JPH03129779A - Semiconductor device having high breakdown strength - Google Patents

Semiconductor device having high breakdown strength

Info

Publication number
JPH03129779A
JPH03129779A JP4003490A JP4003490A JPH03129779A JP H03129779 A JPH03129779 A JP H03129779A JP 4003490 A JP4003490 A JP 4003490A JP 4003490 A JP4003490 A JP 4003490A JP H03129779 A JPH03129779 A JP H03129779A
Authority
JP
Japan
Prior art keywords
layer
region
cathode
semiconductor device
zener diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4003490A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Fujihira
龍彦 藤平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to DE4022022A priority Critical patent/DE4022022C2/en
Priority to US07/551,399 priority patent/US5077590A/en
Publication of JPH03129779A publication Critical patent/JPH03129779A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a semiconductor device integrated with Zener diodes having Zener breakdown voltage without sacrifice of overall breakdown strength by setting the impurity concentration at a section in a second region, contacting with a first region, lower than that at a section remote from the first region. CONSTITUTION:An n<-> layer 3 having impurity concentration of about 10<13>-10<16>/cm<2> is laminated on an n<+> substrate 1. A p<-> well 4 is then formed by ion implantation with dosage of about 1X10<13>/cm<2> in the n<-> layer 3, an n<-> cathode layer 51 is formed by ion implantation with dosage of about 1X10<12>-3X10<12>/cm<2> therein, and an n<+> cathode 5 is further formed therein by ion implantation with dosage of about 5X10<15>/cm<2>. Furthermore, a p<+> isolation layer, an electrode 2 contacting with the n<+> substrate 1, anode electrodes 7 contacting respectively with the p<+> isolation layer 6 at the openings of the insulating layer 9, and a cathode electrode 8 contacting with the n<+> cathode layer 5 are provided thus forming a Zener diode comprising a p<-> anode layer 4, an n<-> cathode layer 51 and an n<+> cathode layer 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、両面に主電極を有する高耐圧の電ズ用半導体
素子が形成された半導体基体の一面側に保護用素子とし
てのツェナダイオードが集積さする高耐圧半導体装置に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a semiconductor substrate in which a Zener diode as a protective element is provided on one side of a semiconductor substrate on which a high-voltage semiconductor element having main electrodes on both sides is formed. The present invention relates to integrated high voltage semiconductor devices.

〔従来の技術〕[Conventional technology]

半導体基板の一面側に集積された素子を基板C他面側に
設けられた主電極に印加される電圧に最響されないよう
にするために、基板領域と素子領域の間のPN接合を利
用した半導体装置は、自己分離型として知られてい°る
。第21!lは自己分離型半導体装置に使用されるツェ
ナダイオードの部分を示す。図において、−面に電極2
が被着しているn+シリコン基板lの上にn−バルク層
3が積層され、n−層3の反基板l側に選択的にp−ウ
ェル4が形成されている。 さらに、このp−ウェル4
の反基板1側に選択的に n゛層5形成される。
In order to prevent the elements integrated on one side of the semiconductor substrate from being affected by the voltage applied to the main electrode provided on the other side of the substrate C, a PN junction between the substrate area and the element area is used. Semiconductor devices are known as self-isolated devices. 21st! 1 indicates a portion of a Zener diode used in a self-isolated semiconductor device. In the figure, electrode 2 is on the - side.
An n- bulk layer 3 is laminated on an n+ silicon substrate l on which is deposited, and a p- well 4 is selectively formed on the side of the n- layer 3 opposite to the substrate l. Furthermore, this p-well 4
An n layer 5 is selectively formed on the opposite side of the substrate 1.

このn“層5がツェナダイオードのカソード層。This n'' layer 5 is the cathode layer of the Zener diode.

p−ウェル4がアノード層となる。n+層5を囲んで、
表面からn−層3に達するp+層6が設けられ、ツェナ
ダイオードのアノード電極7がこのp+層6に、カソー
ド電極8がn゛層5それぞれ絶縁膜9の開口部でそれぞ
れ接、触している。電極7を他の集積素子の電極と接続
し、電極8を端子あるいは別の集積素子と接続すること
により、ツェナダイオードに過電圧に対する保護作用を
させることができる。 p+層6は分離層として役立つ
もので、なくてもよいがとなり合う集積素子間に生ずる
寄生素子の動作を抑制する効果がある。
The p-well 4 becomes an anode layer. Surrounding the n+ layer 5,
A p+ layer 6 reaching from the surface to the n- layer 3 is provided, and the anode electrode 7 of the Zener diode is in contact with this p+ layer 6, and the cathode electrode 8 is in contact with the n-layer 5 at the opening of the insulating film 9, respectively. There is. By connecting the electrode 7 to an electrode of another integrated element and the electrode 8 to a terminal or another integrated element, the Zener diode can provide protection against overvoltages. The p+ layer 6 serves as a separation layer, and although it is not necessary, it has the effect of suppressing the operation of parasitic elements that occur between adjacent integrated elements.

第3図″は、双方向の過電圧に対する保護素子として双
方向ツェナダイオードが形成された例で、p−ウェル4
にn“カソード層5が2個設けられており、それぞれ接
触するカソード電極8により他の集積素子あるいは端子
と接続される。第2図。
Figure 3'' shows an example in which a bidirectional Zener diode is formed as a protection element against bidirectional overvoltage, and the p-well 4
Two n'' cathode layers 5 are provided on the wafer, and are connected to other integrated elements or terminals by cathode electrodes 8 in contact with each other. FIG.

第3図におけるp−ウェル4とn4層5からなるツェナ
ダイオードは、電極2に印加される正の電圧に対して、
n−層3とp−層4との間のPN接合により分離されて
いる。
The Zener diode consisting of the p-well 4 and the n4 layer 5 in FIG.
They are separated by a PN junction between n-layer 3 and p-layer 4.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第2図あるいは第3図に示したツェナダイオードのツェ
ナ降伏電圧を高くしようとする場合には、アノード層の
 p−ウェル4の不純物濃度を低くしなければならない
。 しかしp−ウェル4の濃度を低くすると、n+カソ
ード層5をエミッタ、p−ウェル4をベース、n−バル
ク層3およびn′″基板lをコレクタとした寄生バイポ
ーラトランジスタの直流電流増幅率hF!が大きくなる
ため、コレクタ。
In order to increase the Zener breakdown voltage of the Zener diode shown in FIG. 2 or 3, the impurity concentration in the p-well 4 of the anode layer must be lowered. However, when the concentration of the p-well 4 is lowered, the direct current amplification factor hF! of a parasitic bipolar transistor with the n+ cathode layer 5 as the emitter, the p-well 4 as the base, and the n- bulk layer 3 and the n'' substrate l as the collector! collector because it gets bigger.

エミッタふ間最大電圧V CHoが低下してしまう。例
えば、ツェナダイオードのツェナ降伏電圧が5Vのとき
l:ハVcgoが90〜95 V 、  to V (
7)ときには80〜85Vであり、25Vに高めるとV
cioが50Vになってしまう。 このVCHOが電極
2に印加できる電圧、すなわちこの半導体装置全体の耐
圧を決めるので、結果的には半導体装置全体の耐圧が低
下することになる。
The maximum emitter voltage V CHo decreases. For example, when the Zener breakdown voltage of the Zener diode is 5 V, l:c Vcgo is 90 to 95 V, to V (
7) Sometimes it is 80-85V, and when increased to 25V, V
cio becomes 50V. Since this VCHO determines the voltage that can be applied to the electrode 2, that is, the withstand voltage of the entire semiconductor device, the withstand voltage of the entire semiconductor device is reduced as a result.

本発明の目的は、このような問題を解決し、半導体装置
全体の耐圧を低下させることなく、高いツェナ降伏電圧
をもつツェナダイオードを集積した半導体装置を提供す
ることにある。
An object of the present invention is to solve such problems and provide a semiconductor device in which Zener diodes having a high Zener breakdown voltage are integrated without reducing the withstand voltage of the entire semiconductor device.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために、本発明は、第−導電形の
半導体基体の一方の主面側に、その一方の主面に露出す
る第二導電、形の第一領域とその内部に設けられ、同じ
く一方の主面に露出する第−導電形の第二領域とからな
るツェナダイオードが形成される高耐圧半導体装置にお
いて、第二領域の第一領域に接する部分が第一領域より
遠い部分より低い不純物濃度をもつものとする。
In order to achieve the above object, the present invention provides a first region of a second conductivity type exposed on one main surface side of a semiconductor substrate of a second conductivity type, and a first region of a second conductivity type exposed on the one main surface side. In a high-voltage semiconductor device in which a Zener diode is formed, the portion of the second region in contact with the first region is farther than the first region. shall have a lower impurity concentration.

〔作用〕[Effect]

第二領域の第一領域に接する部分を低不純物濃度化する
ことにより、第−導電形の第二領域をエミッタ、第二導
電形の第一領域をベース、第−導電形の半導体基体の残
りの領域をコレクタとする寄生バイポーラトランジスタ
のエミッタ・ベース接合のエミッタ側が低濃度化し、h
PI’が下がる。
By reducing the impurity concentration of the portion of the second region in contact with the first region, the second region of the second conductivity type becomes an emitter, the first region of the second conductivity type becomes a base, and the rest of the semiconductor substrate of the second conductivity type The emitter side of the emitter-base junction of the parasitic bipolar transistor whose collector is the region of h
PI' decreases.

これにより寄生バイポーラトランジスタの V ci。As a result, Vci of the parasitic bipolar transistor.

は大幅に低下するが、第一領域の不純物濃度で決まるツ
ェナダイオードのツェナ降伏電圧はほとんど低下しない
is significantly reduced, but the Zener breakdown voltage of the Zener diode, which is determined by the impurity concentration of the first region, is hardly reduced.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示し、第2図と共通の部分
は同一の符号が付されている。第2図の場合と同様、 
n″基板1の上には不純物濃度101@〜10”/cd
程度のn−層3を積層した。このn−層3にlXl0”
/cd程度のドーズ量でイオン注入によりp−ウェル4
を形成、その中へのI XlO12〜3XIO1′/c
rI程度のドーズ量でのイオン注入によりn−カソード
層51を、さらにその中への5×10”/cd程度のド
ーズ量でのイオン注入によりn+カソード層5を形成し
た。このほかにp+分離層を形成し、 n゛基板1°に
接触する電極2、それぞれwA縁膜9の開口部で p゛
分離層6に接触するアノード電極7、n゛カソー1層5
接触するカソード電極8を設けることは従来と同様であ
った。
FIG. 1 shows an embodiment of the present invention, and parts common to those in FIG. 2 are given the same reference numerals. As in the case of Figure 2,
On the n'' substrate 1, there is an impurity concentration of 101@~10''/cd.
About 3 n-layers were laminated. lXl0'' in this n-layer 3
The p-well 4 is formed by ion implantation at a dose of about /cd.
, into which I XlO12~3XIO1'/c
An n- cathode layer 51 was formed by ion implantation at a dose of about rI, and an n+ cathode layer 5 was formed by ion implantation into the layer at a dose of about 5×10''/cd. forming layers, n' electrode 2 in contact with the substrate 1°, p' anode electrode 7 in contact with the separation layer 6 at the opening of the wA membrane 9, n' catho 1 layer 5;
The provision of the contacting cathode electrode 8 was the same as in the prior art.

このようにしてp−“rノードF14.n−カソード層
51 およびn゛カソー1層5らなるツェナダイオード
を形成することにより、ツェナ降伏電圧が25Vである
のにかかわらず、n8層5およびn−層51をエミッタ
、p−層dをベース、n−層3およびn゛基板1をコレ
クタとする寄生バイポーラトランジスタのVat。とし
て92Vの値が得られた。
By forming the Zener diode consisting of the p-"r node F14.n-cathode layer 51 and the n-cathode layer 5 in this way, the n8 layer 5 and n A value of 92V was obtained as Vat of the parasitic bipolar transistor in which the − layer 51 is the emitter, the p− layer d is the base, and the n− layer 3 and the n′ substrate 1 are the collectors.

第4図は第3図と同様、双方向ツェナダイオードを形成
する場合の本発明の別の実施例を示す。
FIG. 4, like FIG. 3, shows another embodiment of the invention in the case of forming a bidirectional Zener diode.

二つのツェナダイオードのカソード層はそれぞれn゛層
5それを囲むn−層51とから戊っている。
The cathode layers of the two Zener diodes are separated from the n' layer 5 and the surrounding n' layer 51, respectively.

これにより半導体装置全体の耐圧を高めることができた
が、各ツェナダイオードに要求される耐圧の異なる場合
には、一方のツェナダイオードのみカソード層を2重層
としても半導体装置全体の耐圧を高めることができる。
This made it possible to increase the breakdown voltage of the entire semiconductor device, but if the breakdown voltage required for each Zener diode is different, it is also possible to increase the breakdown voltage of the entire semiconductor device by making one Zener diode double-layered. can.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ツェナダイオードのツェナ降伏電圧を
決める第二導電形の領域と接合を形成する第−導電影領
域の接合に接する部分を低不純物濃度にし、寄生バイポ
ーラトランジスタのhPEを低下させることにより、半
導体装置全体の耐圧を低下させることなく、ツェナ降伏
電圧を高めることを可能にし、任意の降伏電圧のツェナ
ダイオードで保護される高耐圧の複合半導体装置を得る
ことができた。
According to the present invention, the region of the second conductivity type that determines the Zener breakdown voltage of the Zener diode and the region in contact with the junction of the second conductive shadow region that forms the junction are made to have a low impurity concentration, thereby lowering the hPE of the parasitic bipolar transistor. This makes it possible to increase the Zener breakdown voltage without lowering the breakdown voltage of the entire semiconductor device, and to obtain a high breakdown voltage composite semiconductor device protected by Zener diodes with arbitrary breakdown voltages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の高耐圧半導体装置のツェナ
ダイオード部の断面図、第2図は従来の高耐圧半導体装
置のツェナダイオード部の断面図、第3図は別の従来の
高耐圧半導体装置のツェナダイオード部の断面図、第4
図は本発明の別の実施例の高耐圧半導体装置のツェナダ
イオード部の断面図である。 n″基板、 n−バルク層、 p ウ エル、5 n+カソード層、 1 カソード層。 // 第1図 n十 第2図 / /−\−1 //// 「〕+ −へ−1 ///、///// 第3図 第4図
FIG. 1 is a sectional view of a Zener diode portion of a high voltage semiconductor device according to an embodiment of the present invention, FIG. 2 is a sectional view of a Zener diode portion of a conventional high voltage semiconductor device, and FIG. 3 is a sectional view of a Zener diode portion of a conventional high voltage semiconductor device. Cross-sectional view of the Zener diode part of the voltage-resistant semiconductor device, No. 4
The figure is a sectional view of a Zener diode portion of a high voltage semiconductor device according to another embodiment of the present invention. n'' substrate, n-bulk layer, p-well, 5 n+ cathode layers, 1 cathode layer. /, ///// Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1)第一導電形の半導体基体の一方の主面側に、その一
方の主面に露出する第二導電形の第一領域とその内部に
設けられ、同じく一方の主面に露出する第一導電形の第
二領域とからなるツェナダイオードが形成されるものに
おいて、第二領域の第一領域に接する部分が第一領域よ
り遠い部分より低い不純物濃度をもつことを特徴とする
高耐圧半導体装置。
1) A first region of a second conductivity type exposed on one main surface of the semiconductor substrate of the first conductivity type and a first region provided inside the first region exposed on one main surface of the semiconductor substrate of the first conductivity type and also exposed on the one main surface. A high breakdown voltage semiconductor device in which a Zener diode is formed comprising a conductive type second region, wherein a portion of the second region in contact with the first region has a lower impurity concentration than a portion farther from the first region. .
JP4003490A 1989-07-12 1990-02-21 Semiconductor device having high breakdown strength Pending JPH03129779A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE4022022A DE4022022C2 (en) 1989-07-12 1990-07-11 Vertical semiconductor device with Zener diode as overvoltage protection
US07/551,399 US5077590A (en) 1989-07-12 1990-07-12 High voltage semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-179945 1989-07-12
JP17994589 1989-07-12

Publications (1)

Publication Number Publication Date
JPH03129779A true JPH03129779A (en) 1991-06-03

Family

ID=16074694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4003490A Pending JPH03129779A (en) 1989-07-12 1990-02-21 Semiconductor device having high breakdown strength

Country Status (1)

Country Link
JP (1) JPH03129779A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108272A (en) * 2004-10-04 2006-04-20 Denso Corp Zener diode
JP2015207726A (en) * 2014-04-23 2015-11-19 サンケン電気株式会社 Drive device for vehicle ignition device
JPWO2019092872A1 (en) * 2017-11-13 2020-11-12 新電元工業株式会社 Wide gap semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523389A (en) * 1975-06-27 1977-01-11 Toshiba Corp Field effect semiconductor device
JPS5376678A (en) * 1976-12-17 1978-07-07 Nec Corp Semiconductor device
JPS6091675A (en) * 1983-10-25 1985-05-23 Matsushita Electric Ind Co Ltd Semiconductor device
JPS6135568A (en) * 1984-07-27 1986-02-20 Toshiba Corp Gate protecting diode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523389A (en) * 1975-06-27 1977-01-11 Toshiba Corp Field effect semiconductor device
JPS5376678A (en) * 1976-12-17 1978-07-07 Nec Corp Semiconductor device
JPS6091675A (en) * 1983-10-25 1985-05-23 Matsushita Electric Ind Co Ltd Semiconductor device
JPS6135568A (en) * 1984-07-27 1986-02-20 Toshiba Corp Gate protecting diode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108272A (en) * 2004-10-04 2006-04-20 Denso Corp Zener diode
JP2015207726A (en) * 2014-04-23 2015-11-19 サンケン電気株式会社 Drive device for vehicle ignition device
JPWO2019092872A1 (en) * 2017-11-13 2020-11-12 新電元工業株式会社 Wide gap semiconductor device
US11437506B2 (en) 2017-11-13 2022-09-06 Shindengen Electric Manufacturing Co., Ltd. Wide-gap semiconductor device

Similar Documents

Publication Publication Date Title
KR100638456B1 (en) Esd protection circuit and method for manufacturing the same
JP2671886B2 (en) Power integrated circuit
US8222115B2 (en) Method of forming a high capacitance diode
EP1394860B1 (en) Power devices with improved breakdown voltages
US9455253B2 (en) Bidirectional switch
US4631562A (en) Zener diode structure
CA1253631A (en) Protection of igfet integrated circuits from electrostatic discharge
JPH0715006A (en) Integrated structure protective device
US5077590A (en) High voltage semiconductor device
US20020153564A1 (en) Semiconductor device
US5323041A (en) High-breakdown-voltage semiconductor element
US6384453B1 (en) High withstand voltage diode and method for manufacturing same
JPH03129779A (en) Semiconductor device having high breakdown strength
JP4423466B2 (en) Semiconductor device
JPS60263461A (en) Manufacture of high withstand voltage longitudinal transistor
JP3297087B2 (en) High voltage semiconductor device
JP3217552B2 (en) Horizontal high voltage semiconductor device
US20230261040A1 (en) Semiconductor device including substrate layer with floating base region and gate driver circuit
JP3342944B2 (en) Horizontal high voltage semiconductor device
JPH02294073A (en) Large caeck capacity semiconductor element
JP2023003564A (en) Semiconductor device
US5886386A (en) Method for making a bipolar transistor for the protection of an integrated circuit against electrostatic discharges
JPH025309B2 (en)
JPS604263A (en) Mos field effect semiconductor device
JPH02283070A (en) Semiconductor integrated circuit device using input protecting circuit