JP4423466B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP4423466B2
JP4423466B2 JP2004040026A JP2004040026A JP4423466B2 JP 4423466 B2 JP4423466 B2 JP 4423466B2 JP 2004040026 A JP2004040026 A JP 2004040026A JP 2004040026 A JP2004040026 A JP 2004040026A JP 4423466 B2 JP4423466 B2 JP 4423466B2
Authority
JP
Japan
Prior art keywords
region
well region
emitter
diode
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004040026A
Other languages
Japanese (ja)
Other versions
JP2005235844A (en
Inventor
浩 金丸
直樹 熊谷
祐一 原田
巧裕 伊倉
龍 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2004040026A priority Critical patent/JP4423466B2/en
Publication of JP2005235844A publication Critical patent/JP2005235844A/en
Application granted granted Critical
Publication of JP4423466B2 publication Critical patent/JP4423466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

この発明は、静電気放電(Electrostatic Discharge:ESD)破壊などを防止するESD保護素子を形成した半導体装置に関する。   The present invention relates to a semiconductor device in which an ESD protection element for preventing electrostatic discharge (ESD) breakdown and the like is formed.

静電気放電は、半導体装置が配置されている機器の他の回路部や絶縁物、また半導体装置を取り扱う人間の人体などから発生し、半導体装置の破壊や損傷を引き起こす。ESD(以下、ESDサージという)は、半導体装置の信頼性を左右する重要な要因であり、より安定な動作を確保するためにはESDサージに対する破壊耐量を十分に高めることが望ましい。特に自動車分野等では、電荷を帯びた人や物が接触する機会が多く、このESD破壊耐量の大きいパワーICが求められている。
このESDサージから素子を保護するESD保護素子について開示している例について説明する。
第1の例では、横型高周波パワーMISFETのソース−ドレイン間に、ドレイン−基板間よりも耐圧を低くしたツェナーダイオードを設け、このツェナーダイオードをESD保護素子として、ESDサージ電流に対する破壊強度を向上させることが記載されている(特許文献1)。
The electrostatic discharge is generated from other circuit portions or insulators of the device in which the semiconductor device is arranged, or a human body handling the semiconductor device, and causes destruction or damage of the semiconductor device. ESD (hereinafter referred to as an ESD surge) is an important factor that affects the reliability of a semiconductor device, and it is desirable to sufficiently increase the breakdown resistance against the ESD surge in order to ensure more stable operation. In particular, in the automobile field and the like, there are many occasions where charged people and objects come into contact with each other, and there is a demand for a power IC having a large ESD breakdown resistance.
The example which discloses the ESD protection element which protects an element from this ESD surge is demonstrated.
In the first example, a Zener diode having a withstand voltage lower than that between the drain and the substrate is provided between the source and drain of the lateral high-frequency power MISFET, and this Zener diode is used as an ESD protection element to improve the breakdown strength against ESD surge current. (Patent Document 1).

第2の例では、アップドレイン型MOSFETにおいて、nウェル層の表層部にディープn+ 領域(ドレイン領域)に隣接してpベース領域が延設され、pベース領域は、ディープn+ 領域と一部が重なるように形成され、p+ 領域(pベース領域)がソース電極と接続されている。これにより、ソース・ドレイン間にサージバイパス用ダイオード(ESD保護素子)が形成されて、MOSFETをESDサージから保護できることが記載されている(特許文献2)。
つぎに、前記の例とは異なる構造の従来のESD保護素子について説明する。
図5は、従来のESD保護素子を有する半導体装置の要部断面図である。ESD保護素子70はベース−エミッタショート型のpnpトランジスタ68であり、被保護素子は横型MOSFET21である。
In the second example, in the up-drain MOSFET, a p base region extends adjacent to the deep n + region (drain region) in the surface layer portion of the n well layer, and the p base region is identical to the deep n + region. The p + region (p base region) is connected to the source electrode. Thus, it is described that a surge bypass diode (ESD protection element) is formed between the source and the drain to protect the MOSFET from the ESD surge (Patent Document 2).
Next, a conventional ESD protection element having a structure different from the above example will be described.
FIG. 5 is a cross-sectional view of a main part of a semiconductor device having a conventional ESD protection element. The ESD protection element 70 is a base-emitter short pnp transistor 68 and the protected element is a lateral MOSFET 21.

高濃度のp基板51上にp基板51より低濃度のpエピタキシャル層52(濃度は1×1015cm-3程度)を形成し、このpエピタキシャル層52の表面層に不純物濃度が1×1015〜1×1016cm-3程度で、厚みが2〜5μm程度の第1nウェル領域53を形成する。この第1nウェル領域53の表面層に不純物濃度が5×1016cm-3〜1×1017程度で、厚みが1μm〜2μm程度のpウェル領域54を形成する。このpウェル領域54の表面層に、nソース領域55とnドレイン領域56を形成し、このnソース領域55とnドレイン領域56に挟まれたpウェル領域54上には数十nm厚のゲート酸化膜57を介してポリシリコンでゲート電極58を形成する。nソース領域55とnドレイン領域56の表面層にはオーミック接触のための図示しない高濃度のn層を形成する。ドレイン側には高耐圧化のためのLOCOS酸化膜59を形成する。 A p epitaxial layer 52 (concentration is about 1 × 10 15 cm −3 ) having a concentration lower than that of the p substrate 51 is formed on the high concentration p substrate 51, and an impurity concentration of 1 × 10 6 is formed on the surface layer of the p epitaxial layer 52. A first n-well region 53 having a thickness of about 15 to 1 × 10 16 cm −3 and a thickness of about 2 to 5 μm is formed. A p-well region 54 having an impurity concentration of about 5 × 10 16 cm −3 to 1 × 10 17 and a thickness of about 1 μm to 2 μm is formed on the surface layer of the first n-well region 53. An n source region 55 and an n drain region 56 are formed on the surface layer of the p well region 54, and a gate having a thickness of several tens of nm is formed on the p well region 54 sandwiched between the n source region 55 and the n drain region 56. A gate electrode 58 is formed of polysilicon through an oxide film 57. On the surface layers of the n source region 55 and the n drain region 56, a high concentration n layer (not shown) for ohmic contact is formed. A LOCOS oxide film 59 for increasing the breakdown voltage is formed on the drain side.

一方、pエピタキシャル層52の表面層に、前記の第1nウェル領域53と離して、第1nウェル領域53より不純物濃度が高く、拡散深さが深い第2nウェル領域62を形成し、この第2nウェル領域62の表面層にpエミッタ領域63とこのpエミッタ領域63をショートするnショート領域64を形成する。このpエミッタ領域63とnショート領域64上にエミッタ電極66を形成し、p基板51の裏面に裏面電極67を形成する。p基板51、pエピタキシャル層52、第2nウェル領域62、pエミッタ領域63およびnショート領域64でベース−エミッタショート型のpnpトランジスタ68が形成され、このpnpトランジスタ68がESD保護素子70となる。
図6は、第2nウェル領域の拡散深さとアバランシェ電圧の関係を示す図である。第2nウェル領域62の拡散深さL5が深くなるにつれてアバランシェ電圧は低下する。前記のように、第1nウェル領域53の拡散深さL4より第2nウェル領域62の拡散深さL5を深くすることで、pnpトランジスタ68のアバランシェ電圧をMOSFET21のアバランシェ電圧より低くして、ESDサージが印加されたとき、ESD保護素子70でそのESDサージ電流を流して電荷を引き抜いて、MOSFET21をESD破壊から防止する。
On the other hand, a second n well region 62 having an impurity concentration higher than that of the first n well region 53 and a deep diffusion depth is formed on the surface layer of the p epitaxial layer 52 apart from the first n well region 53. A p emitter region 63 and an n short region 64 that short-circuits the p emitter region 63 are formed in the surface layer of the well region 62. An emitter electrode 66 is formed on the p emitter region 63 and the n short region 64, and a back electrode 67 is formed on the back surface of the p substrate 51. The p-substrate 51, the p-epitaxial layer 52, the second n-well region 62, the p-emitter region 63, and the n-short region 64 form a base-emitter short-type pnp transistor 68. The pnp transistor 68 serves as an ESD protection element 70.
FIG. 6 is a diagram showing the relationship between the diffusion depth of the second n-well region and the avalanche voltage. The avalanche voltage decreases as the diffusion depth L5 of the second n-well region 62 increases. As described above, by increasing the diffusion depth L5 of the second n-well region 62 from the diffusion depth L4 of the first n-well region 53, the avalanche voltage of the pnp transistor 68 is made lower than the avalanche voltage of the MOSFET 21, and the ESD surge. Is applied, the ESD surge current is passed through the ESD protection element 70 to extract the charge, thereby preventing the MOSFET 21 from being damaged by ESD.

また、pnpトランジスタ68において、ベースオープンの場合(nショート領域64を形成しない場合)、アバランシェ動作させるとベース−エミッタショートの場合に比べて、大幅にアバランシェ電圧が低下し、ESDサージでESD保護素子に大電流が流れてESD保護素子が破壊することがある。また、このアバランシェ電圧の温度依存性が大きくなる。
そのために、ベース−エミッタ間をショートしてpエミッタ領域63からnベース領域(第2nウェル領域62)への注入効率を抑制して、アバランシェ電圧の低下し過ぎを防止し、アバランシェ電圧の温度依存性を小さくしたベース−エミッタショート型のpnpトランジスタがESD保護素子70として用いられる。
図7は、従来の別のESD保護素子を有する半導体装置の要部断面図である。図5との違いは、製造コストを低減するために、第1nウェル領域53と第2nウェル領域62の不純物濃度と拡散深さを同じに形成して、ESD保護素子70とした点である。このように第1、第2nウェル領域53、62を同時に形成した場合、MOSFET21のアバランシェ電圧を上げるためと、pnpトランジスタ68の電流増幅率hFEを増大させて動作抵抗を下げるために、第1、第2nウェル領域53、62の不純物濃度を同じ値で下げると、図8(a)に示すように、pnpトランジスタ68とMOSFET21のアバランシェ電圧は共に上がる。図8(b)には、pnpトランジスタ68の動作抵抗の第2nウェル領域62の不純物濃度依存性を示す。
In the pnp transistor 68, when the base is open (when the n short region 64 is not formed), when the avalanche operation is performed, the avalanche voltage is significantly reduced as compared with the case of the base-emitter short, and the ESD protection element is caused by the ESD surge. A large current may flow to the ESD protection element. In addition, the temperature dependence of the avalanche voltage is increased.
Therefore, the base-emitter is short-circuited to suppress the injection efficiency from the p emitter region 63 to the n base region (second n-well region 62), thereby preventing the avalanche voltage from being excessively lowered and the temperature dependence of the avalanche voltage. A base-emitter short type pnp transistor with reduced characteristics is used as the ESD protection element 70.
FIG. 7 is a cross-sectional view of a main part of a semiconductor device having another conventional ESD protection element. The difference from FIG. 5 is that the ESD protection element 70 is formed by forming the first n well region 53 and the second n well region 62 with the same impurity concentration and diffusion depth in order to reduce the manufacturing cost. When the first and second n-well regions 53 and 62 are formed at the same time, in order to increase the avalanche voltage of the MOSFET 21 and increase the current amplification factor hFE of the pnp transistor 68 to decrease the operating resistance, When the impurity concentrations of the second n-well regions 53 and 62 are lowered by the same value, both the avalanche voltages of the pnp transistor 68 and the MOSFET 21 are increased as shown in FIG. FIG. 8B shows the dependency of the operating resistance of the pnp transistor 68 on the impurity concentration of the second n-well region 62.

尚、ここでは、ESDサージ電流のピーク値の相当する電流(例えば60A)をIP 、その電流値(IP )での電圧値VP 、アバランシェ電圧VAVとしたとき、前記の動作抵抗は〔(VP −VAV)÷IP 〕の値をいう。
特開平10−290008号公報 図1 特開2001−127294号公報 図3
Here, when the current corresponding to the peak value of the ESD surge current (for example, 60 A) is IP, the voltage value VP at the current value (IP), and the avalanche voltage VAV, the operating resistance is [(VP − VAV) ÷ IP].
Japanese Patent Laid-Open No. 10-290008 FIG. JP 2001-127294 A FIG.

しかし、図5において、第2nウェル領域62の拡散深さL5を深くすると、pnpトランジスタ68のnベース領域である第2nウェル領域62の幅が大きくなり、正孔の輸送効率が低下して、pnpトランジスタ68の電流増幅率hFEが小さくなり、動作抵抗が高くなってしまう。
動作抵抗が高くなり、ESDサージを印加してESD保護素子70に流れるESDサージ電流が大きくなると、動作抵抗とESDサージ電流の積が大きくなり、大電流領域でのコレクタ・エミッタ間の電圧がMOSFET21のブレークダウン電圧を超えてしまい、MOSFET21をESD破壊から保護できない。
一方、この動作抵抗を小さくするために、第2nウェル領域62の拡散深さL5を浅くして、pnpトランジスタ68の電流増幅率hFEを大きくすると、図6で示すように、拡散深さL5が浅すぎると、pnpトランジスタ68のアバランシェ電圧が、MOSFET21のアバランシェ電圧より高くなり、ESD保護素子70がMOSFET21をESDサージから保護できなくなる。
However, in FIG. 5, when the diffusion depth L5 of the second n-well region 62 is increased, the width of the second n-well region 62, which is the n-base region of the pnp transistor 68, increases, and the hole transport efficiency decreases, The current amplification factor hFE of the pnp transistor 68 is reduced, and the operating resistance is increased.
When the operating resistance increases and the ESD surge current flowing through the ESD protection element 70 by applying an ESD surge increases, the product of the operating resistance and the ESD surge current increases, and the voltage between the collector and the emitter in the large current region becomes the MOSFET 21. Therefore, the MOSFET 21 cannot be protected from the ESD breakdown.
On the other hand, if the diffusion depth L5 of the second n-well region 62 is decreased and the current amplification factor hFE of the pnp transistor 68 is increased in order to reduce this operating resistance, the diffusion depth L5 is reduced as shown in FIG. If it is too shallow, the avalanche voltage of the pnp transistor 68 becomes higher than the avalanche voltage of the MOSFET 21, and the ESD protection element 70 cannot protect the MOSFET 21 from the ESD surge.

また、図7においてはpnpトランジスタ68の動作抵抗を小さくするために、第1、第2nウェル領域53、62の不純物濃度を低くし過ぎると、図8(a)に示すように、pnpトランジスタ68のアバランシェ電圧がMOSFET21のアバランシェ電圧より高くなり、ESD保護素子70でMOSFET21を保護できなくなる。この発明の目的は、前記の課題を解決して、被保護素子であるMOSFETのアバランシェ電圧より低くして、動作抵抗を小さくできるESD保護素子を有する半導体装置を提供することにある。 In FIG. 7, if the impurity concentration of the first and second n-well regions 53 and 62 is made too low in order to reduce the operating resistance of the pnp transistor 68 , the pnp transistor as shown in FIG. The avalanche voltage of 68 becomes higher than the avalanche voltage of the MOSFET 21, and the ESD protection element 70 cannot protect the MOSFET 21. An object of the present invention is to solve the above-described problems and provide a semiconductor device having an ESD protection element that can be made lower than the avalanche voltage of a MOSFET that is a protected element to reduce the operating resistance.

前記の目的を達成するために、同一半導体基板に横型のMISFETと、該横型のMISFETと並列接続して配置され、ベース領域とエミッタ領域をショートしたベース−エミッタショート型の縦型のバイポーラトランジスタとを有する半導体装置において、
前記バイポーラトランジスタとpnダイオードを前記半導体基板に並列接続して配置し、該ダイオードのカソード領域が前記バイポーラトランジスタのベース領域と接続し、前記ダイオードのアバランシェ電圧が、前記バイポーラトランジスタのアバランシェ電圧および前記MISFETのアバランシェ電圧の両者より低く、かつ、前記ダイオードのカソード領域の拡散深さが、前記バイポーラトランジスタのベース領域の拡散深さより深いとよい。
また、前記ダイオードのカソード領域の不純物濃度が、前記バイポーラトランジスタのベース領域の不純物濃度より高いとよい。
In order to achieve the above object, a lateral MISFET and a base-emitter short vertical bipolar transistor in which a lateral MISFET is connected in parallel to the lateral MISFET and shorted between a base region and an emitter region on the same semiconductor substrate, In a semiconductor device having
The bipolar transistor and the pn diode are arranged in parallel with the semiconductor substrate, the cathode region of the diode is connected to the base region of the bipolar transistor, the avalanche voltage of the diode is the avalanche voltage of the bipolar transistor and the MISFET low rather than both of the avalanche voltage of and diffusion depth of the cathode region of the diode, may deeper than the diffusion depth of the base region of the bipolar transistor.
The impurity concentration in the cathode region of the diode may be higher than the impurity concentration in the base region of the bipolar transistor.

また、第1導電型の第1半導体層上に該第1半導体層より低濃度の第1導電型の第2半導体層を形成し、該第2半導体層の表面層に離して形成される第2導電型の第1ウェル領域および第2ウェル領域と、該第1ウェル領域の表面層に形成される第1導電型の第3ウェル領域と、該第3ウェル領域の表面層に形成される第2導電型のソース領域およびドレイン領域と、該ソース領域とドレイン領域に挟まれた前記第3ウェル領域上にゲート絶縁膜を介して形成されるゲート電極と、前記ソース領域上とドレイン領域上に形成されるソース電極とドレイン電極と、前記第2ウェル領域の表面層に第1導電型のエミッタ領域と、該エミッタ領域を貫通し第2ウェル領域に達して形成される第2導電型のショート領域と、前記第2ウェル領域と接して前記第2半導体層の表面層に該第2ウェル領域より拡散深さを深くして形成される第2導電型の第4ウェル領域と、前記エミッタ領域上とショート領域上に形成されるエミッタ電極と、前記第1半導体層の裏面に形成される裏面電極とを有する構成とする。   Also, a first conductive type second semiconductor layer having a lower concentration than the first semiconductor layer is formed on the first conductive type first semiconductor layer, and the second conductive layer is formed separately from the surface layer of the second semiconductor layer. A first well region and a second well region of two conductivity types; a third well region of a first conductivity type formed in a surface layer of the first well region; and a surface layer of the third well region. A source region and a drain region of the second conductivity type; a gate electrode formed on the third well region sandwiched between the source region and the drain region via a gate insulating film; and the source region and the drain region A source electrode and a drain electrode, a first conductivity type emitter region in the surface layer of the second well region, and a second conductivity type formed through the emitter region and reaching the second well region. In contact with the short region and the second well region A fourth well region of a second conductivity type formed in the surface layer of the second semiconductor layer with a diffusion depth deeper than that of the second well region; and an emitter electrode formed on the emitter region and the short region And a back electrode formed on the back surface of the first semiconductor layer.

また、前記第4ウェル領域の不純物濃度が、前記第2ウェル領域の不純物濃度より高いとよい。
また、前記第2ウェル領域がバイポーラトランジスタのベース領域であり、前記第4ウェル領域がダイオードのカソード領域である構成とする。
The impurity concentration of the fourth well region may be higher than the impurity concentration of the second well region.
The second well region is a base region of a bipolar transistor, and the fourth well region is a cathode region of a diode.

この発明によると、ESD保護素子をベース−エミッタショート型のpnpトランジスタとpnダイオードを並列配置して形成し、pnダイオードのアバランシェ電流でpnpトランジスタを動作させることにより、pnダイオードでアバランシェ電圧を決定し、pnpトランジスタで動作抵抗を決定することができる。その結果、被保護素子であるMOSFETのアバランシェ電圧より低くしながら、動作抵抗を小さくできるESD保護素子を形成できて、被保護素子をESDサージから確実に保護することができる。
また、ESD保護素子を大面積化することでESD破壊耐量を容易に高めることができる。
According to the present invention, an ESD protection element is formed by arranging a base-emitter short type pnp transistor and a pn diode in parallel, and the pnp transistor is operated by the avalanche current of the pn diode, whereby the avalanche voltage is determined by the pn diode. The operating resistance can be determined by a pnp transistor. As a result, an ESD protection element that can reduce the operating resistance while being lower than the avalanche voltage of the MOSFET that is the protected element can be formed, and the protected element can be reliably protected from the ESD surge.
Further, the ESD breakdown resistance can be easily increased by increasing the area of the ESD protection element.

実施するための最良の形態は、ESD保護素子をベース−エミッタショート型のpnpトランジスタとpnダイオードで構成し、ESD保護素子のアバランシェ電圧をpnダイオードで決定し、ESD保護素子の動作抵抗を主にベース−エミッタショート型のpnpトランジスタで決定できるようにしたことである。このような構成とすることで、ESD保護素子のアバランシェ電圧と動作電圧をほぼ独立に決定することができる。以下、実施例で詳細な説明をする。   In the best mode for carrying out the invention, the ESD protection element is composed of a base-emitter short pnp transistor and a pn diode, the avalanche voltage of the ESD protection element is determined by the pn diode, and the operating resistance of the ESD protection element is mainly used. This is to be able to determine with a base-emitter short type pnp transistor. With such a configuration, the avalanche voltage and the operating voltage of the ESD protection element can be determined almost independently. Hereinafter, detailed description will be given in Examples.

図1は、この発明の第1実施例の半導体装置の要部断面図である。この図は、ESD保護素子20およびMOSFET21の断面図である。従来のESD保護素子70との違いは、第2nウェル領域12の外周に第2nウェル領域12と接するように第3nウェル領域15を形成した点である。pエピタキシャル層2上に形成されているMOSFET21は図5と同じ構造である。LOCOS酸化膜9の厚みは約1μmである。
高濃度のp基板1上に、このp基板1より低濃度のpエピタキシャル層2(濃度は1×1015cm-3程度)を形成し、このpエピタキシャル層2の表面層に不純物濃度が1×1015〜1×1016cm-3程度で、拡散深さが2〜5μm程度の第1nウェル領域3を形成する。この第1nウェル領域3の表面層に不純物濃度が5×1016〜1×1017cm-3程度で、拡散深さが1μm〜2μm程度のpウェル領域4を形成する。このpウェル領域4の表面層に、nソース領域5とnドレイン領域6を形成し、このnソース領域5とnドレイン領域6に挟まれたpウェル領域4上には数十nm厚のゲート酸化膜7を介してポリシリコンでゲート電極8を形成する。nソース領域5とnドレイン領域6の表面層にはオーミック接触のための図示しないn層を形成する。ドレイン側には高耐圧化のためのLOCOS酸化膜9を形成する。
FIG. 1 is a cross-sectional view of a main part of a semiconductor device according to a first embodiment of the present invention. This figure is a cross-sectional view of the ESD protection element 20 and the MOSFET 21. The difference from the conventional ESD protection element 70 is that the third n well region 15 is formed on the outer periphery of the second n well region 12 so as to be in contact with the second n well region 12. MOSFET 21 formed on p epitaxial layer 2 has the same structure as FIG. The thickness of the LOCOS oxide film 9 is about 1 μm.
A p epitaxial layer 2 (concentration is about 1 × 10 15 cm −3 ) having a lower concentration than that of the p substrate 1 is formed on the high concentration p substrate 1, and an impurity concentration of 1 is formed on the surface layer of the p epitaxial layer 2. A first n-well region 3 having a diffusion depth of about 2 to 5 μm is formed at about × 10 15 to 1 × 10 16 cm −3 . A p-well region 4 having an impurity concentration of about 5 × 10 16 to 1 × 10 17 cm −3 and a diffusion depth of about 1 μm to 2 μm is formed on the surface layer of the first n-well region 3. An n source region 5 and an n drain region 6 are formed on the surface layer of the p well region 4, and a gate having a thickness of several tens of nm is formed on the p well region 4 sandwiched between the n source region 5 and the n drain region 6. A gate electrode 8 is formed of polysilicon through an oxide film 7. An n layer (not shown) for ohmic contact is formed on the surface layers of the n source region 5 and the n drain region 6. A LOCOS oxide film 9 for increasing the breakdown voltage is formed on the drain side.

一方、pエピタキシャル層2の表面層に、前記の第1nウェル領域3と離して、第1nウェル領域3より不純物濃度を例えば、0.8倍程度低く(同程度でも構わない)、拡散深さL2を第1nウェル領域3の拡散深さL1より0.8倍程度浅くして(同程度でも構わない)、第2nウェル領域12を形成する。この第2nウェル領域12の外周に第2nウェル領域12と接して、第2nウェル領域12より不純物濃度が高く、第2nウェル領域の拡散深さL2より拡散深さL3を深くした第3nウェル領域15を形成し、第2nウェル領域12の表面層にpエミッタ領域13とこのpエミッタ領域13をショートするnショート領域14を形成する。
この第3ウェル領域15の不純物濃度は、例えば、第2nウェル領域12の不純物濃度の1.5倍から10倍程度高くし(倍率が高い程、動作抵抗低減に寄与する)、拡散深さL3は第2nウェル領域12の拡散深さL2から1μm程度からp基板1に接する深さまで深くする(深い程、アバランシェ電圧は低下する)。
On the other hand, in the surface layer of the p epitaxial layer 2, the impurity concentration is about 0.8 times lower than the first n well region 3, for example (or the same level), and the diffusion depth is separated from the first n well region 3. The second n-well region 12 is formed by making L2 about 0.8 times shallower than the diffusion depth L1 of the first n-well region 3 (which may be the same). A third n well region in which the outer periphery of the second n well region 12 is in contact with the second n well region 12 and has a higher impurity concentration than the second n well region 12 and a diffusion depth L3 deeper than the diffusion depth L2 of the second n well region 12 15 is formed, and a p emitter region 13 and an n short region 14 for short-circuiting the p emitter region 13 are formed on the surface layer of the second n well region 12.
The impurity concentration of the third well region 15 is, for example, 1.5 to 10 times higher than the impurity concentration of the second n-well region 12 (the higher the magnification, the lower the operation resistance), and the diffusion depth L3. Is deepened from the diffusion depth L2 of the second n-well region 12 to about 1 μm to a depth in contact with the p substrate 1 (the deeper the avalanche voltage is lowered).

このpエミッタ領域13上とnショート領域14上にエミッタ電極16を形成し、p基板1の裏面に裏面電極17を形成する。p基板1、pエピタキシャル層2、第2nウェル領域12、pエミッタ領域13およびnショート領域14でベース−エミッタショート型のpnpトランジスタ18が形成され、p基板1、pエピタキシャル層2および第3nウェル領域15でpnダイオード19が形成され、この両者でESD保護素子20が形成される。このESD保護素子20の効果については図2、図3を用いて説明する。
尚、図1中のSはソース電極10と接続するソース端子、Dはドレイン電極11と接続するドレイン端子、Eはエミッタ電極16と接続するエミッタ端子、Rは裏面電極17と接続する裏面端子であり、裏面端子Rは、pnpトランジスタのコレクタ端子およびpnダイオードのアノード端子となる。また、DとEは接続され、図示しないが、SとRも接続している。
Emitter electrode 16 is formed on p emitter region 13 and n short region 14, and back electrode 17 is formed on the back surface of p substrate 1. A base-emitter short pnp transistor 18 is formed by the p substrate 1, the p epitaxial layer 2, the second n well region 12, the p emitter region 13 and the n short region 14, and the p substrate 1, the p epitaxial layer 2 and the third n well are formed. A pn diode 19 is formed in the region 15, and an ESD protection element 20 is formed by both of them. The effect of the ESD protection element 20 will be described with reference to FIGS.
The connection source terminal connected S in Figure 1 and source over source electrode 10, D denotes a drain terminal connected to the drain electrode 11, E is an emitter terminal connected to the emitter electrode 16, R is a back electrode 17 The back terminal R is a collector terminal of the pnp transistor and an anode terminal of the pn diode. Further, D and E are connected, and although not shown, S and R are also connected.

また、図1のゲート酸化膜7は窒化膜などの絶縁膜で形成してもよく、その場合は、MOSFET(Metal Oxide FET)はMISFET(Metal Insulator FET)となる。
図2は、このESD保護素子の等価回路図であり、図3は、ESD保護素子の電流・電圧曲線を示す図である。
ESDサージ電圧がエミッタ端子Eと裏面端子R間に印加されるとまずpnダイオード19がアバランシェ動作して図1で示したp基板1−pエピタキシャル層2、第3nウェル領域15−第2nウェル領域12−nショート領域14の経路でpnダイオード19のアバランシェ電流(ID )が流れる。このアバランシェ電流(ID)がベース−エミッタショート型のpnpトランジスタ18のベース電流となり、pエミッタ領域13から第2nウェル領域12に正孔が注入されて、pnpトランジスタ18が動作して、pnpトランジスタにコレクタ電流(IC )が流れ、ESDサージ電流はpnダイオード19とpnpトランジスタ18の双方に流れる。第2nウェル領域12の拡散深さL2が従来の第2nウェル領域62の拡散深さL5と比べて浅いために、このpnpトランジスタ18の電流増幅率hFEが大きくなる。
1 may be formed of an insulating film such as a nitride film, in which case the MOSFET (Metal Oxide FET) is a MISFET (Metal Insulator FET).
FIG. 2 is an equivalent circuit diagram of the ESD protection element, and FIG. 3 is a diagram showing a current / voltage curve of the ESD protection element.
When an ESD surge voltage is applied between the emitter terminal E and the back terminal R, first, the pn diode 19 performs an avalanche operation so that the p substrate 1-p epitaxial layer 2, the third n well region 15 and the second n well region shown in FIG. The avalanche current (ID) of the pn diode 19 flows through the path of the 12-n short region 14. This avalanche current (ID) becomes the base current of the base-emitter short type pnp transistor 18, holes are injected from the p emitter region 13 into the second n well region 12, the pnp transistor 18 operates, and the pnp transistor A collector current (IC) flows, and an ESD surge current flows through both the pn diode 19 and the pnp transistor 18. Since the diffusion depth L2 of the second n-well region 12 is shallower than the diffusion depth L5 of the conventional second n-well region 62, the current amplification factor hFE of the pnp transistor 18 is increased.

そのため、従来のpnpトランジスタ68と比べて動作抵抗が小さくなり、ESDサージ電流が流れた時のエミッタ・コレクタ間の電圧(図3の横軸で示す電圧)は大電流アバランシェ領域でも、MOSFET21のブレークダウン電圧より低く抑えられて、MOSFETをESDサージから保護することができる。ここで、図8で説明した動作抵抗について再度詳細に説明する。
図3は、動作抵抗を説明する図である。ESD保護素子20にESDサージ電圧の相当する電圧(10kVから15kV程度)を印加する。そうすると、pnダイオード19のアバランシェ電圧VAV1 で電流が流れ始め、ESD保護素子20には点線で示した曲線で電流は増大し、ESDサージ電流に相当した電流が流れる。その電流のピーク電流値IP (例えば60A)での電圧VP を測定する。これらの値を用いて、〔(VP −VAV1 )÷IP 〕の値を求めて動作抵抗とする。
Therefore, the operating resistance is smaller than that of the conventional pnp transistor 68, and the voltage between the emitter and the collector when the ESD surge current flows (the voltage shown on the horizontal axis in FIG. 3) is the breakage of the MOSFET 21 even in the large current avalanche region. The MOSFET can be protected from the ESD surge by being kept lower than the down voltage. Here, the operating resistance described in FIG. 8 will be described again in detail.
FIG. 3 is a diagram illustrating the operating resistance. A voltage corresponding to an ESD surge voltage (about 10 kV to 15 kV) is applied to the ESD protection element 20. Then, current begins to flow at the avalanche voltage VAV1 of the pn diode 19, and the current increases in the ESD protection element 20 along the curve indicated by the dotted line, and a current corresponding to the ESD surge current flows. The voltage VP at the peak current value IP (for example, 60 A) of the current is measured. Using these values, the value of [(VP−VAV1) ÷ IP] is obtained and used as the operating resistance.

尚、前記の第2nウェル領域12の不純物濃度と拡散深さを第1nウェル領域3と同じにすると、製造コストの低減が図れる。
また、第3nウェル領域15の形成箇所は、第2nウェル領域12の外周である必要は必ずしもなく、第2nウェル領域12の一部に形成して構わない。
If the impurity concentration and diffusion depth of the second n-well region 12 are the same as those of the first n-well region 3, the manufacturing cost can be reduced.
The formation location of the third n-well region 15 is not necessarily the outer periphery of the second n-well region 12 and may be formed in a part of the second n-well region 12.

図4は、この発明の第2実施例の半導体装置の要部断面図である。図1のESD保護素子20を3個並列接続して大面積にした場合であり、この並列数を増やすことで、容易にESD破壊耐量を大きくすることができる。   FIG. 4 is a cross-sectional view of the main part of the semiconductor device according to the second embodiment of the present invention. This is a case where three ESD protection elements 20 of FIG. 1 are connected in parallel to increase the area, and the ESD breakdown resistance can be easily increased by increasing the number of parallel connection.

この発明の第1実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 1st Example of this invention. 図1のESD保護素子の等価回路図1 is an equivalent circuit diagram of the ESD protection element of FIG. 図1のESD保護素子の電流・電圧曲線を示す図The figure which shows the electric current and voltage curve of the ESD protection element of FIG. この発明の第2実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 2nd Example of this invention 従来のESD保護素子を有する半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device which has the conventional ESD protection element 第2nウェル領域の拡散深さとアバランシェ電圧の関係を示す図The figure which shows the relationship between the diffusion depth of a 2nd n well area | region, and an avalanche voltage 従来の別のESD保護素子を有する半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device which has another conventional ESD protection element 従来のESD保護素子において、同図(a)はnウェル領域の不純物濃度とアバランシェ電圧の関係を示す図、(同図(b)はnウェル領域の不純物濃度と動作抵抗の関係を示す図In the conventional ESD protection element, FIG. 6A is a diagram showing the relationship between the impurity concentration of the n-well region and the avalanche voltage, and FIG.

符号の説明Explanation of symbols

1 p基板
2 pエピタキシャル層
3 第1nウェル領域
4 pウェル領域
5 nソース領域
6 nドレイン領域
7 ゲート酸化膜
8 ゲート電極
9 LOCOS酸化膜
10 ソース電極
11 ドレイン電極
12 第2nウェル領域
13 pエミッタ領域
14 nショート領域
15 第3nウェル領域
16 エミッタ電極
17 裏面電極
18 pnpトランジスタ
19 pnダイオード
20 ESD保護素子
21 MOSFET
S ソース端子
D ドレイン端子
E エミッタ端子
R 裏面端子
1 p substrate 2 p epitaxial layer 3 first n well region 4 p well region 5 n source region 6 n drain region 7 gate oxide film 8 gate electrode 9 LOCOS oxide film 10 source electrode 11 drain electrode 12 second n well region 13 p emitter region 14 n short region 15 3rd n well region 16 emitter electrode 17 back electrode 18 pnp transistor 19 pn diode 20 ESD protection element 21 MOSFET
S source terminal D drain terminal E emitter terminal R back terminal

Claims (5)

同一半導体基板に横型のMISFETと、該横型のMISFETと並列接続して配置され、ベース領域とエミッタ領域をショートしたベース−エミッタショート型の縦型のバイポーラトランジスタとを有する半導体装置において、
前記バイポーラトランジスタとpnダイオードを前記半導体基板に並列接続して配置し、該ダイオードのカソード領域が前記バイポーラトランジスタのベース領域と接続し、前記ダイオードのアバランシェ電圧が、前記バイポーラトランジスタのアバランシェ電圧および前記MISFETのアバランシェ電圧の両者より低く、前記ダイオードのカソード領域の拡散深さが、前記バイポーラトランジスタのベース領域の拡散深さより深いことを特徴とする半導体装置。
In a semiconductor device having a lateral MISFET on the same semiconductor substrate, and a base-emitter short vertical bipolar transistor that is arranged in parallel with the lateral MISFET and has a shorted base region and emitter region.
The bipolar transistor and the pn diode are arranged in parallel with the semiconductor substrate, the cathode region of the diode is connected to the base region of the bipolar transistor, the avalanche voltage of the diode is the avalanche voltage of the bipolar transistor and the MISFET in most low than both of the avalanche voltage, the diffusion depth of the cathode region of the diode, wherein a deeper than the diffusion depth of the base region of the bipolar transistor.
前記ダイオードのカソード領域の不純物濃度が、前記バイポーラトランジスタのベース領域の不純物濃度より高いことを特徴とする請求項1に記載の半導体装置。 The impurity concentration of the cathode region of the diode, the semiconductor device according to claim 1, wherein the higher than the impurity concentration of the base region of the bipolar transistor. 第1導電型の第1半導体層上に該第1半導体層より低濃度の第1導電型の第2半導体層を形成し、該第2半導体層の表面層に離して形成される第2導電型の第1ウェル領域および第2ウェル領域と、該第1ウェル領域の表面層に形成される第1導電型の第3ウェル領域と、該第3ウェル領域の表面層に形成される第2導電型のソース領域およびドレイン領域と、該ソース領域とドレイン領域に挟まれた前記第3ウェル領域上にゲート絶縁膜を介して形成されるゲート電極と、前記ソース領域上とドレイン領域上に形成されるソース電極とドレイン電極と、前記第2ウェル領域の表面層に第1導電型のエミッタ領域と、該エミッタ領域を貫通し第2ウェル領域に達して形成される第2導電型のショート領域と、前記第2ウェル領域と接して前記第2半導体層の表面層に該第2ウェル領域より拡散深さを深くして形成される第2導電型の第4ウェル領域と、前記エミッタ領域上とショート領域上に形成されるエミッタ電極と、前記第1半導体層の裏面に形成される裏面電極とを有することを特徴とする半導体装置。 A first conductive type second semiconductor layer having a concentration lower than that of the first semiconductor layer is formed on the first conductive type first semiconductor layer, and a second conductive layer formed separately from the surface layer of the second semiconductor layer. First well region and second well region of the mold, a third well region of the first conductivity type formed in the surface layer of the first well region, and a second formed in the surface layer of the third well region Conductive type source and drain regions, a gate electrode formed on the third well region sandwiched between the source and drain regions via a gate insulating film, and formed on the source and drain regions Source electrode and drain electrode, a first conductivity type emitter region in the surface layer of the second well region, and a second conductivity type short region formed through the emitter region and reaching the second well region And in contact with the second well region A second well-type fourth well region formed on the surface layer of the two semiconductor layers with a diffusion depth deeper than that of the second well region; an emitter electrode formed on the emitter region and the short region; A semiconductor device comprising a back electrode formed on the back surface of the first semiconductor layer. 前記第4ウェル領域の不純物濃度が、前記第2ウェル領域の不純物濃度より高いことを特徴とする請求項に記載の半導体装置。 The semiconductor device according to claim 3 , wherein an impurity concentration of the fourth well region is higher than an impurity concentration of the second well region. 前記第2ウェル領域がバイポーラトランジスタのベース領域であり、前記第4ウェル領域がダイオードのカソード領域であることを特徴とする請求項またはに記載の半導体装置。 The second well region is the base region of a bipolar transistor, the semiconductor device according to claim 3 or 4, wherein the fourth well region is the cathode region of the diode.
JP2004040026A 2004-02-17 2004-02-17 Semiconductor device Expired - Fee Related JP4423466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004040026A JP4423466B2 (en) 2004-02-17 2004-02-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004040026A JP4423466B2 (en) 2004-02-17 2004-02-17 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2005235844A JP2005235844A (en) 2005-09-02
JP4423466B2 true JP4423466B2 (en) 2010-03-03

Family

ID=35018515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004040026A Expired - Fee Related JP4423466B2 (en) 2004-02-17 2004-02-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4423466B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7880223B2 (en) * 2005-02-11 2011-02-01 Alpha & Omega Semiconductor, Ltd. Latch-up free vertical TVS diode array structure using trench isolation
JP5108250B2 (en) * 2006-04-24 2012-12-26 オンセミコンダクター・トレーディング・リミテッド Semiconductor device and manufacturing method thereof
US7656009B2 (en) 2007-04-09 2010-02-02 Analog Devices, Inc. Robust ESD cell
JP5285373B2 (en) 2008-09-29 2013-09-11 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー Semiconductor device
JP2011198921A (en) * 2010-03-18 2011-10-06 Toshiba Corp Electrostatic surge protection circuit, dc-dc converter control circuit, and dc-dc converter
JP2016058645A (en) 2014-09-11 2016-04-21 株式会社東芝 Semiconductor device
CN106796917B (en) 2015-03-17 2019-10-01 富士电机株式会社 The manufacturing method of semiconductor device and semiconductor device

Also Published As

Publication number Publication date
JP2005235844A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
US9947648B2 (en) Semiconductor device including a diode at least partly arranged in a trench
US8089134B2 (en) Semiconductor device
JP4209432B2 (en) ESD protection device
US7154152B2 (en) Semiconductor device
JP4209433B2 (en) ESD protection device
US8471333B2 (en) Semiconductor device and manufacturing method of the same
US9373614B2 (en) Transistor assembly as an ESD protection measure
JP2009253059A (en) Semiconductor device
US10978870B2 (en) Electrostatic discharge protection device
US8188568B2 (en) Semiconductor integrated circuit
US9721939B2 (en) Semiconductor device
US8933513B2 (en) Semiconductor device
JP4423466B2 (en) Semiconductor device
JP4017573B2 (en) diode
US10325905B2 (en) Semiconductor device and semiconductor circuit device
JP2006128293A (en) Electrostatic protective element of semiconductor integrated circuit
JP5529414B2 (en) ESD protection circuit
JPH06350031A (en) Protective circuit of integrated structure
JP4795613B2 (en) Semiconductor device
JP4899292B2 (en) Semiconductor device
JP2009038101A (en) Semiconductor device
CN108807362B (en) Electrostatic discharge protection device and electrostatic discharge method
TW202038424A (en) Electrostatic discharge protection device
KR20110077561A (en) Electrostatic discharge pretection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060615

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091119

R150 Certificate of patent or registration of utility model

Ref document number: 4423466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees