and a graphite mold for hot pressing. With the goal.

前記課題を解決するための本発明のR−Fe−B系の焼結磁石の製造方法は、以下の内容である。 The method for producing an R-Fe-B-based sintered magnet of the present invention for solving the above problems has the following contents.

(1)R−Fe−B系の多孔質磁石をホットプレス用黒鉛型に配置し、加熱しながら加圧するR−Fe−B系の焼結磁石の製造方法であって、前記ホットプレス用黒鉛型は、加圧軸方向と、前記加圧軸方向に対し垂直な垂直方向により方向が定義されるダイスとパンチとを備え、前記ダイスの前記加圧軸方向の熱膨張係数(α)は、前記ダイスの前記垂直方向の熱膨張係数(α、α)よりも大きい。 (1) A method for producing an R-Fe-B-based sintered magnet in which an R-Fe-B-based porous magnet is placed in a graphite mold for hot pressing and pressurized while heating, wherein the graphite for hot pressing is produced. The mold comprises a die and a punch whose direction is defined by a pressurizing axis direction and a direction perpendicular to the pressurizing axis direction, and the coefficient of thermal expansion (α z ) of the die in the pressurizing axis direction is , It is larger than the coefficient of thermal expansion (α x , α y) in the vertical direction of the die.

ホットプレス用黒鉛型に用いられる黒鉛は高い強度が必要なため、原料を細かく粉砕したのち、プレス成形、焼成、黒鉛化を経て得られる等方性黒鉛が適している。しかしながら、等方性黒鉛は完全な等方性ではなく、粉砕後の粉の重力による一軸加圧によって成形時の上下方向が水平方向より高くなる傾向がある。このような黒鉛材を用いて熱間で成型すると、材料の切り出し方向によっては、熱膨張差によって変形を生じる。 Since the graphite used in the graphite mold for hot pressing requires high strength, isotropic graphite obtained by finely crushing the raw material, press molding, firing, and graphitizing is suitable. However, isotropic graphite is not completely isotropic, and the vertical direction during molding tends to be higher than the horizontal direction due to uniaxial pressure due to the gravity of the powder after crushing. When hot molding is performed using such a graphite material, deformation occurs due to a difference in thermal expansion depending on the cutting direction of the material.

本発明のR−Fe−B系の焼結磁石の製造方法では、熱膨張係数の最も大きな切り出し方向をダイスの加圧軸方向にすることによって材料の不規則な変形を防止することができる。材料の不規則な変形が小さいので、焼結後の加工量が減り、材料ロスを少なくすることができる。
なお、本発明において熱膨張係数は、50〜400℃の間の1℃当たりの伸び率である。
In the method for producing an R-Fe-B-based sintered magnet of the present invention, irregular deformation of the material can be prevented by setting the cutting direction having the largest coefficient of thermal expansion to the pressure axis direction of the die. Since the irregular deformation of the material is small, the amount of processing after sintering can be reduced, and the material loss can be reduced.
In the present invention, the coefficient of thermal expansion is the elongation rate per 1 ° C. between 50 and 400 ° C.

また本発明の本発明のR−Fe−B系の焼結磁石の製造方法は以下の態様であることが好ましい。 Further, the method for producing an R-Fe-B-based sintered magnet of the present invention of the present invention preferably has the following aspects.

(2)前記ダイスの熱膨張係数(α、α、α)は、
1.05≦α/α≦1.3・・・(1)
1.05≦α/α≦1.3・・・(2)
式(1)及び式(2)の関係を満たす。
(2) The coefficient of thermal expansion (α x , α y , α z ) of the die is
1.05 ≤ α z / α x ≤ 1.3 ... (1)
1.05 ≤ α z / α y ≤ 1.3 ... (2)
The relationship between equations (1) and (2) is satisfied.

式(1)、(2)において異方比(α/αまたはα/α)が1.05以上であると、測定器の誤差よりも充分に大きく、異方比の高い方向が容易に検出でき、材料の切り出し方向を正しく選定できる。式(1)、(2)において異方比が1.3以下であると、加圧軸方向の熱膨張係数を小さく抑えられるので、熱応力の発生を小さくできる。 When the anisotropy ratio (α z / α x or α z / α y ) in the equations (1) and (2) is 1.05 or more, it is sufficiently larger than the error of the measuring instrument and the direction in which the anisotropy ratio is high. Can be easily detected, and the cutting direction of the material can be selected correctly. When the heterogeneous ratio is 1.3 or less in the equations (1) and (2), the coefficient of thermal expansion in the pressurizing axis direction can be suppressed to a small value, so that the generation of thermal stress can be reduced.

(3)前記ダイスの前記加圧軸方向の熱膨張係数(α)は、3.5×10−6/℃〜5.0×10−6/℃である。 (3) thermal expansion coefficient of the pressure axis direction of the die (alpha z) is 3.5 × 10 -6 /℃~5.0×10 -6 / ℃ .

黒鉛は、黒鉛化が進行するにつれて六方晶の結晶サイズが大きくなり、熱膨張係数が小さくなるとともに、素材自体が軟らかくなる。黒鉛化の進行した黒鉛をホットプレス用黒鉛型として用いると、摩擦しやすく焼結磁石の形状精度がえられにくい。一方、黒鉛化の進行していない黒鉛では、熱膨張係数が大きいため、ホットプレス時に寸法変化が大きくなり、形状精度が得られにくい。 In graphite, the crystal size of hexagonal crystals increases as graphitization progresses, the coefficient of thermal expansion decreases, and the material itself becomes soft. When graphitized graphite is used as a graphite mold for hot pressing, it is easy to rub and it is difficult to obtain the shape accuracy of the sintered magnet. On the other hand, in graphite that has not been graphitized, since the coefficient of thermal expansion is large, the dimensional change becomes large during hot pressing, and it is difficult to obtain shape accuracy.

本発明のR−Fe−B系の焼結磁石の製造方法では、前記加圧軸方向の熱膨張係数(α)が3.5×10−6/℃〜5.0×10−6/℃である黒鉛を用いているので、精度よくR−Fe−B系の焼結磁石を得ることができる。 In the method for producing a sintered magnet of an R-Fe-B based the present invention, the thermal expansion coefficient of the pressure application shaft direction (alpha z) is 3.5 × 10 -6 /℃~5.0×10 -6 / Since graphite at ° C. is used, an R-Fe-B-based sintered magnet can be obtained with high accuracy.

(4)前記パンチの前記加圧軸方向の熱膨張係数(β)は、前記パンチの前記垂直方向の熱膨張係数(β、β)よりも大きい。 (4) The coefficient of thermal expansion (β z ) of the punch in the pressure axis direction is larger than the coefficient of thermal expansion (β x , β y) of the punch in the vertical direction.

ホットプレス用黒鉛型に用いられる黒鉛は高い強度が必要なため、原料を細かく粉砕したのち、プレス成形、焼成、黒鉛化を経て得られる等方性黒鉛が適している。しかしながら、等方性黒鉛は完全な等方性ではなく、粉砕後の粉の重力による一軸加圧によって成形時の上下方向が水平方向より高くなる傾向がある。このような黒鉛材を用いて熱間で成型すると、材料の切り出し方向によっては、熱膨張差によって変形を生じる。 Since the graphite used in the graphite mold for hot pressing requires high strength, isotropic graphite obtained by finely crushing the raw material, press molding, firing, and graphitizing is suitable. However, isotropic graphite is not completely isotropic, and the vertical direction during molding tends to be higher than the horizontal direction due to uniaxial pressure due to the gravity of the powder after crushing. When hot molding is performed using such a graphite material, deformation occurs due to a difference in thermal expansion depending on the cutting direction of the material.

本発明のR−Fe−B系の焼結磁石の製造方法では、熱膨張係数の最も大きな切り出し方向をパンチの加圧軸方向にすることによってバリなどの材料の不規則な変形を防止することができる。材料の不規則な変形が小さいので、焼結後の加工量が減り、材料ロスを少なくすることができる。 In the method for manufacturing an R-Fe-B-based sintered magnet of the present invention, irregular deformation of a material such as burrs is prevented by setting the cutting direction having the largest coefficient of thermal expansion to the pressure axis direction of the punch. Can be done. Since the irregular deformation of the material is small, the amount of processing after sintering can be reduced, and the material loss can be reduced.

(5)前記パンチの熱膨張係数(β、β、β)は、
1.05≦β/β≦1.3・・・(3)
1.05≦β/β≦1.3・・・(4)
式(3)及び式(4)の関係を満たす。
(5) The coefficient of thermal expansion (β x , β y , β z ) of the punch is
1.05 ≤ β z / β x ≤ 1.3 ... (3)
1.05 ≤ β z / β y ≤ 1.3 ... (4)
The relationship between equation (3) and equation (4) is satisfied.

式(3)、(4)において異方比(α/αまたはα/α)が1.05以上であると、測定器の誤差よりも充分に大きく、異方比の高い方向が容易に検出でき、材料の切り出し方向を正しく選定できる。式(3)、(4)において異方比が1.3以下であると、加圧軸方向の熱膨張係数を小さく抑えられるので、熱応力の発生を小さくできる。 When the anisotropy ratio (α z / α x or α z / α y ) in the equations (3) and (4) is 1.05 or more, it is sufficiently larger than the error of the measuring instrument and the direction in which the anisotropy ratio is high. Can be easily detected, and the cutting direction of the material can be selected correctly. When the heterogeneous ratio is 1.3 or less in the equations (3) and (4), the coefficient of thermal expansion in the pressure axis direction can be suppressed to a small value, so that the generation of thermal stress can be reduced.

(6)前記パンチの前記加圧軸方向の熱膨張係数(β)は、3.5×10−6/℃〜5.0×10−6/℃である。 (6) thermal expansion coefficient of the pressure axis direction of the punch (beta z) is 3.5 × 10 -6 /℃~5.0×10 -6 / ℃ .

黒鉛は、黒鉛化が進行するにつれて六方晶の結晶サイズが大きくなり、熱膨張係数が小さくなるとともに、素材自体が軟らかくなる。黒鉛化の進行した黒鉛をホットプレス用黒鉛型として用いると、摩擦しやすく焼結磁石の形状精度がえられにくい。一方、黒鉛化の進行していない黒鉛では、熱膨張係数が大きいため、加熱時に寸法が大きくなり、形状精度が得られにくい。 In graphite, the crystal size of hexagonal crystals increases as graphitization progresses, the coefficient of thermal expansion decreases, and the material itself becomes soft. When graphitized graphite is used as a graphite mold for hot pressing, it is easy to rub and it is difficult to obtain the shape accuracy of the sintered magnet. On the other hand, since graphitization of graphite has a large coefficient of thermal expansion, the dimensions become large during heating, and it is difficult to obtain shape accuracy.

本発明のR−Fe−B系の焼結磁石の製造方法では、前記加圧軸方向の熱膨張係数(β)が3.5×10−6/℃〜5.0×10−6/℃である黒鉛を用いているので、精度よくR−Fe−B系の焼結磁石を得ることができる。 In the method for producing a sintered magnet of an R-Fe-B based the present invention, the thermal expansion coefficient of the pressure application shaft direction (beta z) is 3.5 × 10 -6 /℃~5.0×10 -6 / Since graphite at ° C. is used, an R-Fe-B-based sintered magnet can be obtained with high accuracy.

(7)前記加圧の方法は、前記ホットプレス用黒鉛型に熱および直流パルス電圧を加えながら一軸加圧するパルス通電焼結である。 (7) The pressurization method is pulse energization sintering in which uniaxial pressurization is performed while applying heat and DC pulse voltage to the graphite mold for hot pressing.

直流パルス電圧を加えることにより、R−Fe−B系の多孔質磁石の粒子の界面が活性化し、焼結が促進される。 By applying the DC pulse voltage, the interface of the particles of the R-Fe-B-based porous magnet is activated, and sintering is promoted.

また、前記課題を解決するための本発明のR−Fe−B系の焼結磁石のホットプレス用黒鉛型は、以下の内容である。 The graphite mold for hot pressing of the R-Fe-B-based sintered magnet of the present invention for solving the above problems has the following contents.

(8)R−Fe−B系の多孔質磁石を加熱しながら加圧するR−Fe−B系の焼結体磁石のホットプレス用黒鉛型であって、前記ホットプレス用黒鉛型は、加圧軸方向と、前記加圧軸方向に対し垂直な垂直方向により方向が定義されるダイスとパンチとを備え、前記ダイスの前記加圧軸方向の熱膨張係数(α)は、前記ダイスの前記垂直方向の熱膨張係数(α、α)よりも大きい。 (8) A graphite type for hot pressing of an R-Fe-B-based sintered magnet that pressurizes an R-Fe-B-based porous magnet while heating, and the graphite type for hot pressing is pressurized. A die and a punch whose direction is defined by an axial direction and a direction perpendicular to the pressure axis direction are provided, and the coefficient of thermal expansion (α z ) of the die in the pressure axis direction is the same as that of the die. It is larger than the coefficient of thermal expansion in the vertical direction (α x , α y).

また、本発明R−Fe−B系の焼結磁石のホットプレス用黒鉛型は、以下の態様であることが好ましい。 Further, the graphite type for hot pressing of the R-Fe-B-based sintered magnet of the present invention preferably has the following aspects.

(9)前記ダイスの熱膨張係数(α、α、α)は、
1.05≦α/α≦1.3・・・(1)
1.05≦α/α≦1.3・・・(2)
式(1)及び式(2)の関係を満たす。
(9) The coefficient of thermal expansion (α x , α y , α z ) of the die is
1.05 ≤ α z / α x ≤ 1.3 ... (1)
1.05 ≤ α z / α y ≤ 1.3 ... (2)
The relationship between equations (1) and (2) is satisfied.

等方性黒鉛材は、成形前の重力の影響により、部位によって熱膨張係数に異方比が生じる。このため、異方比の小さい部位を用いることが好ましいが、異方比の大きさで選別すると材料のロスが生じる。むしろ、等方性黒鉛材の異方比は材料の成形時の方向に合わせて規則的に現れることを利用し、熱膨張係数の大きな方向を確認した上で加圧軸方向として用いることにより、得られるR−Fe−B系の焼結磁石の変形を小さくすることができる。 The isotropic graphite material has an isotropic ratio in the coefficient of thermal expansion depending on the site due to the influence of gravity before molding. Therefore, it is preferable to use a portion having a small anisotropic ratio, but material loss occurs when sorting by the magnitude of the anisotropic ratio. Rather, by utilizing the fact that the anisotropic ratio of the isotropic graphite material appears regularly according to the direction at the time of molding of the material and using it as the pressure axis direction after confirming the direction in which the coefficient of thermal expansion is large. The deformation of the obtained R-Fe-B-based sintered magnet can be reduced.

また、式(1)、(2)において異方比(α/αまたはα/α)が1.05以上であると、測定器の誤差よりも充分に大きく、異方比の高い方向が容易に検出でき、材料の切り出し方向を正しく選定できる。式(1)、(2)において異方比が1.3以下であると、加圧軸方向の熱膨張係数を小さく抑えられるので、熱応力の発生を小さくできる。 Further, when the anisotropic ratio (α z / α x or α z / α y ) in the equations (1) and (2) is 1.05 or more, it is sufficiently larger than the error of the measuring instrument, and the anisotropic ratio is large. The high direction can be easily detected, and the cutting direction of the material can be selected correctly. When the heterogeneous ratio is 1.3 or less in the equations (1) and (2), the coefficient of thermal expansion in the pressurizing axis direction can be suppressed to a small value, so that the generation of thermal stress can be reduced.

(10)前記ダイスの加圧軸方向の熱膨張係数(α)は、3.5×10−6/℃〜5.0×10−6/℃である。 (10) the thermal expansion coefficient of the pressure axis direction of the die (alpha z) is 3.5 × 10 -6 /℃~5.0×10 -6 / ℃ .

(11)前記パンチの前記加圧軸方向の熱膨張係数(β)は、前記パンチの前記垂直方向の熱膨張係数(β、β)よりも大きい。 (11) The coefficient of thermal expansion (β z ) of the punch in the pressure axis direction is larger than the coefficient of thermal expansion (β x , β y) of the punch in the vertical direction.

(12)前記パンチの熱膨張係数(β、β、β)は、
1.05≦β/β≦1.3・・・(3)
1.05≦β/β≦1.3・・・(4)
式(3)及び式(4)の関係を満たす。
(12) The coefficient of thermal expansion (β x , β y , β z ) of the punch is
1.05 ≤ β z / β x ≤ 1.3 ... (3)
1.05 ≤ β z / β y ≤ 1.3 ... (4)
The relationship between equation (3) and equation (4) is satisfied.

等方性黒鉛材は、成形前の重力の影響により、部位によって熱膨張係数に異方比が生じる。このため、異方比の小さい部位を用いることが好ましいが、異方比の大きさで選別すると材料のロスが生じる。むしろ、等方性黒鉛材の異方比は材料の成形時の方向に合わせて規則的に現れることを利用し、熱膨張係数の大きな方向を確認した上で加圧軸方向として用いることにより、得られるR−Fe−B系の焼結磁石の変形を小さくすることができる。 The isotropic graphite material has an isotropic ratio in the coefficient of thermal expansion depending on the site due to the influence of gravity before molding. Therefore, it is preferable to use a portion having a small anisotropic ratio, but material loss occurs when sorting by the magnitude of the anisotropic ratio. Rather, by utilizing the fact that the anisotropic ratio of the isotropic graphite material appears regularly according to the direction of material molding, the direction in which the coefficient of thermal expansion is large is confirmed and then used as the pressure axis direction. The deformation of the obtained R-Fe-B-based sintered magnet can be reduced.

また、式(3)、(4)において異方比(α/αまたはα/α)が1.05以上であると、測定器の誤差よりも充分に大きく、異方比の高い方向が容易に検出でき、材料の切り出し方向を正しく選定できる。式(3)、(4)において異方比が1.3以下であると、加圧軸方向の熱膨張係数を小さく抑えられるので、熱応力の発生を小さくできる。 Further, when the anisotropic ratio (α z / α x or α z / α y ) in the equations (3) and (4) is 1.05 or more, it is sufficiently larger than the error of the measuring instrument, and the anisotropic ratio is large. The high direction can be easily detected, and the cutting direction of the material can be selected correctly. When the heterogeneous ratio is 1.3 or less in the equations (3) and (4), the coefficient of thermal expansion in the pressure axis direction can be suppressed to a small value, so that the generation of thermal stress can be reduced.

(13)前記パンチの前記加圧軸方向の熱膨張係数(β)は、3.5×10−6/℃〜5.0×10−6/℃である。 (13) a coefficient of thermal expansion of the pressure axis direction of the punch (beta z) is 3.5 × 10 -6 /℃~5.0×10 -6 / ℃ .

また、本発明R−Fe−B系の焼結磁石のホットプレス用黒鉛型の製造方法は、以下の内容である。 The method for producing a graphite mold for hot pressing of an R-Fe-B-based sintered magnet of the present invention is as follows.

(14)黒鉛材から熱膨張係数の最も高い方向が加圧軸方向となるように切り出し加工する。 (14) The graphite material is cut out so that the direction having the highest coefficient of thermal expansion is the pressure axis direction.

(15)黒鉛材のx、y、z方向の熱膨張係数を測定し、最も熱膨張係数の高い方向を加圧軸方向となるように切り出して加工する。 (15) The coefficient of thermal expansion in the x, y, and z directions of the graphite material is measured, and the direction having the highest coefficient of thermal expansion is cut out so as to be the direction of the pressurizing axis and processed.

熱膨張係数の最も大きな切り出し方向をダイスの加圧軸方向にすることによって材料の不規則な変形を防止することができる。材料の不規則な変形が小さいので、焼結後の加工量が減り、材料ロスを少なくすることができる。 Irregular deformation of the material can be prevented by setting the cutting direction having the largest coefficient of thermal expansion to the pressure axis direction of the die. Since the irregular deformation of the material is small, the amount of processing after sintering can be reduced, and the material loss can be reduced.

本発明に係るホットプレス装置のチャンバ内に収納されるホットプレス用黒鉛型の一実施形態を示す斜視図。The perspective view which shows one Embodiment of the graphite type for hot press housed in the chamber of the hot press apparatus which concerns on this invention. 本発明に係るホットプレス用黒鉛型の他の実施形態の断面図。Sectional drawing of another embodiment of the graphite type for hot press which concerns on this invention.

(発明の詳細な説明)
前記課題を解決するための本発明のR−Fe−B系の焼結磁石の製造方法は、R−Fe−B系の多孔質磁石をホットプレス用黒鉛型に配置し、加熱しながら加圧するR−Fe−B系の焼結磁石の製造方法であって、前記ホットプレス用黒鉛型は、加圧軸方向と、前記加圧軸方向に対し垂直な垂直方向により方向が定義されるダイスとパンチとを備え、前記ダイスの前記加圧軸方向の熱膨張係数(α)は、前記ダイスの前記垂直方向の熱膨張係数(α、α)よりも大きい。
(Detailed description of the invention)
In the method for producing an R-Fe-B-based sintered magnet of the present invention for solving the above problems, an R-Fe-B-based porous magnet is placed in a graphite mold for hot pressing and pressurized while heating. A method for manufacturing an R-Fe-B-based sintered magnet, the graphite mold for hot pressing has a die whose direction is defined by a pressurizing axis direction and a direction perpendicular to the pressurizing axis direction. With a punch, the coefficient of thermal expansion (α z ) of the die in the pressure axis direction is larger than the coefficient of thermal expansion (α x , α y) of the die in the vertical direction.

ホットプレス用黒鉛型に用いられる黒鉛は高い強度が必要なため、原料を細かく粉砕したのち、プレス成形、焼成、黒鉛化を経て得られる等方性黒鉛が適している。しかしながら、等方性黒鉛は完全な等方性ではなく、粉砕後の粉の重力による一軸加圧によって成形時の上下方向が水平方向より高くなる傾向がある。このような黒鉛材を用いて熱間で成型すると、材料の切り出し方向によっては、熱膨張差によって変形を生じる。 Since the graphite used in the graphite mold for hot pressing requires high strength, isotropic graphite obtained by finely crushing the raw material, press molding, firing, and graphitizing is suitable. However, isotropic graphite is not completely isotropic, and the vertical direction during molding tends to be higher than the horizontal direction due to uniaxial pressure due to the gravity of the powder after crushing. When hot molding is performed using such a graphite material, deformation occurs due to a difference in thermal expansion depending on the cutting direction of the material.

本発明のR−Fe−B系の焼結磁石の製造方法では、熱膨張係数の最も大きな切り出し方向をダイスの加圧軸方向にすることによって材料の不規則な変形を防止することができる。材料の不規則な変形が小さいので、焼結後の加工量が減り、材料ロスを少なくすることができる。 In the method for producing an R-Fe-B-based sintered magnet of the present invention, irregular deformation of the material can be prevented by setting the cutting direction having the largest coefficient of thermal expansion to the pressure axis direction of the die. Since the irregular deformation of the material is small, the amount of processing after sintering can be reduced, and the material loss can be reduced.

また本発明の本発明のR−Fe−B系の焼結磁石の製造方法は以下の態様であることが好ましい。 Further, the method for producing an R-Fe-B-based sintered magnet of the present invention of the present invention preferably has the following aspects.

前記ダイスの熱膨張係数(α、α、α)は、
1.05≦α/α≦1.3・・・(1)
1.05≦α/α≦1.3・・・(2)
式(1)及び式(2)の関係を満たす。
The coefficient of thermal expansion (α x , α y , α z ) of the die is
1.05 ≤ α z / α x ≤ 1.3 ... (1)
1.05 ≤ α z / α y ≤ 1.3 ... (2)
The relationship between equations (1) and (2) is satisfied.

式(1)、(2)において異方比(α/αまたはα/α)が1.05以上であると、測定器の誤差よりも充分に大きく、異方比の高い方向が容易に検出でき、材料の切り出し方向を正しく選定できる。式(1)、(2)において異方比が1.3以下であると、加圧軸方向の熱膨張係数を小さく抑えられるので、熱応力の発生を小さくできる。 When the anisotropy ratio (α z / α x or α z / α y ) in the equations (1) and (2) is 1.05 or more, it is sufficiently larger than the error of the measuring instrument and the direction in which the anisotropy ratio is high. Can be easily detected, and the cutting direction of the material can be selected correctly. When the heterogeneous ratio is 1.3 or less in the equations (1) and (2), the coefficient of thermal expansion in the pressurizing axis direction can be suppressed to a small value, so that the generation of thermal stress can be reduced.

前記ダイスの前記加圧軸方向の熱膨張係数(α)は、3.5×10−6/℃〜5.0×10−6/℃である。 Thermal expansion coefficient of the pressure axis direction of the die (alpha z) is 3.5 × 10 -6 /℃~5.0×10 -6 / ℃ .

黒鉛は、黒鉛化が進行するにつれて六方晶の結晶サイズが大きくなり、熱膨張係数が小さくなるとともに、素材自体が軟らかくなる。黒鉛化の進行した黒鉛をホットプレス用黒鉛型として用いると、摩擦しやすく焼結磁石の形状精度がえられにくい。一方、黒鉛化の進行していない黒鉛では、熱膨張係数が大きいため、ホットプレス時に寸法変化が大きくなり、形状精度が得られにくい。 In graphite, the crystal size of hexagonal crystals increases as graphitization progresses, the coefficient of thermal expansion decreases, and the material itself becomes soft. When graphitized graphite is used as a graphite mold for hot pressing, it is easy to rub and it is difficult to obtain the shape accuracy of the sintered magnet. On the other hand, in graphite that has not been graphitized, since the coefficient of thermal expansion is large, the dimensional change becomes large during hot pressing, and it is difficult to obtain shape accuracy.

本発明のR−Fe−B系の焼結磁石の製造方法では、前記加圧軸方向の熱膨張係数(α)が3.5×10−6/℃〜5.0×10−6/℃である黒鉛を用いているので、精度よくR−Fe−B系の焼結磁石を得ることができる。 In the method for producing a sintered magnet of an R-Fe-B based the present invention, the thermal expansion coefficient of the pressure application shaft direction (alpha z) is 3.5 × 10 -6 /℃~5.0×10 -6 / Since graphite at ° C. is used, an R-Fe-B-based sintered magnet can be obtained with high accuracy.

前記パンチの前記加圧軸方向の熱膨張係数(β)は、前記パンチの前記垂直方向の熱膨張係数(β、β)よりも大きい。 The coefficient of thermal expansion (β z ) of the punch in the pressure axis direction is larger than the coefficient of thermal expansion (β x , β y) of the punch in the vertical direction.

ホットプレス用黒鉛型に用いられる黒鉛は高い強度が必要なため、原料を細かく粉砕したのち、プレス成形、焼成、黒鉛化を経て得られる等方性黒鉛が適している。しかしながら、等方性黒鉛は完全な等方性ではなく、粉砕後の粉の重力による一軸加圧によって成形時の上下方向が水平方向より高くなる傾向がある。このような黒鉛材を用いて熱間で成型すると、材料の切り出し方向によっては、熱膨張差によって変形を生じる。 Since the graphite used in the graphite mold for hot pressing requires high strength, isotropic graphite obtained by finely crushing the raw material, press molding, firing, and graphitizing is suitable. However, isotropic graphite is not completely isotropic, and the vertical direction during molding tends to be higher than the horizontal direction due to uniaxial pressure due to the gravity of the powder after crushing. When hot molding is performed using such a graphite material, deformation occurs due to a difference in thermal expansion depending on the cutting direction of the material.

本発明のR−Fe−B系の焼結磁石の製造方法では、熱膨張係数の最も大きな切り出し方向をパンチの加圧軸方向にすることによってバリなどの材料の不規則な変形を防止することができる。材料の不規則な変形が小さいので、焼結後の加工量が減り、材料ロスを少なくすることができる。 In the method for manufacturing an R-Fe-B-based sintered magnet of the present invention, irregular deformation of a material such as burrs is prevented by setting the cutting direction having the largest coefficient of thermal expansion to the pressure axis direction of the punch. Can be done. Since the irregular deformation of the material is small, the amount of processing after sintering can be reduced, and the material loss can be reduced.

前記パンチの熱膨張係数(β、β、β)は、
1.05≦β/β≦1.3・・・(3)
1.05≦β/β≦1.3・・・(4)
式(3)及び式(4)の関係を満たす。
The coefficient of thermal expansion (β x , β y , β z ) of the punch is
1.05 ≤ β z / β x ≤ 1.3 ... (3)
1.05 ≤ β z / β y ≤ 1.3 ... (4)
The relationship between equation (3) and equation (4) is satisfied.

式(3)、(4)において異方比(α/αまたはα/α)が1.05以上であると、測定器の誤差よりも充分に大きく、異方比の高い方向が容易に検出でき、材料の切り出し方向を正しく選定できる。式(3)、(4)において異方比が1.3以下であると、加圧軸方向の熱膨張係数を小さく抑えられるので、熱応力の発生を小さくできる。 When the anisotropy ratio (α z / α x or α z / α y ) in the equations (3) and (4) is 1.05 or more, it is sufficiently larger than the error of the measuring instrument and the direction in which the anisotropy ratio is high. Can be easily detected, and the cutting direction of the material can be selected correctly. When the heterogeneous ratio is 1.3 or less in the equations (3) and (4), the coefficient of thermal expansion in the pressure axis direction can be suppressed to a small value, so that the generation of thermal stress can be reduced.

前記パンチの前記加圧軸方向の熱膨張係数(β)は、3.5×10−6/℃〜5.0×10−6/℃である。 Thermal expansion coefficient of the pressure axis direction of the punch (beta z) is 3.5 × 10 -6 /℃~5.0×10 -6 / ℃ .

黒鉛は、黒鉛化が進行するにつれて六方晶の結晶サイズが大きくなり、熱膨張係数が小さくなるとともに、素材自体が軟らかくなる。黒鉛化の進行した黒鉛をホットプレス用黒鉛型として用いると、摩擦しやすく焼結磁石の形状精度がえられにくい。一方、黒鉛化の進行していない黒鉛では、熱膨張係数が大きいため、加熱時に寸法が大きくなり、形状精度が得られにくい。 In graphite, the crystal size of hexagonal crystals increases as graphitization progresses, the coefficient of thermal expansion decreases, and the material itself becomes soft. When graphitized graphite is used as a graphite mold for hot pressing, it is easy to rub and it is difficult to obtain the shape accuracy of the sintered magnet. On the other hand, since graphitization of graphite has a large coefficient of thermal expansion, the dimensions become large during heating, and it is difficult to obtain shape accuracy.

本発明のR−Fe−B系の焼結磁石の製造方法では、前記加圧軸方向の熱膨張係数(β)が3.5×10−6/℃〜5.0×10−6/℃である黒鉛を用いているので、精度よくR−Fe−B系の焼結磁石を得ることができる。 In the method for producing a sintered magnet of an R-Fe-B based the present invention, the thermal expansion coefficient of the pressure application shaft direction (beta z) is 3.5 × 10 -6 /℃~5.0×10 -6 / Since graphite at ° C. is used, an R-Fe-B-based sintered magnet can be obtained with high accuracy.

前記加圧の方法は、前記ホットプレス用黒鉛型に熱および直流パルス電圧を加えながら一軸加圧するパルス通電焼結である。 The pressurization method is pulse energization sintering in which uniaxial pressurization is performed while applying heat and DC pulse voltage to the graphite mold for hot pressing.

直流パルス電圧を加えることにより、R−Fe−B系の多孔質磁石の粒子の界面が活性化し、焼結が促進される。このような加圧方法としては、例えばSPS(Spark Plasma Sintering)が挙げられる。 By applying the DC pulse voltage, the interface of the particles of the R-Fe-B-based porous magnet is activated, and sintering is promoted. Examples of such a pressurizing method include SPS (Spark Plasma Sintering).

また、前記課題を解決するための本発明のR−Fe−B系の焼結磁石のホットプレス用黒鉛型は、 Further, the graphite type for hot pressing of the R-Fe-B-based sintered magnet of the present invention for solving the above problems is

R−Fe−B系の多孔質磁石を加熱しながら加圧するR−Fe−B系の焼結体磁石のホットプレス用黒鉛型であって、前記ホットプレス用黒鉛型は、加圧軸方向と、前記加圧軸方向に対し垂直な垂直方向により方向が定義されるダイスとパンチとを備え、前記ダイスの前記加圧軸方向の熱膨張係数(α)は、前記ダイスの前記垂直方向の熱膨張係数(α、α)よりも大きい。 A graphite type for hot pressing of an R-Fe-B-based sintered magnet that pressurizes an R-Fe-B-based porous magnet while heating, and the graphite type for hot pressing is in the pressurizing axial direction. A die and a punch whose direction is defined by a direction perpendicular to the pressure axis direction, and the coefficient of thermal expansion (α z ) of the die in the pressure axis direction is the direction of the die in the vertical direction. It is larger than the coefficient of thermal expansion (α x , α y).

また、本発明のR−Fe−B系の焼結磁石のホットプレス用黒鉛型は、以下の態様であることが好ましい。 Further, the graphite type for hot pressing of the R-Fe-B-based sintered magnet of the present invention preferably has the following aspects.

前記ダイスの熱膨張係数(α、α、α)は、
1.05≦α/α≦1.3・・・(1)
1.05≦α/α≦1.3・・・(2)
式(1)及び式(2)の関係を満たす。
The coefficient of thermal expansion (α x , α y , α z ) of the die is
1.05 ≤ α z / α x ≤ 1.3 ... (1)
1.05 ≤ α z / α y ≤ 1.3 ... (2)
The relationship between equations (1) and (2) is satisfied.

等方性黒鉛材は、成形前の重力の影響により、部位によって熱膨張係数に異方比が生じる。このため、異方比の小さい部位を用いることが好ましいが、異方比の大きさで選別すると材料のロスが生じる。むしろ、等方性黒鉛材の異方比は材料の成形時の方向に合わせて規則的に現れることを利用し、熱膨張係数の大きな方向を確認した上で加圧軸方向として用いることにより、得られるR−Fe−B系の焼結磁石の変形を小さくすることができる。 The isotropic graphite material has an isotropic ratio in the coefficient of thermal expansion depending on the site due to the influence of gravity before molding. Therefore, it is preferable to use a portion having a small anisotropic ratio, but material loss occurs when sorting by the magnitude of the anisotropic ratio. Rather, by utilizing the fact that the anisotropic ratio of the isotropic graphite material appears regularly according to the direction at the time of molding of the material and using it as the pressure axis direction after confirming the direction in which the coefficient of thermal expansion is large. The deformation of the obtained R-Fe-B-based sintered magnet can be reduced.

また、式(1)、(2)において異方比(α/αまたはα/α)が1.05以上であると、測定器の誤差よりも充分に大きく、異方比の高い方向が容易に検出でき、材料の切り出し方向を正しく選定できる。式(1)、(2)において異方比が1.3以下であると、加圧軸方向の熱膨張係数を小さく抑えられるので、熱応力の発生を小さくできる。 Further, when the anisotropic ratio (α z / α x or α z / α y ) in the equations (1) and (2) is 1.05 or more, it is sufficiently larger than the error of the measuring instrument, and the anisotropic ratio is large. The high direction can be easily detected, and the cutting direction of the material can be selected correctly. When the heterogeneous ratio is 1.3 or less in the equations (1) and (2), the coefficient of thermal expansion in the pressurizing axis direction can be suppressed to a small value, so that the generation of thermal stress can be reduced.

前記ダイスの加圧軸方向の熱膨張係数(α)は、3.5×10−6/℃〜5.0×10−6/℃である。 Thermal expansion coefficient of the pressure axis direction of the die (alpha z) is 3.5 × 10 -6 /℃~5.0×10 -6 / ℃ .

前記パンチの前記加圧軸方向の熱膨張係数(β)は、前記パンチの前記垂直方向の熱膨張係数(β、β)よりも大きい。 The coefficient of thermal expansion (β z ) of the punch in the pressure axis direction is larger than the coefficient of thermal expansion (β x , β y) of the punch in the vertical direction.

前記パンチの熱膨張係数(β、β、β)は、
1.05≦β/β≦1.3・・・(3)
1.05≦β/β≦1.3・・・(4)
式(3)及び式(4)の関係を満たす。
The coefficient of thermal expansion (β x , β y , β z ) of the punch is
1.05 ≤ β z / β x ≤ 1.3 ... (3)
1.05 ≤ β z / β y ≤ 1.3 ... (4)
The relationship between equation (3) and equation (4) is satisfied.

等方性黒鉛材は、成形前の重力の影響により、部位によって熱膨張係数に異方比が生じる。このため、異方比の小さい部位を用いることが好ましいが、異方比の大きさで選別すると材料のロスが生じる。むしろ、等方性黒鉛材の異方比は材料の成形時の方向に合わせて規則的に現れることを利用し、熱膨張係数の大きな方向を確認した上で加圧軸方向として用いることにより、得られるR−Fe−B系の焼結磁石の変形を小さくすることができる。 The isotropic graphite material has an isotropic ratio in the coefficient of thermal expansion depending on the site due to the influence of gravity before molding. Therefore, it is preferable to use a portion having a small anisotropic ratio, but material loss occurs when sorting by the magnitude of the anisotropic ratio. Rather, by utilizing the fact that the anisotropic ratio of the isotropic graphite material appears regularly according to the direction of material molding, the direction in which the coefficient of thermal expansion is large is confirmed and then used as the pressure axis direction. The deformation of the obtained R-Fe-B-based sintered magnet can be reduced.

また、式(3)、(4)において異方比(α/αまたはα/α)が1.05以上であると、測定器の誤差よりも充分に大きく、異方比の高い方向が容易に検出でき、材料の切り出し方向を正しく選定できる。式(3)、(4)において異方比が1.3以下であると、加圧軸方向の熱膨張係数を小さく抑えられるので、熱応力の発生を小さくできる。 Further, when the anisotropic ratio (α z / α x or α z / α y ) in the equations (3) and (4) is 1.05 or more, it is sufficiently larger than the error of the measuring instrument, and the anisotropic ratio is large. The high direction can be easily detected, and the cutting direction of the material can be selected correctly. When the heterogeneous ratio is 1.3 or less in the equations (3) and (4), the coefficient of thermal expansion in the pressure axis direction can be suppressed to a small value, so that the generation of thermal stress can be reduced.

前記パンチの前記加圧軸方向の熱膨張係数(β)は、3.5×10−6/℃〜5.0×10−6/℃である。 Thermal expansion coefficient of the pressure axis direction of the punch (beta z) is 3.5 × 10 -6 /℃~5.0×10 -6 / ℃ .

また、前記課題を解決するための本発明のR−Fe−B系の焼結磁石のホットプレス用黒鉛型の製造方法は、以下の内容を含む。 In addition, the method for producing a graphite mold for hot pressing of an R-Fe-B-based sintered magnet of the present invention for solving the above problems includes the following contents.

黒鉛材から熱膨張係数の最も高い方向が加圧軸方向となるように切り出し加工する。 It is cut out from the graphite material so that the direction with the highest coefficient of thermal expansion is the pressure axis direction.

黒鉛材のx、y、z方向の熱膨張係数を測定し、最も熱膨張係数の高い方向を加圧軸方向となるように切り出して加工する。 The coefficient of thermal expansion in the x, y, and z directions of the graphite material is measured, and the direction having the highest coefficient of thermal expansion is cut out so as to be the pressure axis direction for processing.

(発明を実施するための形態)
図1は、ホットプレス装置のチャンバ内に収納される、ホットプレス用黒鉛型を示す斜視図である。図1を用いて、R−Fe−B系の焼結磁石の製造方法の一実施形態を説明する。
(Form for carrying out the invention)
FIG. 1 is a perspective view showing a graphite mold for hot pressing housed in a chamber of a hot pressing apparatus. An embodiment of a method for manufacturing an R-Fe-B-based sintered magnet will be described with reference to FIG.

ホットプレス用黒鉛型1は、パンチ2、2’とダイス(金型)3を備えている。ホットプレス用黒鉛型1は、ホットプレス装置のチャンバ内に収納され、ダイス3内に装填(配置)されたR−Fe−B系の多孔質磁石4を上下のパンチ2、2’により、加熱、加圧してR−Fe−B系の焼結磁石を製造する。 The graphite mold 1 for hot pressing includes punches 2, 2'and a die (die) 3. The graphite mold 1 for hot pressing is housed in the chamber of the hot pressing apparatus, and the R-Fe-B-based porous magnet 4 loaded (arranged) in the die 3 is heated by the upper and lower punches 2 and 2'. , Pressurize to manufacture R-Fe-B based sintered magnets.

ホットプレス用黒鉛型を構成する黒鉛は、ショア硬度が40〜65であることが好ましい。ショア硬度が40以上であると、R−Fe−B系の多孔質磁石との摩擦によりダイスあるいはパンチの磨耗を少なくすることができる。ショア硬度が65以下であると、充分に黒鉛化が進んでいるので加熱されても寸法変化が生じにくい。 The graphite constituting the graphite mold for hot pressing preferably has a shore hardness of 40 to 65. When the shore hardness is 40 or more, wear of the die or punch can be reduced due to friction with the R-Fe-B based porous magnet. When the shore hardness is 65 or less, graphitization has progressed sufficiently, so that dimensional changes are unlikely to occur even when heated.

パンチ2、2’は略円筒形状をなし、ダイス3は中央に開口部5を有する略円筒形状の金型である。開口部5にR−Fe−B系の多孔質磁石4を装填し、例えばダイス3を加熱してR−Fe−B系の多孔質磁石4の温度を600℃から900℃に高め、0.1〜3.0ton/cmの圧力で多孔質磁石4をパンチ2、2’で加圧し、R−Fe−B系の焼結磁石が製造できる。パンチ2、2’及びダイス3は、加熱温度や印加圧力に耐えうる、例えばカーボン、SiCやタングステンカーバイドなどであることが好ましい。 The punches 2 and 2'have a substantially cylindrical shape, and the die 3 is a substantially cylindrical mold having an opening 5 in the center. An R-Fe-B-based porous magnet 4 is loaded into the opening 5, and for example, the die 3 is heated to raise the temperature of the R-Fe-B-based porous magnet 4 from 600 ° C. to 900 ° C. The porous magnet 4 is pressurized with punches 2 and 2'at a pressure of 1 to 3.0 ton / cm 2 , and an R-Fe-B-based sintered magnet can be manufactured. The punches 2, 2'and the die 3 are preferably carbon, SiC, tungsten carbide, or the like, which can withstand the heating temperature and the applied pressure.

また、ダイス3の開口部5には、複数に分割された黒鉛片からなり、外側がテーパー状のスリーブ6が挿入されていてもよい。ダイス3の上面から下面に向かって、開口部5の径が小さくなり、それに対応してスリーブの径も小さくなっている。開口部5をテーパー状とすることで、スリーブ6とともにR−Fe−B系の焼結磁石がダイス3から取り出し易くなる。
また、下側のパンチ2’は、鍔部を有しており、ダイス3及びスリーブ6をセットしたときにダイス3及びスリーブ6が落下しない構造となっている。
Further, a sleeve 6 made of a plurality of divided graphite pieces and having a tapered outer side may be inserted into the opening 5 of the die 3. The diameter of the opening 5 decreases from the upper surface to the lower surface of the die 3, and the diameter of the sleeve decreases accordingly. By making the opening 5 tapered, the R-Fe-B-based sintered magnet can be easily taken out from the die 3 together with the sleeve 6.
Further, the lower punch 2'has a flange portion, and has a structure in which the die 3 and the sleeve 6 do not fall when the die 3 and the sleeve 6 are set.

そして、加圧方法は、特に限定されないが、直流印加装置7で直流パルス電圧を加えながら一軸加圧するパルス通電焼結であると、直流パルス電圧を加えることができ、R−Fe−B系の多孔質磁石4の粒子の界面が活性化し、焼結が促進される。
なお、直流パルス電圧は加えなくても、成形することはできる。
さらに成形と同時に外部から磁場を加えることによって、磁場配向させて、強力な焼結磁石を得ることができる。
The pressurizing method is not particularly limited, but if the pulse energization sintering is performed by uniaxially pressurizing the DC pulse voltage while applying the DC pulse voltage, the DC pulse voltage can be applied, and the R-Fe-B system can be applied. The interface between the particles of the porous magnet 4 is activated, and sintering is promoted.
It should be noted that molding can be performed without applying a DC pulse voltage.
Further, by applying a magnetic field from the outside at the same time as molding, the magnetic field can be oriented to obtain a strong sintered magnet.

パンチ2、2’の押圧方向が加圧軸方向であり、図1でZ軸として示している。また、加圧軸に対して垂直な垂直方向はX軸またはY軸であるが、加圧軸方向に対する垂直な方向は、加圧軸を中心としてあらゆる方向で成立する。そして、パンチ2、2’とダイス3は、当該垂直方向により方向が定義されている。 The pressing direction of the punches 2 and 2'is the pressure axis direction, and is shown as the Z axis in FIG. Further, the vertical direction perpendicular to the pressurizing axis is the X-axis or the Y-axis, but the direction perpendicular to the pressurizing axis direction is established in all directions around the pressurizing axis. The directions of the punches 2, 2'and the die 3 are defined by the vertical direction.

本発明では、ダイス3の加圧軸方向の熱膨張係数(α)は、ダイス3の垂直方向の熱膨張係数(α、α)よりも大きく切り出されている。即ち、ダイス3は、R−Fe−B系の焼結磁石の全体形状に関わるため、ダイス3の熱膨張係数を規定することが重要である。そして、熱膨張係数の最も大きな切り出し方向をダイス3の加圧軸方向にすることによって材料の不規則な変形を防止することができる。材料の不規則な変形が小さいので、焼結後の修正加工が不要となるか修正量が減り、材料ロスを少なくすることができる。また、R−Fe−B系の焼結磁石は、酸化しやすく、焼結後すぐに表面にコーティングを施すことが望ましい。このため、焼結後の修正加工が不要であれば焼結磁石の酸化を防止することができる。 In the present invention, the coefficient of thermal expansion (α z ) of the die 3 in the pressure axis direction is cut out to be larger than the coefficient of thermal expansion (α x , α y ) of the die 3 in the vertical direction. That is, since the die 3 is related to the overall shape of the R-Fe-B-based sintered magnet, it is important to specify the coefficient of thermal expansion of the die 3. Then, by setting the cutting direction having the largest coefficient of thermal expansion to the pressure axis direction of the die 3, irregular deformation of the material can be prevented. Since the irregular deformation of the material is small, the correction process after sintering becomes unnecessary or the correction amount is reduced, and the material loss can be reduced. Further, the R-Fe-B type sintered magnet is easily oxidized, and it is desirable to coat the surface immediately after sintering. Therefore, oxidation of the sintered magnet can be prevented if the correction process after sintering is unnecessary.

また、複数個のホットプレス用黒鉛型を用いて、R−Fe−B系の焼結磁石を製造する場合、個々のホットプレス用黒鉛型の熱膨張係数の方向性にバラツキがあると、得られる焼結磁石の形状にもバラツキが生じ、後加工で修正する必要が生じる。 Further, when manufacturing an R-Fe-B-based sintered magnet using a plurality of graphite molds for hot pressing, it is obtained that the directionality of the coefficient of thermal expansion of each graphite mold for hot pressing varies. The shape of the sintered magnets to be produced also varies, and it becomes necessary to correct them in post-processing.

そこで、あらかじめ、素材となる黒鉛材を選択し、当該黒鉛材からホットプレス用黒鉛型を製造する際に、熱膨張係数の方向性にバラツキが生じないように、熱膨張係数の最も高い方向が加圧軸方向となるように切り出し加工する。これにより、後加工による修正を少なくすることができる。この場合、公知の方法を用いて黒鉛材のx、y、z方向の熱膨張係数を測定し、最も熱膨張係数の高い方向を加圧軸方向、図1ではZ軸の方向となるように切り出し加工装置に設定する。あらかじめ設定したNCプログラムによって当該装置を制御し、ダイス3、パンチ2、2’を切り出し、加工する。 Therefore, when a graphite material to be used as a material is selected in advance and a graphite mold for hot pressing is manufactured from the graphite material, the direction having the highest coefficient of thermal expansion is set so that the direction of the coefficient of thermal expansion does not vary. Cut out so that it is in the direction of the pressurizing axis. As a result, it is possible to reduce corrections due to post-processing. In this case, the coefficient of thermal expansion of the graphite material in the x, y, and z directions is measured using a known method so that the direction having the highest coefficient of thermal expansion is the direction of the pressurizing axis and the direction of the Z axis in FIG. Set in the cutting machine. The device is controlled by a preset NC program to cut out and process dies 3, punches 2, and 2'.

図2は、ホットプレス用黒鉛型1の断面図である。 FIG. 2 is a cross-sectional view of the graphite mold 1 for hot pressing.

ホットプレス用黒鉛型1は、ダイス3の開口部5がテーパー状となっており、図2では、ダイス3の上面から下面に向かって、開口部5の径が小さくなり、それに対応してスリーブの径も小さくなっている。開口部5をテーパー状とすることで、スリーブ6とともにR−Fe−B系の焼結磁石がダイス3から取り出し易くなる。下側のパンチ2’の鍔部の図示は省略している。 In the graphite mold 1 for hot pressing, the opening 5 of the die 3 is tapered, and in FIG. 2, the diameter of the opening 5 decreases from the upper surface to the lower surface of the die 3, and the sleeve corresponds to this. The diameter of is also smaller. By making the opening 5 tapered, the R-Fe-B-based sintered magnet can be easily taken out from the die 3 together with the sleeve 6. The illustration of the collar of the lower punch 2'is omitted.

以下本発明の実施例及び比較例について説明する。
3方向の熱膨張係数がそれぞれ、3.52−6/℃、3.64−6/℃、4.84×10−6/℃の等方性黒鉛材を用いてダイスを作成する。
ダイスの内径は25℃においてφ50mmの円形である。このダイスを用いて、ホットプレスで890℃に加熱しR−Fe−B系の多孔質磁石を加圧して焼結磁石を得る。
Examples and comparative examples of the present invention will be described below.
3 the direction of thermal expansion coefficients, respectively, to create a die using an isotropic graphite material of 3.52 -6 /℃,3.64 -6 /℃,4.84×10 -6 / ℃ .
The inner diameter of the die is a circle having a diameter of 50 mm at 25 ° C. Using this die, the die is heated to 890 ° C. by a hot press to pressurize an R-Fe-B-based porous magnet to obtain a sintered magnet.

(実施例)
実施例では、加圧軸方向αが4.84×10−6/℃となるようにダイスを加工する。この場合、加圧軸方向と垂直なαが3.52×10−6/℃、αが、3.64×10−6/℃となる。すなわち加圧軸方向αは加圧軸方向に垂直な2方向より大きい。
この場合、αとαとの差は0.08×10−6/℃であり、ホットプレスで加圧した状態で、3.5μmの熱膨張差が生じる。すなわち、得られた円形の焼結磁石の長径と短径と差は3.5μmとなる(0.08×10−6×(890−25)×50)。
(Example)
In the embodiment, the die is processed so that the pressure axis direction α z is 4.84 × 10 −6 / ° C. In this case, α x perpendicular to the pressurizing axis direction is 3.52 × 10 -6 / ° C, and α y is 3.64 × 10 -6 / ° C. That is, the pressure axis direction α z is larger than the two directions perpendicular to the pressure axis direction.
In this case, the difference between α x and α y is 0.08 × 10 −6 / ° C., and a difference in thermal expansion of 3.5 μm occurs under pressure by a hot press. That is, the difference between the major axis and the minor axis of the obtained circular sintered magnet is 3.5 μm (0.08 × 10-6 × (890-25) × 50).

(比較例)
これに対して、加圧軸方向αが3.64×10−6/℃となるようにダイスを加工する。この場合、加圧軸方向と垂直なαが3.52×10−6/℃、αが、4.84×10−6/℃となる。すなわち加圧軸方向αは加圧軸方向に垂直な2方向の中間の値である。
この場合、αとαとの差は1.32×10−6/℃であり、ホットプレスで加圧した状態で、57μmの熱膨張差が生じる。すなわち、得られた円形の焼結磁石の長径と短径と差は57μmとなる(1.32×10−6×(890−25)×50)。
比較例で得られた焼結磁石は50μm以上変形しており、寸法公差を超える場合には、さらに修正加工が必要となる。
製造する磁石は、R−Fe−B系であるので酸化しやすく、この間、酸素、大気を遮断して加工しなければならず、得られた焼結磁石を酸化リスクが大きくなる。
本発明の焼結磁石のホットプレス用黒鉛型を用いれば、焼結磁石の変形が少なく、修正加工の必要性を小さくすることができる。
(Comparison example)
On the other hand, the die is processed so that the pressure axis direction α z is 3.64 × 10 −6 / ° C. In this case, α x perpendicular to the pressurizing axis direction is 3.52 × 10 -6 / ° C, and α y is 4.84 × 10 -6 / ° C. That is, the pressure axis direction α z is an intermediate value in the two directions perpendicular to the pressure axis direction.
In this case, the difference between α x and α y is 1.32 × 10 −6 / ° C., and a thermal expansion difference of 57 μm occurs under pressure by a hot press. That is, the difference between the major axis and the minor axis of the obtained circular sintered magnet is 57 μm (1.32 × 10-6 × (890-25) × 50).
The sintered magnet obtained in the comparative example is deformed by 50 μm or more, and if it exceeds the dimensional tolerance, further correction processing is required.
Since the magnet to be manufactured is an R-Fe-B system, it is easily oxidized, and during this period, oxygen and the atmosphere must be blocked for processing, and the risk of oxidation of the obtained sintered magnet increases.
If the graphite mold for hot pressing of the sintered magnet of the present invention is used, the sintered magnet is less deformed and the need for correction processing can be reduced.

尚、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。 The present invention is not limited to the above-described embodiment, and can be appropriately modified, improved, and the like. In addition, the material, shape, size, numerical value, form, number, arrangement location, etc. of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.

本発明の焼結磁石の製造方法およびホットプレス用黒鉛型は、形状精度が高く、材料ロスの少ないR−Fe−B系の焼結磁石を要求する分野に適合可能である。 The method for producing a sintered magnet and the graphite mold for hot pressing of the present invention can be applied to a field requiring an R-Fe-B-based sintered magnet having high shape accuracy and low material loss.

1 ホットプレス用黒鉛型
2 2’パンチ
3 ダイス
4 R−Fe−B系の多孔質磁石
5 開口部
6 スリーブ
7 直流印加装置
1 Graphite type for hot press 2 2'Punch 3 Die 4 R-Fe-B type porous magnet 5 Opening 6 Sleeve 7 DC application device

Claims (15)

R−Fe−B系の多孔質磁石をホットプレス用黒鉛型に配置し、加熱しながら加圧するR−Fe−B系の焼結磁石の製造方法であって、
前記ホットプレス用黒鉛型は、加圧軸方向と、前記加圧軸方向に対し垂直な垂直方向により方向が定義されるダイスとパンチとを備え、
前記ダイスの前記加圧軸方向の熱膨張係数(α)は、前記ダイスの前記垂直方向の熱膨張係数(α、α)よりも大きいR−Fe−B系の焼結磁石の製造方法。
A method for producing an R-Fe-B-based sintered magnet in which an R-Fe-B-based porous magnet is placed in a graphite mold for hot pressing and pressurized while heating.
The graphite mold for hot pressing includes a die and a punch whose direction is defined by a pressure axis direction and a direction perpendicular to the pressure axis direction.
Manufacture of R-Fe-B-based sintered magnets in which the coefficient of thermal expansion (α z ) of the die in the pressure axis direction is larger than the coefficient of thermal expansion (α x , α y) of the die in the vertical direction. Method.
前記ダイスの熱膨張係数(α、α、α)は、
1.05≦α/α≦1.3・・・(1)
1.05≦α/α≦1.3・・・(2)
式(1)及び式(2)の関係を満たす請求項1に記載のR−Fe−B系の焼結磁石の製造方法。
The coefficient of thermal expansion (α x , α y , α z ) of the die is
1.05 ≤ α z / α x ≤ 1.3 ... (1)
1.05 ≤ α z / α y ≤ 1.3 ... (2)
The method for producing an R-Fe-B-based sintered magnet according to claim 1, which satisfies the relationship of the formulas (1) and (2).
前記ダイスの前記加圧軸方向の熱膨張係数(α)は、3.5×10−6/℃〜5.0×10−6/℃である請求項1または2に記載のR−Fe−B系の焼結磁石の製造方法。 Thermal expansion coefficient of the pressure axis direction of the die (alpha z) is as claimed in claim 1 or 2 is 3.5 × 10 -6 /℃~5.0×10 -6 / ℃ R-Fe -A method for manufacturing a B-based sintered magnet. 前記パンチの前記加圧軸方向の熱膨張係数(β)は、前記パンチの前記垂直方向の熱膨張係数(β、β)よりも大きい請求項1〜3の何れか一項に記載のR−Fe−B系の焼結磁石の製造方法。 The method according to any one of claims 1 to 3, wherein the coefficient of thermal expansion (β z ) of the punch in the pressure axis direction is larger than the coefficient of thermal expansion (β x , β y) of the punch in the vertical direction. R-Fe-B system sintered magnet manufacturing method. 前記パンチの熱膨張係数(β、β、β)は、
1.05≦β/β≦1.3・・・(3)
1.05≦β/β≦1.3・・・(4)
式(3)及び式(4)の関係を満たす請求項4に記載のR−Fe−B系の焼結磁石の製造方法。
The coefficient of thermal expansion (β x , β y , β z ) of the punch is
1.05 ≤ β z / β x ≤ 1.3 ... (3)
1.05 ≤ β z / β y ≤ 1.3 ... (4)
The method for producing an R-Fe-B-based sintered magnet according to claim 4, which satisfies the relationship between the formula (3) and the formula (4).
前記パンチの前記加圧軸方向の熱膨張係数(β)は、3.5×10−6/℃〜5.0×10−6/℃である請求項1〜5の何れか一項に記載のR−Fe−B系の焼結磁石の製造方法。 Thermal expansion coefficient of the pressure axis direction of the punch (beta z) is any one of claims 1 to 5 is 3.5 × 10 -6 /℃~5.0×10 -6 / ℃ The method for manufacturing an R-Fe-B-based sintered magnet according to the above method. 前記加圧の方法は、前記ホットプレス用黒鉛型に熱および直流パルス電圧を加えながら一軸加圧するパルス通電焼結である請求項1〜6の何れか一項に記載のR−Fe−B系の焼結磁石の製造方法。 The R-Fe-B system according to any one of claims 1 to 6, wherein the pressurizing method is pulse energization sintering in which uniaxial pressurization is performed while applying heat and DC pulse voltage to the graphite mold for hot pressing. How to manufacture sintered magnets. R−Fe−B系の多孔質磁石を加熱しながら加圧するR−Fe−B系の焼結体磁石のホットプレス用黒鉛型であって、
前記ホットプレス用黒鉛型は、加圧軸方向と、前記加圧軸方向に対し垂直な垂直方向により方向が定義されるダイスとパンチとを備え、
前記ダイスの前記加圧軸方向の熱膨張係数(α)は、前記ダイスの前記垂直方向の熱膨張係数(α、α)よりも大きいR−Fe−B系の焼結磁石のホットプレス用黒鉛型。
A graphite type for hot pressing of an R-Fe-B-based sintered magnet that pressurizes an R-Fe-B-based porous magnet while heating it.
The graphite mold for hot pressing includes a die and a punch whose direction is defined by a pressure axis direction and a direction perpendicular to the pressure axis direction.
The coefficient of thermal expansion (α z ) in the pressure axis direction of the die is larger than the coefficient of thermal expansion (α x , α y) in the vertical direction of the die. Graphite type for press.
前記ダイスの熱膨張係数(α、α、α)は、
1.05≦α/α≦1.3・・・(1)
1.05≦α/α≦1.3・・・(2)
式(1)及び式(2)の関係を満たす請求項8に記載のR−Fe−B系の焼結磁石のホットプレス用黒鉛型。
The coefficient of thermal expansion (α x , α y , α z ) of the die is
1.05 ≤ α z / α x ≤ 1.3 ... (1)
1.05 ≤ α z / α y ≤ 1.3 ... (2)
The graphite mold for hot pressing of an R-Fe-B-based sintered magnet according to claim 8, which satisfies the relationship of the formulas (1) and (2).
前記ダイスの加圧軸方向の熱膨張係数(α)は、3.5×10−6/℃〜5.0×10−6/℃である請求項8または9に記載のR−Fe−B系の焼結磁石のホットプレス用黒鉛型。 Thermal expansion coefficient of the pressure axis direction of the die (alpha z) is, R-Fe- according to claim 8 or 9, which is 3.5 × 10 -6 /℃~5.0×10 -6 / ℃ Graphite type for hot pressing of B-based sintered magnets. 前記パンチの前記加圧軸方向の熱膨張係数(β)は、前記パンチの前記垂直方向の熱膨張係数(β、β)よりも大きい請求項8〜10の何れか一項に記載のR−Fe−B系の焼結磁石のホットプレス用黒鉛型。 The method according to any one of claims 8 to 10, wherein the coefficient of thermal expansion (β z ) of the punch in the pressure axis direction is larger than the coefficient of thermal expansion (β x , β y) of the punch in the vertical direction. R-Fe-B type sintered magnet graphite type for hot pressing. 前記パンチの熱膨張係数(β、β、β)は、
1.05≦β/β≦1.3・・・(3)
1.05≦β/β≦1.3・・・(4)
式(3)及び式(4)の関係を満たす請求項11に記載のR−Fe−B系の焼結磁石のホットプレス用黒鉛型。
The coefficient of thermal expansion (β x , β y , β z ) of the punch is
1.05 ≤ β z / β x ≤ 1.3 ... (3)
1.05 ≤ β z / β y ≤ 1.3 ... (4)
The graphite mold for hot pressing of an R-Fe-B-based sintered magnet according to claim 11, which satisfies the relationship of the formulas (3) and (4).
前記パンチの前記加圧軸方向の熱膨張係数(β)は、3.5×10−6/℃〜5.0×10−6/℃である請求項8〜12の何れか一項に記載のR−Fe−B系の焼結磁石のホットプレス用黒鉛型。 Thermal expansion coefficient of the pressure axis direction of the punch (beta z) is to any one of claims 8 to 12 is 3.5 × 10 -6 /℃~5.0×10 -6 / ℃ The above-mentioned graphite type for hot pressing of an R-Fe-B type sintered magnet. 黒鉛材から熱膨張係数の最も高い方向が前記加圧軸方向となるように切り出し加工する請求項8〜13の何れか一項に記載のホットプレス用黒鉛型の製造方法。 The method for producing a graphite mold for hot pressing according to any one of claims 8 to 13, wherein the graphite material is cut out so that the direction having the highest coefficient of thermal expansion is the pressure axis direction. 黒鉛材のx、y、z方向の熱膨張係数を測定し、最も熱膨張係数の高い方向を前記加圧軸方向となるように切り出して加工する請求項8〜13の何れか一項に記載のホットプレス用黒鉛型の製造方法。 6. Method for manufacturing graphite mold for hot press.
JP2017248360A 2017-12-25 2017-12-25 Manufacturing method of sintered magnet, graphite mold for hot press and graphite mold for hot press Active JP6947625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017248360A JP6947625B2 (en) 2017-12-25 2017-12-25 Manufacturing method of sintered magnet, graphite mold for hot press and graphite mold for hot press

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017248360A JP6947625B2 (en) 2017-12-25 2017-12-25 Manufacturing method of sintered magnet, graphite mold for hot press and graphite mold for hot press

Publications (2)

Publication Number Publication Date
JP2019114715A JP2019114715A (en) 2019-07-11
JP6947625B2 true JP6947625B2 (en) 2021-10-13

Family

ID=67221624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017248360A Active JP6947625B2 (en) 2017-12-25 2017-12-25 Manufacturing method of sintered magnet, graphite mold for hot press and graphite mold for hot press

Country Status (1)

Country Link
JP (1) JP6947625B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110534330B (en) * 2019-09-12 2021-10-15 山东上达稀土材料有限公司 Slicer for neodymium iron boron production and neodymium iron boron preparation method based on slicer
CN115401197B (en) * 2022-08-17 2024-01-23 中铁第四勘察设计院集团有限公司 Diamond-impregnated drill bit manufacturing die, manufacturing method and diamond-impregnated drill bit

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118408A (en) * 1978-03-07 1979-09-13 Ngk Spark Plug Co Hot press die
JPH0198893A (en) * 1987-10-12 1989-04-17 Tokai Carbon Co Ltd Dice material for sintering furnace
JPH04149067A (en) * 1990-10-09 1992-05-22 Tokai Carbon Co Ltd Double hollow cylinder made of carbon
JP3203651B2 (en) * 1990-10-09 2001-08-27 東海カーボン株式会社 Double hollow cylinder made of carbon fiber reinforced carbon composite
US20090060773A1 (en) * 2004-10-28 2009-03-05 Kim Hyoung Tae Manufacture Method of NDFEB Isotropic and Anisotropic Permanent Magnets
WO2007135981A1 (en) * 2006-05-18 2007-11-29 Hitachi Metals, Ltd. R-Fe-B POROUS MAGNET AND METHOD FOR PRODUCING THE SAME
JP4796515B2 (en) * 2007-01-26 2011-10-19 日軽金アクト株式会社 Electric pressure sintering machine
JP2012092385A (en) * 2010-10-26 2012-05-17 Daihatsu Motor Co Ltd Method of manufacturing metal green compact
CN103846435B (en) * 2012-12-07 2018-09-18 三环瓦克华(北京)磁性器件有限公司 A kind of composite die
WO2015121914A1 (en) * 2014-02-12 2015-08-20 日東電工株式会社 Rare earth permanent magnet and method for producing rare earth permanent magnet
JP2016168676A (en) * 2015-03-11 2016-09-23 日本碍子株式会社 Jig and molding tool
JP6736985B2 (en) * 2015-06-02 2020-08-05 三菱マテリアル株式会社 Manufacturing method of cylindrical target and mold for powder sintering used in the manufacturing method

Also Published As

Publication number Publication date
JP2019114715A (en) 2019-07-11

Similar Documents

Publication Publication Date Title
KR101378090B1 (en) R-t-b sintered magnet
KR101702696B1 (en) Powder for magnet
JP5815655B2 (en) R-T-B-M-C sintered magnet manufacturing method and manufacturing apparatus thereof
JP5532745B2 (en) Magnetic anisotropic magnet and manufacturing method thereof
JP5334175B2 (en) Anisotropic bonded magnet manufacturing method, magnetic circuit, and anisotropic bonded magnet
JP6947625B2 (en) Manufacturing method of sintered magnet, graphite mold for hot press and graphite mold for hot press
JP2007180368A (en) Method for manufacturing magnetic circuit part
JPH1055929A (en) R-fe-b radially anisotropic sintered magnet and manufacture thereof
JP6613730B2 (en) Rare earth magnet manufacturing method
JP2011210879A (en) Method for manufacturing rare-earth magnet
KR100894122B1 (en) Method for manufacturing polycrystalline diamond using amorphous bond
US10058919B2 (en) Manufacturing method for sintered compact
CN105849829B (en) The method for manufacturing rare-earth magnet
JP2012044021A (en) Anisotropic magnet manufacturing method
WO2016035670A1 (en) Radially anisotropic sintered ring magnet and manufacturing method therefor
JP4302498B2 (en) Method for manufacturing isotropic magnet and magnet thereof
JP5988017B2 (en) Rare earth nitride based isotropic sintered magnet and method for producing the same
JP2017162881A (en) Manufacturing method for rare-earth sinter magnet
JP6718358B2 (en) Rare earth magnet and manufacturing method thereof
KR100904646B1 (en) The manufacturing method of a Tungsten Heavy Alloy
JP6477143B2 (en) Press device and method of manufacturing magnet
KR100225497B1 (en) Method for manufacturing permanent magnet based on re-tm-b alloy
SAITO et al. Magnetic Properties of Nd-Fe-B Anisotropic Magnets Prepared by Spark Plasma Sintering Method
JP2019112698A (en) Manufacturing method of sintered magnetic and mold for hot press
CN107546025B (en) Shearing force thermal deformation mold and preparation method of neodymium iron boron magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210916

R150 Certificate of patent or registration of utility model

Ref document number: 6947625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150