JP6312368B2 - 有機化合物、発光素子、発光装置、電子機器及び照明装置 - Google Patents

有機化合物、発光素子、発光装置、電子機器及び照明装置 Download PDF

Info

Publication number
JP6312368B2
JP6312368B2 JP2013087113A JP2013087113A JP6312368B2 JP 6312368 B2 JP6312368 B2 JP 6312368B2 JP 2013087113 A JP2013087113 A JP 2013087113A JP 2013087113 A JP2013087113 A JP 2013087113A JP 6312368 B2 JP6312368 B2 JP 6312368B2
Authority
JP
Japan
Prior art keywords
light
emitting element
layer
group
emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013087113A
Other languages
English (en)
Other versions
JP2013239705A (ja
Inventor
晴恵 尾坂
晴恵 尾坂
香 荻田
香 荻田
信晴 大澤
信晴 大澤
広美 瀬尾
広美 瀬尾
瀬尾 哲史
哲史 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2013087113A priority Critical patent/JP6312368B2/ja
Publication of JP2013239705A publication Critical patent/JP2013239705A/ja
Application granted granted Critical
Publication of JP6312368B2 publication Critical patent/JP6312368B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Indole Compounds (AREA)

Description

本発明は、有機化合物及びそれを用いた発光素子に関する。また、当該発光素子を用いた発光装置、電子機器、及び照明装置に関する。
近年、エレクトロルミネッセンス(EL;Electroluminescence)を利用した発光素子の研究開発が盛んに行われている。これら発光素子の基本的な構成は、一対の電極間に発光性の物質を含む層を挟んだものである。この素子に電圧を印加することにより、発光性の物質からの発光を得ることができる。
このような発光素子は自発光型であるため、液晶ディスプレイに比べ画素の視認性が高く、バックライトが不要である等の利点があり、フラットパネルディスプレイ素子として好適であると考えられている。また、このような発光素子は、薄型軽量に作製できることも大きな利点である。さらに非常に応答速度が速いことも特徴の一つである。
そして、これらの発光素子は膜状に形成することが可能であるため、面状の発光を容易に得ることができる。よって、面状の発光を利用した大面積の素子を形成することができる。このことは、白熱電球やLEDに代表される点光源、あるいは蛍光灯に代表される線光源では得難い特色であるため、照明等に応用できる面光源としての利用価値も高い。
エレクトロルミネッセンスを利用した発光素子は、発光性の物質が有機化合物であるか、無機化合物であるかによって大別できるが、発光性の物質に有機化合物を用いる場合、発光素子に電圧を印加することにより、一対の電極から電子および正孔(ホール)がそれぞれ発光性の有機化合物を有する層に注入され、電流が流れる。そして、それらキャリア(電子および正孔(ホール))が注入されることにより、発光性の有機化合物が励起状態を形成し、その励起状態が基底状態に戻る(電子と正孔が再結合する)際に発光する。なお、有機化合物が形成する励起状態の種類としては、一重項励起状態と三重項励起状態が可能であり、一重項励起状態からの発光が蛍光、三重項励起状態からの発光が燐光と呼ばれている。
このような発光素子に関しては、その素子特性を向上させる上で、発光素子に用いる物質に依存した問題が多く、これらを克服するために素子構造の改良や物質開発等が行われている。例えば、置換または無置換のフェニル基を含むアントラセン骨格と、カルバゾール骨格とを有し、キャリア輸送性に優れる化合物を用いた発光素子を開示している(特許文献1参照)。
特開2009−167175号公報
特許文献1において報告されているように、発光素子に用いる材料の開発は進んではきてはいるものの、発光特性、発光効率、信頼性等といった多くの面で改善の余地が残されており、より優れた発光素子の開発が望まれている。
上記課題を鑑みて、本発明の一態様は、発光素子の発光特性、発光効率、及び信頼性の向上を達成することが可能な新たな有機化合物を提供することを課題の一とする。また、該有機化合物を有する発光素子を提供することを課題の一とする。また、該発光素子を用いた発光装置、電子機器、及び照明装置を提供することを課題の一とする。
一対の電極間に、少なくとも正孔輸送層と発光層を有し、正孔輸送層及び発光層のいずれか一方または両方に、一般式(G0)で表される骨格を含む有機化合物を有する発光素子である。また、一般式(G0)で表される骨格を含む有機化合物は、本発明の一態様である。
一般式(G0)中において、Ar及びArは、それぞれ独立にフェニル基、ビフェニル基、または3〜6個のベンゼン環がメタ位で連結した基のいずれか一を表し、Arは置換基を有し、置換基がカルバゾール骨格を含み、Arは無置換である。
EL層において、正孔輸送層を設け、該正孔輸送層の材料や厚みを調整することによって、発光層に運ばれる正孔のバランスを整えることができる。その結果、発光層に運ばれる電子と正孔のバランス(所謂キャリアバランス)が整い、発光素子の発光効率が高まる。なお、本発明の一態様である一般式(G0)で表される骨格を含む有機化合物は、正孔輸送性の高い材料であるため、正孔輸送層及び発光層のいずれか一方または両方に用いることができる。
また、上記構成において、Ar及びArは、それぞれ独立にフェニル基、またはビフェニル基であると好ましい。また、上記置換基が置換または無置換のN−カルバゾリル基であると好ましい。
また、本発明の他の一態様は、一般式(G1)で表される有機化合物である。
一般式(G1)中において、Ar及びArは、それぞれ独立にフェニル基、ビフェニル基、または3〜6個のベンゼン環がメタ位で連結した基のいずれか一を表し、Arは無置換である。また、R〜Rは、それぞれ独立に水素、または炭素数1〜12のアルキル基、置換または無置換のフェニル基、置換または無置換のビフェニル基のいずれか一を表す。
上記構成において、Arがフェニル基またはビフェニル基であり、Arがフェニレン基またはビフェニルジイル基であると好ましい。また、Arがメタフェニレン基またはビフェニル−3,3’−ジイル基であると、更に好ましい。
また、本発明の他の一態様は、下記構造式(G2−1)、(G2−2)、及び(G3)で表される構造の有機化合物である。
また、本発明の一態様は、発光素子を有する発光装置、発光装置を有する電子機器、及び照明装置も範疇に含めるものである。したがって、本明細書中における発光装置とは、画像表示デバイス、もしくは光源(照明装置含む)を指す。また、発光装置にコネクター、例えばFPC(Flexible printed circuit)もしくはTCP(Tape Carrier Package)が取り付けられたモジュール、TCPの先にプリント配線板が設けられたモジュール、または発光素子にCOG(Chip On Glass)方式によりIC(集積回路)が直接実装されたモジュールも全て発光装置に含むものとする。
本発明の一態様によって、発光素子の発光効率、及び信頼性の向上を達成することが可能な新たな有機化合物を提供することができる。また、該有機化合物を有する発光素子を提供することができる。また、該発光素子を用いた発光装置、電子機器、及び照明装置を提供することができる。
本発明の一態様の発光素子を説明する図。 本発明の一態様の発光素子を説明する図。 本発明の一態様の発光素子を説明する図。 本発明の一態様の発光素子を説明する図。 本発明の一態様の発光装置を説明する図。 本発明の一態様の電子機器を説明する図。 本発明の一態様の携帯型端末を説明する図。 本発明の一態様の照明装置を説明する図。 CzFLP(略称)のH NMRチャート図。 mCzFLP(略称)のH NMRチャート図。 CzFLP−II(略称)のH NMRチャート図。 実施例2及び実施例3の各発光素子を説明する図。 実施例2の各発光素子の輝度−電流効率特性を示す図。 実施例2の各発光素子の電圧−輝度特性を示す図。 実施例2の各発光素子の輝度−外部量子効率を示す図。 実施例3の各発光素子の輝度−電流効率特性を示す図。 実施例3の各発光素子の電圧−輝度特性を示す図。 実施例3の各発光素子の輝度−外部量子効率を示す図。 発光素子5の信頼性試験の結果を示す図。 実施例4の各発光素子を説明する図。 実施例4の各発光素子の輝度−電流効率特性を示す図。 実施例4の各発光素子の電圧−輝度特性を示す図。 実施例4の各発光素子の輝度−外部量子効率を示す図。 発光素子6及び比較発光素子7の信頼性試験の結果を示す図。
以下、本発明の実施の態様について図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
(実施の形態1)
本実施の形態では、一対の電極間にEL層を有し、該EL層は少なくとも正孔輸送層と発光層を有する構成について、図1を用いて説明する。
本実施の形態に示す発光素子は、図1に示すように一対の電極(第1の電極101と第2の電極103)間に正孔輸送層112と発光層113を有するEL層102が挟まれており、EL層102は、正孔輸送層112と発光層113の他に、正孔注入層111、電子輸送層114、電子注入層115、電荷発生層116などを含んで形成される。なお、本実施の形態においては、第1の電極101を陽極として用い、第2の電極103を陰極として用いる。
また、正孔輸送層112及び発光層113のいずれか一方または両方に、一般式(G0)で表される骨格を含む有機化合物を有するとよい。
一般式(G0)において、Ar及びArは、それぞれ独立にフェニル基、ビフェニル基、または3〜6個のベンゼン環がメタ位で連結した基のいずれか一を表し、Arは置換基を有し、置換基がカルバゾール骨格を含み、Arは無置換である。Arを上述のような構成とすることで、三重項励起エネルギー準位が高く、耐熱性にも優れた正孔輸送材料を得ることができる。一方、Arを無置換とすることで、素子の信頼性を高めることができる。
また、一般式(G0)において、Ar及びArは、それぞれ独立にフェニル基、またはビフェニル基であると、三重項励起エネルギー準位の観点で好適である。さらに、上記置換基が置換または無置換のN−カルバゾリル基であると、より好ましい。
なお、EL層102における正孔注入層111は、正孔輸送性の高い物質とアクセプター性物質を含む層であり、アクセプター性物質によって正孔輸送性の高い物質から電子が引き抜かれることにより正孔(ホール)が発生する。従って、正孔注入層111から正孔輸送層112を介して発光層113に正孔が注入される。
また、電荷発生層116は、正孔輸送性の高い物質とアクセプター性物質を含む層である。アクセプター性物質によって正孔輸送性の高い物質から電子が引き抜かれるため、引き抜かれた電子が、電子注入性を有する電子注入層115から電子輸送層114を介して発光層113に注入される。
以下に本実施の形態に示す発光素子を作製する上での具体例について説明する。
基板100は発光素子の支持体として用いられる。基板100としては、例えばガラス、石英、又はプラスチックなどを用いることができる。また可撓性基板を用いてもよい。可撓性基板とは、曲げることができる(フレキシブル)基板のことであり、例えば、ポリカーボネート、ポリアリレート、ポリエーテルスルフォンからなるプラスチック基板等が挙げられる。また、フィルム(ポリプロピレン、ポリエステル、ポリフッ化ビニル、ポリ塩化ビニル等からなる)、無機蒸着フィルムなどを用いることもできる。なお、発光素子の作製工程において支持体として機能するものであれば、これら以外のものでもよい。
第1の電極101および第2の電極103には、金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることができる。具体的には、酸化インジウム−酸化スズ(ITO:Indium Tin Oxide)、シリコンまたは酸化シリコンを含有した酸化インジウム−酸化スズ、酸化インジウム−酸化亜鉛、酸化タングステン及び酸化亜鉛を含有した酸化インジウム、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、チタン(Ti)の他、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、およびこれらを含む合金(MgAg、AlLi)、ユウロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこれらを含む合金、その他、グラフェン等を用いることができる。なお、第1の電極101および第2の電極103は、例えばスパッタリング法や蒸着法(真空蒸着法を含む)等により形成することができる。
正孔注入層111、正孔輸送層112および電荷発生層116に用いる正孔輸送性の高い物質としては、π過剰型複素芳香族化合物(例えばカルバゾール誘導体やインドール誘導体)や芳香族アミン化合物が好ましく、例えば、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPB)、N,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N―フェニルアミノ]ビフェニル(略称:BSPB)、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFLP)、4−フェニル−3’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:mBPAFLP)、4−フェニル−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBA1BP)、4,4’−ジフェニル−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBBi1BP)、4−(1−ナフチル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBANB)、4、4’−ジ(1−ナフチル)−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBNBB)、9,9−ジメチル−N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]フルオレン−2−アミン(略称:PCBAF)、N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]スピロ−9,9’−ビフルオレン−2−アミン(略称:PCBASF)などの芳香族アミン骨格を有する化合物や、1,3−ビス(N−カルバゾリル)ベンゼン(略称:mCP)、4,4’−ジ(N−カルバゾリル)ビフェニル(略称:CBP)、3,6−ビス(3,5−ジフェニルフェニル)−9−フェニルカルバゾール(略称:CzTP)、3,3’−ビス(9−フェニル−9H−カルバゾール)(略称:PCCP)などのカルバゾール骨格を有する化合物や、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾチオフェン)(略称:DBT3P−II)、2,8−ジフェニル−4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ジベンゾチオフェン(略称:DBTFLP−III)、4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]−6−フェニルジベンゾチオフェン(略称:DBTFLP−IV)などのチオフェン骨格を有する化合物や、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾフラン)(略称:DBF3P−II)、4−{3−[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi−II)などのフラン骨格を有する化合物が挙げられる。上述した中でも、芳香族アミン骨格を有する化合物やカルバゾール骨格を有する化合物は、信頼性が良好であり、また、正孔輸送性が高く、駆動電圧低減にも寄与するため好ましい。
さらに、正孔注入層111、正孔輸送層112および電荷発生層116に用いることのできる材料としては、ポリ(N−ビニルカルバゾール)(略称:PVK)、ポリ(4−ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N−(4−{N’−[4−(4−ジフェニルアミノ)フェニル]フェニル−N’−フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’−ビス(4−ブチルフェニル)−N,N’−ビス(フェニル)ベンジジン](略称:Poly−TPD)などの高分子化合物を用いることもできる。
また、正孔注入層111、正孔輸送層112および電荷発生層116は、上記正孔輸送性の高い物質と、アクセプター性を有する物質との混合層を用いてもよい。この場合、キャリア注入性が良好となり好ましい。用いるアクセプター性物質としては、遷移金属酸化物や元素周期表における第4族乃至第8族に属する金属の酸化物を挙げることができる。具体的には、酸化モリブデンが特に好ましい。
また、正孔注入層111、正孔輸送層112および電荷発生層116は後述する本発明の一態様である有機化合物を用いることができる。
発光層113は、例えば、電子輸送性材料をホスト材料として含み、正孔輸送性材料をアシスト材料として含み、三重項励起エネルギーを発光に変える発光性材料をゲスト材料として含んで形成される層であると好ましい。
上記電子輸送性材料としては、含窒素複素芳香族化合物のようなπ不足型複素芳香族化合物が好ましく、例えば、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)、3−(4−ビフェニリル)−4−フェニル−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾール(略称:TAZ)、1,3−ビス[5−(p−tert−ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7)、9−[4−(5−フェニル−1,3,4−オキサジアゾール−2−イル)フェニル]−9H−カルバゾール(略称:CO11)、2,2’,2’’−(1,3,5−ベンゼントリイル)−トリス(1−フェニル−1H−ベンゾイミダゾール)(略称:TPBI)、2−[3−(ジベンゾチオフェン−4−イル)フェニル]−1−フェニル−1H−ベンゾイミダゾール(略称:mDBTBIm−II)などのポリアゾール骨格を有する複素環化合物(オキサジアゾール誘導体、イミダゾール誘導体、トリアゾール誘導体等)や、2−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2mDBTPDBq−II)、2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f、h]キノキサリン(略称:2mDBTBPDBq−II)、2−[3’−(9H−カルバゾール−9−イル)ビフェニル−3−イル]ジベンゾ[f、h]キノキサリン(略称:2mCzBPDBq)、4,6−ビス[3−(フェナントレン−9−イル)フェニル]ピリミジン(略称:4,6−mPnP2Pm)、4,6−ビス〔3−(4−ジベンゾチエニル)フェニル〕ピリミジン(略称:4,6mDBTP2Pm−II)などのジアジン骨格を有する複素環化合物(ピラジン誘導体、ピリミジン誘導体、ピリダジン誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体等)や、3,5−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリジン(略称:35DCzPPy)、1,3,5−トリ[3−(3−ピリジル)フェニル]ベンゼン(略称:TmPyPB)などのピリジン骨格を有する複素環化合物(ピリジン誘導体、キノリン誘導体、ジベンゾキノリン誘導体等)が挙げられる。上述した中でも、ジアジン骨格を有する複素環化合物やピリジン骨格を有する複素環化合物は、信頼性が良好であり好ましい。特に、ジアジン(ピリミジンやピラジン)骨格を有する複素環化合物は、電子輸送性が高く、駆動電圧低減にも寄与する。
上記正孔輸送性材料としては、正孔注入層111、正孔輸送層112および電荷発生層116に用いることのできる正孔輸送性の高い物質を用いればよい。また、後述する本発明の一態様である有機化合物を用いることもできる。
なお、これらの電子輸送性材料および正孔輸送性材料は、青色の領域に吸収スペクトルを有さないことが好ましい。具体的には、吸収スペクトルの吸収端が440nm以下であることが好ましい。
一方、三重項励起エネルギーを発光に変える発光性材料としては、例えば、燐光性材料や熱活性化遅延蛍光を示す熱活性化遅延蛍光(TADF)材料が挙げられる。
また、上記燐光性材料として、例えば440nm〜520nmに発光のピークを有する燐光性材料としては、トリス{2−[5−(2−メチルフェニル)−4−(2,6−ジメチルフェニル)−4H−1,2,4−トリアゾール−3−イル−κN2]フェニル−κC}イリジウム(III)(略称:Ir(mpptz−dmp))、トリス(5−メチル−3,4−ジフェニル−4H−1,2,4−トリアゾラト)イリジウム(III)(略称:Ir(Mptz))、トリス[4−(3−ビフェニル)−5−イソプロピル−3−フェニル−4H−1,2,4−トリアゾラト]イリジウム(III)(略称:Ir(iPrptz−3b))のような4H−トリアゾール骨格を有する有機金属イリジウム錯体や、トリス[3−メチル−1−(2−メチルフェニル)−5−フェニル−1H−1,2,4−トリアゾラト]イリジウム(III)(略称:Ir(Mptz1−mp))、トリス(1−メチル−5−フェニル−3−プロピル−1H−1,2,4−トリアゾラト)イリジウム(III)(略称:Ir(Prptz1−Me))のような1H−トリアゾール骨格を有する有機金属イリジウム錯体や、fac−トリス[1−(2,6−ジイソプロピルフェニル)−2−フェニル−1H−イミダゾール]イリジウム(III)(略称:Ir(iPrpmi))、トリス[3−(2,6−ジメチルフェニル)−7−メチルイミダゾ[1,2−f]フェナントリジナト]イリジウム(III)(略称:Ir(dmpimpt−Me))のようなイミダゾール骨格を有する有機金属イリジウム錯体や、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)テトラキス(1−ピラゾリル)ボラート(略称:FIr6)、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス{2−[3’,5’−ビス(トリフルオロメチル)フェニル]ピリジナト−N,C2’}イリジウム(III)ピコリナート(略称:Ir(CFppy)(pic))、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)アセチルアセトナート(略称:FIr(acac))のような電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属イリジウム錯体が挙げられる。上述した中でも、4H−トリアゾール骨格を有する有機金属イリジウム錯体は、信頼性や発光効率にも優れるため、特に好ましい。
また、例えば520nm〜600nmに発光のピークを有する燐光性材料としては、トリス(4−メチル−6−フェニルピリミジナト)イリジウム(III)(略称:Ir(mppm))、トリス(4−t−ブチル−6−フェニルピリミジナト)イリジウム(III)(略称:Ir(tBuppm))、(アセチルアセトナト)ビス(6−メチル−4−フェニルピリミジナト)イリジウム(III)(略称:Ir(mppm)(acac))、(アセチルアセトナト)ビス(6−tert−ブチル−4−フェニルピリミジナト)イリジウム(III)(略称:Ir(tBuppm)(acac))、(アセチルアセトナト)ビス[4−(2−ノルボルニル)−6−フェニルピリミジナト]イリジウム(III)(endo−,exo−混合物)(略称:Ir(nbppm)(acac))、(アセチルアセトナト)ビス[5−メチル−6−(2−メチルフェニル)−4−フェニルピリミジナト]イリジウム(III)(略称:Ir(mpmppm)(acac))、(アセチルアセトナト)ビス(4,6−ジフェニルピリミジナト)イリジウム(III)(略称:Ir(dppm)(acac))のようなピリミジン骨格を有する有機金属イリジウム錯体や、(アセチルアセトナト)ビス(3,5−ジメチル−2−フェニルピラジナト)イリジウム(III)(略称:Ir(mppr−Me)(acac))、(アセチルアセトナト)ビス(5−イソプロピル−3−メチル−2−フェニルピラジナト)イリジウム(III)(略称:Ir(mppr−iPr)(acac))のようなピラジン骨格を有する有機金属イリジウム錯体や、トリス(2−フェニルピリジナト−N,C2’)イリジウム(III)(略称:Ir(ppy))、ビス(2−フェニルピリジナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(ppy)(acac))、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:Ir(bzq)(acac))、トリス(ベンゾ[h]キノリナト)イリジウム(III)(略称:Ir(bzq))、トリス(2−フェニルキノリナト−N,C2’)イリジウム(III)(略称:Ir(pq))、ビス(2−フェニルキノリナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(pq)(acac))のようなピリジン骨格を有する有機金属イリジウム錯体の他、トリス(アセチルアセトナト)(モノフェナントロリン)テルビウム(III)(略称:Tb(acac)(Phen))のような希土類金属錯体が挙げられる。上述した中でも、ピリミジン骨格を有する有機金属イリジウム錯体は、信頼性や発光効率にも際だって優れるため、特に好ましい。
また、例えば600nm〜700nmに発光のピークを有する燐光性材料としては、ビス[4,6−ビス(3−メチルフェニル)ピリミジナト](ジイソブチリルメタノ)イリジウム(III))(略称:Ir(5mdppm)(dibm))、ビス[4,6−ビス(3−メチルフェニル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称:Ir(5mdppm)(dpm))、ビス[4,6−ジ(ナフタレン−1−イル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称:Ir(d1npm)(dpm))のようなピリミジン骨格を有する有機金属イリジウム錯体や、(アセチルアセトナト)ビス(2,3,5−トリフェニルピラジナト)イリジウム(III)(略称:Ir(tppr)(acac))、ビス(2,3,5−トリフェニルピラジナト)(ジピバロイルメタナト)イリジウム(III)(略称:Ir(tppr)(dpm))、(アセチルアセトナト)ビス[2,3−ビス(4−フルオロフェニル)キノキサリナト]イリジウム(III)(略称:Ir(Fdpq)(acac))のようなピラジン骨格を有する有機金属イリジウム錯体や、トリス(1−フェニルイソキノリナト−N,C2’)イリジウム(III)(略称:Ir(piq))、ビス(1−フェニルイソキノリナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(piq)(acac))のようなピリジン骨格を有する有機金属イリジウム錯体の他、2,3,7,8,12,13,17,18−オクタエチル−21H,23H−ポルフィリン白金(II)(略称:PtOEP)のような白金錯体や、トリス(1,3−ジフェニル−1,3−プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:Eu(DBM)(Phen))、トリス[1−(2−テノイル)−3,3,3−トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III)(略称:Eu(TTA)(Phen))のような希土類金属錯体が挙げられる。上述した中でも、ピリミジン骨格を有する有機金属イリジウム錯体は、信頼性や発光効率にも際だって優れるため、特に好ましい。また、ピラジン骨格を有する有機金属イリジウム錯体は、色度の良い赤色発光が得られる。
また、正孔輸送層112及び発光層113のいずれか一方または両方に、一般式(G0)で表される骨格を含む有機化合物を用いると好ましい。なお、一般式(G0)で表される骨格を含む有機化合物は、本発明の一態様である。本発明の一態様である有機化合物は正孔輸送性の良好な材料である。
一般式(G0)において、Ar及びArは、それぞれ独立にフェニル基、ビフェニル基、または3〜6個のベンゼン環がメタ位で連結した基のいずれか一を表し、Arは置換基を有し、置換基がカルバゾール骨格を含み、Arは無置換である。Arを上述のような構成とすることで、三重項励起エネルギー準位が高く、耐熱性にも優れた正孔輸送材料を得ることができる。一方、Arを無置換とすることで、素子の信頼性を高めることができる。
なお、上述の一般式(G0)で表される骨格を含む有機化合物として、具体的には、一般式(G1)で表される構造が、より好ましい。なお、一般式(G1)で表される有機化合物は、本発明の一態様である。
一般式(G1)において、Ar及びArは、それぞれ独立にフェニル基、ビフェニル基、または3〜6個のベンゼン環がメタ位で連結した基のいずれか一を表し、Arは無置換である。また、R〜Rは、それぞれ独立に水素、または炭素数1〜12のアルキル基、置換または無置換のフェニル基、置換または無置換のビフェニル基のいずれか一を表す。
また、一般式(G1)において、Arがフェニル基またはビフェニル基であり、Arがフェニレン基またはビフェニルジイル基であると、三重項励起エネルギー準位の観点でより好ましい。また、Arがメタフェニレン基またはビフェニル−3,3’−ジイル基であると、更に好ましい。このような構成の場合、三重項励起エネルギー準位の観点で有利であるが、それだけでなく、分子がバルキーな骨格となり膜質が安定するため、素子の長寿命化に繋がる。
なお、上述の一般式(G0)で表される骨格を含む有機化合物及び(G1)で表される有機化合物として、具体的には、構造式(G2−1)、(G2−2)、(G3)で表される構造が、より好ましい。なお、構造式(G2−1)、(G2−2)、(G3)で表される有機化合物は、本発明の一態様である。
また、一般式(G0)中におけるArの具体的な構造としては、例えば、構造式(Ar−1)〜構造式(Ar−11)に示す置換基が挙げられる。
構造式(Ar−1)〜構造式(Ar−11)に示す様に、フェニル基、ビフェニル基、または3〜6個のベンゼン環がメタ位で連結した基のいずれかに置換基として一または複数のカルバゾリル基が結合している。このカルバゾリル基は一つである場合は、T1準位が高く保つことができ、好ましい(例えば、上記構造式(Ar−1)、及び(Ar−2)など)。また、カルバゾリル基が複数である場合はより立体的な構造となり、熱物性も向上し、好ましい(例えば、上記構造式(Ar−6)、(Ar−7)、及び(Ar−9))。また、これらカルバゾリル基の3位にフェニル基などのアリール基が結合している場合は、キャリア輸送性が向上し、好ましい。また熱物性も向上し、好ましい(例えば、上記構造式(Ar−3)、(Ar−4)、(Ar−5)、及び(Ar−10))。また、上記カルバゾリル基は、ベンゼン骨格に対してメタ位で結合している場合は、アモルファス性が高くなり、好ましい(例えば、上記構造式(Ar−2)、(Ar−4)、(Ar−6)、(Ar−7)、(Ar−9)、(Ar−10)、及び(Ar−11))。
また、一般式(G1)中におけるArの具体的な構造としては、例えば、構造式(Ar−21)〜構造式(Ar−28)に示す置換基が挙げられる。
この時、ベンゼン環が多いと熱物性が向上し好ましい。複数個のベンゼン環を連結させる場合、メタ位で連結させると、アモルファス性が向上し、T1準位も低下しづらいため、好ましい(例えば、上記構造式(Ar−23)〜(Ar−28))。
また、一般式(G1)中におけるR〜Rの具体的な構造としては、例えば、構造式(R−1)〜構造式(R−8)に示す置換基が挙げられる。
また、上述の一般式(G0)及び(G1)で表される構造を含む有機化合物の具体例としては、構造式(100)〜構造式(118)に示される有機化合物を挙げることができる。
また、本発明の一態様である有機化合物の合成方法としては種々の反応を適用することができる。例えば、以下に示す合成反応を行うことによって、一般式(G1)で表される有機化合物を合成することができる。なお、有機化合物の合成方法は、以下の合成方法に限定されない。
≪一般式(G1)で表される有機化合物の合成方法≫
合成スキーム(A−1)に示すように、ハロゲン化フルオレン化合物(a1)と、カルバゾール化合物(a2)とをカップリングさせることで、一般式(G1)で表されるフルオレン化合物が得られる。
合成スキーム(A−1)中において、Ar及びArは、それぞれ独立にフェニル基、ビフェニル基、または3〜6個のベンゼン環がメタ位で連結した基のいずれか一を表し、Arは無置換である。また、R〜Rは、それぞれ独立に水素、または炭素数1〜12のアルキル基、置換または無置換のフェニル基、置換または無置換のビフェニル基のいずれか一を表す。また、Xはハロゲンを表し、反応性の高さからヨウ素、臭素、塩素の順で好ましい。
また、合成スキーム(A−1)において、ハロゲン基を有するアリール化合物と、カルバゾールの9位とのカップリング反応は様々な反応条件があるが、その一例として、塩基存在下にて金属触媒を用いた合成方法を適用することができる。
具体的には、ブッフバルト・ハートウィッグ反応や、ウルマン反応を用いることができる。
以上によって、本発明の一態様である有機化合物を合成することができる。
なお、上述した有機化合物は正孔輸送性の高い材料であり、発光層113において、アシスト材料として用いることができる。発光層113を上述した有機化合物(アシスト材料)と、電子輸送性の高い材料(ホスト材料)と、三重項励起エネルギーを発光に変える発光性材料(ゲスト材料)と、を含んで形成することにより、発光効率の高い燐光発光を得ることができる。
また、本発明の一態様である有機化合物は、高いT1準位を有しているため、高い一重項励起エネルギーの準位(S1準位)も有している。したがって、本発明の一態様である有機化合物は、可視域の蛍光発光材料のアシスト材料としても用いることができる。
電子輸送層114は、電子輸送性の高い物質を含む層である。電子輸送層114には、上述した電子輸送性材料の他、トリス(8−キノリノラト)アルミニウム(略称:Alq)、トリス(4−メチル−8−キノリノラト)アルミニウム(略称:Almq)、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq)、BAlq、Zn(BOX)、ビス[2−(2−ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(略称:Zn(BTZ))などの金属錯体を用いることができる。また、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)、1,3−ビス[5−(p−tert−ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7)、3−(4−tert−ブチルフェニル)−4−フェニル−5−(4−ビフェニリル)−1,2,4−トリアゾール(略称:TAZ)、3−(4−tert−ブチルフェニル)−4−(4−エチルフェニル)−5−(4−ビフェニリル)−1,2,4−トリアゾール(略称:p−EtTAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、4,4’−ビス(5−メチルベンゾオキサゾール−2−イル)スチルベン(略称:BzOs)などの複素芳香族化合物も用いることができる。また、ポリ(2,5−ピリジン−ジイル)(略称:PPy)、ポリ[(9,9−ジヘキシルフルオレン−2,7−ジイル)−co−(ピリジン−3,5−ジイル)](略称:PF−Py)、ポリ[(9,9−ジオクチルフルオレン−2,7−ジイル)−co−(2,2’−ビピリジン−6,6’−ジイル)](略称:PF−BPy)のような高分子化合物を用いることもできる。ここに述べた物質は、主に10−6cm/Vs以上の電子移動度を有する物質である。なお、正孔よりも電子の輸送性の高い物質であれば、上記以外の物質を電子輸送層114として用いてもよい。
また、電子輸送層114は、単層のものだけでなく、上記物質からなる層が2層以上積層したものとしてもよい。
電子注入層115は、電子注入性の高い物質を含む層である。電子注入層115には、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、リチウム酸化物(LiOx)等のようなアルカリ金属の化合物またはアルカリ土類金属の化合物を用いることができる。また、フッ化エルビウム(ErF)のような希土類金属化合物を用いることができる。また、上述した電子輸送層114を構成する物質を用いることもできる。
あるいは、電子注入層115に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性および電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層114を構成する物質(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属やアルカリ土類金属や希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
なお、上述した正孔注入層111、正孔輸送層112、発光層113、電子輸送層114、電子注入層115、電荷発生層116は、それぞれ、蒸着法(真空蒸着法を含む)、インクジェット法、塗布法等の方法で形成することができる。
上述した発光素子は、第1の電極101および第2の電極103との間に生じた電位差により電流が流れ、EL層102において正孔と電子とが再結合することにより発光する。そして、この発光は、第1の電極101および第2の電極103のいずれか一方または両方を通って外部に取り出される。従って、第1の電極101および第2の電極103のいずれか一方、または両方が透光性を有する電極となる。
なお、本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができるものとする。
(実施の形態2)
本実施の形態では、本発明の一態様である有機化合物と、三重項励起エネルギーを発光に変える発光性材料と、電子輸送性材料と、を発光層に用いた発光素子について、図2(A)及び図2(B)を用いて説明する。
本実施の形態に示す発光素子は、図2(A)に示すように一対の電極(第1の電極201及び第2の電極203)間にEL層210を有する構造である。なお、EL層210には、少なくとも正孔輸送層211と発光層212を有し、その他、正孔注入層、電子輸送層、電子注入層、電荷発生層などが含まれていても良い。なお、正孔注入層、電子輸送層、電子注入層、電荷発生層には、実施の形態1に示した物質を用いることができる。また、本実施の形態においては、第1の電極201を陽極として用い、第2の電極203を陰極として用いる。
本実施の形態に示す正孔輸送層211及び発光層212のいずれか一方または両方に、本発明の一態様である有機化合物が含まれる構成である。
発光層212は、第1の有機化合物213と、第2の有機化合物214と、第3の有機化合物215が含まれており、本実施の形態においては、第1の有機化合物213をホスト材料として用い、第2の有機化合物214をアシスト材料として用い、第3の有機化合物215をゲスト材料として用いる。本発明の一態様である有機化合物は、正孔輸送性の高い物質であるため、アシスト材料として用いる第2の有機化合物214に適用することができる。
発光層212において、上記ゲスト材料をホスト材料に分散させた構成とすることにより、発光層の結晶化を抑制することができる。また、ゲスト材料の濃度が高いことによる濃度消光を抑制し、発光素子の発光効率を高くすることができる。
なお、第1の有機化合物213(ホスト材料)、及び第2の有機化合物214(アシスト材料)のそれぞれの三重項励起エネルギーの準位(T1準位)は、第3の有機化合物215(ゲスト材料)のT1準位よりも高いことが好ましい。第1の有機化合物213(または第2の有機化合物214)のT1準位が第3の有機化合物215のT1準位よりも低いと、発光に寄与する第3の有機化合物215の三重項励起エネルギーを第1の有機化合物213(または第2の有機化合物214)が消光(クエンチ)してしまい、発光効率の低下を招くためである。
ここで、ホスト材料からゲスト材料へのエネルギー移動効率を高めるため、分子間の移動機構として知られているフェルスター機構(双極子−双極子相互作用)およびデクスター機構(電子交換相互作用)を考慮した上で、ホスト材料の発光スペクトル(一重項励起状態からのエネルギー移動を論じる場合は蛍光スペクトル、三重項励起状態からのエネルギー移動を論じる場合は燐光スペクトル)とゲスト材料の吸収スペクトル(より詳細には、最も長波長(低エネルギー)側の吸収帯におけるスペクトル)との重なりが大きくなることが好ましい。しかしながら通常の燐光性のゲスト材料の場合、ホスト材料の蛍光スペクトルを、ゲスト材料の最も長波長(低エネルギー)側の吸収帯における吸収スペクトルと重ねることは困難である。なぜならば、そのようにしてしまうと、ホスト材料の燐光スペクトルは蛍光スペクトルよりも長波長(低エネルギー)側に位置するため、ホスト材料のT1準位が燐光性化合物のT1準位を下回ってしまい、上述したクエンチの問題が生じてしまうからである。一方、クエンチの問題を回避するため、ホスト材料のT1準位が燐光性化合物のT1準位を上回るように設計すると、今度はホスト材料の蛍光スペクトルが短波長(高エネルギー)側にシフトするため、その蛍光スペクトルはゲスト材料の最も長波長(低エネルギー)側の吸収帯における吸収スペクトルと重ならなくなる。したがって、ホスト材料の蛍光スペクトルをゲスト材料の最も長波長(低エネルギー)側の吸収帯における吸収スペクトルと重ね、ホスト材料の一重項励起状態からのエネルギー移動を最大限に高めることは、通常困難である。
そこで本実施形態においては、第1の有機化合物213、および第2の有機化合物214は、励起錯体(エキサイプレックスとも言う)を形成する組み合わせであることが好ましい。これにより、発光層212において、第1の有機化合物213の蛍光スペクトルおよび第2の有機化合物214の蛍光スペクトルは、より長波長側に位置する励起錯体の発光スペクトルに変換される。そして、励起錯体の発光スペクトルとゲスト材料(第3の有機化合物215)の吸収スペクトルとの重なりが大きくなるように、第1の有機化合物213と第2の有機化合物214を選択すれば、一重項励起状態からのエネルギー移動を最大限に高めることができる(図2(B)参照)。
なお、三重項励起状態に関しても、ホスト材料ではなく励起錯体からのエネルギー移動が生じると考えられる。
第1の有機化合物213としては、実施の形態1に示す電子輸送性材料を用いるとよい。また、第2の有機化合物214としては、実施の形態1に示す正孔輸送性材料、または本発明の一態様の有機化合物を用いるとよい。また、第3の有機化合物215としては、実施の形態1に示す燐光性材料を用いるとよい。
上述した第1の有機化合物213、及び第2の有機化合物214は、励起錯体を形成できる組み合わせの一例であり、励起錯体の発光スペクトルが、第3の有機化合物215の吸収スペクトルと重なり、励起錯体の発光スペクトルのピークが、第3の有機化合物215の吸収スペクトルのピークよりも長波長であればよい。
なお、電子輸送性材料と正孔輸送性材料で第1の有機化合物213と第2の有機化合物214を構成するため、その混合比によってキャリアバランスを制御することができる。具体的には、第1の有機化合物:第2の有機化合物=1:9〜9:1の範囲が好ましい。
本実施の形態で示した発光素子は、励起錯体の発光スペクトルと燐光性化合物の吸収スペクトルとの重なりを利用したエネルギー移動により、エネルギー移動効率を高めることができるため、外部量子効率の高い発光素子を実現することができる。
なお、本実施の形態で示した発光素子は、発光素子の構造の一例であるが、本発明の一態様である発光装置には、他の実施の形態で示す別の構造の発光素子を適用することもできる。また、上記発光素子を備えた発光装置の構成としては、パッシブマトリクス型の発光装置やアクティブマトリクス型の発光装置の他、別の実施の形態で説明する上記とは別の構造を有する発光素子を備えたマイクロキャビティー構造の発光装置などを作製することができ、これらは、いずれも本発明に含まれるものとする。
なお、アクティブマトリクス型の発光装置の場合において、TFTの構造は、特に限定されない。例えば、スタガ型や逆スタガ型のTFTを適宜用いることができる。また、TFT基板に形成される駆動用回路についても、N型およびP型のTFTからなるものでもよいし、N型のTFTまたはP型のTFTのいずれか一方のみからなるものであってもよい。さらに、TFTに用いられる半導体膜の結晶性についても特に限定されない。例えば、非晶質半導体膜、結晶性半導体膜、その他、酸化物半導体膜等を用いることができる。
なお、本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができるものとする。
(実施の形態3)
本実施の形態では、本発明の一態様として、電荷発生層を挟んで発光層を複数有する構造の発光素子(以下、タンデム型発光素子という)について説明する。
本実施の形態に示す発光素子は、図3(A)に示すように一対の電極(第1の電極301及び第2の電極303)間に、複数の発光層(第1の発光層311、第2の発光層312)を有するタンデム型発光素子である。
本実施の形態において、第1の電極301は、陽極として機能する電極であり、第2の電極303は陰極として機能する電極である。なお、第1の電極301及び第2の電極303は、実施の形態2と同様な構成を用いることができる。また、複数の発光層(第1の発光層311、第2の発光層312)は、実施の形態1または実施の形態2で示した発光層と同様な構成であっても良いが、いずれかが同様の構成であっても良い。すなわち、第1の発光層311と第2の発光層312は、同じ構成であっても異なる構成であってもよく、その構成は実施の形態1または実施の形態2と同様なものを適用することができる。
また、第1の発光層311、及び第2の発光層312のいずれか一方または両方において、正孔輸送層(図示しない)を第1の電極301側に設ける構成とする。
また、複数の発光層(第1の発光層311、第2の発光層312)の間には、電荷発生層313が設けられている。電荷発生層313は、第1の電極301と第2の電極303に電圧を印加したときに、一方の発光層に電子を注入し、他方の発光層に正孔を注入する機能を有する。本実施の形態の場合には、第1の電極301に第2の電極303よりも電位が高くなるように電圧を印加すると、電荷発生層313から第1の発光層311に電子が注入され、第2の発光層312に正孔が注入される。
なお、電荷発生層313は、光の取り出し効率の点から、可視光に対して透光性を有する(具体的には、電荷発生層313に対する可視光の透過率が、40%以上)ことが好ましい。また、電荷発生層313は、第1の電極301や第2の電極303よりも低い導電率であっても機能する。
電荷発生層313は、正孔輸送性の高い有機化合物に電子受容体(アクセプター)が添加された構成であっても、電子輸送性の高い有機化合物に電子供与体(ドナー)が添加された構成であってもよい。また、これらの両方の構成が積層されていても良い。
正孔輸送性の高い有機化合物に電子受容体が添加された構成とする場合において、正孔輸送性の高い有機化合物としては、例えば、NPBやTPD、TDATA、MTDATA、4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N―フェニルアミノ]ビフェニル(略称:BSPB)などの芳香族アミン化合物等を用いることができる。ここに述べた物質は、主に10−6cm/Vs以上の正孔移動度を有する物質である。但し、電子よりも正孔の輸送性の高い有機化合物であれば、上記以外の物質を用いても構わない。
また、電子受容体としては、7,7,8,8−テトラシアノ−2,3,5,6−テトラフルオロキノジメタン(略称:F4−TCNQ)、クロラニル等を挙げることができる。また、遷移金属酸化物を挙げることができる。また元素周期表における第4族乃至第8族に属する金属の酸化物を挙げることができる。具体的には、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデン、酸化タングステン、酸化マンガン、酸化レニウムは電子受容性が高いため好ましい。中でも特に、酸化モリブデンは大気中でも安定であり、吸湿性が低く、扱いやすいため好ましい。
一方、電子輸送性の高い有機化合物に電子供与体が添加された構成とする場合において、電子輸送性の高い有機化合物としては、例えば、Alq、Almq、BeBq、BAlqなど、キノリン骨格またはベンゾキノリン骨格を有する金属錯体等を用いることができる。また、この他、Zn(BOX)、Zn(BTZ)などのオキサゾール系、チアゾール系配位子を有する金属錯体なども用いることができる。さらに、金属錯体以外にも、PBDやOXD−7、TAZ、BPhen、BCPなども用いることができる。ここに述べた物質は、主に10−6cm/Vs以上の電子移動度を有する物質である。なお、正孔よりも電子の輸送性の高い有機化合物であれば、上記以外の物質を用いても構わない。
また、電子供与体としては、アルカリ金属またはアルカリ土類金属または希土類金属または元素周期表における第13族に属する金属およびその酸化物、炭酸塩を用いることができる。具体的には、リチウム(Li)、セシウム(Cs)、マグネシウム(Mg)、カルシウム(Ca)、イッテルビウム(Yb)、インジウム(In)、酸化リチウム、炭酸セシウムなどを用いることが好ましい。また、テトラチアナフタセンのような有機化合物を電子供与体として用いてもよい。
なお、上述した材料を用いて電荷発生層313を形成することにより、発光層が積層された場合における駆動電圧の上昇を抑制することができる。
図3(A)においては、発光層を2層有する発光素子について説明したが、図3(B)に示すように、n層(ただし、nは、3以上)の発光層を積層した発光素子についても、同様に適用することが可能である。本実施の形態に係る発光素子のように、一対の電極間に複数の発光層を有する場合、発光層と発光層との間に電荷発生層313を配置することで、電流密度を低く保ったまま高輝度領域での発光が可能である。電流密度を低く保てるため、長寿命素子を実現できる。また、照明を応用例とした場合は、電極材料の抵抗による電圧降下を小さくできるので、大面積での均一発光が可能となる。また、低電圧駆動が可能で消費電力が低い発光装置を実現することができる。
また、それぞれの発光層の発光色を異なるものにすることで、発光素子全体として、所望の色の発光を得ることができる。例えば、2つの発光層を有する発光素子において、第1の発光層の発光色と第2の発光層の発光色を補色の関係になるようにすることで、発光素子全体として白色発光する発光素子を得ることも可能である。なお、補色とは、混合すると無彩色になる色同士の関係をいう。つまり、補色の関係にある色を発光する物質から得られた光と混合すると、白色発光を得ることができる。
また、3つの発光層を有する発光素子の場合でも同様であり、例えば、第1の発光層の発光色が赤色であり、第2の発光層の発光色が緑色であり、第3の発光層の発光色が青色である場合、発光素子全体としては、白色発光を得ることができる。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。
(実施の形態4)
本実施の形態では、本発明の一態様である発光装置について説明する。
本実施の形態に示す発光装置は、一対の電極間での光の共振効果を利用した微小光共振器(マイクロキャビティー)構造を有しており、図4に示す様に一対の電極(反射電極451及び半透過・半反射電極452)間に少なくともEL層455を有する発光素子を、複数有している。また、EL層455は、少なくとも正孔輸送層(図示しない)と、発光層(第1の発光層454B、第2の発光層454G、第3の発光層454R)を有し、その他、正孔注入層、電子輸送層、電子注入層、電荷発生層などが含まれていても良い。
第1の発光素子450Rは、反射電極451上に第1の透明導電層453aと、第1の発光層454B、第2の発光層454G、第3の発光層454Rを一部に含むEL層455と、半透過・半反射電極452とが順次積層された構造を有する。また、第2の発光素子450Gは、反射電極451上に第2の透明導電層453bと、EL層455と、半透過・半反射電極452とが順次積層された構造を有する。また、第3の発光素子450Bは、反射電極451上にEL層455と、半透過・半反射電極452とが順次積層された構造を有する。
なお、上記発光素子(第1の発光素子450R、第2の発光素子450G、第3の発光素子450B)において、反射電極451、EL層455、半透過・半反射電極452は共通である。また、第1の発光層454Bでは、420nm以上480nm以下の波長領域にピークをもつ光(λ)を発光させ、第2の発光層454Gでは、500nm以上550nm以下の波長領域にピークを持つ光(λ)を発光させ、第3の発光層454Rでは、600nm以上760nm以下の波長領域にピークを持つ光(λ)を発光させる。これにより、いずれの発光素子(第1の発光素子450R、第2の発光素子450G、第3の発光素子450B)でも、第1の発光層454B、第2の発光層454G、及び第3の発光層454Rからの発光が重ね合わされた、すなわち可視光領域に渡るブロードな光を発光させることができる。なお、上記より、波長の長さは、λ<λ<λとなる関係であるとする。
本実施の形態に示す各発光素子は、それぞれ反射電極451と半透過・半反射電極452との間にEL層455を挟んでなる構造を有しており、EL層455に含まれる各発光層から全方向に射出される発光は、微小光共振器(マイクロキャビティー)としての機能を有する反射電極451と半透過・半反射電極452とによって共振される。なお、反射電極451は、反射性を有する導電性材料により形成され、その膜に対する可視光の反射率が40%〜100%、好ましくは70%〜100%であり、かつその抵抗率が1×10−2Ωcm以下の膜であるとする。また、半透過・半反射電極452は、反射性を有する導電性材料と光透過性を有する導電性材料とにより形成され、その膜に対する可視光の反射率が20%〜80%、好ましくは40%〜70%であり、かつその抵抗率が1×10−2Ωcm以下の膜であるとする。
また、本実施の形態では、各発光素子で、第1の発光素子450Rと第2の発光素子450Gにそれぞれ設けられた透明導電層(第1の透明導電層453a、第2の透明導電層453b)の厚みを変えることにより、発光素子毎に反射電極451と半透過・半反射電極452の間の光学距離を変えている。つまり、各発光素子の各発光層から発光するブロードな光は、反射電極451と半透過・半反射電極452との間において、共振する波長の光を強め、共振しない波長の光を減衰させることができるため、素子毎に反射電極451と半透過・半反射電極452の間の光学距離を変えることにより、異なる波長の光を取り出すことができる。
なお、光学距離(光路長ともいう)とは、実際の距離に屈折率をかけたものであり、本実施の形態においては、実膜厚にn(屈折率)をかけたものを表している。すなわち、「光学距離=実膜厚×n」である。
また、第1の発光素子450Rでは、反射電極451から半透過・半反射電極452までの光学的距離をmλ/2(ただし、mは1以上の自然数)、第2の発光素子450Gでは、反射電極451から半透過・半反射電極452までの光学的距離をlλ/2(ただし、lは1以上の自然数)、第3の発光素子450Bでは、反射電極451から半透過・半反射電極452までの光学的距離をnλ/2(ただし、nは1以上の自然数)としている。
以上より、第1の発光素子450Rからは、主としてEL層455に含まれる第3の発光層454Rで発光した光(λ)が取り出され、第2の発光素子450Gからは、主としてEL層455に含まれる第2の発光層454Gで発光した光(λ)が取り出され、第3の発光素子450Bからは、主としてEL層455に含まれる第1の発光層454Bで発光した光(λ)が取り出される。なお、各発光素子から取り出される光は、半透過・半反射電極452側からそれぞれ射出される。
また、上記構成において、反射電極451から半透過・半反射電極452までの光学的距離は、厳密には反射電極451における反射領域から半透過・半反射電極452における反射領域までの距離である。しかし、反射電極451や半透過・半反射電極452における反射領域の位置を厳密に決定することは困難であり、反射電極451と半透過・半反射電極452の任意の位置を反射領域と仮定することで充分に上述の効果を得ることができる。
次に、第1の発光素子450Rにおいて、第3の発光層454Rからの発光のうち、反射電極451によって反射されて戻ってきた光(第1の反射光)は、第3の発光層454Rから半透過・半反射電極452に直接入射する光(第1の入射光)と干渉を起こすため、反射電極451と第3の発光層454Rの光学的距離を(2n−1)λ/4(ただし、nは1以上の自然数)に調節する。光学的距離を調節することにより、第1の反射光と第1の入射光との位相を合わせ、第3の発光層454Rからの発光を増幅させることができる。
なお、反射電極451と第3の発光層454Rとの光学的距離とは、厳密には反射電極451における反射領域と第3の発光層454Rにおける発光領域との光学的距離ということができる。しかし、反射電極451における反射領域や第3の発光層454Rにおける発光領域の位置を厳密に決定することは困難であり、反射電極451と第3の発光層454Rの任意の位置を、それぞれ反射領域、発光領域と仮定することで充分に上述の効果を得ることができる。
次に、第2の発光素子450Gにおいて、第2の発光層454Gからの発光のうち、反射電極451によって反射されて戻ってきた光(第2の反射光)は、第2の発光層454Gから半透過・半反射電極452に直接入射する光(第2の入射光)と干渉を起こすため、反射電極451と第2の発光層454Gの光学的距離を(2n−1)λ/4(ただし、nは1以上の自然数)に調節する。光学的距離を調節することにより、第2の反射光と第2の入射光との位相を合わせ、第2の発光層454Gからの発光を増幅させることができる。
なお、反射電極451と第2の発光層454Gとの光学的距離とは、厳密には反射電極451における反射領域と第2の発光層454Gにおける発光領域との光学的距離ということができる。しかし、反射電極451における反射領域や第2の発光層454Gにおける発光領域の位置を厳密に決定することは困難であり、反射電極451と第2の発光層454Gの任意の位置を、それぞれ反射領域、発光領域と仮定することで充分に上述の効果を得ることができる。
次に、第3の発光素子450Bにおいて、第1の発光層454Bからの発光のうち、反射電極451によって反射されて戻ってきた光(第3の反射光)は、第1の発光層454Bから半透過・半反射電極452に直接入射する光(第3の入射光)と干渉を起こすため、反射電極451と第1の発光層454Bの光学的距離を(2n−1)λ/4(ただし、nは1以上の自然数)に調節する。光学的距離を調節することにより、第3の反射光と第3の入射光との位相を合わせ、第1の発光層454Bからの発光を増幅させることができる。
なお、反射電極451と第1の発光層454Bとの光学的距離とは、厳密には反射電極451における反射領域と第1の発光層454Bにおける発光領域との光学的距離ということができる。しかし、反射電極451における反射領域や第1の発光層454Bにおける発光領域の位置を厳密に決定することは困難であるため、反射電極451と第1の発光層454Bの任意の位置を、それぞれ反射領域、発光領域と仮定することで充分に上述の効果を得ることができるものとする。
なお、上記構成において、いずれの発光素子も1つのEL層を有する構造を有しているが、本発明はこれに限られることはなく、例えば、実施の形態3で説明したタンデム型(積層型)発光素子の構成と組み合わせて、一つの発光素子に電荷発生層を挟んで複数の発光層を形成する構成としてもよい。
本実施の形態で示した発光装置は、マイクロキャビティー構造を有しており、同じ構成のEL層を有していても発光素子毎に異なる波長の光を取り出すことができるためRGBの塗り分けが不要となる。従って、高精細化を実現することが容易であるなどの理由からフルカラー化を実現する上で有利である。また、特定波長の正面方向の発光強度を強めることが可能となるため、低消費電力化を図ることができる。この構成は、3色以上の画素を用いたカラーディスプレイ(画像表示装置)に適用する場合に、特に有用であるが、照明などの用途に用いてもよい。
なお、本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態5)
本実施の形態では、本発明の一態様である発光素子を有する発光装置について説明する。
また、上記発光装置は、パッシブマトリクス型の発光装置でもアクティブマトリクス型の発光装置でもよい。なお、本実施の形態に示す発光装置には、他の実施形態で説明した発光素子を適用することが可能である。
本実施の形態では、アクティブマトリクス型の発光装置について図5を用いて説明する。
なお、図5(A)は発光装置を示す上面図であり、図5(B)は図5(A)を鎖線A−A’で切断した断面図である。本実施の形態に係るアクティブマトリクス型の発光装置は、素子基板501上に設けられた画素部502と、駆動回路部(ソース線駆動回路)503と、駆動回路部(ゲート線駆動回路)504と、を有する。画素部502、駆動回路部503、及び駆動回路部504は、シール材505によって、素子基板501と封止基板506との間に封止されている。
また、素子基板501上には、駆動回路部503、及び駆動回路部504に外部からの信号(例えば、ビデオ信号、クロック信号、スタート信号、又はリセット信号等)や電位を伝達する外部入力端子を接続するための引き回し配線507が設けられる。ここでは、外部入力端子としてFPC(フレキシブルプリントサーキット)508を設ける例を示している。なお、ここではFPCしか図示されていないが、このFPCにはプリント配線基板(PWB)が取り付けられていても良い。本明細書における発光装置には、発光装置本体だけでなく、それにFPCもしくはPWBが取り付けられた状態をも含むものとする。
次に、断面構造について図5(B)を用いて説明する。素子基板501上には駆動回路部及び画素部が形成されているが、ここでは、ソース線駆動回路である駆動回路部503と、画素部502が示されている。
駆動回路部503はnチャネル型TFT509とpチャネル型TFT510とを組み合わせたCMOS回路が形成される例を示している。なお、駆動回路部を形成する回路は、種々のCMOS回路、PMOS回路もしくはNMOS回路で形成しても良い。また、本実施の形態では、基板上に駆動回路を形成したドライバ一体型を示すが、必ずしもその必要はなく、基板上ではなく外部に駆動回路を形成することもできる。
また、画素部502はスイッチング用TFT511と、電流制御用TFT512と電流制御用TFT512の配線(ソース電極又はドレイン電極)に電気的に接続された第1の電極513とを含む複数の画素により形成される。なお、第1の電極513の端部を覆って絶縁物514が形成されている。ここでは、ポジ型の感光性アクリル樹脂を用いることにより形成する。なお、本実施の形態においては、第1の電極513を陽極として用いる。
また、上層に積層形成される膜の被覆性を良好なものとするため、絶縁物514の上端部または下端部に曲率を有する曲面が形成されるようにするのが好ましい。例えば、絶縁物514の材料としてポジ型の感光性アクリル樹脂を用いた場合、絶縁物514の上端部に曲率半径(0.2μm〜3μm)を有する曲面を持たせることが好ましい。また、絶縁物514として、ネガ型の感光性樹脂、或いはポジ型の感光性樹脂のいずれも使用することができ、有機化合物に限らず無機化合物、例えば、酸化シリコン、酸窒化シリコン等、の両者を使用することができる。
第1の電極513上には、EL層515及び第2の電極516が積層形成されている。EL層515は、少なくとも正孔輸送層、及び発光層が設けられている。正孔輸送層、及び発光層は、実施の形態1または実施の形態2で示した構成を適用することができる。なお、本実施の形態においては、第2の電極516を陰極として用いる。
なお、第1の電極513、EL層515及び第2の電極516との積層構造で、発光素子517が形成されている。第1の電極513、EL層515及び第2の電極516の用いる材料としては、実施の形態2に示す材料を用いることができる。また、ここでは図示しないが、第2の電極516は外部入力端子であるFPC508に電気的に接続されている。
また、図5(B)に示す断面図では発光素子517を1つのみ図示しているが、画素部502において、複数の発光素子がマトリクス状に配置されているものとする。画素部502には、3種類(R、G、B)の発光が得られる発光素子をそれぞれ選択的に形成し、フルカラー表示可能な発光装置を形成することができる。また、カラーフィルタと組み合わせることによってフルカラー表示可能な発光装置としてもよい。
さらに、シール材505で封止基板506を素子基板501と貼り合わせることにより、素子基板501、封止基板506、およびシール材505で囲まれた空間518に発光素子517が備えられた構造になっている。なお、空間518には、不活性気体(窒素やアルゴン等)が充填される場合の他、シール材505で充填される構成も含むものとする。
なお、シール材505にはエポキシ系樹脂を用いるのが好ましい。また、これらの材料はできるだけ水分や酸素を透過しない材料であることが望ましい。また、封止基板506に用いる材料としてガラス基板や石英基板の他、FRP(Fiberglass−Reinforced Plastics)、PVF(ポリビニルフロライド)、ポリエステルまたはアクリル等からなるプラスチック基板を用いることができる。
以上のようにして、アクティブマトリクス型の発光装置を得ることができる。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用いることができる。
(実施の形態6)
本実施の形態では、上記実施の形態に示す本発明の一態様の発光装置をその一部に含む電子機器について説明する。電子機器としては、ビデオカメラ、デジタルカメラ等のカメラ、ゴーグル型ディスプレイ、ナビゲーションシステム、音響再生装置(カーオーディオ、オーディオコンポ等)、コンピュータ、ゲーム機器、携帯情報端末(モバイルコンピュータ、携帯電話、スマートフォン、携帯型ゲーム機、電子書籍、またはタブレット型端末等)、記録媒体を備えた画像再生装置(具体的には、Digital Versatile Disc(DVD)等の記録媒体を再生し、その画像を表示しうる表示装置を備えた装置)などが挙げられる。これらの電子機器の具体例について、図6、及び図7を用いて説明する。
図6(A)は、本発明の一態様に係るテレビ装置であり、筐体611、支持台612、表示部613、スピーカー部614、ビデオ入力端子615等を含む。このテレビ装置において、表示部613には、本発明の一態様の発光装置を適用することができる。本発明の一態様の発光装置は、低駆動電圧で、高い電流効率が得られるため、本発明の一態様の発光装置を適用することで、消費電力の低減されたテレビ装置を得ることができる。
図6(B)は、本発明の一態様に係るコンピュータであり、本体621、筐体622、表示部623、キーボード624、外部接続ポート625、ポインティングデバイス626等を含む。このコンピュータにおいて、表示部623には、本発明の一態様の発光装置を適用することができる。本発明の一態様の発光装置は、低駆動電圧で、高い電流効率が得られるため、本発明の一態様の発光装置を適用することで、消費電力の低減されたコンピュータを得ることができる。
図6(C)は、本発明の一態様に係る携帯電話であり、本体631、筐体632、表示部633、音声入力部634、音声出力部635、操作キー636、外部接続ポート637、アンテナ638等を含む。この携帯電話において、表示部633には、本発明の一態様の発光装置を適用することができる。本発明の一態様の発光装置は、低駆動電圧で、高い電流効率が得られるため、本発明の一態様の発光装置を適用することで、消費電力の低減された携帯電話を得ることができる。
図6(D)は、本発明の一態様に係るカメラであり、本体641、表示部642、筐体643、外部接続ポート644、リモコン受信部645、受像部646、バッテリー647、音声入力部648、操作キー649、接眼部650等を含む。このカメラにおいて、表示部642には、本発明の一態様の発光装置を適用することができる。本発明の一態様の発光装置は、低駆動電圧で、高い電流効率が得られるため、本発明の一態様の発光装置を適用することで、消費電力の低減されたカメラを得ることができる。
図7は、本発明の一態様に係る携帯型端末の一例であり、図7(A)、図7(B)、及び図7(C)は、携帯型端末5000を示し、図7(D)は、携帯型端末6000を示している。
図7(A)、図7(B)、及び図7(C)に示す携帯型端末5000において、図7(A)は正面図を、図7(B)は側面図を、図7(C)は背面図を、それぞれ示している。また、図7(D)に示す携帯型端末6000においては、正面図を示している。
携帯型端末5000は、筐体5001、表示部5003、電源ボタン5005、前面カメラ5007、背面カメラ5009、第1の外部接続端子5011、及び第2の外部接続端子5013などにより構成されている。
また、表示部5003は、筐体5001に組み込まれており、タッチパネルとしても用いることができる。例えば、表示部5003上にアイコン5015等を表示させて、メールや、スケジュール管理といった作業を行うことができる。また、筐体5001には、正面側に前面カメラ5007が組み込まれており、使用者側の映像を撮影することができる。また、筐体5001には、背面側に背面カメラ5009が組み込まれており、使用者と反対側の映像を撮影することができる。また、筐体5001には、第1の外部接続端子5011、及び第2の外部接続端子5013を備えており、例えば、第1の外部接続端子5011により、イヤホン等に音声を出力し、第2の外部接続端子5013により、データの移動等を行うことができる。
次に、図7(D)に示す携帯型端末6000は、第1の筐体6001、第2の筐体6003、ヒンジ部6005、第1の表示部6007、第2の表示部6009、電源ボタン6011、第1のカメラ6013、第2のカメラ6015などにより構成されている。
また、第1の表示部6007は、第1の筐体6001に組み込まれており、第2の表示部6009は、第2の筐体6003に組み込まれている。第1の表示部6007、及び第2の表示部6009は、例えば、第1の表示部6007を表示用パネルとして使用し、第2の表示部6009をタッチパネルとする。第1の表示部6007に表示されたテキストアイコン6017を確認し、第2の表示部6009に表示させたアイコン6019、またはキーボード6021(第2の表示部6009に表示されたキーボード画像)を用いて、画像の選択、または文字の入力等を行うことができる。もちろん、第1の表示部6007がタッチパネルであり、第2の表示部6009が表示用パネルといった構成や、第1の表示部6007、及び第2の表示部6009ともにタッチパネルといった構成としてもよい。
また、第1の筐体6001と、第2の筐体6003は、ヒンジ部6005により接続されており、第1の筐体6001と、第2の筐体6003と、を開閉することができる。このような構成とすることにより、携帯型端末6000を持ち運ぶ際に、第1の筐体6001に組み込まれた第1の表示部6007と、第2の筐体6003に組み込まれた第2の表示部6009と、を合わせることで、第1の表示部6007、及び第2の表示部6009の表面(例えば、プラスチック基板等)を保護することができるので好適である。
また、第1の筐体6001と第2の筐体6003は、ヒンジ部6005により、分離できる構成としても良い(所謂コンバーチブル型)。このような構成とすることで、例えば、第1の筐体6001を縦置きとし、第2の筐体6003を横置きとして使用するといったように、使用範囲が広がるので好適である。
また、第1のカメラ6013、及び第2のカメラ6015により、3D画像の撮影を行うこともできる。
また、携帯型端末5000、及び携帯型端末6000は、無線で情報を送受信できる構成としてもよい。例えば、無線により、インターネット等に接続し、所望の情報を購入し、ダウンロードする構成とすることも可能である。
また、携帯型端末5000、及び携帯型端末6000は、様々な情報(静止画、動画、テキスト画像など)を表示する機能、カレンダー、日付又は時刻などを表示部に表示する機能、表示部に表示した情報をタッチ入力操作又は編集するタッチ入力機能、様々なソフトウェア(プログラム)によって処理を制御する機能、等を有することができる。また、外光の光量に応じて表示の輝度を最適にすることができる光センサや、ジャイロ、加速度センサの傾きを検出するセンサなどといった検出装置を内蔵させてもよい。
携帯型端末5000の表示部5003、並びに携帯型端末6000の第1の表示部6007、または/および第2の表示部6009において、本発明の一態様の発光装置を適用することができる。本発明の一態様の発光装置は、低駆動電圧で、高い電流効率が得られるため、本発明の一態様の発光装置を適用することで、消費電力の低減されたタブレット型端末を得ることができる。
以上のように、本発明の一態様の発光装置の適用範囲は極めて広く、この発光装置をあらゆる分野の電子機器に適用することが可能である。本発明の一態様の発光装置を用いることにより、消費電力の低減された電子機器を得ることができる。
また、本発明の一態様の発光装置は、照明装置として用いることもできる。照明装置の具体例について、図8を用いて説明する。
図8(A)は、本発明の一態様の発光装置をバックライトとして用いた液晶表示装置の一例である。図8(A)に示した液晶表示装置は、筐体701、液晶パネル702、バックライト703、筐体704を有し、液晶パネル702は、ドライバIC705と接続されている。また、バックライト703は、本発明の一態様の発光装置が用いられおり、端子706により、電流が供給されている。このように本発明の一態様の発光装置を液晶表示装置のバックライトとして用いることにより、低消費電力のバックライトが得られる。また、本発明の一態様の発光装置は、面発光の照明装置であり大面積化も可能であるため、バックライトの大面積化も可能である。従って、低消費電力であり、大面積化された液晶表示装置を得ることができる。
図8(B)は、本発明の一態様の発光装置を、照明装置である電気スタンドとして用いた例である。図8(B)に示す電気スタンドは、筐体801と、光源802を有し、光源802として、本発明の一態様の発光装置が用いられている。低駆動電圧で、高い電流効率が得られるため、本発明の一態様の発光装置を適用することで、低消費電力の電気スタンドを得ることが可能となる。
図8(C)は、本発明の一態様の発光装置を、室内の照明装置901として用いた例である。本発明の一態様の発光装置は大面積化も可能であるため、大面積の照明装置として用いることができる。また、本発明の一態様の発光装置は、低駆動電圧で、高い電流効率が得られるため、本発明の一態様の発光装置を適用することで、低消費電力の照明装置を得ることが可能となる。このように、本発明の一態様の発光装置を、室内の照明装置901として用いた部屋に、図6(A)で説明したような、本発明の一態様のテレビ装置902を設置して公共放送や映画を鑑賞することができる。
なお、本実施の形態は、他の実施の形態と適宜組み合わせることが可能である。
本実施例では、実施の形態1において構造式(100)、構造式(101)、及び構造式(110)で示す有機化合物を製造する合成法の一例について、以下説明を行う。
<構造式(100)で示す9−〔4−(9−フェニル−9H−フルオレン−9−イル)フェニル〕−9H−カルバゾール(略称:CzFLP)の合成法>
まず、下記構造式(100)で示すCzFLP(略称)の合成法の一例について説明する。
50mL三口フラスコへ、9−(4−ブロモフェニル)−9−フェニル−9H−フルオレンを2.0g(5.0mmol)、カルバゾールを0.8g(5.0mmol)、ナトリウム tert−ブトキシド(tBuONa)を0.7g(7.0mmol)、ビス(ジベンジリデンアセトン)パラジウム(0)(Pd(dba))を28mg(50μmol)加え、フラスコ内の雰囲気を窒素置換した。この混合物へ、脱水キシレン20mLを加えた。この混合物を、減圧下で攪拌しながら脱気した後、トリ(tert−ブチル)ホスフィン((tBu)P)(10wt%ヘキサン溶液)0.2mL(0.1mmol)を加えた。この混合物を、窒素雰囲気下、110℃で5.5時間加熱撹拌し、反応させた。
反応後、この反応混合液にトルエン400mLを加え、この懸濁液をフロリジール、アルミナ、セライトを通してろ過した。得られたろ液を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒はトルエンとヘキサンの混合液)で精製した後、再結晶したところ、目的物の白色粉末を収量4.4g、収率91%で得た。上記合成法の反応スキームを下記(B−1)に示す。
シリカゲル薄層クロマトグラフィー(TLC)でのRf値(展開溶媒 酢酸エチル:ヘキサン=1:10)は、目的物は0.28、9−(4−ブロモフェニル)−9−フェニル−9H−フルオレンは0.38、カルバゾールは0.10だった。
上記反応スキーム(B−1)で得られた化合物を核磁気共鳴法(H NMR)により測定した。以下に測定データを示す。
H NMR(CDCl,300MHz):δ(ppm)=7.23−7.44(m,19H), 7.51(d, J=6.9Hz, 2H), 7.81(d, J=7.8Hz, 2H), 8.13(d, J=7.8Hz, 2H)。
また、H NMRチャートを図9(A)、(B)に示す。なお、図9(B)は、図9(A)を拡大して表したチャートである。測定結果から、目的物であるCzFLP(略称)が得られたことを確認した。
<構造式(101)で示す9−〔3−(9−フェニル−9H−フルオレン−9−イル)フェニル〕9H−カルバゾール(略称:mCzFLP)の合成法>
次に、下記構造式(101)で示すmCzFLP(略称)の合成法の一例について説明する。
9−(3−ブロモフェニル)−9−フェニルフルオレン4.9g(12.4mmol)、カルバゾール2.1g(12.4mmol)とナトリウム tert−ブトキシド(tBuONa)3.6g(37.2mmol)を100mL三口フラスコに入れ、フラスコ内を窒素置換した。この混合物にキシレン31.0mL、トリ(tert−ブチル)ホスフィン((tBu)P)の10%ヘキサン溶液0.2mL、ビス(ジベンジリデンアセトン)パラジウム(0)48.1mg(0.1mmol)を加え、140℃にして3.5時間攪拌した。攪拌後、ビス(ジベンジリデンアセトン)パラジウム(0)(Pd(dba))47.7mg(0.1mmol)とトリ(tert−ブチル)ホスフィンの10%ヘキサン溶液0.6mLを加え1.5時間攪拌した。
攪拌後、酢酸エチルを70mL、トルエンを150mL加えて加熱し、フロリジール、セライト、アルミナを通して吸引ろ過し、ろ液を得た。得られたろ液を濃縮し得た固体を、シリカゲルカラムクロマトグラフィー(展開溶媒はヘキサン:トルエン=7:3)により精製したところ目的の白色固体を得た。得られた白色固体をトルエンとヘキサンの混合溶媒で再結晶を行い、目的の白色固体を2.7g、収率46%で得た。
得られた白色固体1.5gを、トレインサブリメーション法により昇華精製した。昇華精製条件は、圧力2.7Pa、アルゴンガスを流量5.0mL/minでながしながら、186℃で固体を加熱した。昇華精製後、目的物の白色固体を1.4g、収率93%で得た。上記合成法の反応スキームを下記(C−1)に示す。
上記反応スキーム(C−1)で得られた化合物を核磁気共鳴法(H NMR)により測定した。以下に測定データを示す。
H NMR(CDCl,500MHz):δ=7.19−7.49(m、21H)、7.77(d、J=7.5Hz、2H)、8.10(d、J=7.0Hz、2H)。
また、H NMRチャートを図10(A)、(B)に示す。なお、図10(B)は、図10(A)を拡大して表したチャートである。測定結果から、目的物であるmCzFLP(略称)が得られたことを確認した。
<構造式(110)で示す3−フェニル−9−〔4−(9−フェニル−9H−フルオレン−9−イル)フェニル〕−9H−カルバゾール(略称:CzFLP−II)の合成法>
次に、下記構造式(110)で示すCzFLP−II(略称)の合成法の一例について説明する。
50mL三口フラスコへ、9−(4−ブロモフェニル)−9−フェニル−9H−フルオレンを2.0g(5.0mmol)、3−フェニル−9H−カルバゾールを1.2g(5.0mmol)、ナトリウム tert−ブトキシド(tBuONa)を0.7g(7.0mmol)、ビス(ジベンジリデンアセトン)パラジウム(0)(Pd(dba))を28mg(50μmol)加え、フラスコ内の雰囲気を窒素置換した。この混合物へ、脱水キシレン20mLを加えた。この混合物を、減圧下で攪拌しながら脱気した後、トリ(tert−ブチル)ホスフィン((tBu)P)(10wt%ヘキサン溶液)0.2mL(0.1mmol)を加えた。この混合物を、窒素雰囲気下、110℃で5.5時間加熱撹拌し、反応させた。
反応後、この反応混合液にトルエン200mLを加え、この懸濁液をフロリジール、アルミナ、セライトを通してろ過した。得られたろ液を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒はトルエンとヘキサンの混合液)で精製した後、再結晶したところ、目的物の白色粉末を収量4.4g、収率91%で得た。上記合成法の反応スキームを下記(D−1)に示す。
シリカゲル薄層クロマトグラフィー(TLC)でのRf値(展開溶媒 酢酸エチル:ヘキサン=1:10)は、目的物は0.33、9−(4−ブロモフェニル)−9−フェニル−9H−フルオレンは0.58、3−フェニル−9H−カルバゾールは0.11だった。
上記反応スキーム(D−1)で得られた化合物を核磁気共鳴法(H NMR)により測定した。以下に測定データを示す。
H NMR(CDCl,300MHz):δ(ppm)=7.22−7.52(m, 22H), 7.61(dd,J=9.0Hz, 2.1Hz, 1H), 7.69(d, J=8.4Hz, 2H), 7.81(d, J=7.2Hz, 2H), 8.15(d, J=7.8Hz, 1H), 8.32(d, J=2.1Hz, 1H)。
また,H NMRチャートを図11(A),(B)に示す。なお、図11(B)は、図11(A)を拡大して表したチャートである。測定結果から、目的物であるCzFLP−II(略称)が得られたことを確認した。
また、CzFLP−II(略称)のガラス転移温度について、示差走査熱量分析装置(DSC、パーキンエルマー社製、(Pyris 1 DSC))を用いて調べた。測定結果から、CzFLP−II(略称)のガラス転移温度は131℃であった。このように、CzFLP−II(略称)は、高いガラス転移温度を示し、良好な耐熱性を有することがわかった。
本実施例では、本発明の一態様の発光素子(発光素子1、発光素子2)、並びに比較用の発光素子(比較発光素子3)について、図12を用いて説明する。また、本実施例で用いる材料の化学式を以下に示す。
以下に、本実施例の発光素子1、発光素子2、及び比較発光素子3の作製方法を示す。
(発光素子1)
まず、基板1100上に、珪素若しくは酸化珪素を含有した酸化インジウム−酸化スズ化合物(ITO−SiO、以下ITSOと略記する。)をスパッタリング法にて成膜し、第1の電極1101を形成した。なお、用いたターゲットの組成は、In:SnO:SiO=85:10:5[重量%]とした。また、第1の電極1101の膜厚は、110nmとし、電極面積は2mm×2mmとした。ここで、第1の電極1101は、発光素子の陽極として機能する電極である。
次に、基板1100上に発光素子を形成するための前処理として、基板表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、10−4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板1100を30分程度放冷した。
次に、第1の電極1101が形成された面が下方となるように、第1の電極1101が形成された基板1100を真空蒸着装置内に設けられた基板ホルダーに固定し、10−4Pa程度まで減圧した後、第1の電極1101上に、抵抗加熱を用いた蒸着法により、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾチオフェン)(略称:DBT3P−II)と酸化モリブデンを共蒸着することで、正孔注入層1111を形成した。その膜厚は、40nmとし、DBT3P−II(略称)と酸化モリブデンの比率は、重量比で2:1(=DBT3P−II:酸化モリブデン)となるように調節した。なお、共蒸着法とは、一つの処理室内で、複数の蒸発源から同時に蒸着を行う蒸着法である。
次に、正孔注入層1111上に、実施例1にて合成した9−〔3−(9−フェニル−9H−フルオレン−9−イル)フェニル〕9H−カルバゾール(略称:mCzFLP)を蒸着することで、正孔輸送層1112を形成した。その膜厚は、20nmとした。
次に、正孔輸送層1112上に、4,6−ビス〔3−(4−ジベンゾチエニル)フェニル〕ピリミジン(略称:4,6mDBTP2Pm−II)と、9−フェニル−9H−3−(9−フェニル−9H−カルバゾール−3−イル)カルバゾール(略称:PCCP)と、(アセチルアセトナト)ビス(6−tert−ブチル−4−フェニルピリミジナト)イリジウム(III)(略称:Ir(tBuppm)(acac))を共蒸着し、発光層1113を形成した。ここで、4,6mDBTP2Pm−II(略称)、PCCP(略称)、及びIr(tBuppm)(acac)(略称)の重量比は、0.8:0.2:0.05(=4,6mDBTP2Pm−II:PCCP:Ir(tBuppm)(acac))となるように調節した。また、発光層1113の膜厚は40nmとした。
次に、発光層1113上に4,6mDBTP2Pm−II(略称)を膜厚10nmとなるように成膜し、第1の電子輸送層1114aを形成した。
次に、第1の電子輸送層1114a上にバソフェナントロリン(略称:BPhen)を膜厚20nmとなるように成膜し、第2の電子輸送層1114bを形成した。
次に、第2の電子輸送層1114b上に、フッ化リチウム(LiF)を1nmの膜厚で蒸着し、電子注入層1115を形成した。
最後に、陰極として機能する第2の電極1103として、アルミニウム(Al)を200nmの膜厚となるように蒸着することで、本実施例の発光素子1を作製した。
なお、上述した蒸着過程において、蒸着は全て抵抗加熱法を用いた。
(発光素子2)
発光素子2は、発光素子1と正孔輸送層1112の構成が異なり、それ以外の構成は同じである。異なる構成のみ以下記載する。
正孔注入層1111上に、実施例1にて合成した9−〔4−(9−フェニル−9H−フルオレン−9−イル)フェニル〕9H−カルバゾール(略称:CzFLP)を蒸着することで、正孔輸送層1112を形成した。その膜厚は、20nmとした。
(比較発光素子3)
比較発光素子3は、発光素子1と正孔輸送層1112の構成が異なり、それ以外の構成は同じである。異なる構成のみ以下記載する。
正孔注入層1111上に、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFLP)を蒸着することで、正孔輸送層1112を形成した。その膜厚は、20nmとした。
以上により得られた発光素子1、発光素子2、及び比較発光素子3の素子構造を表1に示す。
発光素子1、発光素子2、及び比較発光素子3を、窒素雰囲気のグローブボックス内において、各発光素子が大気に曝されないようにガラス基板により封止する作業(シール材を素子の周囲に塗布し、封止時に80℃にて1時間熱処理)を行った。その後、これらの発光素子の動作特性について測定を行った。なお、測定は室温(25℃に保たれた雰囲気)で行った。
発光素子1、発光素子2、及び比較発光素子3の輝度−電流効率特性を図13に示す。図13において、横軸は輝度(cd/m)、縦軸は電流効率(cd/A)をそれぞれ表す。また、発光素子1、発光素子2、及び比較発光素子3の電圧−輝度特性を図14に示す。図14において、横軸は電圧(V)を、縦軸は輝度(cd/m)をそれぞれ表す。また、発光素子1、発光素子2、及び比較発光素子3の輝度−外部量子効率を図15に示す。図15において、横軸は輝度(cd/m)、縦軸は外部量子効率(%)をそれぞれ表す。
また、各発光素子における輝度1000cd/m付近のときの電圧(V)、電流密度(mA/cm)、CIE色度座標(x、y)、電流効率(cd/A)、外部量子効率(%)を表2に示す。
表2に示す通り、輝度859cd/mの発光素子1のCIE色度座標は、(x,y)=(0.43,0.56)であった。また、輝度831cd/mの発光素子2のCIE色度座標は、(x,y)=(0.44,0.55)であった。また、輝度1277cd/mの比較発光素子3のCIE色度座標は、(x,y)=(0.43,0.56)であった。
また、輝度859cd/mの発光素子1の電流効率は89cd/Aであり、外部量子効率は24%であった。また、輝度831cd/mの発光素子2の電流効率は90cd/Aであり、外部量子効率は25%であった。また、輝度1277cd/mの比較発光素子3の電流効率は79cd/Aであり、外部量子効率は22%であった。
したがって、本発明の一態様である発光素子1及び発光素子2は、比較発光素子3と比べると、電流効率を10〜11cd/A高くできることが確認された。また、本発明の一態様である発光素子1及び発光素子2は、比較発光素子3と比べると、外部量子効率を2〜3%高くできることが確認された。また、図13及び図15に示すように、高輝度領域において、発光素子1及び発光素子2は、比較発光素子3と比べると、発光効率、及び外部量子効率が高くなることが確認された。
以上のように、本発明の一態様である発光素子は、正孔輸送層に本発明の一態様である有機化合物を用いることによって、発光効率、及び外部量子効率を高くすることができた。したがって、本発明の一態様である有機化合物は、発光素子の正孔輸送層に用いる材料として有効な材料である。
本実施例では、本発明の一態様の発光素子(発光素子4、発光素子5)について、図12を用いて説明する。また、本実施例で用いる材料の化学式を以下に示す。
以下に、本実施例の発光素子4、及び発光素子5の作製方法を示す。
(発光素子4)
まず、基板1100上に、珪素若しくは酸化珪素を含有した酸化インジウム−酸化スズ化合物(ITO−SiO、以下ITSOと略記する。)をスパッタリング法にて成膜し、第1の電極1101を形成した。なお、用いたターゲットの組成は、In:SnO:SiO=85:10:5[重量%]とした。また、第1の電極1101の膜厚は、110nmとし、電極面積は2mm×2mmとした。ここで、第1の電極1101は、発光素子の陽極として機能する電極である。
次に、基板1100上に発光素子を形成するための前処理として、基板表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、10−4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板1100を30分程度放冷した。
次に、第1の電極1101が形成された面が下方となるように、第1の電極1101が形成された基板1100を真空蒸着装置内に設けられた基板ホルダーに固定し、10−4Pa程度まで減圧した後、第1の電極1101上に、抵抗加熱を用いた蒸着法により、4,4’−ジ(N−カルバゾリル)ビフェニル(略称:CBP)と酸化モリブデンを共蒸着することで、正孔注入層1111を形成した。その膜厚は、50nmとし、CBP(略称)と酸化モリブデンの比率は、重量比で2:1(=CBP:酸化モリブデン)となるように調節した。
次に、正孔注入層1111上に、実施例1にて合成したCzFLP(略称)を蒸着することで、正孔輸送層1112を形成した。その膜厚は、10nmとした。
次に、正孔輸送層1112上に、9−[4−(10−フェニル−9−アントラセニル)フェニル]−9H−カルバゾール(略称:CzPA)と、N,N’−ビス(3−メチルフェニル)−N,N’−ビス〔3−(9−フェニル−9H−フルオレン−9−イル)フェニル〕−ピレン−1,6−ジアミン(略称:1,6mMemFLPAPrn)と、を共蒸着し、発光層1113を形成した。ここで、CzPA(略称)、及び1,6mMemFLPAPrn(略称)の重量比は、1:0.04(=CzPA:1,6mMemFLPAPrn)となるように調節した。また、発光層1113の膜厚は30nmとした。
なお、1,6mMemFLPAPrn(略称)は、蛍光性化合物であり、発光層1113において、ゲスト材料として用いる。
次に、発光層1113上にCzPA(略称)を膜厚10nmとなるように成膜し、第1の電子輸送層1114aを形成した。
次に、第1の電子輸送層1114a上にBPhen(略称)を膜厚15nmとなるように成膜し、第2の電子輸送層1114bを形成した。
次に、第2の電子輸送層1114b上に、フッ化リチウム(LiF)を1nmの膜厚で蒸着し、電子注入層1115を形成した。
最後に、陰極として機能する第2の電極1103として、アルミニウム(Al)を200nmの膜厚となるように蒸着することで、本実施例の発光素子4を作製した。
なお、上述した蒸着過程において、蒸着は全て抵抗加熱法を用いた。
(発光素子5)
発光素子5は、発光素子4と正孔輸送層1112の構成が異なり、それ以外の構成は同じである。異なる構成のみ以下記載する。
正孔注入層1111上に、実施例1にて合成したmCzFLP(略称)を蒸着することで、正孔輸送層1112を形成した。その膜厚は、10nmとした。
以上により得られた発光素子4、及び発光素子5の素子構造を表3に示す。
発光素子4、及び発光素子5を、窒素雰囲気のグローブボックス内において、各発光素子が大気に曝されないようにガラス基板により封止する作業(シール材を素子の周囲に塗布し、封止時に80℃にて1時間熱処理)を行った。その後、これらの発光素子の動作特性について測定を行った。なお、測定は室温(25℃に保たれた雰囲気)で行った。
発光素子4、及び発光素子5の輝度−電流効率特性を図16に示す。図16において、横軸は輝度(cd/m)、縦軸は電流効率(cd/A)をそれぞれ表す。また、発光素子4、及び発光素子5の電圧−輝度特性を図17に示す。図17において、横軸は電圧(V)を、縦軸は輝度(cd/m)をそれぞれ表す。また、発光素子4、及び発光素子5の輝度−外部量子効率を図18に示す。図18において、横軸は輝度(cd/m)、縦軸は外部量子効率(%)をそれぞれ表す。
また、各発光素子における輝度1000cd/m付近のときの電圧(V)、電流密度(mA/cm)、CIE色度座標(x、y)、電流効率(cd/A)、外部量子効率(%)を表4に示す。
表4に示す通り、輝度1087cd/mの発光素子4のCIE色度座標は、(x,y)=(0.14,0.17)であった。また、輝度1064cd/mの発光素子5のCIE色度座標は、(x,y)=(0.14,0.17)であった。
また、輝度1087cd/mの発光素子4の電流効率は10cd/Aであり、外部量子効率は8%であった。また、輝度1064cd/mの発光素子5の電流効率は11cd/Aであり、外部量子効率は9%であった。
このように、本発明の一態様である発光素子4及び発光素子5は、電流効率、及び外部量子効率が高い素子構成であることが確認された。
次に、発光素子5について、信頼性試験の評価を行った。信頼性試験の結果を図19に示す。
図19において、信頼性試験の測定方法は、初期輝度を5000cd/mに設定し、電流密度一定の条件で発光素子5を駆動した。横軸は素子の駆動時間(h)を、縦軸は初期輝度を100%とした時の規格化輝度(%)を表す。図19から、発光素子5の規格化輝度が50%を下回る駆動時間は54時間であった。
このように図19より、本発明の一態様である発光素子5は、長寿命な発光素子であることがわかった。
以上のように、本発明の一態様である発光素子は、正孔輸送層に本発明の一態様である有機化合物を用いることによって、発光効率、及び外部量子効率を高くすることができた。したがって、本発明の一態様である有機化合物は、発光素子の正孔輸送層に用いる材料として有効な材料である。また、ゲスト材料として蛍光性化合物を用いた発光層の正孔輸送層においても、本発明の一態様である有機化合物は、有益な材料であることが示された。
本実施例では、本発明の一態様の発光素子(発光素子6)、及び比較用の発光素子(比較発光素子7)について、図20を用いて説明する。また、本実施例で用いる材料の化学式を以下に示す。
以下に、本実施例の発光素子6、及び比較発光素子7の作製方法を示す。
(発光素子6)
まず、基板1100上に、珪素若しくは酸化珪素を含有した酸化インジウム−酸化スズ化合物(ITO−SiO、以下ITSOと略記する。)をスパッタリング法にて成膜し、第1の電極1101を形成した。なお、用いたターゲットの組成は、In:SnO:SiO=85:10:5[重量%]とした。また、第1の電極1101の膜厚は、110nmとし、電極面積は2mm×2mmとした。ここで、第1の電極1101は、発光素子の陽極として機能する電極である。
次に、基板1100上に発光素子を形成するための前処理として、基板表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、10−4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板1100を30分程度放冷した。
次に、第1の電極1101が形成された面が下方となるように、第1の電極1101が形成された基板1100を真空蒸着装置内に設けられた基板ホルダーに固定し、10−4Pa程度まで減圧した後、第1の電極1101上に、抵抗加熱を用いた蒸着法により、CBP(略称)と酸化モリブデンを共蒸着することで、正孔注入層1111を形成した。その膜厚は、60nmとし、CBP(略称)と酸化モリブデンの比率は、重量比で2:1(=CBP:酸化モリブデン)となるように調節した。
次に、正孔注入層1111上に、実施例1にて合成したmCzFLP(略称)を蒸着することで、正孔輸送層1112を形成した。その膜厚は、10nmとした。
次に、正孔輸送層1112上に、mCzFLP(略称)と、トリス[3−メチル−1−(2−メチルフェニル)−5−フェニル−1H−1,2,4−トリアゾラト]イリジウム(III)(略称:Ir(Mptz1−mp))を共蒸着し、第1の発光層1113aを形成した。ここで、mCzFLP(略称)、及びIr(Mptz1−mp)(略称)の重量比は、1:0.08(=mCzFLP:Ir(Mptz1−mp))となるように調節した。また、第1の発光層1113aの膜厚は30nmとした。
次に、第1の発光層1113a上に2−[3−(ジベンゾチオフェン−4−イル)フェニル]−1−フェニル−1H−ベンゾイミダゾール(略称:mDBTBIm−II)と、Ir(Mptz1−mp)(略称)を共蒸着し、第2の発光層1113bを形成した。ここで、mDBTBIm−II(略称)、及びIr(Mptz1−mp)(略称)の重量比は、1:0.08(=mDBTBIm−II:Ir(Mptz1−mp))となるように調節した。また、第2の発光層1113bの膜厚は10nmとした。
次に、第2の発光層1113b上にBPhen(略称)を膜厚15nmとなるように成膜し、電子輸送層1114を形成した。
次に、電子輸送層1114上に、フッ化リチウム(LiF)を1nmの膜厚で蒸着し、電子注入層1115を形成した。
最後に、陰極として機能する第2の電極1103として、アルミニウム(Al)を200nmの膜厚となるように蒸着することで、本実施例の発光素子6を作製した。
なお、上述した蒸着過程において、蒸着は全て抵抗加熱法を用いた。
(比較発光素子7)
比較発光素子7は、発光素子6と正孔輸送層1112、及び第1の発光層1113aの構成が異なり、それ以外の構成は同じである。異なる構成のみ以下記載する。
正孔注入層1111上に、9,9’−(9H−フルオレン−9,9−ジイルジ−4,1−フェニレン)ビス(9H−カルバゾール)(略称:Cz2FLP)を蒸着することで、正孔輸送層1112を形成した。その膜厚は、10nmとした。
正孔輸送層1112上に、Cz2FLP(略称)と、Ir(Mptz1−mp)(略称)を共蒸着し、第1の発光層1113aを形成した。ここで、Cz2FLP(略称)、及びIr(Mptz1−mp)(略称)の重量比は、1:0.15(=Cz2FLP:Ir(Mptz1−mp))となるように調節した。また、第1の発光層1113aの膜厚は30nmとした。
以上により得られた発光素子6、及び比較発光素子7の素子構造を表5に示す。
発光素子6、及び比較発光素子7を、窒素雰囲気のグローブボックス内において、各発光素子が大気に曝されないようにガラス基板により封止する作業(シール材を素子の周囲に塗布し、封止時に80℃にて1時間熱処理)を行った。その後、これらの発光素子の動作特性について測定を行った。なお、測定は室温(25℃に保たれた雰囲気)で行った。
発光素子6、及び比較発光素子7の輝度−電流効率特性を図21に示す。図21において、横軸は輝度(cd/m)、縦軸は電流効率(cd/A)をそれぞれ表す。また、発光素子6、及び比較発光素子7の電圧−輝度特性を図22に示す。図22において、横軸は電圧(V)を、縦軸は輝度(cd/m)をそれぞれ表す。また、発光素子6、及び比較発光素子7の輝度−外部量子効率を図23に示す。図23において、横軸は輝度(cd/m)、縦軸は外部量子効率(%)をそれぞれ表す。
また、各発光素子における輝度500cd/m付近のときの電圧(V)、電流密度(mA/cm)、CIE色度座標(x、y)、電流効率(cd/A)、外部量子効率(%)を表6に示す。
表6に示す通り、輝度463cd/mの発光素子6のCIE色度座標は、(x,y)=(0.17,0.27)であった。また、輝度681cd/mの比較発光素子7のCIE色度座標は、(x,y)=(0.18,0.32)であった。
また、輝度463cd/mの発光素子6の電流効率は30cd/Aであり、外部量子効率は17%であった。また、輝度681cd/mの比較発光素子7の電流効率は29cd/Aであり、外部量子効率は15%であった。
このように、本発明の一態様である発光素子6は、比較発光素子7と比べて、電流効率、及び外部量子効率が同等の素子であることが確認された。また、発光素子6は、比較発光素子7と比べて、ドーパント由来の発光が確認され、色純度の高い発光素子であることが確認された。
次に、発光素子6、及び比較発光素子7について、信頼性試験の評価を行った。信頼性試験の結果を図24に示す。
図24において、信頼性試験の測定方法は、初期輝度を5000cd/mに設定し、電流密度一定の条件で各発光素子を駆動した。横軸は素子の駆動時間(h)を、縦軸は初期輝度を100%とした時の規格化輝度(%)を表す。図24から、発光素子6の規格化輝度が50%を下回る駆動時間は178時間であり、比較発光素子7の規格化輝度が50%を下回る駆動時間は56時間であった。
このように図24より、本発明の一態様である発光素子6は、比較発光素子7と比べ、長寿命な発光素子であることがわかった。これは、本発明の一態様である発光素子6は、比較発光素子7と比べ、比較的高いT1準位を有していることに起因すると考えられる。
以上のように、本発明の一態様である発光素子は、正孔輸送層及び発光層に本発明の一態様である有機化合物を用いることによって、高い信頼性を有する発光素子とすることができた。したがって、本発明の一態様である有機化合物は、発光素子の正孔輸送層及び発光層に用いる材料として有効な材料である。
100 基板
101 第1の電極
102 EL層
103 第2の電極
111 正孔注入層
112 正孔輸送層
113 発光層
114 電子輸送層
115 電子注入層
116 電荷発生層
201 第1の電極
203 第2の電極
210 EL層
211 正孔輸送層
212 発光層
213 第1の有機化合物
214 第2の有機化合物
215 第3の有機化合物
301 第1の電極
303 第2の電極
311 第1の発光層
312 第2の発光層
313 電荷発生層
450R 第1の発光素子
450G 第2の発光素子
450B 第3の発光素子
451 反射電極
452 半透過・半反射電極
453a 第1の透明導電層
453b 第2の透明導電層
454B 第1の発光層
454G 第2の発光層
454R 第3の発光層
455 EL層
501 素子基板
502 画素部
503 駆動回路部
504 駆動回路部
505 シール材
506 封止基板
507 引き回し配線
508 FPC
509 nチャネル型TFT
510 pチャネル型TFT
511 スイッチング用TFT
512 電流制御用TFT
513 第1の電極
514 絶縁物
515 EL層
516 第2の電極
517 発光素子
518 空間
611 筐体
612 支持台
613 表示部
614 スピーカー部
615 ビデオ入力端子
621 本体
622 筐体
623 表示部
624 キーボード
625 外部接続ポート
626 ポインティングデバイス
631 本体
632 筐体
633 表示部
634 音声入力部
635 音声出力部
636 操作キー
637 外部接続ポート
638 アンテナ
641 本体
642 表示部
643 筐体
644 外部接続ポート
645 リモコン受信部
646 受像部
647 バッテリー
648 音声入力部
649 操作キー
650 接眼部
701 筐体
702 液晶パネル
703 バックライト
704 筐体
705 ドライバIC
706 端子
801 筐体
802 光源
901 照明装置
902 テレビ装置
1100 基板
1101 第1の電極
1103 第2の電極
1111 正孔注入層
1112 正孔輸送層
1113 発光層
1113a 第1の発光層
1113b 第2の発光層
1114 電子輸送層
1114a 第1の電子輸送層
1114b 第2の電子輸送層
1115 電子注入層
5000 携帯型端末
5001 筐体
5003 表示部
5005 電源ボタン
5007 前面カメラ
5009 背面カメラ
5011 外部接続端子
5013 外部接続端子
5015 アイコン
6000 携帯型端末
6001 第1の筐体
6003 第2の筐体
6005 ヒンジ部
6007 第1の表示部
6009 第2の表示部
6011 電源ボタン
6013 カメラ
6015 カメラ
6017 テキストアイコン
6019 アイコン
6021 キーボード

Claims (12)

  1. 一対の電極間に、少なくとも正孔輸送層と発光層を有し、
    前記正孔輸送層及び前記発光層のいずれか一方または両方に、
    一般式(G0)で表される有機化合物を有する発光素子。

    (式中、Ar及びArは、それぞれ独立にフェニル基、ビフェニル基、または3〜6個のベンゼン環がメタ位で連結した基のいずれか一を表し、前記Arは置換基を有し、前記置換基はN−カルバゾリル基を含み、前記N−カルバゾリル基は置換基(但し、N−カルバゾリル基であることは除く)を有していてもよく、前記Arは無置換である。前記N−カルバゾリル基とはカルバゾリル基のN位で置換されている基である。)
  2. 請求項1に記載の発光素子を用いた発光装置。
  3. 請求項2に記載の発光装置を用いた電子機器。
  4. 請求項2に記載の発光装置を用いた照明装置。
  5. 一般式(G0)で表される有機化合物。

    (式中、Ar及びArは、それぞれ独立にフェニル基、ビフェニル基、または3〜6個のベンゼン環がメタ位で連結した基のいずれか一を表し、前記Arは置換基を有し、前記置換基はN−カルバゾリル基を含み、前記N−カルバゾリル基は置換基(但し、N−カルバゾリル基であることは除く)を有していてもよく、前記Arは無置換である。前記N−カルバゾリル基とはカルバゾリル基のN位で置換されている基である。
  6. 請求項5において、前記Ar はフェニル基である有機化合物。
  7. 一般式(G1)で表される骨格を含む有機化合物。

    (式中、Ar及びArは、それぞれ独立にフェニル基、ビフェニル基、または3〜6個のベンゼン環がメタ位で連結した基のいずれか一を表し、前記Arは無置換である。また、R〜Rは、それぞれ独立に水素、または炭素数1〜12のアルキル基、置換または無置換のフェニル基、置換または無置換のビフェニル基のいずれか一を表す。)
  8. 請求項において、
    前記Arがフェニル基またはビフェニル基であり、
    前記Arがフェニレン基またはビフェニルジイル基である
    ことを特徴とする有機化合物。
  9. 請求項において、
    前記Arがメタフェニレン基またはビフェニル−3,3’−ジイル基である
    ことを特徴とする有機化合物。
  10. 構造式(G2−1)で表される有機化合物。
  11. 構造式(G2−2)で表される有機化合物。
  12. 構造式(G3)で表される有機化合物。
JP2013087113A 2012-04-20 2013-04-18 有機化合物、発光素子、発光装置、電子機器及び照明装置 Active JP6312368B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013087113A JP6312368B2 (ja) 2012-04-20 2013-04-18 有機化合物、発光素子、発光装置、電子機器及び照明装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012096888 2012-04-20
JP2012096888 2012-04-20
JP2013087113A JP6312368B2 (ja) 2012-04-20 2013-04-18 有機化合物、発光素子、発光装置、電子機器及び照明装置

Publications (2)

Publication Number Publication Date
JP2013239705A JP2013239705A (ja) 2013-11-28
JP6312368B2 true JP6312368B2 (ja) 2018-04-18

Family

ID=49379263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013087113A Active JP6312368B2 (ja) 2012-04-20 2013-04-18 有機化合物、発光素子、発光装置、電子機器及び照明装置

Country Status (4)

Country Link
US (1) US9882138B2 (ja)
JP (1) JP6312368B2 (ja)
KR (2) KR102198635B1 (ja)
CN (1) CN103378301B (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI679790B (zh) * 2012-08-03 2019-12-11 日商半導體能源研究所股份有限公司 發光元件
US10043982B2 (en) 2013-04-26 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
KR101546141B1 (ko) 2013-09-10 2015-08-20 한국생산기술연구원 플루오렌기가 포함된 유기 발광 화합물 및 이를 포함하는 유기발광다이오드
DE112014005471B4 (de) 2013-12-02 2022-10-06 Semiconductor Energy Laboratory Co., Ltd. Licht emittierendes Element, Licht emittierende Vorrichtung und Beleuchtungsvorrichtung
CN108630826B (zh) 2013-12-02 2021-12-10 株式会社半导体能源研究所 发光元件
US9929365B2 (en) * 2014-05-28 2018-03-27 The Regents Of The University Of Michigan Excited state management
KR102399397B1 (ko) * 2014-09-30 2022-05-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
US20160104855A1 (en) 2014-10-10 2016-04-14 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Element, Display Device, Electronic Device, and Lighting Device
KR101706752B1 (ko) * 2015-02-17 2017-02-27 서울대학교산학협력단 호스트, 인광 도펀트 및 형광 도펀트를 포함하는 유기발광소자
TW202404148A (zh) * 2015-03-09 2024-01-16 日商半導體能源研究所股份有限公司 發光元件、顯示裝置、電子裝置及照明設備
TWI779405B (zh) * 2015-03-09 2022-10-01 日商半導體能源研究所股份有限公司 發光元件,顯示裝置,電子裝置,與照明裝置
CN107534090B (zh) 2015-05-21 2019-10-18 株式会社半导体能源研究所 发光元件、显示装置、电子设备及照明装置
JP6692126B2 (ja) * 2015-06-03 2020-05-13 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
US10290816B2 (en) 2015-11-16 2019-05-14 The Regents Of The University Of Michigan Organic electroluminescent materials and devices
US11522142B2 (en) 2017-02-24 2022-12-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element material, light-emitting element, light-emitting device, electronic device, lighting device, and organometallic complex
JP2018181916A (ja) * 2017-04-04 2018-11-15 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器及び照明装置
US11950497B2 (en) 2018-03-07 2024-04-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, organic compound, and lighting device
KR20210126000A (ko) 2019-02-06 2021-10-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 디바이스, 발광 기기, 표시 장치, 전자 기기, 및 조명 장치

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59510315D1 (de) 1994-04-07 2002-09-19 Covion Organic Semiconductors Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien
JPH07301928A (ja) 1994-05-09 1995-11-14 Mita Ind Co Ltd 電子写真感光体
US6822094B2 (en) 1997-03-20 2004-11-23 Aventis Research & Technologies, Gmbh & Co. Kg Spiro compounds and their use
US6406804B1 (en) 1998-04-09 2002-06-18 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
US6469317B1 (en) 1998-12-18 2002-10-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
TW518909B (en) 2001-01-17 2003-01-21 Semiconductor Energy Lab Luminescent device and method of manufacturing same
JP4593019B2 (ja) 2001-06-25 2010-12-08 株式会社半導体エネルギー研究所 発光装置の作製方法
JP4865165B2 (ja) 2001-08-29 2012-02-01 株式会社半導体エネルギー研究所 発光装置の作製方法
JP2003261472A (ja) 2002-03-07 2003-09-16 Mitsui Chemicals Inc 有機電界発光素子および新規炭化水素化合物
KR100497532B1 (ko) 2002-08-16 2005-07-01 네오뷰코오롱 주식회사 발광 스파이로 이합체 및 이를 포함하는 유기 발광 소자
JP4122901B2 (ja) 2002-08-28 2008-07-23 富士ゼロックス株式会社 有機電界発光素子
JP4506113B2 (ja) 2002-09-20 2010-07-21 東ソー株式会社 フルオレン骨格を有する新規アリールアミン誘導体、その合成中間体及びこれらの製造方法並びに有機el素子
US20060063027A1 (en) 2002-12-23 2006-03-23 Covion Organic Semiconductors Gmbh Organic electroluminescent element
CN100335462C (zh) 2003-09-05 2007-09-05 清华大学 咔唑衍生物及其在电致发光器件中的应用
JP4581355B2 (ja) 2003-09-09 2010-11-17 東洋インキ製造株式会社 有機エレクトロルミネッセンス素子
JP3983215B2 (ja) 2003-10-17 2007-09-26 三井化学株式会社 9,9−ジフェニルフルオレン化合物、および該9,9−ジフェニルフルオレン化合物を含有する有機電界発光素子
JP4491666B2 (ja) 2003-12-02 2010-06-30 東ソー株式会社 フルオレン骨格を有するアリールアミン誘導体の製造方法とその合成中間体
CN100470877C (zh) 2004-02-27 2009-03-18 清华大学 一种有机电致磷光器件及其制备方法
WO2005092857A1 (ja) 2004-03-26 2005-10-06 Hodogaya Chemical Co., Ltd. フルオレン基を含有するカルバゾール誘導体および有機電界発光素子
WO2005105950A1 (en) 2004-04-29 2005-11-10 Ciba Specialty Chemicals Holding Inc. Electroluminescent device
WO2005121064A1 (en) 2004-06-10 2005-12-22 Semiconductor Energy Laboratory Co., Ltd. Benzidine derivative, and light-emitting device and electric appliance using the benzidine derivative as the hole transporting material
US7540978B2 (en) 2004-08-05 2009-06-02 Novaled Ag Use of an organic matrix material for producing an organic semiconductor material, organic semiconductor material and electronic component
US7273663B2 (en) 2004-08-20 2007-09-25 Eastman Kodak Company White OLED having multiple white electroluminescence units
TWI281691B (en) 2004-08-23 2007-05-21 Ind Tech Res Inst Method for manufacturing a quantum-dot element
JP2006093284A (ja) 2004-09-22 2006-04-06 Mitsubishi Paper Mills Ltd 光電変換素子
CN1314656C (zh) 2004-11-12 2007-05-09 中国科学院上海有机化学研究所 一类9,9-双(三苯胺基)芴衍生物、制备及其用途
CN101073164B (zh) 2004-12-06 2010-05-05 株式会社半导体能源研究所 发光元件和使用该元件的发光装置
US9530968B2 (en) 2005-02-15 2016-12-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device
US20070003785A1 (en) 2005-06-30 2007-01-04 Eastman Kodak Company Electroluminescent devices containing benzidine derivatives
US20070116984A1 (en) 2005-09-21 2007-05-24 Doosan Corporation Spiro-compound for electroluminescent display device and electroluminescent display device comprising the same
CN1769269A (zh) 2005-09-29 2006-05-10 复旦大学 封端的三芳基胺和咔唑类材料、处理方法及其应用
WO2007043354A1 (en) 2005-09-30 2007-04-19 Semiconductor Energy Laboratory Co., Ltd. Spirofluorene derivative, material for light-emitting element, light-emitting element, light-emitting device, and electronic device
KR101477490B1 (ko) 2005-12-28 2014-12-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 옥사디아졸 유도체, 및 상기 옥사디아졸 유도체를 사용하는 발광 소자, 발광 장치 및 전자 장치
EP2518045A1 (en) 2006-11-24 2012-10-31 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using the same
CN101627488B (zh) 2007-02-28 2011-09-07 株式会社半导体能源研究所 使用螺芴衍生物的发光元件及电子设备
KR101084287B1 (ko) * 2007-05-28 2011-11-16 제일모직주식회사 플루오렌 유도체 화합물을 포함하는 유기광전소자용 재료 및 이를 포함하는 유기광전소자
JP2011503286A (ja) 2007-11-06 2011-01-27 エイチシーエフ パートナーズ リミテッド パートナーシップ 電子装置における使用のためのホール輸送ポリマー
KR102252370B1 (ko) 2007-12-03 2021-05-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 카바졸 유도체, 및 카바졸 유도체를 사용하는 발광 소자, 발광 장치 및 전자 기기
KR101599705B1 (ko) 2007-12-21 2016-03-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 안트라센 유도체와, 안트라센 유도체를 사용한 발광 재료, 발광소자, 발광장치 및 전자기기
TWI470787B (zh) 2008-03-31 2015-01-21 Japan Display Inc 有機el顯示裝置及其製造方法
DE102008017591A1 (de) 2008-04-07 2009-10-08 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
EP2299510A4 (en) 2008-06-11 2012-03-28 Hodogaya Chemical Co Ltd ORGANIC ELECTROLUMINESCENCE ELEMENT
EP2206716A1 (en) 2008-11-27 2010-07-14 Solvay S.A. Host material for light-emitting diodes
KR20110081274A (ko) 2008-11-07 2011-07-13 호도가야 가가쿠 고교 가부시키가이샤 트리페닐실릴기와 트리아릴아민 구조를 가진 화합물 및 유기 전기 루미네선스 소자
DE102009005288A1 (de) 2009-01-20 2010-07-22 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
KR101784400B1 (ko) 2009-05-29 2017-10-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 화합물
KR101233380B1 (ko) * 2009-10-21 2013-02-15 제일모직주식회사 신규한 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
EP2428512B1 (en) * 2010-09-08 2014-10-22 Semiconductor Energy Laboratory Co., Ltd. Fluorene compound, light-emitting element, light-emitting device, electronic device and lighting device
DE102010048498A1 (de) * 2010-10-14 2012-04-19 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
TWI774347B (zh) * 2011-08-25 2022-08-11 日商半導體能源研究所股份有限公司 發光元件,發光裝置,電子裝置,照明裝置以及新穎有機化合物

Also Published As

Publication number Publication date
CN103378301B (zh) 2017-11-07
KR20210002097A (ko) 2021-01-07
CN103378301A (zh) 2013-10-30
JP2013239705A (ja) 2013-11-28
US20130277653A1 (en) 2013-10-24
US9882138B2 (en) 2018-01-30
KR102198635B1 (ko) 2021-01-05
KR20130118771A (ko) 2013-10-30

Similar Documents

Publication Publication Date Title
JP7289947B2 (ja) 発光素子、発光装置、電子機器および照明装置
JP6588142B2 (ja) 発光装置
JP6312368B2 (ja) 有機化合物、発光素子、発光装置、電子機器及び照明装置
JP6547021B2 (ja) 有機化合物、発光素子、発光装置、電子機器及び照明装置
JP6266822B2 (ja) 発光素子
JP6598906B2 (ja) 有機化合物
JP6147993B2 (ja) 発光素子、発光装置、電子機器、照明装置、及び有機化合物
TW201742289A (zh) 發光元件、發光裝置、電子裝置以及照明設備
JP6189090B2 (ja) 有機材料の製造方法、発光素子の製造方法、発光装置の製造方法及び照明装置の製造方法
JP2015005736A (ja) 有機金属錯体、発光素子、発光装置、電子機器、及び照明装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180320

R150 Certificate of patent or registration of utility model

Ref document number: 6312368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250