JP6322594B2 - 無線通信システム及び無線通信用受信機 - Google Patents

無線通信システム及び無線通信用受信機 Download PDF

Info

Publication number
JP6322594B2
JP6322594B2 JP2015040933A JP2015040933A JP6322594B2 JP 6322594 B2 JP6322594 B2 JP 6322594B2 JP 2015040933 A JP2015040933 A JP 2015040933A JP 2015040933 A JP2015040933 A JP 2015040933A JP 6322594 B2 JP6322594 B2 JP 6322594B2
Authority
JP
Japan
Prior art keywords
wave
frequency
rotation
sine wave
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015040933A
Other languages
English (en)
Other versions
JP2016163204A5 (ja
JP2016163204A (ja
Inventor
正裕 青野
正裕 青野
武井 健
健 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015040933A priority Critical patent/JP6322594B2/ja
Priority to US15/053,307 priority patent/US9705588B2/en
Publication of JP2016163204A publication Critical patent/JP2016163204A/ja
Publication of JP2016163204A5 publication Critical patent/JP2016163204A5/ja
Application granted granted Critical
Publication of JP6322594B2 publication Critical patent/JP6322594B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile

Description

本発明は、無線通信システムに係り、特に、回転波を送受信する無線通信システム及び無線通信用受信機に関する。
回転波(円偏波)を送受信する無線通信システムとして、特許文献1に記載される技術が提案されている。特許文献1では、送信機が、所定の搬送周波数に対し、ゼロから上記所定の搬送周波数の間の周波数を非線形周期パスとして設定し、円偏波を送信する機能を有する。そして、この搬送波の周波数とゼロとの間の回転周波数にて、伝搬軸に対して回転する電界ベクトルを有する電磁波を生成し送信する。そして、例えば、3つの送信アンテナを有する場合、例えば、それぞれ120度位相がシフト(遅延)された電磁波を送信するものが記載されている。一方、受信機は、送信機の非線形周期パスと同一の周波数にて受信された電磁波を復調する。これら送信機及び受信機は、それぞれ位相同期回路(PLL)を有し、PLLを用いて送信機側と同一の周波数にて受信された電磁波を復調するものである。
特表2002−513537号公報
しかしながら、特許文献1では、受信機側においても、送信機側と同一の周波数のPLLを用いて復調する構成であるため、仮に、異なる周波数の電磁波(回転波)が到来した場合、受信機側で識別することはできない。従って、周波数帯域を有効に活用し、複数の無線通信機(送信機、受信機)が同時通信を行うことは困難となる。
そこで本発明は、偏波の技術を用いて、より多くの無線機による同時通信を可能とし得る無線通信システム及び無線通信用受信機を提供することにある。
上記課題を解決するため、本発明の無線通信システムは、相互に異なる周波数を有する第1搬送波及び第2搬送波を生成する搬送波生成部と、前記第1及び第2搬送波に基づき回転波を生成する回転波生成部を有する送信機と、受信される前記回転波に対し、所望の搬送波の周波数と同一の周波数を有する正弦波及び所望の回転周波数と同一の周波数を有する正弦波を乗算した結果に基づき、前記所望の回転周波数を有する電波を選択的に復調する回転波復調部と、前記回転波復調部の出力から前記受信された回転波の位相ずれを判定する回転位相判定部を有する受信機と、を備え、前記回転波復調部は、前記所望の搬送波の周波数と同一の周波数を有する正弦波を発生する第1搬送波周波数発生部と、前記所望の回転周波数と同一の周波数を有する正弦波を発生する第1回転周波数発生部を有し、少なくとも、前記第1搬送波周波数発生部からの正弦波と前記受信された回転波との乗算結果及び、前記第1回転周波数発生部からの正弦波と前記受信された回転波との乗算結果に基づき、前記受信された回転波に対応する正弦波を生成する正弦波再生器と、前記所望の搬送波の周波数と同一の周波数を有する正弦波を発生する第2搬送波周波数発生部と、前記所望の回転周波数と同一の周波数を有する正弦波を発生する第2回転周波数発生部を有し、少なくとも、前記第2搬送波周波数発生部からの正弦波と前記受信された回転波との乗算結果及び、前記第2回転周波数発生部からの正弦波と前記受信された回転波との乗算結果に基づき、前記受信された回転波に対応する余弦波を生成する余弦波再生器と、
を有する。
また、本発明の無線通信用受信機は、相互に直交配置される2つの受信アンテナと、前記受信アンテナにより受信された回転波に対し、所望の搬送波の周波数と同一の周波数を有する正弦波及び所望の回転周波数と同一の周波数を有する正弦波を乗算した結果に基づき、前記所望の回転周波数を有する電波を選択的に復調する回転波復調部と、前記回転波復調部の出力から前記受信された回転波の位相ずれを判定する回転位相判定部と、を備え、前記回転波復調部は、前記所望の搬送波の周波数と同一の周波数を有する正弦波を発生する第1搬送波周波数発生部と、前記所望の回転周波数と同一の周波数を有する正弦波を発生する第1回転周波数発生部を有し、少なくとも、前記第1搬送波周波数発生部からの正弦波と前記受信された回転波との乗算結果及び、前記第1回転周波数発生部からの正弦波と前記受信された回転波との乗算結果に基づき、前記受信された回転波に対応する正弦波を生成する正弦波再生器と、前記所望の搬送波の周波数と同一の周波数を有する正弦波を発生する第2搬送波周波数発生部と、前記所望の回転周波数と同一の周波数を有する正弦波を発生する第2回転周波数発生部を有し、少なくとも、前記第2搬送波周波数発生部からの正弦波と前記受信された回転波との乗算結果及び、前記第2回転周波数発生部からの正弦波と前記受信された回転波との乗算結果に基づき、前記前記受信された回転波に対応する余弦波を生成する余弦波再生器と、を有する。
本発明によれば、偏波の技術を用いてより多くの無線機による同時通信を可能とする無線通信システム及び無線通信用受信機を提供できる。
例えば、同一周波数・同一時間にて多数の無線機による同時通信が可能となる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の一実施例に係る無線通信システムの概略全体構成図である。 図1に示す送信機の構成図であり、回転波生成部の回路構成の説明図である。 図1に示す受信機の構成図であり、回転波復調部の機能ブロックの説明図である。 図3に示す正弦波再生器の回路構成の説明図である。 図3に示す余弦波再生器の回路構成の説明図である。 図1に示す無線通信システムにて送受信される送信データのフレームを示す図である。 本発明の他の実施例に係る無線通信システムの概略全体構成図である。
本明細書では、回転波のうち、伝搬軸に対し送信機側から見て時計回りに回転する回転波を「右旋円偏波」と称し、伝搬軸に対し送信機側から見て反時計回りに回転する回転を「左旋円偏波」と称する。
以下、図面を用いて本発明の実施例について説明する。
図1に、本発明の一実施例に係る無線通信システムの概略全体構成図を示す。無線通信システム1は、送信機2及び受信機3より構成される。送信機2は、送信データ出力部21、第1搬送波生成部22a、第2搬送波生成部22b、第1乗算器23a、第2乗算器23b、回転波生成部24、第1電力増幅器(First Power Amplifier:第1PA)25a、第2電力増幅器(Second Power Amplifier:第2PA)25b、及び相互に直交配置される第1送信アンテナ26aと第2送信アンテナ26bを有する。
また、受信機3は、相互に直交配置される第1受信アンテナ31aと第2受信アンテナ31b、第1低雑音増幅器(First Low Noise Amplifier:第1LNA)32a、第2低雑音増幅器(Second Low Noise Amplifier:第2LNA)32b、回転波復調部33、回転位相判定部34及びデータ受信部35を有する。
次に、送信機2の具体的構成及びその動作について説明する。図2は、図1に示す送信機2の構成図であり、回転波生成部24の回路構成の説明図である。回転波生成部24は、第1遅延器27a、第2遅延器27b、減算器28及び加算器29より構成される。
まず、送信データ出力部21から送信データが出力される。この出力される送信データは“1”または“−1”の2値をとるデジタル信号である。以下では、一例として、送信データが“1”の場合について説明する。送信データ出力部21から出力された送信データは2つに分岐され、一方は第1乗算器23aへ入力される。また、分岐された他方の送信データは第2乗算器23bへ入力される。
第1搬送波生成部22aは、周波数fを有する第1搬送波信号を第1乗算器23aへ出力する。第1乗算器23aは、入力される送信データ“1”と第1搬送波信号を乗算することによりPSK(Phase−Shift−keying)変調する。PSK変調後の信号241は、sin(2πft)となる。また、第2搬送波生成部22bは、周波数fを有する第2搬送波信号を第2乗算器23bへ出力する。ここで、第2乗算器23bは、入力される送信データ“1”と第2搬送信号を乗算することによりPSK変調する。PSK変調後の信号242は、sin(2πft)となる。ここで、第1搬送波信号の周波数fと第2搬送波信号の周波数fはそれぞれ異なる。
回転波生成部24では、第1乗算器23aより入力される信号241(sin(2πft))は分岐され、一方が減算器28へ、他方が第1遅延器27aへ入力される。また、第2乗算器23bより入力される信号242(sin(2πft))は分岐され、一方が減算器28へ、他方が第2遅延器27bへ入力される。減算器28は、入力される信号241より信号242を減算し信号255を第1電力増幅器(第1PA)25aへ出力する。ここで信号255は、以下の式(1)に示すxの値となる。
Figure 0006322594
また、加算器29は、第1遅延器27aにより信号241がπ/2だけ遅延(位相シフト)された信号243と、第2遅延器27bにより信号242がπ/2だけ遅延(位相シフト)された信号244を加算し信号256を第2電力増幅器25b(第2PA)25bへ出力する。なお、信号241がπ/2だけ遅延された信号243は、cos(2πft)となり、信号242がπ/2だけ遅延された信号244は、cos(2πft)となる。また、ここで信号256は、以下の式(2)に示すyの値となる。
Figure 0006322594
信号255は、第1電力増幅器(第1PA)25aにより増幅され、第1送信アンテナ26aより出力される。また、信号256は、第2電力増幅器(第2PA)25bにより増幅され、第2送信アンテナ26bより出力される。
上述のとおり、送信機2において、第1搬送波生成部22a及び第2搬送波生成部22bにより生成される第1搬送波の周波数fと第2搬送波の周波数fは異なるものである。従って、送信機2から出力される回転波の回転周波数は、これら第1搬送波の周波数fと第2搬送波の周波数fとの差分により決定される。第1送信アンテナ26aより増幅後の信号255、第2送信アンテナ26bより増幅後の信号256を、空間的に直交させて放射することで、送信される電波は、周波数(f+f)/2を有し、回転周波数(|f−f|)/2にて回転する回転波となる。ここで、f>fの場合、回転波は右旋円偏波となり、f<fの場合、回転波は左旋円偏波となる。なお、本実施例で用いる偏波方式は、円偏波、楕円偏波等に限定されるものではなく、伝搬軸の周りを回転周波数に応じて旋回あるいは回転しつつ搬送される電波を対象とするものであり、上述の特定の偏波方式に限定されるのではない。
次に受信機3の具体的構成及びその動作について説明する。図3は、図1に示す受信機の構成図であり、回転波復調部の機能ブロックの説明図である。回転波復調部33は、正弦波再生器36及び余弦波再生器37を有する。相互に直交配置される第1受信アンテナ31aと第2受信アンテナ31bにて受信される電波(回転波)は、それぞれ、第1低雑音増幅器(第1LNA)32a及び第2低雑音増幅器(第2LNA)32bに入力され増幅される。この時、第1受信アンテナ31aと第2受信アンテナ31bは、空間的に直交しており、それぞれの向きに偏波した電波を受信する。これら、直交配置される第1受信アンテナ31a及び第2受信アンテナ32bにより、それぞれ水平偏波及び垂直偏波のみならず、斜め偏波(傾斜する偏波)に対し、その垂直及び水平成分の値に応じて各回転角の斜め偏波をも受信できる。第1低雑音増幅器(第1LNA)32aにより増幅された信号331は分岐され、一方が回転波復調部33を構成する正弦波再生器36に入力される。また、他方の信号331は回転波復調部33を構成する余弦波再生器37に入力される。第2低雑音増幅器(第2LNA)32bにより増幅された信号332は分岐され、一方が正弦波再生器36に入力され、他方の信号332が余弦波再生器27に入力される。正弦波再生器36は、詳細後述する処理を施し信号345を回転位相判定部34へ出力する。また、余弦波再生器37は、詳細後述する処理を施し信号363を回転位相判定部34へ出力する。回転位相判定部34で受信データを取り出し、データ受信部35でデータを取得する。以下では、上述の式(1)及び式(2)における、送信される電波の周波数(f+f)/2、すなわち搬送波周波数をfとし、回転周波数(|f−f|)/2をgとする。
(1)正弦波再生器36について
次に、正弦波再生器36の具体的構成及び動作について説明する。図4は、図3に示す正弦波再生器36の回路構成の説明図である。正弦波再生器36は、搬送波周波数fを有する正弦波を出力するための位相同期回路(Phase Locked Loop: PLL)41、回転周波数gを有する正弦波を出力するための位相同期回路(PLL)42、第1遅延器43a、第2遅延器43b、8個の乗算器44a〜44h、第1減算器45a、第2減算器45b、第1ローパスフィルタ(Low Pass Filter:LFP)46a、第2ローパスフィルタ(LFP)46b、及び加算器47より構成される。なお、PLL41及びPLL42は、図示しない発振器より基準となる周期的な信号を受信する。また、PLL41より出力される正弦波の信号333であるsin(2πft)と、第1低雑音増幅器(第1LNA)32aより入力される信号331及び第2低雑音増幅器(第2LNA)32bより入力される信号332、すなわち受信波とは位相が一致する保証はない。また、同様に、PLL42より出力される正弦波の信号335であるsin(2πgt)と、上記受信波と位相が一致する保証はない。そこで、搬送波周波数に対する位相ずれをα、回転周波数に対する位相ずれをβとする。ここで、α及びβは定数である。
図4に示すように、図3において、第1低雑音増幅器(第1LNA)32a及び第2低雑音増幅器(第2LNA)32bより、それぞれ分岐され入力される信号331及び信号32は、正弦波再生器36内で更にそれぞれ分岐される。
ここで、信号331は、2cos(2πft+α)sin(2πgt+β)であり、
信号332は、2cos(2πft+α)cos(2πgt+β)である。
分岐された信号331のうち、一方は乗算器44aへ入力され、他方は乗算器44cに入力される。また、分岐された信号332のうち、一方は乗算器44bへ入力され、他方は乗算器44dに入力される。PLL41は、予め設定された所望の搬送波周波数fと同一の周波数を有する正弦波の信号333であるsin(2πft)を、それぞれ、第1遅延器43a、乗算器44b及び乗算器44aへ出力する。また、PLL42は、予め設定された所望の回転周波数gと同一の周波数を有する正弦波の信号335であるsin(2πgt)を、それぞれ、第2遅延器43b、乗算器44e及び乗算器44hへ出力する。
乗算器44aは、信号331に正弦波の信号333を乗算し、後段の乗算器44eへ出力する。乗算器44eは、乗算器44aからの出力に、PLL42からの正弦波の信号335を乗算し、信号337を後段の第1減算器45aへ出力する。ここで信号337は以下のAの値となる。
=2cos(2πft+α)sin(2πgt+β)
×2sin(2πft)sin(2πgt)
={sin(4πft+α)−sin(α)}
×{cos(4πgt+β)−cos(β)}
乗算器44bは、信号332に正弦波の信号333を乗算し、後段の乗算器44fへ出力する。乗算器44fは、乗算器44bからの出力に、第2遅延器43bによりPLL42からの信号335がπ/2だけ遅延(位相シフト)された信号336を乗算し、信号338を後段の第1減算器45aへ出力する。ここで、信号336は、sin(2πgt)である信号335をπ/2だけ遅延されることにより、余弦波の信号であるcos(2πgt)となる。すなわち、第2遅延器43bは、正弦波を余弦波に変換する。また、第1減算器45aに入力される信号338は以下のBの値となる。
=2cos(2πft+α)cos(2πgt+β)
×2sin(2πft)cos(2πgt)
={sin(4πft+α)−sin(α)}
×{cos(4πgt+β)+cos(β)}
第1減算器45aは、入力される信号337(A)より信号338(B)を減算し、減算結果の信号341(A−B)を後段の第1ローパスフィルタ46aへ出力する。ここで、第1減算器45aより出力される信号341(A−B)は、以下の値となる。
−B=−2cos(β){sin(4πft+α)−sin(α)}
このように、第1減算器45aより出力される信号341は、sin(4πft+α)の時間変化成分を含む。
第1ローパスフィルタ46aは、この時間変化成分(周波数成分)を含む第1減算器45aから出力される信号341に対し、予め設定される遮断周波数に応じて帯域制限する。遮断周波数の設定については後述する。第1ローパスフィルタ46aを通過後の信号343は、以下の値となる。
−B〜2sin(α)cos(β)
=sin(α+β)+sin(α−β)
このように、信号343は、時間変化成分(周波数成分)がカットされた一定値(定数部)となる。
また、乗算器44cは、信号331に、第1遅延器43aによりPLL41からの信号333がπ/2だけ遅延(位相シフト)された信号334を乗算し、後段の乗算器44gへ出力する。ここで、信号334は、sin(2πft)である信号333をπ/2だけ遅延されることにより、余弦波の信号であるcos(2πft)となる。すなわち、第1遅延器43aは、正弦波を余弦波に変換する。乗算器44gは、乗算器44cからの出力に、第2遅延器43bによりPLL42からの信号335がπ/2だけ遅延(位相シフト)された信号336を乗算し、信号339を後段の第2減算器45bへ出力する。ここで、信号336は、余弦波の信号であるcos(2πgt)となる。また、第2減算器45bに入力される信号339は以下のAの値となる。
=2cos(2πft+α)sin(2πgt+β)
×2cos(2πft)cos(2πgt)
={cos(4πft+α)+cos(α)}
×{sin(4πgt+β)+sin(β)}
乗算器44dは、信号332に、第1遅延器43aによりPLL41からの信号333がπ/2だけ遅延(位相シフト)された信号334を乗算し、後段の乗算器44hへ出力する。ここで、信号334は、cos(2πft)となる。乗算器44hは、乗算器44dからの出力に、PLL42からの正弦波の信号335、すなわち、sin(2πgt)を乗算し、信号340を後段の第2減算器45bへ出力する。ここで信号340は以下のBの値となる。
=2cos(2πft+α)cos(2πgt+β)
×2cos(2πft)sin(2πgt)
={cos(4πft+α)+cos(α)}
×{sin(4πgt+β)−sin(β)}
第2減算器46bは、入力される信号339(A)より信号340(B)を減算し、減算結果の信号342(A−B)を後段の第2ローパスフィルタ46bへ出力する。ここで、第2減算器45bより出力される信号342(A−B)は、以下の値となる。
−B=2sin(β){cos(4πft+α)+cos(α)}
このように、第2減算器45bより出力される信号342は、cos(4πft+α)の時間変化成分(周波数成分)を含む。
第2ローパスフィルタ46bは、この時間変化成分(周波数成分)を含む第2減算器45bから出力される信号342に対し、予め設定される遮断周波数(詳細は後述)に応じて帯域制限する。第2ローパスフィルタ46bを通過後の信号344は、以下の値となる。
−B〜2cos(α)sin(β)
=sin(α+β)−sin(α−β)
このように、信号343は、時間変化成分(周波数成分)がカットされた一定値(定数部)となる。
加算器47は、信号343及び信号344を加算し、信号345を回転位相判定部34へ出力する。ここで、信号345は、2sin(α+β)となる。
なお、上述の信号337(A)における2sin(2πft)sin(2πgt)、信号338(B)における2sin(2πft)cos(2πgt)、信号339(A)における2cos(2πft)cos(2πgt)、及び信号340(B)における2cos(2πft)sin(2πgt)に示されるように、式を簡略化するため正弦波及び余弦波を定数倍としている。すなわち、第1低雑音増幅器(第1LNA)32aより入力される信号331、第2低雑音増幅器(第2LNA)32bより入力される信号332に乗算される正弦波及び余弦波を2倍としているが、特に、信号処理において本質に影響を及ぼすものではない。
(2)余弦波再生器37について
次に、余弦波再生器37の具体的構成及び動作について説明する。図5は、図3に示す余弦波再生器37の回路構成の説明図である。余弦波再生器37は、搬送周波数fを有する正弦波を出力するための位相同期回路(PLL)51、回転周波数gを有する正弦波を出力するための位相同期回路(PLL)52、第1遅延器53a、第2遅延器53b、8個の乗算器54a〜54h、第1減算器55a、第2減算器55b、第1ローパスフィルタ56a、第2ローパスフィルタ56b、及び加算器57より構成される。なお、PLL51及びPLL52は、図示しない発振器より基準となる周期的な信号を受信する。また、上述の正弦波再生器36と同様に、PLL51より出力される正弦波の信号351であるsin(2πft)と、第1低雑音増幅器(第1LNA)32aより入力される信号331及び第2低雑音増幅器(第2LNA)32bより入力される信号332、すなわち受信波とは位相が一致する保証はない。また、同様にPLL52より出力される正弦波の信号353であるsin(2πgt)と、上記受信波と位相が一致する保証はないため、搬送周波数に対する位相ずれα、回転周波数に対する位相ずれをβとする。ここで、α及びβは定数である。
図5に示すように、図3において、第1低雑音増幅器(第1LNA)32a及び第2低雑音増幅器(第2LNA)32bより、それぞれ分岐され入力される信号331及び信号32は、余弦波再生器37内で更にそれぞれ分岐される。
ここで、信号331は、2cos(2πft+α)sin(2πgt+β)であり、
信号332は、2cos(2πft+α)cos(2πgt+β)である。
分岐された信号331のうち、一方は乗算器54aへ入力され、他方は乗算器54cに入力される。また、分岐された信号332のうち、一方は乗算器54bへ入力され、他方は乗算器54dに入力される。PLL51は、任意に設定可能な所望の搬送波周波数fと同一の周波数を有する正弦波の信号351であるsin(2πft)を、それぞれ、第1遅延器53a、乗算器54c及び乗算器54dへ出力する。また、PLL52は、任意に設定可能な所望の回転周波数gと同一の周波数を有する正弦波の信号353であるsin(2πgt)を、それぞれ、第2遅延器53b、乗算器54e及び乗算器54hへ出力する。
乗算器54aは、信号331に、第1遅延器53aによりPLL51からの信号351がπ/2だけ遅延(位相シフト)された信号352(cos(2πft)))を乗算し、後段の乗算器54eへ出力する。乗算器54eは、乗算器54aの出力にPLL52からの正弦波の信号353を乗算し、信号355を後段の第1減算器55aへ出力する。ここで信号355は以下のAの値となる。
=2cos(2πft+α)sin(2πgt+β)
×2cos(2πft)sin(2πgt)
={cos(4πft+α)+cos(α)}
×{cos(4πgt+β)−cos(β)}
乗算器54bは、信号332に、第1遅延器53aによりPLL51からの信号351がπ/2だけ遅延(位相シフト)された信号352(cos(2πft))を乗算し、後段の乗算器54fへ出力する。乗算器54fは、乗算器54bからの出力に、第2遅延器53bによりPLL52からの信号353がπ/2だけ遅延(位相シフト)された信号354(cos(2πgt))を乗算し、信号356を後段の第1減算器55aへ出力する。ここで信号356は以下のBの値となる。
=2cos(2πft+α)cos(2πgt+β)
×2cos(2πft)cos(2πgt)
={cos(4πft+α)+cos(α)}
×{cos(4πgt+β)+cos(β)}
第1減算器55aは、入力される信号356(B)より信号355(A)を減算し、減算結果の信号359(B―A)を後段の第1ローパスフィルタ56aへ出力する。ここで、第1減算器55aより出力される信号359(B―A)は、以下の値となる。
−A=2cos(β){cos(4πft+α)+cos(α)}
このように、第1減算器55aより出力される信号359は、cos(4πft+α)の時間変化成分(周波数成分)を含む。
第1ローパスフィルタ56aは、この時間変化成分(周波数成分)を含む第1減算器55aから出力される信号359に対し、予め設定される遮断周波数に応じて帯域制限する。第1ローパスフィルタ56aを通過後の信号361は、以下の値となる。
−A〜2cos(α)cos(β)
=cos(α+β)+cos(α−β)
このように、信号361は、時間変化成分(周波数成分)がカットされた一定値(定数部)となる。
また、乗算器54cは、信号331にPLL51からの正弦波信号351(sin(2πft))を乗算し、後段の乗算器54gへ出力する。乗算器54gは、乗算器54cからの出力に、第2遅延器53bによりPLL52からの信号353がπ/2だけ遅延(位相シフト)された信号354(cos(2πgt))を乗算し、信号357を後段の第2減算器55bへ出力する。ここで信号357は以下のAの値となる。
=2cos(2πft+α)sin(2πgt+β)
×2sin(2πft)cos(2πgt)
={cos(4πft+α)−sin(α)}
×{cos(4πgt+β)−cos(β)}
乗算器54dは、信号332に、PLL51からの信号351(sin(2πft))を乗算し、後段の乗算器54hへ出力する。乗算器54hは、乗算器54dからの出力に、PLL52からの信号353(sin(2πgt))を乗算し、信号358を後段の第2減算器55bへ出力する。ここで信号358は以下のBの値となる。
=2cos(2πft+α)cos(2πgt+β)
×2sin(2πft)sin(2πgt)
={sin(4πft+α)−sin(α)}
×{cos(4πgt+β)+cos(β)}
第2減算器55bは、入力される信号358(B)より信号357(A)を減算し、減算結果の信号360(B―A)を後段の第2ローパスフィルタ56bへ出力する。ここで、第2減算器55bより出力される信号360(B―A)は、以下の値となる。
−A=2sin(β){sin(4πft+α)−sin(α)}
このように、第2減算器55bより出力される信号360は、cos(4πgt+β)の時間変化成分(周波数成分)を含む。
第2ローパスフィルタ56bは、この時間変化成分(周波数成分)を含む第2減算器55bから出力される信号360に対し、予め設定される遮断周波数に応じて帯域制限する。第2ローパスフィルタ56bを通過後の信号362は、以下の値となる。
−A〜2sin(α)sin(β)
=cos(α+β)−cos(α−β)
このように、信号362は、時間変化成分(周波数成分)がカットされた一定値(定数部)となる。
加算器57は、信号361及び信号362加算し、信号363を回転位相判定部34へ出力する。ここで、信号363は、2cos(α+β)となる。
なお、上述の正弦波再生器36の場合と同様に、上述の信号355(A)における2cos(2πft)sin(2πgt)、信号356(B)における2cos(2πft)cos(2πgt)、信号357(A)における2sin(2πft)cos(2πgt)、及び信号358(B)における2sin(2πft)sin(2πgt)に示されるように、式を簡略化するため正弦波及び余弦波を定数倍としている。すなわち、第1低雑音増幅器(第1LNA)32aより入力される信号331、第2低雑音増幅器(第2LNA)32bより入力される信号332に乗算される正弦波及び余弦波を2倍としているが、特に、信号処理において本質に影響を及ぼすものではない。
次に、回転位相判定部34について説明する。図3〜図5に示すように、回転位相判定部34には、回転波復調部33を構成する正弦波再生器36より信号345(2sin(α+β))及び、余弦波再生器37より信号363(2cos(α+β))が入力される。回転位相判定部34は、これら入力される信号345及び信号363に基づき位相判定行う。上述の回転波復調部33の説明においては、図2に示す送信データ出力部21より出力される送信データが“1”の場合を例に説明した。
回転位相判定部34では、例えば、送信データが“1”であり、且つ、α+βが“0”の場合、cos(α+β)は“1”となる。また、送信データが“−1”である場合、受信信号(受信波)自体が−1倍となり、且つ、α+βが“0”の場合は、結果としてcos(α+β)は“−1”となる。しかし、α+βが“π/2”の場合は、送信データの如何に依らずcos(α+β)は“0”となる。また、α+βが“π”の場合は、送信データの如何に依らずcos(α+β)の値は送信データと反転する。
そこで、図6に示す無線通信システム1にて送受信される送信データのフレームを用いる。図6に示すように、送信データのフレーム(送信データフォーマット)は、送信ヘッダ及びデータ本体から構成される。送信ヘッダは、無線通信システム1を構成する送信機2及び受信機3にて共有され、位相判定に用いられる。例えば、α+βが“π/2”の場合、送信ヘッダ部の受信データは、cos(α+β)が“0”,“0”,“0”,“0”、sin (α+β)が“1”,“1”,“0”,“1”となるため、α+βが“π/2”であることを判定でき、正しくデータを受信することが可能となる。α+βの分解能は、受信データの分解能に依存するが、最低“π”の分解能があれば、データの受信は可能である。また、図6では、一例として、送信ヘッダを4bitとする場合を例に示すが、これに限らず、データの反転に対して非対称であれば良く、例えば、2bitあるいは、1byte等としても良い。
以上のとおり、本実施例に係る無線通信システム1の基本動作について説明した。以下では、複数の回転周波数を有する電波の中から、所望の回転周波数を有する電波を選択的に復調する動作について説明する。
図3に示す受信機3に、所望の搬送波と同一の搬送波周波数fを有し、所望の回転周波数gとは異なる回転周波数g’を有する電波が入力された場合を想定する。この場合、図4に示す正弦波再生器36では、第1低雑音増幅器(第1LNA)32a及び第2低雑音増幅器(第2LNA)32bより、それぞれ分岐され入力される信号331及び信号332は、上述の通り、正弦波再生器36内で更にそれぞれ分岐される。
ここで、信号331は、2cos(2πft+α)sin(2πg’t+β)であり、信号332は、2cos(2πft+α)cos(2πg’t+β)となる。乗算器44aは、信号331に、PLL41から搬送周波数fと同一の周波数を有する正弦波の信号333(sin(2πft))を乗算し、後段の乗算器44eに出力する。乗算器44eは、乗算器44aからの出力に、PLL42から所望の回転周波数gと同一の周波数を有する正弦波の信号335(sin(2πgt))を乗算し、信号337を後段の第1減算器45aへ出力する。ここでの信号337は、以下のAの値となる。
A=2cos(2πft+α)sin(2πg’t+β)
×2sin(2πft)sin(2πgt)
={sin(4πft+α)−sin(α)}
×{cos(2π(g+g’)t+β)−cos(2π(g−g’)+β)}
乗算器44bは、信号332に、正弦波の信号333(sin(2πft))を乗算し、後段の乗算器44fへ出力する。乗算器44fは、乗算器44bからの出力に、第2遅延器43bによりPLL42からの信号335がπ/2だけ遅延(位相シフト)された信号336(cos(2πgt))を乗算し、信号338を後段の第1減算器45aへ出力する。第1減算器45aへ入力される信号338は以下のBの値となる。
B=2cos(2πft+α)cos(2πg’t+β)
×2sin(2πft)cos(2πgt)
={sin(4πft+α)−sin(α)}
×{cos(2π(g−g’)t+β)+cos(2π(g−g’)+β)}
第1減算器45aは、入力される信号337(A)より信号338(B)を減算し、減算結果の信号341(A−B)を後段の第1ローパスフィルタ46aへ出力する。ここで、第1減算器45aより出力される信号341は、以下の値となる。
A−B=−2cos(2π(g−g’)t+β)
×{sin(4πft+α)−sin(α)}
このように、第1減算器45aより出力される信号341は、時間変化成分(周波数成分)を含む。そこで、第1ローパスフィルタ46aに予め設定される遮断周波数を、g−g’より小さいに設定すると、第1ローパスフィルタ46aより出力される信号は、“0”となる。なお、図4に示す、第2ローパスフィルタ46b、図5に示す余弦波再生器37を構成する第1ローパスフィルタ56a及び第2ローパスフィルタ56bにおいても同様となる。従って、所望の周波数、ここでは、回転周波数g以外の回転周波数g‘を有する電波が入力された場合、正弦波再生器36を構成する第1ローパスフィタ46aと第2ローパスフィルタ46b、及び余弦波再生器37を構成する第1ローパスフィルタ56a及び第2ローパスフィルタ56bの出力は、全て“0”となる。
所望の回転周波数gの選択を可能とするローパスフィルタ(46a,46b,56a,56b)の遮断周波数について、所望の回転周波数gと異なる回転周波数g’が単独で受信機3にて受信され、又は、所望の回転周波数gに回転周波数g’が重畳され受信機3にて受信された場合であっても、使用するローパスフィルタの性能(特性)に応じて、g−g’より小さい値に遮断周波数を設定することで、時間変化成分(周波数成分)を含む回転周波数g’を遮断することが可能となる。従って、所望の回転周波数gのみを得ることができる。仮に、g−g’より大きい値に遮断周波数が設定される場合には、ローパスフィルタを通過する回転波に回転周波数g’の成分を含むこととなる。しかし、想定される、所望の回転周波数gと異なる回転周波数g’との差分を識別可能な特性を有するローパスフィルタを用いれば、より高精度に所望の回転周波数gを識別することが可能となる。換言すれば、同一の周波数帯域内で使用可能な回転周波数の種類は、ローパスフィルタに設定される遮断周波数に依存するということである。
以上のとおり、本実施例によれば、偏波の技術を用いてより多くの無線通信機による同時通信を可能とする無線通信システムを提供できる。また、例えば、同一周波数・同一時間にて多数の無線機による同時通信が可能となる。
また、同一の搬送波周波数を有し、且つ異なる回転周波数を有する電波の中から、所望の回転周波数を有する電波を識別し受信することが可能となる。これにより、従来の周波数帯域を分割しチャンネル数を増加する無線通信方式と比較し、更に各周波数帯域内を回転周波数により分割し通信することができ、チャンネル数を飛躍的に増大でき、多元接続通信を実現することが可能となる。
図7は、本発明の他の実施例に係る実施例2の無線通信システムの概略全体構成図である。上述の実施例1では、使用する回転周波数は、予め送信機及び受信機共に割り当てられ、受信機が、受信される回転波の中から所望の回転周波数(予め割り当てされた回転周波数)を有する回転波(電波)を識別し、受信する構成とした。これに対し、本実施例では、個々の回転周波数を動的に割り当てる構成とした点が実施例1と異なる。
図7に示すように、本実施例に係る無線通信システムは、親機61、複数の子機62〜65より構成される。図7では、簡略化して親機61及び子機62〜65が1つのアンテナを有するよう記載しているが、実施例1と同様に、相互に直交配置される2つのアンテナを有し、また、親機61及び子機62〜65が、実施例1に示す送信機2及び受信機3の双方を備え、送受信機(以下、無線機と称す)として機能する。
親機61は、子機62〜65へ周波数を割り当てる。この時、全ての無線機は、共通の回転周波数(以下、共通周波数と称する)を有しており、この共通周波数は周波数の割り当てのみに用いられる。例えば、子機65が通信を開始する場合、先ず、当該子機65が親機61に対し、共通周波数を用いて、「周波数割り当て要求」を送信する。親機61は、「周波数割り当て要求」を受信すると、子機65に対し、共通周波数を用いて、「割り当て応答」を送信し、周波数を割り当てる。子機65は、親機61より送信される「割り当て応答」を受信し、この「割り当て応答」に含まれる回転周波数(割り当てられた回転周波数)を用いて個別の通信を開始する。
ここで、子機62〜64のうち、少なくとも1以上の子機から親機61に対し、同時に「割り当て要求」が送信された場合、或いは、親機61が他の子機(62〜64)と通信状態にある場合等により、親機61から「割り当て応答」が送信されない場合が生じ得る。この場合、子機65は、ランダム時間待機し、再度、「割り当て要求」を親機61に対し送信する(リトライ)。
また、子機65が、親機61より「割り当て応答」を受信し、この「割り当て応答」に含まれる回転周波数(割り当てられた回転周波数)を用いて個別通信を開始し、当該個別通信が終了すると、親機61に対して「開放要求」を送信し、周波数を開放する。これにより、これまで子機65に割り当てられていた回転周波数を、他の子機62〜64の何れか1の子機へ、親機61による割り当てが可能な状態となる。
なお、本実施例では、親機61及び子機62〜65が、実施例1と同様に、相互に直交配置される2つのアンテナ、送信機2及び受信機3の双方を備える構成としたが、これに限られるものではない。例えば、周波数シンセサイザ機能を有する位相同期回路(PLL)を備える、より簡易な回路構成としても良い。
以上のとおり、本実施例によれば、実施例1による効果に加え、更に、回転周波数の動的割り当てが可能となり、同じ周波数帯域内でより多くの無線機を使用することが可能となる。
実施例2では、図7に示すように、親機61が、子機(62〜65)からの「周波数割り当て要求」の受信に応じて、「割り当て応答」を当該子機へ送信することにより、回転周波数を動的に割り当てる構成とした。これに対し、本実施例では、図7に示す親機61及び複数の子機62〜65間で時分割通信する構成とした点が異なる。
図7に示す無線通信システムでは、子機の台数を4台としているが、以下に示すように、無線通信システム間で送受信される送信データのフレーム(送信データフォーマット)を、分割された複数のタイムスロットにより構成することで、一度の送受信により、タイムスロット数分の通信経路(通信チャンネル)を確立することが可能となる。
例えば、送信データのフレームに含まれるスロット数を8個に設定し、相互に周波数の異なる回転周波数として、20個の回転周波数を用意した場合、同時通信可能となる無線機の台数は160台となる。すなわち、同時に確立される通信経路(通信チャンネル数)は160となる。ここで、各無線機の構成は、実施例1に示した、送信機2及び受信機3の双方を備えた送受信機とする。
本実施例によれば、各無線機が、受信される受信データ(回転波)を所望の回転周波数に対応するものか識別でき、更に、送信データのフレームを複数のタイムスロットにより構成することで、実施例2による効果に加え、更に、同時通信可能な無線機の台数を増加することが可能となる。
実施例2では、図7に示すように、親機61が、子機(62〜65)からの「周波数割り当て要求」の受信に応じて、「割り当て応答」を当該子機へ送信することにより、回転周波数を動的に割り当てる構成とした。これに対し、本実施例では、実施例2の構成に、更に、周波数分割通信方式を導入する点が実施例2と異なる。本実施例において無線通信システムを構成する親機及び子機の構成は、実施例1に示す送信機2及び受信機3の双方を有する送受信機(無線機)とする。
実施例1で述べたように、回転波を生成するためには、2つの周波数、すなわち、第1搬送波周波数(f)及び第2搬送波周波数(f)が必要となる。以下では、第1搬送波周波数(f)及び第2搬送波周波数(f)として、それぞれ426MHz帯と429MHz帯を使用する場合を例に説明する。
第1搬送波周波数(f)の帯域である426MHz帯を、更に12.5kHz刻みで10個のチャンネルに周波数分割し、また、第2搬送波周波数(f)の帯域である429MHz帯に12.5kHz刻みで46個のチャンネルに周波数分割し、使用可能とする。この場合、送信する回転波の周波数は、実施例1にて述べたように、2つの周波数の平均((f+f)/2)、回転周波数は2つの周波数の差((|f−f|)/2)で決定される。従って、この場合における、使用可能な周波数の組み合わせは460組となる。すなわち、相互に回転周波数が異なる回転波を460個生成可能となる。
回転周波数を生成するため、2つの周波数帯域が必要であることは、回転波生成におけるデメリットとなる。しかしながら、周波数分割多重通信方式と組み合わせることで、チャンネル数のデメリットを解消することが可能となる。
本実施例によれば、回転波生成に用いられる第1搬送波周波数(f)及び第2搬送波周波数(f)のそれぞれを更に、所定の周波数刻みで周波数分割することにより、相互に異なる回転周波数を有する回転波を、実施例2と比較し、増加することが可能となる。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の実施例の構成の追加・削除・置換をすることが可能である。
1・・・無線通信システム
2・・・送信機
3・・・受信機
21・・・送信データ出力部
22a・・・第1搬送波生成部
22b・・・第2搬送波生成部
23a・・・第1乗算器
23b・・・第2乗算器
24・・・回転波生成部
25a・・・第1電力増幅器(第1PA)
25b・・・第2電力増幅器(第2PA)
26a・・・第1送信アンテナ
26b・・・第2送信アンテナ
27a・・・第1遅延器
27b・・・第2遅延器
28・・・減算器
29,47,57・・・加算器
31a・・・第1受信アンテナ
31b・・・第2受信アンテナ
32a・・・第1低雑音増幅器(第1LNA)
32b・・・第2低雑音増幅器(第2LNA)
33・・・回転波復調部
34・・・回転位相判定部
35・・・データ受信部
36・・・正弦波再生器
37・・・余弦波再生器
41,42,51,52・・・位相同期回路(PLL)
43a,53a・・・第1遅延器
43b,53b・・・第2遅延器
44a〜44h,54a〜54h・・・乗算器
45a,55a・・・第1減算器
45b,55b・・・第2減算器
46a,56a・・・第1ローパスフィルタ
46b,56b・・・第2ローパスフィルタ
61・・・親機
62〜95・・・子機
241〜244,255,256,331〜345,351〜363・・・信号

Claims (8)

  1. 相互に異なる周波数を有する第1搬送波及び第2搬送波を生成する搬送波生成部と、前記第1及び第2搬送波に基づき回転波を生成する回転波生成部を有する送信機と、
    受信される前記回転波に対し、所望の搬送波の周波数と同一の周波数を有する正弦波及び所望の回転周波数と同一の周波数を有する正弦波を乗算した結果に基づき、前記所望の回転周波数を有する電波を選択的に復調する回転波復調部と、前記回転波復調部の出力から前記受信された回転波の位相ずれを判定する回転位相判定部を有する受信機と、を備え
    前記回転波復調部は、
    前記所望の搬送波の周波数と同一の周波数を有する正弦波を発生する第1搬送波周波数発生部と、前記所望の回転周波数と同一の周波数を有する正弦波を発生する第1回転周波数発生部を有し、少なくとも、前記第1搬送波周波数発生部からの正弦波と前記受信された回転波との乗算結果及び、前記第1回転周波数発生部からの正弦波と前記受信された回転波との乗算結果に基づき、前記受信された回転波に対応する正弦波を生成する正弦波再生器と、
    前記所望の搬送波の周波数と同一の周波数を有する正弦波を発生する第2搬送波周波数発生部と、前記所望の回転周波数と同一の周波数を有する正弦波を発生する第2回転周波数発生部を有し、少なくとも、前記第2搬送波周波数発生部からの正弦波と前記受信された回転波との乗算結果及び、前記第2回転周波数発生部からの正弦波と前記受信された回転波との乗算結果に基づき、前記受信された回転波に対応する余弦波を生成する余弦波再生器と、
    を有することを特徴とする無線通信システム。
  2. 請求項1に記載の無線通信システムにおいて、
    前記正弦波再生器は、前記所望の回転周波数に他の回転周波数が重畳され受信された重畳回転波と前記第1搬送波周波数発生部からの正弦波との乗算結果に基づく信号及び、前記重畳回転波と前記第1回転周波数発生部からの正弦波との乗算結果に基づく信号から、前記所望の回転周波数に相当する周波数成分を通過可能とするフィルタを有することを特徴とする無線通信システム。
  3. 請求項に記載の無線通信システムにおいて、
    前記余弦波再生器は、前記所望の回転周波数に他の回転周波数が重畳され受信された重畳回転波と前記第2搬送波周波数発生部からの正弦波との乗算結果に基づく信号及び、前記重畳回転波と前記第2回転周波数発生部からの正弦波との乗算結果に基づく信号から、前記所望の回転周波数に相当する周波数成分を通過可能とするフィルタを有することを特徴とする無線通信システム。
  4. 請求項2に記載の無線通信システムにおいて、
    前記受信機は、2つの低雑音増幅器を備え、
    前記正弦波再生器は、前記低雑音増幅器を介して入力される前記回転波と前記第1搬送波周波数発生部からの正弦波とを乗算する乗算器と、前記低雑音増幅器を介して入力される前記回転波と前記第1回転周波数発生部からの正弦波とを乗算する乗算器と、を備えることを特徴とする無線通信システム。
  5. 請求項3に記載の無線通信システムにおいて、
    前記受信機は、2つの低雑音増幅器を備え、
    前記余弦波再生器は、前記低雑音増幅器を介して入力される前記回転波と前記第2搬送波周波数発生部からの正弦波とを乗算する乗算器と、前記低雑音増幅器を介して入力される前記回転波と前記第2回転周波数発生部からの正弦波とを乗算する乗算器と、を備えることを特徴とする無線通信システム。
  6. 相互に直交配置される2つの受信アンテナと、
    前記受信アンテナにより受信された回転波に対し、所望の搬送波の周波数と同一の周波数を有する正弦波及び所望の回転周波数と同一の周波数を有する正弦波を乗算した結果に基づき、前記所望の回転周波数を有する電波を選択的に復調する回転波復調部と、
    前記回転波復調部の出力から前記受信された回転波の位相ずれを判定する回転位相判定部と、を備え、
    前記回転波復調部は、
    前記所望の搬送波の周波数と同一の周波数を有する正弦波を発生する第1搬送波周波数発生部と、前記所望の回転周波数と同一の周波数を有する正弦波を発生する第1回転周波数発生部を有し、少なくとも、前記第1搬送波周波数発生部からの正弦波と前記受信された回転波との乗算結果及び、前記第1回転周波数発生部からの正弦波と前記受信された回転波との乗算結果に基づき、前記受信された回転波に対応する正弦波を生成する正弦波再生器と、
    前記所望の搬送波の周波数と同一の周波数を有する正弦波を発生する第2搬送波周波数発生部と、前記所望の回転周波数と同一の周波数を有する正弦波を発生する第2回転周波数発生部を有し、少なくとも、前記第2搬送波周波数発生部からの正弦波と前記受信された回転波との乗算結果及び、前記第2回転周波数発生部からの正弦波と前記受信された回転波との乗算結果に基づき、前記前記受信された回転波に対応する余弦波を生成する余弦波再生器と、
    を有することを特徴する無線通信用受信機
  7. 請求項に記載の無線通信用受信機において、
    前記正弦波再生器は、前記所望の回転周波数に他の回転周波数が重畳され受信された重畳回転波と前記第1搬送波周波数発生部からの正弦波との乗算結果に基づく信号及び、前記重畳回転波と前記第1回転周波数発生部からの正弦波との乗算結果に基づく信号から、前記所望の回転周波数に相当する周波数成分を通過可能とするフィルタを有することを特徴とする無線通信用受信機
  8. 請求項6に記載の無線通信用受信機において、
    前記余弦波再生器は、前記所望の回転周波数に他の回転周波数が重畳され受信された重畳回転波と前記第2搬送波周波数発生部からの正弦波との乗算結果に基づく信号及び、前記重畳回転波と前記第2回転周波数発生部からの正弦波との乗算結果に基づく信号から、前記所望の回転周波数に相当する周波数成分を通過可能とするフィルタを有することを特徴とする無線通信用受信機
JP2015040933A 2015-03-03 2015-03-03 無線通信システム及び無線通信用受信機 Expired - Fee Related JP6322594B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015040933A JP6322594B2 (ja) 2015-03-03 2015-03-03 無線通信システム及び無線通信用受信機
US15/053,307 US9705588B2 (en) 2015-03-03 2016-02-25 Wireless communication system and wireless communication receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015040933A JP6322594B2 (ja) 2015-03-03 2015-03-03 無線通信システム及び無線通信用受信機

Publications (3)

Publication Number Publication Date
JP2016163204A JP2016163204A (ja) 2016-09-05
JP2016163204A5 JP2016163204A5 (ja) 2017-03-16
JP6322594B2 true JP6322594B2 (ja) 2018-05-09

Family

ID=56847365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015040933A Expired - Fee Related JP6322594B2 (ja) 2015-03-03 2015-03-03 無線通信システム及び無線通信用受信機

Country Status (2)

Country Link
US (1) US9705588B2 (ja)
JP (1) JP6322594B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201802411XA (en) * 2016-07-07 2018-04-27 Hitachi Ltd Radio communication system, elevator control system using same, and substation facility monitoring system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3093824A (en) * 1959-02-17 1963-06-11 Singer Inc H R B Communication system using circular polarization
US3760274A (en) * 1971-10-13 1973-09-18 Us Army Modulation of polarization orientation and concurrent conventional modulation of the same radiated carrier
US4198641A (en) * 1976-08-09 1980-04-15 Rca Corporation Rotating field polarization antenna system
TW406488B (en) 1997-05-09 2000-09-21 Basic Res Corp Communications system
CN1194581C (zh) * 1998-12-07 2005-03-23 Ntt移动通信网株式会社 移动数据通信的通信业务量控制方法、移动台装置和基站装置
JP2001119744A (ja) * 1999-10-18 2001-04-27 Advanced Space Communications Research Laboratory 移動通信方法
JP2004172975A (ja) * 2002-11-20 2004-06-17 Nec Corp 両偏波受信装置及びそのローカル位相雑音低減方法
JP5446552B2 (ja) * 2009-07-30 2014-03-19 ソニー株式会社 無線通信装置、回転構造体、電子機器
KR20120086201A (ko) * 2011-01-25 2012-08-02 한국전자통신연구원 복편파 안테나 및 이를 이용한 신호 송수신 방법
WO2013140457A1 (ja) * 2012-03-23 2013-09-26 株式会社 日立製作所 無線通信システム、昇降機制御システムおよび変電設備制御システム

Also Published As

Publication number Publication date
US20160261335A1 (en) 2016-09-08
US9705588B2 (en) 2017-07-11
JP2016163204A (ja) 2016-09-05

Similar Documents

Publication Publication Date Title
EP3407514B1 (en) Transmission device, reception device, and communication method
US5448602A (en) Diversity radio receiver
US5787123A (en) Receiver for orthogonal frequency division multiplexed signals
JPH0951296A (ja) 交差偏波間補償方法及び交差偏波間補償装置
IL301046A (en) Sub-regulation – place
JP6322594B2 (ja) 無線通信システム及び無線通信用受信機
JP4322268B2 (ja) 信号発生装置及び方法
WO2006070750A1 (ja) 無線送信装置、無線受信装置、無線送信方法および無線受信方法
CN102318199A (zh) 接收装置
JP6497825B2 (ja) 通信装置及び通信方法
TWI577159B (zh) 資料分配方法、訊號接收方法、無線傳送及接收裝置
JP5692093B2 (ja) データ通信システムおよび方法、データ送信装置および方法、データ受信装置および方法
JP4766245B2 (ja) 受信装置及びデータ通信方式
JPS61169049A (ja) デイジタル通信方式
JPH09102758A (ja) 符号多重化通信装置
JP2018166293A (ja) 無線通信システム、移動局および基地局
JPH07177057A (ja) スペクトル拡散変調及び/又は復調装置
JP2016163204A5 (ja)
JPH10210092A (ja) 位相検波回路
JP4485039B2 (ja) 無線装置
JP2005064846A (ja) 干渉除去装置
JPH1188290A (ja) スペクトル拡散通信方式
JP6037503B2 (ja) 伝送装置
JPS58197934A (ja) スプレツドスペクトラム送受信機
JP3350641B2 (ja) マルチレート化遅延多重方式スペクトル直接拡散通信システム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180409

R150 Certificate of patent or registration of utility model

Ref document number: 6322594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees