JP2004327976A - Pressure welding type semiconductor device - Google Patents

Pressure welding type semiconductor device Download PDF

Info

Publication number
JP2004327976A
JP2004327976A JP2004110006A JP2004110006A JP2004327976A JP 2004327976 A JP2004327976 A JP 2004327976A JP 2004110006 A JP2004110006 A JP 2004110006A JP 2004110006 A JP2004110006 A JP 2004110006A JP 2004327976 A JP2004327976 A JP 2004327976A
Authority
JP
Japan
Prior art keywords
surge
semiconductor device
transistor
diode
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004110006A
Other languages
Japanese (ja)
Other versions
JP2004327976A5 (en
JP4906238B2 (en
Inventor
Hiroshi Tobisaka
浩志 鳶坂
Tatsuhiko Fujihira
龍彦 藤平
Shin Kiuchi
伸 木内
Yoshinari Minotani
由成 簑谷
Takeshi Ichimura
武 市村
Naoki Yaesawa
直樹 八重澤
Tatsu Saito
龍 斎藤
Shoichi Furuhata
昌一 古畑
Yuichi Harada
祐一 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2004110006A priority Critical patent/JP4906238B2/en
Publication of JP2004327976A publication Critical patent/JP2004327976A/en
Publication of JP2004327976A5 publication Critical patent/JP2004327976A5/ja
Application granted granted Critical
Publication of JP4906238B2 publication Critical patent/JP4906238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve ESD resistance and surge resistance at a smaller chip area without employing complex isolation structure in a transverse type MOSFET used for an integrated intelligent switch device, an incoming signal transfer IC of double integrated type, or an integrated power IC. <P>SOLUTION: In a semiconductor device provided with a transistor and a diode which are formed on a same substrate and connected in parallel, resistance of the diode at the time of yield operation is smaller than that of the transistor at the time of yield operation, and secondary breakdown current of the diode is greater than that of the transistor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description


本発明は、高ESD(Electro Static Discharge:静電放電)耐量およびEMC(Electro Magnetic Compatibility)を含む高ノイズ耐量を具えたトランジスタを有する半導体装置に関する。

The present invention relates to a semiconductor device having a transistor having high ESD (Electro Static Discharge) resistance and high noise resistance including EMC (Electro Magnetic Compatibility).

従来より、高ESD耐量およびEMC(Electro Magnetic Compatibility)を含む高ノイズ耐量が要求される自動車電装器および各種産業機器、モータコントロール、OA(オフィスオートメーション)機器、モバイル(携帯)機器または家庭電化機器等において、複数のパワー半導体素子(スイッチ素子)と駆動制御回路等とを同一チップ上に集積した統合型のインテリジェントスイッチデバイスが用いられている。
統合型インテリジェントスイッチデバイスは、サージ電圧やノイズからデバイス内の各素子を保護するため同一半導体基板上にサージ吸収素子が形成されている(例えば、特許文献1参照)。
図3は、横型のMOSFETとサージ吸収素子としての縦型のダイオードを同一半導体基板上に形成した構成を示す断面図である。図3に示すように、横型パワーMOSFET20とサージ吸収素子としての縦型ダイオード30とが半導体基板10上に形成されている。
2. Description of the Related Art Conventionally, automobile electric equipment and various industrial equipment, motor control, OA (office automation) equipment, mobile (portable) equipment, home electric equipment, and the like, which require high ESD resistance and high noise resistance including EMC (Electro Magnetic Compatibility) are required. , An integrated intelligent switch device in which a plurality of power semiconductor elements (switch elements) and a drive control circuit and the like are integrated on the same chip is used.
In the integrated intelligent switch device, a surge absorbing element is formed on the same semiconductor substrate to protect each element in the device from surge voltage and noise (for example, see Patent Document 1).
FIG. 3 is a cross-sectional view showing a configuration in which a horizontal MOSFET and a vertical diode as a surge absorbing element are formed on the same semiconductor substrate. As shown in FIG. 3, a horizontal power MOSFET 20 and a vertical diode 30 as a surge absorbing element are formed on a semiconductor substrate 10.

半導体基板10は高濃度のn層11上の低濃度n層12からなり、低濃度n層12の表面領域にpウエル21,31が形成され、pウエル21内に横型のMOSFET20が形成され、pウエル31内に縦型のダイオード30が形成されている。
pウエル31の表面は高濃度p層32を介してアノード電極33が接続され、アノード電極33はpウエル21の表面の高濃度n層22を介して接続される横型MOSFET20のソース電極27と配線35によって接続されている。25,26はそれぞれ横型MOSFET20のドレイン電極,ゲート電極である。
半導体基板10の裏面に形成された電極13は、ダイオード30のカソード電極となり、pウエル21の表面の高濃度n層24を介して接続される横型MOSFET20のドレイン電極25に配線36によって接続される。
The semiconductor substrate 10 comprises a low-concentration n-layer 12 on a high-concentration n-layer 11, p-wells 21 and 31 are formed in a surface region of the low-concentration n-layer 12, and a lateral MOSFET 20 is formed in the p-well 21. A vertical diode 30 is formed in a p-well 31.
The surface of the p-well 31 is connected to an anode electrode 33 via a high-concentration p-layer 32, and the anode electrode 33 is connected to the source electrode 27 of the lateral MOSFET 20 connected via the high-concentration n-layer 22 on the surface of the p-well 21. 35. 25 and 26 are a drain electrode and a gate electrode of the lateral MOSFET 20, respectively.
The electrode 13 formed on the back surface of the semiconductor substrate 10 becomes a cathode electrode of the diode 30 and is connected by a wiring 36 to the drain electrode 25 of the lateral MOSFET 20 connected via the high-concentration n-layer 24 on the surface of the p-well 21. .

図3の構成において、横型MOSFET20のドレイン電極にESDやサージが印加されると、このESDやサージのエネルギーを縦型ダイオード30が吸収して、横型MOSFET20を保護する。
特開平3−49257号公報(第3図など)
In the configuration of FIG. 3, when ESD or surge is applied to the drain electrode of the lateral MOSFET 20, the energy of the ESD or surge is absorbed by the vertical diode 30 and the lateral MOSFET 20 is protected.
JP-A-3-49257 (FIG. 3, etc.)


しかしながら、上述したデバイスを、ESD耐量、サージ・ノイズ耐量の要求が厳しい自動車用途に用いる場合には、10kv〜15kv(試験条件150pF,150Ω)の非常に高いESD耐量が要求され、特にパワー半導体素子においては実力耐量25kv以上の高いESD耐量が要求される。
MOSFET等を備えたパワーICでは上記の要求が満たせない場合には、コンデンサ、ダイオード、抵抗等の素子をディスクリート部品の外付け対応する必要があり、部品点数の増加、組立等の作業工数の増加、コストの増加等の課題がある。
これに対して図3に示す構成を採用することにより、外付け部品の削減を図ることができる。

However, when the above-described device is used for an automobile for which the requirements for ESD resistance and surge noise resistance are strict, an extremely high ESD resistance of 10 kv to 15 kv (test conditions: 150 pF, 150Ω) is required, and in particular, a power semiconductor element. Requires a high ESD resistance of 25 kv or more.
If the above requirements cannot be met with power ICs equipped with MOSFETs, etc., it is necessary to provide external components such as capacitors, diodes, and resistors as discrete components, increasing the number of components and the number of man-hours for assembly and the like. However, there are problems such as an increase in cost.
On the other hand, by employing the configuration shown in FIG. 3, the number of external components can be reduced.

しかしながら、上記の要求を満たすサージ吸収素子は、所望のサージ吸収能力を満たすためにその能力に余裕を持たせて形成されるため、チップ面積が大きくなる。
複数の素子を1チップに集積し、高耐圧化、微細化を図ってチップ面積を縮小しようとする中でサージ吸収素子の面積が増大するのは、チップ面積を縮小してコストを圧縮するうえでの大きな問題である。 本発明は、上記問題点に鑑みてなされたものであって、過剰なサージ吸収能力を必要とせず、より小さいチップ面積で必要な高ESD耐量および高サージ耐量を備えた横型MOSFETを有する半導体装置を提供することを目的とする。
However, a surge absorbing element that satisfies the above requirements is formed with a margin for the desired surge absorbing ability, so that the chip area increases.
In order to reduce the chip area by integrating a plurality of elements on a single chip and increasing the withstand voltage and miniaturization, the area of the surge absorbing element increases because the chip area is reduced and the cost is reduced. Is a big problem. SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and does not require an excessive surge absorption capacity, and has a semiconductor device having a lateral MOSFET having high ESD resistance and high surge resistance required in a smaller chip area. The purpose is to provide.


上記目的を達成するため、本発明者らは鋭意研究をおこなった。その内容について説明する。本発明者らは、60V定格の横型MOSFET20、縦型MOSFET20’および縦型ツェナーダイオード30の素子領域面積に対するESD耐量を求める実験をおこなった。その結果を図4に示す。なお、基板、プロセス条件および素子の降伏電圧は同一である。また、ESD耐量の測定条件として、主に日本国内における自動車用途で用いられる150pF−150Ωの条件を用いて実施した。この自動車用途で要求されるESD耐量は10kV〜15kV以上であり、特に前記MOSFET20,20’に要求される実力耐量は25kV以上である。
従来、上述した要求を満たせない場合には、外付けディスクリート部品として保護コンデンサ、ダイオードおよび抵抗等を追加することによって、前記MOSFET20,20’等を備えたパワーIC等が実用化されている。その代わり、コストが増大するという不利益がある。図4からわかるように、MOSFET20,20’を用いて上述したESD耐量要求を満たすためには、素子面積が十分大きい必要がある。特に、横型MOSFET20では、10kVのESD耐量を達成するためには、10mm2を超える大きな面積が必要である。それに対して、縦型ツェナーダイオード30では、パッド電極レベルの0.2mm2の小さな素子面積で30kVのESD耐量を達成することができる。

In order to achieve the above object, the present inventors have intensively studied. The contents will be described. The present inventors conducted an experiment to determine the ESD resistance with respect to the element region area of the horizontal MOSFET 20, the vertical MOSFET 20 'and the vertical Zener diode 30 rated at 60V. The result is shown in FIG. The substrate, process conditions and breakdown voltage of the device are the same. In addition, the measurement was performed under the conditions of 150 pF-150Ω mainly used in automobiles in Japan as a measurement condition of the ESD resistance. The ESD withstand voltage required for this automotive use is 10 kV to 15 kV or more, and the actual withstand voltage required for the MOSFETs 20 and 20 ′ is 25 kV or more.
Conventionally, when the above requirements cannot be satisfied, power ICs and the like including the MOSFETs 20 and 20 'have been put to practical use by adding protective capacitors, diodes, resistors, and the like as external discrete components. Instead, there is the disadvantage of increased costs. As can be seen from FIG. 4, the element area needs to be sufficiently large in order to satisfy the above-mentioned ESD resistance requirement using the MOSFETs 20 and 20 '. In particular, the lateral MOSFET 20 requires a large area exceeding 10 mm 2 to achieve an ESD withstand voltage of 10 kV. On the other hand, the vertical Zener diode 30 can achieve an ESD resistance of 30 kV with a small element area of 0.2 mm 2 at the pad electrode level.

横型MOSFET20においては、微細化が進み、それによって単位面積あたりのオン抵抗が下がり、60V定格では1mΩcm2まで発展してきている。現在、自動車用途でもっとも多い数百mΩのオン抵抗領域では、横型MOSFET20の素子面積は数mm2程度で十分である。今後、ますますパワーICに搭載される素子面積が小さくなるため、ESD耐量は下がる傾向にある。今回、本発明者らは、横型MOSFET20、縦型MOSFET20’および縦型ツェナーダイオード30の素子面積に対するESD耐量の関係を、データとして同じ尺度で定量化した。それによって、横型MOSFET20、縦型MOSFET20’および縦型ツェナーダイオード30について、ESD耐量の傾向と問題を定量的に扱うことができるようになった。
上記の点を踏まえ、本発明においては、同一基板上に形成され、並列接続されたトランジスタおよびダイオードを備えた半導体装置において、前記トランジスタの降伏動作時の抵抗より前記ダイオードの降伏動作時の抵抗を小さく、かつ、前記トランジスタの二次降伏電流より前記ダイオードの二次降伏電流を大きくすればよい。 また、上記の構成において、前記トランジスタの降伏電圧より前記ダイオードの降伏電圧を小さくすればよく、あるいは、前記トランジスタの二次降伏電圧より前記ダイオードの二次降伏電圧を小さくすればよく、あるいは、前記ダイオードに流れるサージ電流より該ダイオードの二次降伏電流を大きくすればよい。
In the lateral MOSFET 20, the on-resistance per unit area is reduced due to miniaturization, and it has been developed to 1 mΩcm 2 at a rated voltage of 60V. At present, in the on-resistance region of several hundred mΩ, which is the largest for automotive applications, the element area of the lateral MOSFET 20 is about several mm 2 is sufficient. In the future, the device area mounted on the power IC will become smaller and the ESD tolerance will tend to decrease. This time, the present inventors quantified the relationship between the ESD tolerance and the element area of the lateral MOSFET 20, the vertical MOSFET 20 'and the vertical Zener diode 30 on the same scale as data. As a result, it becomes possible to quantitatively deal with the tendency and the problem of the ESD resistance of the horizontal MOSFET 20, the vertical MOSFET 20 'and the vertical Zener diode 30.
In view of the above, in the present invention, in a semiconductor device including a transistor and a diode formed on the same substrate and connected in parallel, the resistance of the diode at the time of breakdown operation is determined by the resistance of the transistor at the time of breakdown operation. The secondary breakdown current of the diode may be smaller than the secondary breakdown current of the transistor. In the above structure, the breakdown voltage of the diode may be smaller than the breakdown voltage of the transistor, or the secondary breakdown voltage of the diode may be smaller than the secondary breakdown voltage of the transistor. What is necessary is just to make the secondary breakdown current of the diode larger than the surge current flowing through the diode.

上記の各構成において、前記トランジスタを横型MOSFET,前記ダイオードを縦型のツェナーダイオードで構成するのが好適である。
なお、統合型のインテリジェントスイッチデバイスを複数のトランジスタから構成する場合において、該デバイスの入力端子−電源端子間,出力端子−電源端子間,電源端子−接地間の少なくとも1箇所にダイオードを設け、該ダイオードと前記トランジスタが前記の少なくとも1つの関係を満たすとよい。
前記ダイオードと前記トランジスタとが上記の関係を満たすためには、半導体基板の抵抗率を0.3〜10Ωcmとすればよい。また、特に半導体基板の裏面に半導体層を設けるとよく、例えばこの裏面半導体層の抵抗率を0.1Ωcm以下とすればよい。
また、ダイオードの降伏電圧を所望値に定めるためには、ダイオードと半導体基板裏面の半導体層との間でパンチスルーまたはリーチスルーが起こる条件で決定されるダイオードを形成するウエルの接合深さ及び不純物濃度と、半導体基板の抵抗率および厚さとの関係で定めるものとする。
In each of the above structures, it is preferable that the transistor is constituted by a lateral MOSFET and the diode is constituted by a vertical Zener diode.
In the case where the integrated intelligent switch device is composed of a plurality of transistors, a diode is provided at at least one position between the input terminal and the power supply terminal, between the output terminal and the power supply terminal, and between the power supply terminal and the ground. Preferably, the diode and the transistor satisfy at least one of the above relationships.
In order for the diode and the transistor to satisfy the above relationship, the resistivity of the semiconductor substrate may be set to 0.3 to 10 Ωcm. In addition, a semiconductor layer is preferably provided on the back surface of the semiconductor substrate. For example, the resistivity of the back semiconductor layer may be set to 0.1 Ωcm or less.
Further, in order to set the breakdown voltage of the diode to a desired value, the junction depth and the impurity of the well forming the diode are determined by the conditions under which punch-through or reach-through occurs between the diode and the semiconductor layer on the back surface of the semiconductor substrate. It is determined by the relationship between the concentration and the resistivity and thickness of the semiconductor substrate.


本発明によれば、通常MOSFET動作にはなんら影響を与えず、ESDやサージ等の吸収能力を損なうことなく、十分小さい面積で高ESD耐量および高サージ耐量を有する半導体装置を得ることができる。したがって、半導体装置の微細集積化に伴うESD耐量およびサージ・ノイズ耐量の低下を抑制し、チップ面積の大幅な増加を招くことなく、より低コストな半導体基板を用いて高ESD耐量および高サージ・ノイズ耐量を有する、より低価格の統合型のパワーICおよび統合型の通信IC等を実現することができる

According to the present invention, it is possible to obtain a semiconductor device having a sufficiently small area and a high ESD resistance and a high surge resistance without affecting the operation of the normal MOSFET at all and without impairing the absorption capability of ESD, surge and the like. Therefore, the reduction of the ESD resistance and the surge noise resistance due to the fine integration of the semiconductor device is suppressed, and the high ESD resistance and the high surge resistance are realized by using a lower-cost semiconductor substrate without causing a significant increase in the chip area. It is possible to realize a lower-cost integrated power IC, an integrated communication IC, and the like having noise immunity.

本発明の実施の形態にかかる半導体装置は、横型MOSFETと縦型サージ吸収素子としてのツェナーダイオードとを、特別な素子分離構造を形成せずに、同一半導体基板上に形成し、横型MOSFETのドレイン電極またはソース電極と縦型ツェナーダイオードの表面電極とを金属電極配線により電気的に接続した構成となっている。
図1は、トランジスタとしての横型MOSFET20とサージ吸収素子としてのツェナーダイオード30のI−V特性を示す図である。
先ず、横型MOSFET20の降伏動作時の抵抗(RB(MOS))は降伏動作時の傾き(di/dv)であり、縦型ツェナーダイオード30の降伏動作時の抵抗(RB(ZD))との間に(1)式の関係を満たし、
(数1)
(RB(ZD))<(RB(MOS)) …(1)
同時に横型MOSFET20の二次降伏電流(ISB(MOS))と縦型ツェナーダイオード30の二次降伏電流(ISB(ZD))との間に(2)式の関係を満たすものとする(条件1)。
(数2)
(ISB(ZD))>(ISB(MOS)) …(2)
上記の(1),(2)式の関係を同時に満たすことにより横型MOSFETのサージからの保護を図ることができる。
In a semiconductor device according to an embodiment of the present invention, a lateral MOSFET and a Zener diode as a vertical surge absorbing element are formed on the same semiconductor substrate without forming a special element isolation structure, and a drain of the lateral MOSFET is formed. An electrode or a source electrode and a surface electrode of the vertical Zener diode are electrically connected by metal electrode wiring.
FIG. 1 is a diagram showing IV characteristics of a lateral MOSFET 20 as a transistor and a Zener diode 30 as a surge absorbing element.
First, the resistance (RB (MOS) ) of the lateral MOSFET 20 at the time of the breakdown operation is the gradient (di / dv) at the time of the breakdown operation, and the resistance (RB (ZD) ) of the vertical Zener diode 30 at the time of the breakdown operation. Satisfies the relationship of equation (1),
(Equation 1)
(RB (ZD) ) <(RB (MOS) ) (1)
At the same time, the relationship between the secondary breakdown current (I SB (MOS) ) of the lateral MOSFET 20 and the secondary breakdown current (I SB (ZD) ) of the vertical Zener diode 30 is satisfied (condition (2)). 1).
(Equation 2)
(I SB (ZD) )> (I SB (MOS) ) (2)
By simultaneously satisfying the relations of the above equations (1) and (2), protection of the lateral MOSFET from surge can be achieved.

さらに、上記(1),(2)式の関係に加えて、横型MOSFET20の降伏電圧(VB(MOS))と縦型ツェナーダイオードの降伏電圧(VB(ZD))との間に(3)式の関係を満たすものとする(条件2)。
(数3)
(VB(ZD))<(VB(MOS)) …(3)
上記の(1)〜(3)式の関係を同時に満たすことにより横型MOSFETのサージからの保護を図ることができる。
あるいは、上記(1),(2)式の関係に加えて、横型MOSFET20の二次降伏電圧(VSB(MOS))と縦型ツェナーダイオードの二次降伏電圧(VSB(ZD))との間に(4)式の関係を満たすものとする(条件3)。
(数4)
(VSB(ZD))<(VSB(MOS)) …(4)
上記の(1),(2),(4)式の関係を同時に満たすことにより横型MOSFETのサージからの保護を図ることができる。
Further, in addition to the relations of the above equations (1) and (2), (3) is set between the breakdown voltage (VB (MOS) ) of the lateral MOSFET 20 and the breakdown voltage (VB (ZD) ) of the vertical Zener diode. ) Is satisfied (condition 2).
(Equation 3)
( VB (ZD) ) < (VB (MOS) ) (3)
By simultaneously satisfying the relationships of the above equations (1) to (3), protection of the lateral MOSFET from surge can be achieved.
Alternatively, in addition to the relations of the above equations (1) and (2), the secondary breakdown voltage ( VSB (MOS) ) of the lateral MOSFET 20 and the secondary breakdown voltage ( VSB (ZD) ) of the vertical Zener diode may be changed. It is assumed that the relationship of equation (4) is satisfied between them (condition 3).
(Equation 4)
( VSB (ZD) ) <( VSB (MOS) ) (4)
By simultaneously satisfying the relationships of the above equations (1), (2) and (4), protection of the lateral MOSFET from surge can be achieved.

また、上記の(1)〜(4)式を同時に満たすものとする(条件4)。このことにより横型MOSFETのサージからの保護を図ることができる。
また、上記(1),(2)式の関係に加えて、所望のESD及びサージ・ノイズ耐量における縦型ツェナーダイオード30に流れるサージ電流(Isurge)とし、縦型ツェナーダイオード30の二次降伏電流(ISB(ZD))との間に(5)式の関係を満たすものとする(条件5)。
(数5)
(Isurge)<(ISB(ZD)) …(5)
上記の(1),(2),(5)式の関係を同時に満たすことにより縦型ツェナーダイオードのサージによる破壊を回避し、かつ横型MOSFETのサージからの保護を図ることができる。
It is also assumed that the above expressions (1) to (4) are simultaneously satisfied (condition 4). This makes it possible to protect the lateral MOSFET from surges.
Further, in addition to the relations of the above equations (1) and (2), a surge current (I surge) flowing through the vertical Zener diode 30 at a desired ESD and surge noise immunity is obtained, and the secondary breakdown of the vertical Zener diode 30 is obtained. It is assumed that the relationship of the expression (5) is satisfied with the current (I SB (ZD) ) (condition 5).
(Equation 5)
(I surge ) <(I SB (ZD) ) (5)
By simultaneously satisfying the relations of the above equations (1), (2) and (5), it is possible to prevent the vertical Zener diode from being destroyed by the surge and to protect the horizontal MOSFET from the surge.

ここで、サージ電流(Isurge)は、例えば、試験条件150pF,150Ωにおいて25kvのサージ電圧を想定したときに流れる電流であり、後述の図2における経路Fには約100Aの電流が瞬間的に流れる。測定条件は、素子の仕様により任意に設定されるものであり、サージ電圧も素子の特性に応じて任意に設定される。
なお縦型ツェナーダイオード30と横型MOSFET20とが上記の関係を満たすためには、両素子が形成される半導体基板の抵抗率を0.3〜10Ωcmとすればよい。また、特に半導体基板の裏面に半導体層を設けるとよく、例えばこの裏面半導体層の抵抗率を0.1Ωcm以下とすればよい。
また、縦型ツェナーダイオードの降伏電圧(VB(ZD))を所望値に定めるためには、縦型ツェナーダイオード30が形成されるウエル領域と半導体基板裏面の半導体層との間で、パンチスルーまたはリーチスルーが起こることを条件とし、前記ウエル層の接合深さ及び不純物濃度と、半導体基板の抵抗率および厚さを決定すればよい。
Here, the surge current (I surge ) is, for example, a current that flows when a surge voltage of 25 kv is assumed under the test conditions of 150 pF and 150 Ω, and a current of about 100 A instantaneously flows through a path F in FIG. Flows. The measurement conditions are arbitrarily set according to the specifications of the element, and the surge voltage is also arbitrarily set according to the characteristics of the element.
In order to satisfy the above relationship between the vertical Zener diode 30 and the horizontal MOSFET 20, the resistivity of the semiconductor substrate on which both elements are formed may be 0.3 to 10 Ωcm. In addition, a semiconductor layer is preferably provided on the back surface of the semiconductor substrate. For example, the resistivity of the back semiconductor layer may be set to 0.1 Ωcm or less.
Further, in order to set the breakdown voltage (VB ( ZD) ) of the vertical Zener diode to a desired value, punch-through is performed between the well region where the vertical Zener diode 30 is formed and the semiconductor layer on the back surface of the semiconductor substrate. Alternatively, the junction depth and the impurity concentration of the well layer and the resistivity and the thickness of the semiconductor substrate may be determined on condition that the reach-through occurs.

例えば、図3の構成において、0.95Ωcmの低濃度n層12上に不純物を2.7×1014cm−2でイオン注入してpウエル31を形成する。
なお、上記の条件1〜条件5をすべて充足するのが好ましいが、条件の少なくとも1つを充足することによってMOSFETの保護を図ることができる。したがって、統合型のインテリジェントスイッチデバイスを構成する各素子が必要な特性を得られるよう各領域の濃度やレイアウトを設計する際に、各素子の特性を犠牲にすることなく、上記条件1〜条件5の中から採用しやすい条件を選択すればよい。
〔実施例〕
次に、図2を用いて実施例を説明する。図2は本発明の実施例を示す図であり、1は複数のMOSFET2から構成されるICであって入力端子3、出力端子4、電源端子5を備えている。
For example, in the configuration of FIG. 3, an impurity is ion-implanted at 2.7 × 10 14 cm −2 on the low-concentration n layer 12 of 0.95 Ωcm to form the p-well 31.
It is preferable that all of the above conditions 1 to 5 are satisfied, but protection of the MOSFET can be achieved by satisfying at least one of the conditions. Therefore, when designing the concentration and layout of each region so that each element constituting the integrated type intelligent switch device can obtain necessary characteristics, the above conditions 1 to 5 can be satisfied without sacrificing the characteristics of each element. What is necessary is just to select the condition which is easy to adopt from among.
〔Example〕
Next, an embodiment will be described with reference to FIG. FIG. 2 is a diagram showing an embodiment of the present invention. Reference numeral 1 denotes an IC composed of a plurality of MOSFETs 2 and includes an input terminal 3, an output terminal 4, and a power supply terminal 5.

IC1にサージ電圧が印加されると、矢印A〜Fに示す経路でサージ電流が流れる。このようなサージ電圧からIC1即ちIC1を構成するMOSFET2を保護するために、入力端子3−電源端子5間,出力端子4−電源端子5間,電源端子5−接地間にツェナーダイオード6を設けている。
このとき、ツェナーダイオード6とMOSFET2との間に上述した(条件1)〜(条件5)の少なくとも1つの関係を満たすものとする。
上記の関係を満たすとき、ツェナーダイオード6とMOSFET2の動作波形は図1に示すI−V特性となる。ESD等のサージが印加されると、ツェナーダイオード6とMOSFET2にはVsurgeの電圧が印加され、ツェナーダイオード6にはIsurgeの電流が流れる。このとき、上述した条件を満たしていれば、MOSFET2に印加されるサージ電圧Vsurgeは、MOSFET2の二次降伏電圧VSB(MOS)を上回ることがなく、MOSFET2をESD等のサージによる破壊から確実に保護することができる。
When a surge voltage is applied to the IC 1, a surge current flows through paths indicated by arrows A to F. In order to protect the IC 1, that is, the MOSFET 2 constituting the IC 1, from such a surge voltage, a zener diode 6 is provided between the input terminal 3 and the power supply terminal 5, between the output terminal 4 and the power supply terminal 5, and between the power supply terminal 5 and the ground. I have.
At this time, it is assumed that at least one of the above-mentioned (condition 1) to (condition 5) is satisfied between the Zener diode 6 and the MOSFET 2.
When the above relationship is satisfied, the operation waveforms of the Zener diode 6 and the MOSFET 2 have the IV characteristics shown in FIG. When a surge such as ESD is applied, a voltage of V surge is applied to the Zener diode 6 and the MOSFET 2, and a current of I surge flows through the Zener diode 6. At this time, if the above condition is satisfied, the surge voltage V surge applied to the MOSFET 2 does not exceed the secondary breakdown voltage V SB (MOS) of the MOSFET 2 and the MOSFET 2 is surely protected from being destroyed by surges such as ESD. Can be protected.

このように構成することにより、サージ吸収素子のサイズを最適化でき、統合型のインテリジェントスイッチデバイスのチップサイズを縮小することができる。
なお、図2では各経路にツェナーダイオードを配置しているが、サージ電圧が印加されるモードが特定できる場合には、少なくともその端子間にサージ吸収素子を配置すればよく、他の個所への配置は省略できる。サージ吸収素子の配置を省略することによりチップサイズの一層の小型化を図ることができる。
上記の実施の形態および実施例では横型のMOSFETとサージ吸収素子として縦型のツェナーダイオードを例に説明をしたがこれに限るものではく、上記の条件1〜条件5を充足する素子を採用することができる。
With this configuration, the size of the surge absorbing element can be optimized, and the chip size of the integrated intelligent switch device can be reduced.
In FIG. 2, a Zener diode is disposed in each path. However, when a mode in which a surge voltage is applied can be specified, a surge absorbing element may be disposed at least between its terminals, and a surge absorbing element may be connected to another part. The arrangement can be omitted. By omitting the arrangement of the surge absorbing element, the chip size can be further reduced.
In the above embodiments and examples, the horizontal MOSFET and the vertical Zener diode have been described as examples of the surge absorbing element. However, the present invention is not limited to this, and an element satisfying the above conditions 1 to 5 is adopted. be able to.

横型MOSFETとツェナーダイオードI−V特性を示す図である。It is a figure which shows a lateral MOSFET and Zener diode IV characteristic. 本発明の実施例の構成を示す断面図である。FIG. 2 is a cross-sectional view illustrating a configuration of an example of the present invention. 従来の統合型のインテリジェントスイッチデバイスの構成を示す断面図である。It is sectional drawing which shows the structure of the conventional integrated type intelligent switch device. 60V定格の横型MOSFET、縦型MOSFET、縦型ツェナーダイオードおよび高ESD耐量を備えた横型MOSFETについて、素子面積に対するESD耐量の実験結果を示す特性図である。It is a characteristic view which shows the experimental result of ESD with respect to an element area about a horizontal MOSFET, a vertical MOSFET, a vertical Zener diode of 60V rating, and a horizontal MOSFET provided with high ESD tolerance.

符号の説明Explanation of reference numerals

1 IC
2 MOSFET
3 入力端子
4 出力端子
5 電源端子
6 ツェナーダイオード
11 高濃度n層(半導体基板)
12 低濃度n層(半導体基板)
13 裏面電極(カソード電極)
20 サージ吸収素子(縦型ダイオード)
21,31 pウェル
22,24 n型高濃度層
23 nベース
25 ドレイン電極
26 ゲート電極
27 ソース電極
32 p型高濃度層
33 アノード電極
35,36 配線
1 IC
2 MOSFET
Reference Signs List 3 input terminal 4 output terminal 5 power supply terminal 6 Zener diode 11 high concentration n layer (semiconductor substrate)
12 Low concentration n-layer (semiconductor substrate)
13 Back electrode (cathode electrode)
20 Surge absorbing element (vertical diode)
21, 31 p well 22, 24 n-type high concentration layer 23 n base 25 drain electrode 26 gate electrode 27 source electrode 32 p-type high concentration layer 33 anode electrode 35, 36 wiring

Claims (6)

同一基板上に形成され、並列接続されたトランジスタおよびサージ吸収素子を備えた半導体装置において、
前記トランジスタの降伏動作時の抵抗より前記サージ吸収素子の降伏動作時の抵抗が小さく、かつ、前記トランジスタの二次降伏電流より前記サージ吸収素子の二次降伏電流が大きいことを特徴とする半導体装置。
In a semiconductor device formed on the same substrate and having a transistor and a surge absorbing element connected in parallel,
A semiconductor device, wherein the resistance of the surge absorbing element during breakdown operation is smaller than the resistance of the transistor during breakdown operation, and the secondary breakdown current of the surge absorbing element is larger than the secondary breakdown current of the transistor. .
請求項1に記載の半導体装置において、前記トランジスタの降伏電圧より前記サージ吸収素子の降伏電圧が小さいことを特徴とする半導体装置。   2. The semiconductor device according to claim 1, wherein a breakdown voltage of said surge absorbing element is smaller than a breakdown voltage of said transistor. 請求項1または請求項2に記載の半導体装置において、前記トランジスタの二次降伏電圧より前記サージ吸収素子の二次降伏電圧が小さいことを特徴とする半導体装置。   3. The semiconductor device according to claim 1, wherein a secondary breakdown voltage of the surge absorbing element is smaller than a secondary breakdown voltage of the transistor. 4. 請求項1に記載の半導体装置において、前記サージ吸収素子に流れるサージ電流より該サージ吸収素子の二次降伏電流が大きいことを特徴とする半導体装置。   2. The semiconductor device according to claim 1, wherein a secondary breakdown current of the surge absorbing element is larger than a surge current flowing through the surge absorbing element. 請求項1に記載の半導体装置において、前記トランジスタは横型MOSFETであり、前記ダイオードはツェナーダイオードであることを特徴とする半導体装置。   2. The semiconductor device according to claim 1, wherein said transistor is a lateral MOSFET, and said diode is a Zener diode. 複数のトランジスタから構成される半導体装置において、該半導体装置の入力端子−電源端子間,出力端子−電源端子間,電源端子−接地間の少なくとも1箇所にサージ吸収素子を設け、該サージ吸収素子と前記トランジスタが前記請求項1〜4の少なくとも1つの関係を満たすことを特徴とする半導体装置。   In a semiconductor device including a plurality of transistors, a surge absorbing element is provided in at least one portion between an input terminal and a power terminal, between an output terminal and a power terminal, and between a power terminal and a ground of the semiconductor device. 5. The semiconductor device according to claim 1, wherein the transistor satisfies at least one of the above-described relationships.
JP2004110006A 2003-04-11 2004-04-02 Semiconductor device Expired - Fee Related JP4906238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004110006A JP4906238B2 (en) 2003-04-11 2004-04-02 Semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003107830 2003-04-11
JP2003107830 2003-04-11
JP2004110006A JP4906238B2 (en) 2003-04-11 2004-04-02 Semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010180961A Division JP2010287909A (en) 2003-04-11 2010-08-12 Semiconductor device and method of determining breakdown voltage

Publications (3)

Publication Number Publication Date
JP2004327976A true JP2004327976A (en) 2004-11-18
JP2004327976A5 JP2004327976A5 (en) 2005-06-30
JP4906238B2 JP4906238B2 (en) 2012-03-28

Family

ID=33513078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004110006A Expired - Fee Related JP4906238B2 (en) 2003-04-11 2004-04-02 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4906238B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630113A2 (en) 2004-08-24 2006-03-01 Seiko Epson Corporation Paper feeding method and paper feeder
JP2006179632A (en) * 2004-12-22 2006-07-06 Fuji Electric Device Technology Co Ltd Semiconductor device and its manufacturing method
JP2006286800A (en) * 2005-03-31 2006-10-19 Ricoh Co Ltd Semiconductor device
JP2009152294A (en) * 2007-12-19 2009-07-09 Seiko Instruments Inc Semiconductor device and its manufacturing method
WO2011093472A1 (en) * 2010-01-29 2011-08-04 富士電機システムズ株式会社 Semiconductor device
WO2016148156A1 (en) * 2015-03-17 2016-09-22 富士電機株式会社 Semiconductor device and method for manufacturing semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05136348A (en) * 1991-11-13 1993-06-01 Fuji Electric Co Ltd Overvoltage protective diode for semiconductor device use
JPH09223748A (en) * 1995-12-14 1997-08-26 Nec Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05136348A (en) * 1991-11-13 1993-06-01 Fuji Electric Co Ltd Overvoltage protective diode for semiconductor device use
JPH09223748A (en) * 1995-12-14 1997-08-26 Nec Corp Semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630113A2 (en) 2004-08-24 2006-03-01 Seiko Epson Corporation Paper feeding method and paper feeder
JP2006179632A (en) * 2004-12-22 2006-07-06 Fuji Electric Device Technology Co Ltd Semiconductor device and its manufacturing method
JP2006286800A (en) * 2005-03-31 2006-10-19 Ricoh Co Ltd Semiconductor device
JP2009152294A (en) * 2007-12-19 2009-07-09 Seiko Instruments Inc Semiconductor device and its manufacturing method
WO2011093472A1 (en) * 2010-01-29 2011-08-04 富士電機システムズ株式会社 Semiconductor device
US9142463B2 (en) 2010-01-29 2015-09-22 Fuji Electric Co., Ltd. Semiconductor device
WO2016148156A1 (en) * 2015-03-17 2016-09-22 富士電機株式会社 Semiconductor device and method for manufacturing semiconductor device
JPWO2016148156A1 (en) * 2015-03-17 2017-07-13 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
US10141299B2 (en) 2015-03-17 2018-11-27 Fuji Electric Co., Ltd. Semiconductor device with protective element portion
US10720421B2 (en) 2015-03-17 2020-07-21 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP4906238B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP4228586B2 (en) Semiconductor device
US7750439B2 (en) ESD protection device
US7916439B2 (en) Semiconductor switch arrangement and an electronic device
US7202531B2 (en) Semiconductor device
US7755870B2 (en) Semiconductor integrated circuit device
US7394631B2 (en) Electrostatic protection circuit
US8237225B2 (en) Semiconductor device for electrostatic discharge protection
US20080013233A1 (en) Electrostatic breakdown protection circuit
KR102462819B1 (en) Semiconductor device
US7439592B2 (en) ESD protection for high voltage applications
EP1423898B1 (en) An arrangement for esd protection of an integrated circuit
JP4957686B2 (en) Semiconductor device
JP2010287909A (en) Semiconductor device and method of determining breakdown voltage
JP4906238B2 (en) Semiconductor device
US7449750B2 (en) Semiconductor protection device
US6833590B2 (en) Semiconductor device
US6680512B2 (en) Semiconductor device having an integral protection circuit
JP4821086B2 (en) Semiconductor device
US6583475B2 (en) Semiconductor device
JP2007227697A (en) Semiconductor device, and semiconductor integrated device
JP2006332144A (en) Integrated circuit
JPH06236965A (en) Semiconductor device
JP2007189048A (en) Semiconductor device
JP2011119485A (en) Semiconductor integrated device
JP2010212710A (en) Semiconductor device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081211

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4906238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees