JP6315190B2 - Driving device for vehicle ignition device - Google Patents

Driving device for vehicle ignition device Download PDF

Info

Publication number
JP6315190B2
JP6315190B2 JP2014088876A JP2014088876A JP6315190B2 JP 6315190 B2 JP6315190 B2 JP 6315190B2 JP 2014088876 A JP2014088876 A JP 2014088876A JP 2014088876 A JP2014088876 A JP 2014088876A JP 6315190 B2 JP6315190 B2 JP 6315190B2
Authority
JP
Japan
Prior art keywords
region
semiconductor
conductivity type
anode
semiconductor region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014088876A
Other languages
Japanese (ja)
Other versions
JP2015207726A (en
Inventor
彰彦 二見
彰彦 二見
佐藤 守
守 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2014088876A priority Critical patent/JP6315190B2/en
Publication of JP2015207726A publication Critical patent/JP2015207726A/en
Application granted granted Critical
Publication of JP6315190B2 publication Critical patent/JP6315190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

本発明は、改善されたサージ耐量を有する車両用点火装置の駆動装置に関する。 The present invention relates to a drive device for a vehicle ignition device having improved surge resistance.

特許文献1は、制御回路とスイッチング素子と電源保護素子とで構成される従来の車両用点火装置の駆動装置を開示する。制御回路は、内燃機関の運転状況に応じて、外部に設けた電子制御装置から発信された点火信号にしたがって、スイッチング素子を開閉駆動制御する。電源保護素子は、高圧側配線と接地側配線との間に設けられ、少なくとも、ツェナーダイオードやアバランシェダイオード等の電圧制限機能を有する半導体素子を含む。また、電源保護素子は、駆動装置の外部の電源から印加されるバッテリ電圧を制御回路に入力する際に、入力電圧を制限したり、スイッチング素子の開閉時に発生するサージ電圧を除去したりして、制御回路を保護する。 Patent Document 1 discloses a driving device for a conventional vehicle ignition device that includes a control circuit, a switching element, and a power supply protection element. The control circuit performs open / close drive control of the switching element in accordance with an ignition signal transmitted from an electronic control device provided outside, in accordance with the operating state of the internal combustion engine. The power supply protection element is provided between the high-voltage side wiring and the ground side wiring, and includes at least a semiconductor element having a voltage limiting function such as a Zener diode or an avalanche diode. The power protection element limits the input voltage when the battery voltage applied from the power supply external to the drive device is input to the control circuit, or removes the surge voltage generated when the switching element is opened or closed. Protect the control circuit.

また、駆動装置の小型化を図るべく、制御回路、スイッチング素子及び電源保護素子を単一の半導体集積回路として形成しても良いことが、特許文献1に記載される。 Further, Patent Document 1 describes that the control circuit, the switching element, and the power supply protection element may be formed as a single semiconductor integrated circuit in order to reduce the size of the driving device.

特開2012−154227号公報JP 2012-154227 A

しかしながら、特許文献1は、制御回路、スイッチング素子及び電源保護素子を半導体集積回路内に形成する具体的な手法を開示しない。本発明は、電源保護素子を備え、改善されたサージ耐量を有する車両用点火装置の駆動装置を提供する。 However, Patent Document 1 does not disclose a specific method for forming a control circuit, a switching element, and a power protection element in a semiconductor integrated circuit. The present invention provides a drive device for a vehicle ignition device that includes a power protection element and has improved surge resistance.

本発明の一態様によれば、車両用点火装置の駆動装置は、スイッチング素子と該スイッチング素子を駆動する半導体集積回路とを備え、前記半導体集積回路は、駆動回路と該駆動回路をサージから保護する電源保護素子と該駆動回路と該電源保護素子とを分断する素子分離領域とを備え、前記電源保護素子は、互いに対向する第1及び第2の主面を含む半導体基板に設けられた第1導電型のアノード領域と、前記アノード領域と接するように設けられた第2導電型のカソード領域と、前記アノード領域と電気的に接続されるとともに前記第1の主面に露出するように設けられた前記第1導電型のアノードコンタクト領域と、前記カソード領域と電気的に接続されるとともに前記第1の主面に露出するように設けられた前記第2導電型のカソードコンタクト領域と、を備え、前記アノード領域の不純物濃度は、前記カソード領域の不純物濃度と等しく、前記アノードコンタクト領域の不純物濃度は、前記アノード領域の不純物濃度の100倍以上であり、前記素子分離領域は第1導電型を有し、前記素子分離領域を挟んだ前記電源保護素子と反対側の前記第1の主面には、前記素子分離領域と第1導電型の第1の半導体領域との間に第1導電型と反対の第2導電型の領域を有し、前記素子分離領域の前記第1の主面に露出する半導体領域と前記第1の半導体領域との距離を、前記アノード領域と前記カソード領域と前記半導体基板の第2の主面に露出した第2の半導体領域とで生じる寄生のPNPトランジスタの電流増幅率と、前記カソード領域と前記第2の半導体領域と前記第1の半導体領域と接続した第2導電型の第3の半導体領域とで生じる寄生のNPNトランジスタの電流増幅率との積が1以下となるようにすることを特徴とする。 According to one aspect of the present invention, a drive device for a vehicle ignition device includes a switching element and a semiconductor integrated circuit that drives the switching element, and the semiconductor integrated circuit protects the drive circuit and the drive circuit from surges. A power source protection element, a drive circuit, and an element isolation region that divides the power source protection element, wherein the power source protection element is provided on a semiconductor substrate including first and second main surfaces facing each other. An anode region of one conductivity type, a cathode region of a second conductivity type provided so as to be in contact with the anode region, and provided so as to be electrically connected to the anode region and exposed to the first main surface The first conductivity type anode contact region and the second conductivity type cathode provided so as to be electrically connected to the cathode region and exposed to the first main surface Comprising a contact region, the impurity concentration of the anode region is equal to the impurity concentration of the cathode region, the impurity concentration of the anode contact region state, and are more than 100 times the impurity concentration of the anode region, said isolation The region has a first conductivity type, and on the first main surface opposite to the power protection element across the element isolation region, the element isolation region, the first conductivity type first semiconductor region, and Having a second conductivity type region opposite to the first conductivity type between the semiconductor region exposed to the first main surface of the element isolation region and the first semiconductor region, the distance between the anode region and the anode region. A parasitic PNP transistor current amplification factor generated in the region, the cathode region, and the second semiconductor region exposed on the second main surface of the semiconductor substrate; the cathode region; the second semiconductor region; of The product of the current amplification factor of the parasitic NPN transistor produced by the third semiconductor region of the second conductivity type which is connected to the conductor region is characterized to Rukoto to be 1 or less.

なお、本発明において、アノード領域の不純物濃度は、カソード領域の不純物濃度の0.5倍から2.0倍までの範囲であれば、カソード領域の不純物濃度と等しいと定義される。 In the present invention, the impurity concentration in the anode region is defined to be equal to the impurity concentration in the cathode region if it is in the range of 0.5 to 2.0 times the impurity concentration in the cathode region.

本発明によれば、電源保護素子を備え、改善されたサージ耐量を有する車両用点火装置の駆動装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the drive device of the ignition device for vehicles which has a power supply protection element and has the improved surge tolerance can be provided.

本発明の第1の実施形態に係る車両用点火装置の駆動装置の構成を示す回路図である。1 is a circuit diagram showing a configuration of a drive device for a vehicle ignition device according to a first embodiment of the present invention. 本発明の第1の実施形態に係る半導体集積回路の構成を示す断面図である。1 is a cross-sectional view showing a configuration of a semiconductor integrated circuit according to a first embodiment of the present invention. 本発明の第1の実施形態に係る半導体集積回路の構成を示す断面図である。1 is a cross-sectional view showing a configuration of a semiconductor integrated circuit according to a first embodiment of the present invention. 本発明の第2の実施形態に係る半導体集積回路の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor integrated circuit which concerns on the 2nd Embodiment of this invention.

次に、図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであることに留意すべきである。又、以下に示す実施形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の実施形態は、構成部品の構造、配置等を下記のものに特定するものでない。この発明の実施形態は、特許請求の範囲において、種々の変更を加えることができる。 Next, an embodiment of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic. Further, the embodiments described below exemplify apparatuses and methods for embodying the technical idea of the present invention, and the embodiments of the present invention have the following structure and arrangement of components. It is not something specific. The embodiment of the present invention can be variously modified within the scope of the claims.

図1は、本発明の第1の実施形態に係る車両用点火装置の駆動装置の構成を示す回路図である。本実施形態に係る車両用点火装置100は、直流電源VBとトランスTRと駆動装置10と制御部MCUとを備える。本実施形態に係る駆動装置10は、スイッチング素子SWと半導体集積回路ICとを備える。直流電源VBとトランスTRの一次巻線とスイッチング素子SWとは直列接続される。半導体集積回路ICは、直流電源VBと制御部MCUとスイッチング素子SWとに接続され、直流電源VBから駆動電力を得るとともに、制御部MCUからの制御信号に基づきスイッチング素子SWを駆動する。 FIG. 1 is a circuit diagram showing a configuration of a drive device for a vehicle ignition device according to a first embodiment of the present invention. The vehicle ignition device 100 according to the present embodiment includes a DC power supply VB, a transformer TR, a drive device 10, and a control unit MCU. The drive device 10 according to the present embodiment includes a switching element SW and a semiconductor integrated circuit IC. The DC power supply VB, the primary winding of the transformer TR, and the switching element SW are connected in series. The semiconductor integrated circuit IC is connected to the DC power supply VB, the control unit MCU, and the switching element SW, obtains drive power from the DC power supply VB, and drives the switching element SW based on a control signal from the control unit MCU.

半導体集積回路ICは、単一の半導体基板上に駆動回路DRVと電源保護素子ZD1と入力保護素子ZD2とを備える。駆動回路DRVは、直流電源VBと制御部MCUとスイッチング素子SWとに接続される。電源保護素子ZD1は、ツェナーダイオードからなり、直流電源VBと駆動回路DRVとに接続され、駆動回路DRVをサージから保護する。入力保護素子ZD2は、ツェナーダイオードからなり、制御部MCUと駆動回路DRVとに接続され、駆動回路DRVをサージから保護する。 The semiconductor integrated circuit IC includes a drive circuit DRV, a power supply protection element ZD1, and an input protection element ZD2 on a single semiconductor substrate. Drive circuit DRV is connected to DC power supply VB, control unit MCU, and switching element SW. The power supply protection element ZD1 is formed of a Zener diode, is connected to the DC power supply VB and the drive circuit DRV, and protects the drive circuit DRV from a surge. The input protection element ZD2 includes a Zener diode, is connected to the control unit MCU and the drive circuit DRV, and protects the drive circuit DRV from a surge.

図2は、本発明の第1の実施形態に係る半導体集積回路の構成を示す断面図である。電源保護素子ZD1は、互いに対向する第1及び第2の主面S1,S2を含む半導体基板SUBに設けられた、アノード領域17とカソード領域13とアノードコンタクト領域18とカソードコンタクト領域20とを備える。アノード領域17の不純物濃度は、カソード領域13の不純物濃度と等しく、アノードコンタクト領域18の不純物濃度は、アノード領域の不純物濃度の100倍以上である。 FIG. 2 is a cross-sectional view showing the configuration of the semiconductor integrated circuit according to the first embodiment of the present invention. The power supply protection element ZD1 includes an anode region 17, a cathode region 13, an anode contact region 18, and a cathode contact region 20 provided on the semiconductor substrate SUB including the first and second main surfaces S1 and S2 facing each other. . The impurity concentration of the anode region 17 is equal to the impurity concentration of the cathode region 13, and the impurity concentration of the anode contact region 18 is 100 times or more the impurity concentration of the anode region.

第1の半導体層11は、P型の導電型を有し、半導体基板SUBの第2の主面S2に露出し、接地される。第2の半導体層12は、N型の導電型を有し、第1の半導体層11に接し、半導体基板SUBの第1の主面S1に露出する。第1の半導体領域(カソード領域)13は、N型の導電型を有し、第1の半導体層11と第2の半導体層12とに接する。第2の半導体領域14は、N型の導電型を有し、第1の半導体領域13の内部に形成される。第3の半導体領域15は、P型の導電型を有し、第1の半導体層11と第2の半導体層12とに接する。第4の半導体領域16は、P型の導電型を有し、第1の半導体層11と第2の半導体層12とに接する。第5の半導体領域(アノード領域)17は、P型の導電型を有し、第1の半導体領域13に接し、半導体基板SUBの第1の主面S1に露出する。第6の半導体領域(アノードコンタクト領域)18は、P型の導電型を有し、第5の半導体領域17と電気的に接続され、半導体基板SUBの第1の主面S1に露出する。第7の半導体領域19は、N型の導電型を有し、第2の半導体領域14に接し、半導体基板SUBの第1の主面S1に露出する。第8の半導体領域(カソードコンタクト領域)20は、第2及び第7の半導体領域14,19を介して第1の半導体領域13と電気的に接続され、半導体基板SUBの第1の主面S1に露出する。第9の半導体領域21は、P型の導電型を有し、第3の半導体領域15に接し、半導体基板SUBの第1の主面S1に露出する。第10の半導体領域22は、P型の導電型を有し、第9の半導体領域21を介して第3の半導体領域15と電気的に接続され、半導体基板SUBの第1の主面S1に露出する。第11の半導体領域23は、P型の導電型を有し、第4の半導体領域16に接し、半導体基板SUBの第1の主面S1に露出する。第12の半導体領域24は、P型の導電型を有し、第11の半導体領域23を介して第4の半導体領域16と電気的に接続され、半導体基板SUBの第1の主面S1に露出する。第13の半導体領域25は、N型の導電型を有し、第2の半導体層12と接し、半導体基板SUBの第1の主面S1に露出する。第1乃至12の半導体領域は、半導体基板SUBにP型又はN型の不純物が導入されて形成される不純物拡散領域である。絶縁膜26は、半導体基板SUBの第1の主面S1を部分的に覆う。 The first semiconductor layer 11 has a P-type conductivity, is exposed on the second main surface S2 of the semiconductor substrate SUB, and is grounded. The second semiconductor layer 12 has an N-type conductivity, is in contact with the first semiconductor layer 11, and is exposed on the first main surface S1 of the semiconductor substrate SUB. The first semiconductor region (cathode region) 13 has an N-type conductivity type and is in contact with the first semiconductor layer 11 and the second semiconductor layer 12. The second semiconductor region 14 has an N-type conductivity type and is formed inside the first semiconductor region 13. The third semiconductor region 15 has a P-type conductivity and is in contact with the first semiconductor layer 11 and the second semiconductor layer 12. The fourth semiconductor region 16 has a P-type conductivity and is in contact with the first semiconductor layer 11 and the second semiconductor layer 12. The fifth semiconductor region (anode region) 17 has a P-type conductivity type, is in contact with the first semiconductor region 13, and is exposed on the first main surface S1 of the semiconductor substrate SUB. The sixth semiconductor region (anode contact region) 18 has P-type conductivity, is electrically connected to the fifth semiconductor region 17, and is exposed on the first main surface S1 of the semiconductor substrate SUB. The seventh semiconductor region 19 has an N-type conductivity, is in contact with the second semiconductor region 14, and is exposed on the first main surface S1 of the semiconductor substrate SUB. The eighth semiconductor region (cathode contact region) 20 is electrically connected to the first semiconductor region 13 via the second and seventh semiconductor regions 14 and 19, and the first main surface S1 of the semiconductor substrate SUB. Exposed to. The ninth semiconductor region 21 has a P-type conductivity, is in contact with the third semiconductor region 15, and is exposed on the first main surface S1 of the semiconductor substrate SUB. The tenth semiconductor region 22 has a P-type conductivity, is electrically connected to the third semiconductor region 15 via the ninth semiconductor region 21, and is formed on the first main surface S1 of the semiconductor substrate SUB. Exposed. The eleventh semiconductor region 23 has P-type conductivity, is in contact with the fourth semiconductor region 16, and is exposed to the first main surface S1 of the semiconductor substrate SUB. The twelfth semiconductor region 24 has P-type conductivity, is electrically connected to the fourth semiconductor region 16 through the eleventh semiconductor region 23, and is formed on the first main surface S1 of the semiconductor substrate SUB. Exposed. The thirteenth semiconductor region 25 has an N-type conductivity, is in contact with the second semiconductor layer 12, and is exposed on the first main surface S1 of the semiconductor substrate SUB. The first to twelfth semiconductor regions are impurity diffusion regions formed by introducing P-type or N-type impurities into the semiconductor substrate SUB. The insulating film 26 partially covers the first main surface S1 of the semiconductor substrate SUB.

第1の半導体領域13の不純物濃度は、1×1017〜1×1018cm−3である。第5の半導体領域17の不純物濃度は、1×1017〜1×1018cm−3であり、第1の半導体領域13の不純物濃度の0.5倍から2.0倍に設定される。第2の半導体領域14の不純物濃度は、1〜5×1019cm−3である。第3及び第4の半導体領域15,16の不純物濃度は、5×1017cm−3〜5×1018cm−3である。第6の半導体領域18の不純物濃度は、5×1018〜1×1020cm−3である。第6の半導体領域18の不純物濃度は、第5の半導体領域17の不純物濃度の100倍以上に設定される。第7の半導体領域19の不純物濃度は、1〜5×1019cm−3である。第8の不純物領域20の不純物濃度は、2〜8×1020cm−3である。第9及び第11の半導体領域21,23の不純物濃度は、1×1018〜1×1019cm−3である。第10及び第12の半導体領域22,24の不純物濃度は、5×1018〜1×1020cm−3であり、第6の半導体領域18の不純物濃度と等しい。第13の半導体領域25の不純物濃度は、2〜8×1020cm−3であり、第8の不純物領域20の不純物濃度と等しい。 The impurity concentration of the first semiconductor region 13 is 1 × 10 17 to 1 × 10 18 cm −3 . The impurity concentration of the fifth semiconductor region 17 is 1 × 10 17 to 1 × 10 18 cm −3 , and is set to 0.5 to 2.0 times the impurity concentration of the first semiconductor region 13. The impurity concentration of the second semiconductor region 14 is 1 to 5 × 10 19 cm −3 . The impurity concentration of the third and fourth semiconductor regions 15 and 16 is 5 × 10 17 cm −3 to 5 × 10 18 cm −3 . The impurity concentration of the sixth semiconductor region 18 is 5 × 10 18 to 1 × 10 20 cm −3 . The impurity concentration of the sixth semiconductor region 18 is set to 100 times or more the impurity concentration of the fifth semiconductor region 17. The impurity concentration of the seventh semiconductor region 19 is 1 to 5 × 10 19 cm −3 . The impurity concentration of the eighth impurity region 20 is 2 to 8 × 10 20 cm −3 . The impurity concentration of the ninth and eleventh semiconductor regions 21 and 23 is 1 × 10 18 to 1 × 10 19 cm −3 . The impurity concentration of the tenth and twelfth semiconductor regions 22 and 24 is 5 × 10 18 to 1 × 10 20 cm −3 , which is equal to the impurity concentration of the sixth semiconductor region 18. The impurity concentration of the thirteenth semiconductor region 25 is 2 to 8 × 10 20 cm −3 , which is equal to the impurity concentration of the eighth impurity region 20.

第1の半導体領域13と第5の半導体領域17とを含む半導体領域は、半導体基板SUBの主面に平行な主電流経路を有する横型の電源保護素子ZD1を構成する。また、第9及び第10の半導体領域21,22は、電源保護素子ZD1の外周端を規定する領域であり、その他の回路素子との間を電気的に分離する素子分離領域を構成する。また、半導体集積回路ICは、電源保護素子ZD1が形成される領域において、破線で示されるような寄生素子を備える。寄生素子は、PNPトランジスタTR1とNPNトランジスタTR2と第1及び第2の抵抗R1,R2とからなり、全体としてサイリスタを構成する。電源保護素子ZD1は、車両用点火装置の駆動装置10として、種々のサージ電圧を吸収することが求められる。そのため、電源保護素子ZD1を半導体集積回路ICに設けるために、当該サイリスタのラッチアップを抑制しなければならない。本実施形態に係る半導体集積回路ICは、第9の半導体領域21と第12の半導体領域24との距離DをPNPトランジスタTR1のhfe(電流増幅率)とNPNトランジスタTR2のhfeとの積が1以下となる距離以上とした。そのため、サージ電圧に起因する寄生サイリスタの動作が抑制され、電源保護素子ZD1の破壊は防止される。従って、本実施形態に係る半導体集積回路ICによって、電源保護素子を備え、改善されたサージ耐量を有する車両用点火装置の駆動装置が提供される。 The semiconductor region including the first semiconductor region 13 and the fifth semiconductor region 17 constitutes a lateral power supply protection element ZD1 having a main current path parallel to the main surface of the semiconductor substrate SUB. The ninth and tenth semiconductor regions 21 and 22 are regions that define the outer peripheral edge of the power supply protection element ZD1, and constitute element isolation regions that electrically isolate other circuit elements. In addition, the semiconductor integrated circuit IC includes a parasitic element as indicated by a broken line in a region where the power protection element ZD1 is formed. The parasitic element includes a PNP transistor TR1, an NPN transistor TR2, and first and second resistors R1 and R2, and constitutes a thyristor as a whole. The power supply protection element ZD1 is required to absorb various surge voltages as the drive device 10 of the vehicle ignition device. Therefore, in order to provide the power supply protection element ZD1 in the semiconductor integrated circuit IC, the latch-up of the thyristor must be suppressed. In the semiconductor integrated circuit IC according to this embodiment, the distance D between the ninth semiconductor region 21 and the twelfth semiconductor region 24 is set so that the product of hfe (current amplification factor) of the PNP transistor TR1 and hfe of the NPN transistor TR2 is 1. It was set as the distance which becomes below. Therefore, the operation of the parasitic thyristor due to the surge voltage is suppressed, and the destruction of the power supply protection element ZD1 is prevented. Therefore, the semiconductor integrated circuit IC according to the present embodiment provides a drive device for a vehicle ignition device that includes a power protection element and has improved surge resistance.

なお、種々のサージ電圧とは、気中ESD、接触ESD、フィールドディケイやロードダンプ等の高周波又は低周波のサージ電圧である。また、電源保護素子ZD1と同様の構成を有する保護素子を逆直列に接続することで、正方向及び負方向のサージ電圧耐量を改善することができる。 The various surge voltages are high-frequency or low-frequency surge voltages such as air ESD, contact ESD, field decay, and load dump. Moreover, the surge voltage tolerance of positive direction and negative direction can be improved by connecting the protection element which has the structure similar to power supply protection element ZD1 in anti-series.

図3は、本発明の第1の実施形態に係る半導体集積回路の構成を示す断面図である。入力保護素子ZD2は、電源保護素子ZD1と同様に、半導体基板SUBに設けられる。入力保護素子ZD2は、アノード領域28とカソード領域27とアノードコンタクト領域30とカソードコンタクト領域32とを備える。 FIG. 3 is a cross-sectional view showing the configuration of the semiconductor integrated circuit according to the first embodiment of the present invention. The input protection element ZD2 is provided on the semiconductor substrate SUB similarly to the power supply protection element ZD1. The input protection element ZD2 includes an anode region 28, a cathode region 27, an anode contact region 30, and a cathode contact region 32.

第14の半導体領域(カソード領域)27は、N型の導電型を有し、第1の半導体層11と第2の半導体層12とに接する。第15の半導体領域(アノード領域)28は、P型の導電型を有し、第14の半導体領域27に接する。第16の半導体領域29は、P型の導電型を有し、第15の半導体領域28に接し、半導体基板SUBの第1の主面S1に露出する。第17の半導体領域30(アノードコンタクト領域)は、P型の導電型を有し、第16の半導体領域29に接し、半導体基板SUBの第1の主面S1に露出する。第18の半導体領域31は、N型の導電型を有し、第14の半導体領域27に接し、半導体基板SUBの第1の主面S1に露出する。第19の半導体領域32(カソードコンタクト領域)は、N型の導電型を有し、第18の半導体領域31に接し、半導体基板SUBの第1の主面S1に露出する。 The fourteenth semiconductor region (cathode region) 27 has an N-type conductivity type and is in contact with the first semiconductor layer 11 and the second semiconductor layer 12. The fifteenth semiconductor region (anode region) 28 has a P-type conductivity and is in contact with the fourteenth semiconductor region 27. The sixteenth semiconductor region 29 has a P-type conductivity, is in contact with the fifteenth semiconductor region 28, and is exposed on the first main surface S1 of the semiconductor substrate SUB. The seventeenth semiconductor region 30 (anode contact region) has a P-type conductivity, is in contact with the sixteenth semiconductor region 29, and is exposed on the first main surface S1 of the semiconductor substrate SUB. The eighteenth semiconductor region 31 has an N-type conductivity, is in contact with the fourteenth semiconductor region 27, and is exposed on the first main surface S1 of the semiconductor substrate SUB. The nineteenth semiconductor region 32 (cathode contact region) has an N-type conductivity type, is in contact with the eighteenth semiconductor region 31, and is exposed on the first main surface S1 of the semiconductor substrate SUB.

第14の半導体領域27の不純物濃度は、第2の半導体領域14のそれと等しく、1〜5×1019cm−3である。第15の半導体領域28の不純物濃度は、第3及び第4の半導体領域15,16のそれ以下であり、1×1017cm−3〜5×1018cm−3である。第16の半導体領域29の不純物濃度は、1×1018〜5×1019cm−3である。第17の半導体領域30の不純物濃度は、第6の半導体領域18のそれと等しく、5×1018〜1×1020cm−3である。第18の半導体領域31の不純物濃度は、第7の半導体領域19のそれと等しく、1〜5×1019cm−3である。第19の半導体領域32の不純物濃度は、第8の不純物領域20のそれと等しく、2〜8×1020cm−3である。 The impurity concentration of the fourteenth semiconductor region 27 is equal to that of the second semiconductor region 14 and is 1 to 5 × 10 19 cm −3 . The impurity concentration of the fifteenth semiconductor region 28 is lower than that of the third and fourth semiconductor regions 15 and 16, and is 1 × 10 17 cm −3 to 5 × 10 18 cm −3 . The impurity concentration of the sixteenth semiconductor region 29 is 1 × 10 18 to 5 × 10 19 cm −3 . The impurity concentration of the seventeenth semiconductor region 30 is equal to that of the sixth semiconductor region 18 and is 5 × 10 18 to 1 × 10 20 cm −3 . The impurity concentration of the eighteenth semiconductor region 31 is equal to that of the seventh semiconductor region 19 and is 1 to 5 × 10 19 cm −3 . The impurity concentration of the nineteenth semiconductor region 32 is equal to that of the eighth impurity region 20 and is 2 to 8 × 10 20 cm −3 .

本実施形態に係る半導体集積回路ICは、電源保護素子ZD1に加え、上記のように構成される入力保護素子ZD2を備えるため、改善されたサージ耐量を有する車両用点火装置の駆動装置が提供される。 Since the semiconductor integrated circuit IC according to this embodiment includes the input protection element ZD2 configured as described above in addition to the power supply protection element ZD1, a drive device for a vehicle ignition device having improved surge resistance is provided. The

図4は、本発明の第2の実施形態に係る半導体集積回路の構成を示す断面図である。本実施形態に係る半導体集積回路は、第20の半導体領域(アノード中間領域)33を備える点において第1の実施形態に係る半導体集積回路と異なる。第20の半導体領域33は、P型の導電型を有し、第5の半導体領域17と第6の半導体領域18とに介在し、半導体基板SUBの第1の主面S1に露出する。第20の半導体領域33の不純物濃度は、1×1016〜1×1017cm−3であり、第5の半導体領域17の不純物濃度の0.1倍程度に設定される。第20の半導体領域33が設けられることで、電源保護素子ZD1のインピーダンスは低くなる。そのため、本実施形態に係る半導体集積回路ICは、さらに改善されたサージ耐量を有する車両用点火装置の駆動装置が提供される。 FIG. 4 is a sectional view showing a configuration of a semiconductor integrated circuit according to the second embodiment of the present invention. The semiconductor integrated circuit according to the present embodiment is different from the semiconductor integrated circuit according to the first embodiment in that it includes a twentieth semiconductor region (anode intermediate region) 33. The twentieth semiconductor region 33 has a P-type conductivity, is interposed between the fifth semiconductor region 17 and the sixth semiconductor region 18, and is exposed to the first main surface S1 of the semiconductor substrate SUB. The impurity concentration of the twentieth semiconductor region 33 is 1 × 10 16 to 1 × 10 17 cm −3 , and is set to about 0.1 times the impurity concentration of the fifth semiconductor region 17. By providing the twentieth semiconductor region 33, the impedance of the power supply protection element ZD1 becomes low. Therefore, the semiconductor integrated circuit IC according to the present embodiment provides a drive device for a vehicle ignition device having further improved surge resistance.

上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。即ち、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。従って、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。例えば、半導体集積回路ICは、スイッチング素子SWを含んでも良い。また、駆動装置10は、制御部MCUを含んでも良い。 As mentioned above, although this invention was described by embodiment, it should not be understood that the description and drawing which form a part of this indication limit this invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art. That is, it goes without saying that the present invention includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description. For example, the semiconductor integrated circuit IC may include a switching element SW. Further, the driving device 10 may include a control unit MCU.

10 駆動装置
100 車両用点火装置
SW スイッチング素子
MCU 制御部
IC 半導体集積回路
DRV 駆動回路
ZD1 電源保護素子
ZD2 入力保護素子
13 第1の半導体領域(カソード領域)
17 第5の半導体領域(アノード領域)
18 第6の半導体領域(アノードコンタクト領域)
20 第8の半導体領域(カソードコンタクト領域)
33 第20の半導体領域(アノード中間領域)
DESCRIPTION OF SYMBOLS 10 Drive apparatus 100 Vehicle ignition device SW Switching element MCU Control part IC Semiconductor integrated circuit DRV Drive circuit ZD1 Power supply protection element ZD2 Input protection element 13 1st semiconductor area | region (cathode area | region)
17 Fifth semiconductor region (anode region)
18 Sixth semiconductor region (anode contact region)
20 Eighth semiconductor region (cathode contact region)
33 20th semiconductor region (anode intermediate region)

Claims (1)

スイッチング素子と該スイッチング素子を駆動する半導体集積回路とを備え、
前記半導体集積回路は、駆動回路と該駆動回路をサージから保護する電源保護素子と該駆動回路と該電源保護素子とを分断する素子分離領域とを備え、
前記電源保護素子は、互いに対向する第1及び第2の主面を含む半導体基板に設けられた第1導電型のアノード領域と、
前記アノード領域と接するように設けられた第2導電型のカソード領域と、
前記アノード領域と電気的に接続されるとともに前記第1の主面に露出するように設けられた前記第1導電型のアノードコンタクト領域と、
前記カソード領域と電気的に接続されるとともに前記第1の主面に露出するように設けられた前記第2導電型のカソードコンタクト領域と、を備え、
前記アノード領域の不純物濃度は、前記カソード領域の不純物濃度と等しく、前記アノードコンタクト領域の不純物濃度は、前記アノード領域の不純物濃度の100倍以上であり、
前記素子分離領域は第1導電型を有し、
前記素子分離領域を挟んだ前記電源保護素子と反対側の前記第1の主面には、前記素子分離領域と第1導電型の第1の半導体領域との間に第1導電型と反対の第2導電型の領域を有し、
前記素子分離領域の前記第1の主面に露出する半導体領域と前記第1の半導体領域との距離を、
前記アノード領域と前記カソード領域と前記半導体基板の第2の主面に露出した第2の半導体領域とで生じる寄生のPNPトランジスタの電流増幅率と、前記カソード領域と前記第2の半導体領域と前記第1の半導体領域と接続した第2導電型の第3の半導体領域とで生じる寄生のNPNトランジスタの電流増幅率との積が1以下となるようにすることを特徴とする車両用点火装置の駆動装置。
A switching element and a semiconductor integrated circuit for driving the switching element,
The semiconductor integrated circuit includes a drive circuit, a power protection element that protects the drive circuit from a surge , and an element isolation region that divides the drive circuit and the power protection element .
The power protection element includes a first conductivity type anode region provided on a semiconductor substrate including first and second main surfaces facing each other;
A cathode region of a second conductivity type provided in contact with the anode region;
An anode contact region of the first conductivity type provided so as to be electrically connected to the anode region and exposed to the first main surface;
A cathode contact region of the second conductivity type provided so as to be electrically connected to the cathode region and exposed to the first main surface,
The impurity concentration of the anode region is equal to the impurity concentration of the cathode region, the impurity concentration of the anode contact region state, and are more than 100 times the impurity concentration of the anode region,
The element isolation region has a first conductivity type,
The first main surface opposite to the power protection element across the element isolation region is opposite to the first conductivity type between the element isolation region and the first conductivity type first semiconductor region. Having a second conductivity type region;
The distance between the semiconductor region exposed on the first main surface of the element isolation region and the first semiconductor region is
A current amplification factor of a parasitic PNP transistor generated in the anode region, the cathode region, and the second semiconductor region exposed on the second main surface of the semiconductor substrate; the cathode region; the second semiconductor region; first second conductivity type which is connected to the semiconductor region the third semiconductor region and the vehicle ignition device for the product of the current amplification factor of the parasitic NPN transistor produced is characterized to Rukoto to be 1 or less in the Drive device.
JP2014088876A 2014-04-23 2014-04-23 Driving device for vehicle ignition device Active JP6315190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014088876A JP6315190B2 (en) 2014-04-23 2014-04-23 Driving device for vehicle ignition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014088876A JP6315190B2 (en) 2014-04-23 2014-04-23 Driving device for vehicle ignition device

Publications (2)

Publication Number Publication Date
JP2015207726A JP2015207726A (en) 2015-11-19
JP6315190B2 true JP6315190B2 (en) 2018-04-25

Family

ID=54604299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014088876A Active JP6315190B2 (en) 2014-04-23 2014-04-23 Driving device for vehicle ignition device

Country Status (1)

Country Link
JP (1) JP6315190B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129779A (en) * 1989-07-12 1991-06-03 Fuji Electric Co Ltd Semiconductor device having high breakdown strength
JPH03283576A (en) * 1990-03-30 1991-12-13 Nec Corp Semiconductor integrated circuit device
JPH10189761A (en) * 1996-12-20 1998-07-21 Fuji Electric Co Ltd Semiconductor device
JP2004296883A (en) * 2003-03-27 2004-10-21 Sharp Corp Semiconductor device and its manufacturing method
JP2006108272A (en) * 2004-10-04 2006-04-20 Denso Corp Zener diode
JP2013026335A (en) * 2011-07-19 2013-02-04 Toyota Motor Corp Manufacturing method of semiconductor element and manufacturing method of esd protection element
JP2013149768A (en) * 2012-01-19 2013-08-01 Tokai Rika Co Ltd Semiconductor device for surge protection
JP5739826B2 (en) * 2012-01-23 2015-06-24 株式会社東芝 Semiconductor device
JP6098041B2 (en) * 2012-04-02 2017-03-22 富士電機株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP2015207726A (en) 2015-11-19

Similar Documents

Publication Publication Date Title
KR102032334B1 (en) Semiconductor device
JP5296450B2 (en) Semiconductor device
JPWO2017141811A1 (en) Protection circuit, operation method of protection circuit, and semiconductor integrated circuit device
US20080013233A1 (en) Electrostatic breakdown protection circuit
JP2005045100A (en) Semiconductor integrated circuit device
JP2014187288A (en) Electrostatic protective circuit
JP2009064974A (en) Semiconductor device
KR101865492B1 (en) Semiconductor device having esd protection structure
CN104766858B (en) Electrostatic discharge protective equipment
JP6376188B2 (en) Igniter
JP2007053314A (en) Protective circuit and semiconductor device
JP6315190B2 (en) Driving device for vehicle ignition device
US10325902B2 (en) Power transistor with a plurality of bi-directional diodes
JP2007288882A (en) Power protective circuit for electronic equipment of automobile
US7714389B2 (en) Semiconductor device having two bipolar transistors constituting electrostatic protective element
JP2012094565A (en) Esd protection element of semiconductor integrated circuit and esd protection circuit using the same
JP4701886B2 (en) Semiconductor device
US8508517B2 (en) Electrostatic protection element
US20130201584A1 (en) Electrostatic discharge protection device
WO2017143998A1 (en) Transistor driving circuit
JP3997857B2 (en) Semiconductor integrated circuit device
JP2004327976A (en) Pressure welding type semiconductor device
JP2011119415A (en) Semiconductor integrated device
JP2005101386A (en) Electrostatic breakdown protective circuit
JP6624912B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180313

R150 Certificate of patent or registration of utility model

Ref document number: 6315190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250