JP6293862B2 - 低分子量グリコサミノグリカン誘導体及びその薬物組成物、これらの製造方法と用途 - Google Patents

低分子量グリコサミノグリカン誘導体及びその薬物組成物、これらの製造方法と用途 Download PDF

Info

Publication number
JP6293862B2
JP6293862B2 JP2016504458A JP2016504458A JP6293862B2 JP 6293862 B2 JP6293862 B2 JP 6293862B2 JP 2016504458 A JP2016504458 A JP 2016504458A JP 2016504458 A JP2016504458 A JP 2016504458A JP 6293862 B2 JP6293862 B2 JP 6293862B2
Authority
JP
Japan
Prior art keywords
molecular weight
low molecular
derivative
dlfg
pharmaceutically acceptable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016504458A
Other languages
English (en)
Other versions
JP2016514740A (ja
Inventor
趙金華
劉吉開
呉明一
高娜
盧鋒
李姿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiuzhitang Co Ltd
Original Assignee
Jiuzhitang Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310099800.9A external-priority patent/CN103145868B/zh
Application filed by Jiuzhitang Co Ltd filed Critical Jiuzhitang Co Ltd
Publication of JP2016514740A publication Critical patent/JP2016514740A/ja
Application granted granted Critical
Publication of JP6293862B2 publication Critical patent/JP6293862B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/726Glycosaminoglycans, i.e. mucopolysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Polymers & Plastics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Materials Engineering (AREA)
  • Public Health (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Diabetes (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

本発明は、医薬品の技術分野に属し、具体的には、抗凝固活性を示す低分子量フコシル化グリコサミノグリカン誘導体(derivate of Low molecular weight Fucosylated Glycosaminoglycan,以下「dLFG」と称する。)、その製造方法、前記dLFG又はその薬学的に許容可能な塩を含んでなる薬物組成物、並びに、該dLFG及び薬物組成物の血栓症治療薬の製造における用途に関する。
虚血性卒中、冠動脈疾患、静脈血栓塞栓症等の疾患を含む血栓塞栓性疾患は、人類にとって主な致死性病因である。現在、抗血栓薬による治療が臨床において血栓症を予防、治療するための基本手段となっているが、血栓溶解薬、抗凝固薬、抗血小板薬を含む抗血栓薬は、何れも出血傾向と重篤の出血症を引き起こすおそれがあるといった深刻な欠点を共通して抱えている。
典型的な抗凝固薬であるヘパリン(第IIa因子・第Xa因子阻害剤)及びクマリン系抗凝固薬(VitK拮抗薬)は、20世紀の30〜40年代頃から臨床で使われ、70年余り経った今でも深部静脈血栓症、心原性卒中、及び手術後の抗凝固において薬物治療の基本手段である。ところで、出血リスク及びそれに関連する薬物動態、薬力学的に不足があるため、これらの薬物の臨床応用が大きく制限されている。ヘパリン、クマリン系薬物は何れも広範囲に渡って血液凝固系のセリンプロテアーゼ(凝固因子)を阻害するが、薬効の個体差が比較的大きく、且つ薬効に複雑な要素が絡まっていることから、臨床で薬物を使用する際に強化した監視体制を持続する必要がある。ここ数十年以来、抗凝固薬を研究開発するに当たっての主要手段と目的の1つは、新薬の薬理学的特性と標的選択性を高め、薬物の薬効や薬力学特徴を改善することに集中し、これらの研究が積極的に行われて注目すべき進展を成し遂げている。そのうち、エノキサパリン等の低分子ヘパリン(LMWH)、及びリバロキサバン、ダビガトラン等の経口抗凝固薬が臨床応用において最も代表的なものであるが、出血傾向が低い新型抗凝固薬に対する臨床需要が相変わらず増えつつである。
フコシル化グリコサミノグリカン(Fucosylated glycosaminoglycan,以下「FGAG」と称する。)は、棘皮動物であるナマコの体壁や内臓に由来のグリコサミノグリカン類似物である。FGAGはコンドロイチン硫酸に類似した主鎖を有し、該主鎖は、ヘキスロン酸、ヘキソサミンからなる二糖構成単位[→4)D−GlcUA(β1→3)D−GalNAc(β1→]が順に連結されて形成されている。FGAGの主鎖にフコシル基による側鎖置換が存在し、通常、該フコース硫酸側鎖が(α1→3)グリコシド結合を介してD−GlcUAに結合し、FGAGの主鎖及び側鎖糖残基におけるヒドロキシ基が硫酸によってエステル化されている(Yoshida et.al,Tetrahedron Lett,1992,33:4959〜4962.Mourao et.al,J Biol Chem,1996,271:23973〜23984)。
天然由来のFGAGは抗凝固活性を示し(Mourao et al.,Thromb Res,2001,102:167〜176. Mourao et.al,J Biol Chem,1996,271:23973〜23984)、その抗凝固活性が複数の凝固因子標的に関わり、そのうち、第X因子活性化複合体(f.Xase,Tenase)に対して最も強い阻害活性を示している(Sheehan & Walke,Blood,2006,107:3876〜3882.Buyue & Sheehan,Blood,2009,114:3092〜3100)。また、抗凝固活性とは別に、FGAGは、例えば、抗炎症、抗腫瘍、血栓溶解、脂質調節活性等の比較的広い薬理活性を示すと共に(Tovar et al.,Atherosclerosis,1996,126:185〜195.Kariya et al.,J Biochem,2002,132(2):335〜343.Borsig et al.,J Biol Chem,2007,282(20):14984〜14991)、抗凝固活性に対抗して血小板及び第XII因子を活性化させる活性も兼ね備え(Li et al.,Thromb Haemost,1988,59(3):435〜439.Fonseca et al.,Thromb Haemost,2010,103(5):994〜1004)、その広範囲に渡る薬理学作用によってFGAGの実用化が制限されている。
FGAGの構造修飾は、その潜在価値を高めるための1つの手段であり、例えば、抗凝固活性を保留しつつ、その血小板活性化及び接触活性化の活性を抑制する目的で低重合体を製造することが挙げられる。中国特許公開第101735336A号及び第101724086A号に、低重合度のフコシル化グリコサミノグリカンを製造する方法として、水媒体において第4周期遷移金属イオンを触媒とし、且つ過酸化剤で処理する解重合方法を利用することでフコシル化グリコサミノグリカンを解重合して低重合体を製造することが開示され、該産物は、第X因子活性化複合体に対して強い阻害活性を示し、同時に良好な抗凝固・抗血栓活性を有し、出血傾向を大きく低減することができるため、血栓症の予防及び/又は治療への実用化が期待されている。また、欧州特許公報EP0811635A1及びEP0408770A1に、プロトタイプのFGAGを過酸化水素で処理して解重合することにより分子量範囲がそれぞれ3,000〜80,000、3,000〜42,000の解重合産物が得られたことが開示され、これらの産物についても血管内膜過形成及び血栓性疾患の予防と治療への実用化が期待されている。これらの特許出願は、何れも過酸化剤を用いて解重合することにより低重合度のFGAGを取得した。しかし、過酸化剤処理による解重合方法は、多糖の分子量を低減し、FGAGの化学構造特性と抗凝固活性を良好に保つことができるが、産物解重合度の制御が困難であるといった問題を抱え、通常、持続的に反応産物を採取して測定し、反応終了のタイミングを確認する必要があった。なお、非還元性末端にΔ4,5不飽和結合を有するフコシル化グリコサミノグリカン誘導体については未だに情報がないのが現状である。
本発明は、抗凝固活性を示す低分子量フコシル化グリコサミノグリカン誘導体(derivate of Low molecular weight Fucosylated Glycosaminoglycan,「dLFG」と称する。)、その製造方法、前記dLFG又はその薬学的に許容可能な塩を含んでなる薬物組成物、並びに、前記dLFG及びその薬物組成物の血栓症治療薬の製造における用途を提供することを目的とする。
上述の目的を達成すべく、本発明は、以下の技術案を提供する。
本発明は、まず、低分子量フコシル化グリコサミノグリカン誘導体(dLFG)又はその薬学的に許容可能な塩を提供する。前記dLFGの構成単糖として、ヘキスロン酸、ヘキソサミン、デオキシヘキソース及びこれら単糖の硫酸エステルを含む。そのうち、前記ヘキスロン酸が、D−グルクロン酸(D−GlcUA)及びΔ4,5−ヘキスロン酸(4−デオキシ−スレオ−ヘキサ−4−エンピラノシルウロン酸、ΔUA)であり、前記ヘキソサミンが、N−アセチルガラクトサミン(2−Ν−アセチルアミノ−2−デオキシ−D−ガラクトース、D−GalNAc)又はその末端基還元物であり、前記デオキシヘキソースが、L−フコース(L−Fuc)である。
前記dLFGの単糖及び−OSO3−の組成比範囲が、モル比でヘキスロン酸:ヘキソサミン:デオキシヘキソース:硫酸エステル基=1:(1±0.3):(1±0.3):(3.0±1.0)である。一般的に、本発明に係るdLFGに含まれるヘキスロン酸において、ΔUAの占有比率がモル比で2.5%以上である。
本発明に係るdLFGの分子量は、高速ゲル浸透クロマトグラフィーと低角度レーザー光散乱検出器をタンデム(HPGPC−LALLS)に繋いで測定できる。分子量が測定済みの一連のdLFGを標準品として用いて検量線を作成することで、高速ゲル浸透クロマトグラフィー(HPGPC)に、紫外線検出器(UVD)及び/又は示差屈折率検出器(RID)を組合わせて前記dLFGの分子量を常時測定することができる。
本発明に係るdLFGの分子量は、重量平均分子量(Mw)で3kD〜20kDの範囲である。本発明の好適な実施形態において、前記dLFGの重量平均分子量が約5kD〜l2kDの範囲である。本発明に係るdLFGの多分散指数(polydispersity index,PDI)は、通常、1.0〜1.8の範囲にある。ここで、PDIとは前記dLFGの重量平均分子量Mwと数平均分子量Mnとの比を示すものである。本発明の一好適な実施形態において、前記dLFGのPDI値は1.1〜1.5の範囲にある。
そして、本発明に係る低分子量グリコサミノグリカン誘導体は、下記式(I)に示す構造を有する同族グリコサミノグリカン誘導体の混合物である。
(式(I)中、nは、平均値が約2〜20の整数であり、本発明の化合物の一好適な実施形態において、nは、平均値が約4〜12の整数である。−D−GlcUA−β1−は、−D−グルクロン酸−β1−イル−であり、−D−GalNAc−β1−は、−2−デオキシ−2−Ν−アセチルアミノ−D−ガラクトース−β1−イル−であり、L−Fuc−α1−は、−L−フコース−α1−イル−である。Rは、各々独立して−OH又は−OSO3−であり、R’は、−OH、C1〜C6アルコキシ、C7〜C12アリールオキシである。Rは、本発明に係る同族グリコサミノグリカン誘導体の非還元性末端であり、その構造式が下記式(II)又は(III)で表される。
式(II)、(III)中、ΔUA−1−は、Δ4,5−ヘキスロン酸−1−イル(4−デオキシ−スレオ−ヘキサ−4−エンピラノシルウロン酸−1−イル)であり、Rは、上記と同じである。
本発明に係る同族グリコサミノグリカン誘導体の混合物において、前記Rが式(II)で評される反応基の化合物とRが式(III)で表される反応基の化合物との比がモル比で2:1以上である。本発明の一好適な実施形態において、前記同族グリコサミノグリカン誘導体の混合物において、非還元性末端Rが式(II)の構造と式(III)の構造とがモル比で約4:1以上である。
前記Rは、下記式(IV)又は(V)で示される通りである。
式(IV)又は式(V)中、Rは、上記と同じである。Rは、カルボニル、ヒドロキシ、C1〜C6アルコキシ、C1〜C6アルコキシカルボニル、C6〜C12アリール、置換又は非置換の5員又は6員窒素含有複素環、又は−NHRである。そのうち、Rは、置換又は非置換の直鎖状又は分岐鎖状C1〜C6アルキル、置換又は非置換のC7〜C12アリール、置換又は非置換のヘテロ原子含有複素環式アリールである。本発明の一好適な実施形態において、前記Rは、−CHO又は−CHOHである。式(V)中、R’は、上記と同じである。
本発明に係るdLFGは、棘皮動物門ナマコ綱動物の体壁及び/又は内臓から抽出したフコシル化グリコサミノグリカン(Fucosylated glycosaminoglycan,FGAG)を、β−脱離法(β−elimination)を利用して処理することにより得られた解重合産物、並びに、前記FGAGsの解重合産物の還元性末端を還元又は還元アミノ化した産物である。前記棘皮動物に由来のFGAGは、通常、以下の特徴を有する。
(1) 前記FGAGは、棘皮動物門ナマコ綱動物の体壁又は内臓から抽出され、その抽出、製造方法は当業者が熟知しており、また、例えば、Yoshida et.al.,Tetrahedron Lett,1992,33:4959〜4962.Mourao et.al., J Biol Chem,1996,271:23973〜23984.Mourao et al.,Thromb Res,2001,102:167〜176.Mourao et.al., J Biol Chem,1996,271:23973〜23984.Tovar et al., Atherosclerosis,1996,126:185〜195.Kariya et al.,J Biochem,2002,132(2):335〜343.Borsig et al.,J Biol Chem,2007,282(20):14984〜14991等を参酌することもできる。
(2) 前記FGAGの構成単糖として、D−グルクロン酸(GlcUA)、D−N−アセチル−2−アミノ−2−デオキシガラクトース(GalNAc)、及びL−フコース(Fuc)を含み、これらの構成単糖に置換基として硫酸エステル基を有してもよい。
(3) 前記FGAGの主鎖に[−4−D−GlcUA−β1−3−D−GalNAc−β1−]の繰り返し構造単位を含み、Fuc糖残基は、側鎖の形で主鎖のGlcUA糖残基に結合する。
好ましくは、前記FGAGは、下記式(VI)に示す構造を有する。

(式(VI)中、nは、平均値が約40〜90の整数であり、Rは、各々独立して−OH又は−OSO3−であり、Rは、−H又はD−GlcUA−β1−であり、Rは、−OH、−4−D−GalNAc又はその硫酸エステルである。)
本発明で言う棘皮動物門ナマコ綱動物としては、マナマコ(Apostichopus japonicus)、クリイロナマコ(Actinopyga mauritiana)、チリメンナマコ(Actinopyga miliaris)、イモナマコモドキ(Acaudina molpadioides)、ジャノメナマコ(Bohadschia argus)、アカミシキリ(Holothuria edulis)、イシナマコ(Holothuria nobilis)、ニセクロナマコ(Holothuria leucospilota)、シナナマコ(Holothuria sinica)、クロナマコ(Holothuria vagabunda)、メキシコナマコ(Isostichopus badionotus)、ブラジルナマコ(Ludwigothurea grisea)、シカクナマコ(Stichopus chloronotus)、バイカナマコ(Thelenota ananas)、アデヤカバイカナマコ(Thelenota anax)からなる群より選ばれる1種以上を用いるが、これらに制限されない。
本発明の好適な1つの実施形態として、前記棘皮動物門ナマコ綱動物として、マナマコ、ニセクロナマコ及びバイカナマコを用いることが好ましい。
本発明の別の1つの目的は、本発明に係るdLFG又はその薬学的に許容可能な塩を製造する方法を提供し、該製造方法は、通常、以下のステップを含んでなる。
(1) 棘皮動物に由来のフコシル化グリコサミノグリカン(FGAG)を原料とし、エステル化反応を経て前記FGAGに含まれるGlcUAの遊離カルボキシ基全部又は一部をカルボン酸エステル基に変換し、FGAGのカルボン酸エステル誘導体を得る。
(2) ステップ(1)で得られるFGAGのカルボン酸エステル誘導体を、非水溶媒、アルカリ性試薬の存在下において、カルボン酸エステル基のβ−脱離反応を経て非還元性末端としてΔ4,5−ヘキスロン酸(ΔUA)を含む低分子量グリコサミノグリカン誘導体(dLFG)を得る。
(3) ステップ(2)で得られるdLFGに対し、随意に還元性末端を還元処理し、末端が還元化されたdLFGを得る。
(4) ステップ(2)及びステップ(3)で得られるdLFGに対し、選択的にアルカリ分解法を利用してカルボン酸エステル及び/又はアミド基を遊離カルボキシ基に変換する。
本発明者によって鋭意検討を重ねた結果、天然由来のフコシル化グリコサミノグリカン(FGAG)はアルカリ性水溶液において比較的に安定であるが、温度上昇、アルカリ性が強くなる等の過激な反応条件において、FGAGがβ−脱離反応の進行と同時に、フコース側鎖、主鎖糖構造及び硫酸エステル基の分解等といったグリコシル化グリコサミノグリカン構造特性の変化を伴うため、反応産物を予測しにくく、反応産物の化学構造が複雑で確認するのに手間がかかり、FGAGに直接的にアルカリ処理を施すことでは均一な構造を有するFGAGの解重合産物を得ることが困難であることを見出した。
そこで、FGAGをβ−脱離法により解重合する(以下、単に「β−脱離解重合」とも称する)目的を達成するため、本発明において、ヘキスロン酸の遊離カルボキシ基を選択的にエステル化することにより、穏やかな条件においてグリコシル化グリコサミノグリカンの特徴的構造の完全性を維持できるβ−脱離解重合法を確立した。本発明において、前記「特徴的構造の完全性」とは、分子量低下及び末端糖残基(還元性末端と非還元性末端の糖残基を含む)の化学修飾を除き、単糖の組成及び割合、繰り返し構造単位の結合方式、硫酸エステル基の数及び種類等、解重合産物の基本的な化学的構造特性が非解重合の多糖と同じであることを意味する。
本発明において、FGAGカルボキシ基のエステル化産物の製造方法は、以下のとおりである。
(1) 例えば、H型のカチオン交換樹脂を用いて、FGAG水溶液中の中性のFGAG塩をH型のFGAGに変換する等、イオン交換法によりFGAGを第4級アンモニウム塩に変換する。
(2) 得られたH型のFGAG溶液を第4級アンモニウム塩基溶液で滴定、中和することによりFGAGの第4級アンモニウム塩溶液を得た後、該溶液を凍結乾燥してFGAGの第4級アンモニウム塩を得る。前記第4級アンモニウム塩基として、テトラブチルアンモニウムヒドロキシド、ドデシルトリメチルアンモニウムヒドロキシド、テトラメチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、ベンジルトリエチルアンモニウムヒドロキシド等が挙げられるが、これらに限定されない。
(3) FGAGの第4級アンモニウム塩を、例えば、ジメチルホルムアミド(N、N−Dimethylformamide,DMF)等の非プロトン性溶媒において化学反応量のハロゲン化炭化水素と反応させた後、反応産物を分離、精製してFGAGカルボキシエステル誘導体(第4級アンモニウム塩、該第4級アンモニウム塩をそのままβ−脱離反応に用いることができる)を得る。前記ハロゲン化炭化水素のアルキル基として、C1〜C6直鎖又は分岐鎖、飽和又は不飽和、置換又は非置換の脂肪族アルキル、置換又は非置換のC7〜C12芳香族アルキル等が挙げられるが、これらに限定されない。
本発明者による別の特許出願である中国特許出願第201110318704.X号(公開番号:CN102329397A)にFGAGカルボキシエステル誘導体の製造方法について記載があり、関連記載を参酌することができる。
低分子ヘパリンを製造する際、未分画ヘパリンのカルボン酸エステル誘導体はアルカリ性水溶液中でβ−脱離反応を生じ、末端にΔUAを含む低分子量ヘパリン(LMWH)を得ることができる。本発明者の実験研究から、驚くことに、似たような条件、例えば、NaOHの水溶液において、FGAGのカルボキシエステル化産物が完全にプロトタイプのFGAGに加水分解し、β−脱離反応が稀にしか若しくは殆ど起こらないといった現象を発見した。そこで、本発明において、FGAGカルボキシエステル誘導体のβ−脱離反応が起こりうる非水溶媒系に注目して検討を行った。
上述のdLFG又はその薬学的に許容可能な塩の製造方法において、ステップ(2)における非水溶媒として、エタノール、メタノール、ジメチルホルムアミド、ジメチルスルホキシド、CHCl、CHCl、又はこれらの混合溶媒から任意に選ぶことができる。また、前記アルカリ性試薬として、NaOH、KOH、C1〜C4ナトリウムアルコラート、エチレンジアミン、トリブチルアミン、4−ジメチルアミノピリジン、ジアザビシクロ、又はこれらの混合物から任意に選ぶことができる。
非水溶媒を用いてFGAGカルボキシエステル誘導体のβ−脱離反応を遂行する際、解決すべき重要な技術課題の1つは、FGAGカルボキシエステル誘導体の非水溶媒における溶解度が極めて悪く、β−脱離反応の進行が大きく影響を受けるという点である。本発明において、FGAGカルボキシエステル誘導体の非水溶媒における溶解度を高めるため、該誘導体を更に第4級アンモニウム塩に変換させ、脱離反応の需要に対応できるFGAGカルボキシエステル誘導体の非水溶媒における溶解度を確保した。
エタノール等、単独の低級アルコール・ケトンを溶媒とする場合、FGAGカルボキシエステル化産物の第4級アンモニウム塩に対する溶解性が比較的低く、また、ジメチルホルムアミド(N、N−Dimethylformamide,DMF)のような他の非水溶媒を使用する場合、触媒であるNaOHの溶解度がかなり低く、反応効率がかなり影響を受ける。そこで、本発明において、アルカリ性試薬にC1〜C4ナトリウムアルコラートを用いることでアルカリ性試薬の非水溶媒における濃度を高め、同時にβ−脱離反応の溶媒系として混合溶媒を選び、前記反応を以下のステップに分けて行う対策を取った。すなわち、FGAGカルボキシエステル誘導体の第4級アンモニウム塩をDMF等の適宜な非水溶媒に溶かし、また、NaOH又は他の適宜なアルカリ触媒を無水低級アルコールに溶かした後、前記FGAGのカルボキシエステル化産物の第4級アンモニウム塩溶液とアルカリ触媒溶液を混ぜ合わせることで透明なβ−脱離反応系を得ることができる。
前記アルカリ性試薬として、NaOH、KOH、C1〜C4ナトリウムアルコラート、エチレンジアミン、トリブチルアミン、4−ジメチルアミノピリジン、ジアザビシクロ、又はこれらの混合物が挙げられるが、これらに限定されない。本発明において、アルカリ性試薬としてナトリウムエトキシドが好ましく、処理方法として無水エタノール溶液に化学反応量の金属ナトリウムを加え、ナトリウムエトキシド・エタノール溶液とすることが好ましい。
前記β−脱離反応液において、FGAGカルボキシエステル誘導体の第4級アンモニウム塩の濃度が1〜150mg/mLの範囲であり、アルカリ触媒の濃度が0.1〜100mmol/Lの範囲である。前記β−脱離反応液を用いることにより、FGAGカルボキシエステル化産物のβ−脱離反応がスムーズに行われ、通常、室温で0.1〜8時間であれば完全に反応させることができる。β−脱離反応が終了すると、酸(例えば、塩酸)で反応液を中和してカルボキシエステル化のdLFG産物を得ることができる。又は、反応液のアルカリ性を変えることなく、反応液に適量の水を加えてから室温で約0.5〜1時間保持することにより、解重合済のdLFG誘導体に含まれるカルボン酸エステル基を完全に加水分解することできる。このとき、酸で反応液を中和して遊離カルボキシを含むdLFG産物を得ることができる。
FGAGカルボキシエステルの製造及びβ−脱離解重合は、通常、以下の手順に従って行う。
つまり、FGAG中性塩をHカチオン交換樹脂カラムで処理し、第4級アンモニウム塩基で滴定、中和してFGAGの第4級アンモニウム塩に変換し、非プロトン性溶媒においてハロゲン化炭化水素と室温又は加熱条件下で反応させて(カルボキシエステル化)FGAGのカルボキシエステル化産物(第4級アンモニウム塩)を得た後、非水溶媒で溶かし、更に強塩基を加えて室温又は加熱条件下で反応させることにより(β−脱離)、dLFG(FGAGのβ−脱離解重合産物)を得る。
理論的には、FGAGのカルボキシエステル化率が約5%〜30%である場合、本発明で言うβ−脱離解重合により得られる産物の分子量が約3kD〜20kDの範囲にある。しかし、実際反応に当たり実験条件の相違によってβ−脱離反応の進行度が影響されることから、カルボキシエステル化率が約10%〜60%のFGAGカルボキシエステル化産物を用いた場合、β−脱離反応を介して解重合する際にMwが約3kD〜20kDのdLFG産物を得ることができる。
本発明において、β−脱離によって得られるdLFGに還元性末端が存在し、該還元性末端としては、主に−4−D−N−アセチル−2−アミノ−2−デオキシガラクトース(−4−D−GalNAc)で構成される。本発明において、該還元性末端を還元反応させて末端修飾を施してもよく、前記還元反応として特に限定がなく、以下のものが挙げられる。
(1) 水素化ホウ素ナトリウム等の還元剤の存在下で還元性末端を糖アルコールに還元する。例えば、−4−D−N−アセチル−2−アミノ−2−デオキシガラクトースの場合、反応プロセスは、下記式に示される通りである。

(式中、Rが−OH又は−OSO3−である。)
(2) 有機アミンの存在下で還元性末端をアミノ基に還元し、該反応は、有機アミンと末端糖残基の1位アルデヒド基が反応してシッフ塩基を形成し、後者が還元剤の存在下で第2級アミンに還元されることである。末端−4−D−N−アセチル−2−アミノ−2−デオキシガラクトースと、炭酸水素アンモニウム及び第1級アミンとの反応を例として挙げると、反応プロセスは、下記式に示される通りである。

(式中、Rは、H、置換又は非置換の直鎖状又は分岐鎖状C1〜C6アルキル、置換又は非置換のC7〜C12アリール、置換又は非置換のヘテロ原子含有複素環基である。前記ヘテロ原子としては特に限定がなく、O、N、Sであってもよい。)
(3)還元性化合物の存在下で還元性末端を還元アルキル化し、還元アルキル化された誘導体を得る。末端−4−D−−アセチル−2−アミノ−2−デオキシガラクトースと、還元剤としてピラゾロン系化合物との反応を例として挙げると、反応プロセスは、下記式に示される通りである。
アルドースの還元性末端の還元反応、還元アミノ化反応及び還元アルキル化反応は当業者には周知のことである。本発明において、前記β−脱離により得られたdLFGの還元性末端を前記還元反応において処理した後、式(IV)及び式(V)に示す末端糖残基を得ることができ、そのうち、RがC1〜C6アルコキシ、C1〜C6アルコキシカルボニル、C6〜C12アリール、置換又は非置換の5員又は6員窒素含有複素環基、又は−NHR(Rは、置換又は非置換の直鎖状又は分岐鎖状C1〜C6アルキル、置換又は非置換のC7〜C12アリール、置換又は非置換のヘテロ原子含有複素環式アリールである。)であってもよい。
本発明に係る反応産物であるdLFGは、当分野で周知の方法(例えば、中国特許公開第101735336A号に記載の方法等)を用いて精製してもよく、例えば、透析法又は限外濾過膜法を利用して低分子塩等の不純物を取り除き、その後、ゲルクロマトグラフィーやDEAEイオン交換クロマトグラフィーを用いて更に精製してもよい。
前記透析を利用して不純物を除去する際、標的dLFGの分子量に合わせて適宜な分画分子量を有する透析膜又は限外濾過膜カセットを選ることができ、分画分子量が1000Daのものを用いるのが好ましい。透析時間は、特定の処理条件に応じて確定し、6時間以上とするのが一般的である。
本発明に係るdLFG産物は、更にカチオン交換により、例えば、アルカリ金属、アルカリ土類金属塩及び有機アンモニウム塩等の単塩にすることができる。本発明の好適な実施形態において、前記dLFGの単塩として、ナトリウム塩、カリウム塩又はカルシウム塩が挙げられる。
dLFG産物を塩に変換する際、まずサンプルを水素型に変え、その後、相応のアルカリで中和してdLFG塩にすることができる。また、動的イオン交換を利用してカラム上で直接に塩に変換してもよく、このとき、強酸性カチオン交換樹脂を利用することができる。樹脂カラムの前処理、サンプルの注入及び溶出は、何れも慣用方法を用いることができる。
本発明に係るdLFGは、棘皮動物に由来のFGAGを出発原料とし、β−脱離反応を経て製造される。以上で述べたように、本発明において、出発原料であるFGAGの母体動物については特に限定がなく、マナマコ、クリイロナマコ、チリメンナマコ、イモナマコモドキ、ジャノメナマコ、アカミシキリ、イシナマコ、ニセクロナマコ、シナナマコ、クロナマコ、メキシコナマコ、ブラジルナマコ、シカクナマコ、バイカナマコ、アデヤカバイカナマコから選ぶことができる。本発明の好適な実施例形態において、前記母体動物は、マナマコ、ニセクロナマコ及びバイカナマコから選ばれる。
本発明に係る棘皮動物ナマコ綱に由来のFGAGの構造特性として、等モル比(約1:1±0.3)に近いGlcUA、GalNAc、及びフコース又はその硫酸エステルを含む。ナマコの品種及び組織材料が異なるとか、又は抽出方法が異なるとかでFGAGの単糖組成比及び多糖の硫酸化度合いに一定の差異が見られるが、これらの差異によってFGAGの基本的な構造特性が影響されるわけでもない。当然のことながら、当業者であれば、別のナマコ品種に由来の、FGAGの基本的な構造特性を有するフコシル化グリコサミノグリカンも本発明に係るdLFG誘導体の製造に適用可能であることが理解できる。
本発明に係るdLFGは、優れた抗凝固活性を有し、人コントロール血漿の活性化部分トロンボプラスチン時間(APTT)を倍増するときの薬物濃度(APTTを1倍延長するときの薬物濃度)が9μg/mL以下である。本発明者の研究から、前記dLFGが第X因子活性化複合体(f.Xase,Tenase)に対して強い阻害活性を示すと共に、ヘパリン補因子II(HC−II)に依存的な抗トロンビン(f.IIa)活性を示すことを見出した。第X因子活性化複合体が血液凝固系において内因性凝固機構の最下流に位置する標的であるため、各凝固実験系において律速因子として機能する因子である(Buyue & Sheehan,Blood,2009,114:3092〜3100)。HC−IIに依存的な抗トロンビン活性を示すデルマタン硫酸が臨床において既に抗血栓治療に使われていることから、dLFGも血栓塞栓性疾患の治療に適用可能であると思われる。
本発明に係るdLFGは、血小板促進活性を示さない。なお、本発明者の研究から、天然由来のFGAGに比べ、本発明に係るdLFGが第XII因子を活性化する特性がなく、同時に第XII因子−カリクレイン系に対しても影響がなく、実験動物において血圧低下効果を示さないという驚くべき結果を得た。
本発明に係るdLFGの非還元性末端にΔUΑ糖残基を有してもよく、ΔUΑに不飽和二重結合が存在することから約232〜238nmにおいて最大紫外線吸収(UV、λmax)を示し、該特性は、紫外線吸光光度法に基づいた定性・定量分析法を確立する際に極めて有用である。特に、高速液体ゲル浸透クロマトグラフィー(HGPC)を利用してサンプル中のdLFG含有量を分析するとき、感度の比較的高いUV検出器を用いて検出することができ、したがって、サンプルの品質管理、血中濃度分析等のdLFG含有量分析に関わる技術手法を確立する際に特に有用である。
本発明に係るdLFGは確実な抗凝固活性を示し、抗血栓療法に適用可能である。dLFGが良好な水溶性を示すことから、溶液製剤や凍結乾燥品を製造する際に特に便利である。多糖類成分として、経口投与する場合の生体利用度に限界があるため、非経口投与製剤にするのが好ましく、製剤製造に当たって当分野で慣用の技術手段を利用することができる。
したがって、本発明の別の目的は薬用組成物を提供することであり、前記薬用組成物は、本発明に係るdLFGと薬学的に許容可能な賦形剤とを含んでなる。
本発明に係るdLFGは、抗凝固活性が高く、例えば、血栓性心血管疾患、血栓性脳血管疾患、肺静脈血栓、末梢静脈血栓、深部静脈血栓症、末梢動脈血栓等、症状が異なる血栓症の予防と治療に適用可能である。したがって、本発明は、前記組成物の心血管疾患の治療薬及び予防薬製造における用途を提供することができる。
本発明に係るdLFGは抗凝固活性が高く、例えば、血栓性心血管疾患、血栓性脳血管疾患、肺静脈血栓、末梢静脈血栓、深部静脈血栓症、末梢動脈血栓等、各種の血栓症の予防と治療に適用可能である。したがって、本発明は、前記組成物の心血管疾患の治療薬及び予防薬の製造における用途を提供することができる。
本発明者が鋭意検討を重ねた結果、初めてFGAGのβ−脱離解重合法を確立した。本発明者の実験検討から、プロトタイプのFGAGがアルカリ性溶液において比較的安定し、β−脱離反応を起こし難いと確認できた。カルボキシ基をエステル化した後にβ−脱離を行うことも技術手段として1つの選択肢であるが、FGAGにフコシル基の側鎖置換があるため、多糖構造がより複雑になってしまい、その複雑な立体障害によって各官能基の化学反応特性が影響されやすく、更に、様々な化学反応条件によっては側鎖フコシル基中のグリコシド結合の安定性にバラツキが生じやすい。本発明者らは、驚くべきことに、FGAGカルボキシエステル化産物がヘパリンエステル化産物と違ってアルカリ性水溶液においてβ−脱離反応を起こさないという現象を発見した。実際、アルカリ性水溶液中において、FGAGカルボキシエステル化産物のエステル基は特に加水分解され易く、β−脱離反応が殆ど起こらず、ヘパリン等の典型的なグリコサミノグリカン系化合物とはかなり違った特性を示している。
本発明は、FGAGカルボキシエステル化産物を非水溶媒においてβ−脱離反応させ、非還元性末端にΔ4,5不飽和結合を有するフコシル化グリコサミノグリカン解重合産物を得ることに成功した。本発明の技術方法によれば、適宜な分子量に解重合されたフコシル化グリコサミノグリカン誘導体(dLFG)を得ることができる。理化学及び分光学的手段を利用して化学構造を解析した結果、Δ4,5不飽和結合を除き、還元性末端の基本構造に特に変化がないことが確認できた。
本発明に係る方法を利用してLFGを製造する場合、カルボキシエステル化及び/又はアミド化の度合いを調整することで反応産物の分子量を効果的に制御することができる。反応産物の非還元性末端にΔ4,5不飽和結合があるため、得られたdLFGは約232〜240nmにおいて最大紫外線吸収(λmax)を示し、該特性を利用して産物を定量的に検出することができ、よって、化学反応の制御、産物品質の分析、及び血中濃度検出等の含有量分析に関する技術手法を確立するのに特に便利である。
薬理学の実験検討から、本発明に係る方法により製造されたdLFGが高い抗凝固活性を示し、人コントロール血漿の活性化部分トロンボプラスチン時間(APTT)を延長することができ、第X因子活性化複合体(f.Xase,Tenase)の活性を阻害し、並びに、そのヘパリン補因子II(HC−II)に依存的な抗トロンビン(anti−f.XIIa)活性が類似した分子量を有する過酸化解重合産物に劣らず、高い応用価値があることが実証された。また、本発明のdLFGは、過酸化剤処理による解重合産物に比べて特定構造の非還元性末端があるため、紫外線吸収特性としてλmaxが約232〜240nmに現れ、品質管理に便利であり、製造プロセスを監視、制御し易いといった長所がある。
本発明者によって鋭意検討を重ねた結果、本発明に係るdLFGが抗凝固薬としての有効投与量で血小板及び第XII因子に対して促進活性を示さず、血小板活性化及び第XII因子−カリクレイン系活性化に起因する一連の有害反応を回避することのできることを見出した。また、ヘパリン系薬物を同様の抗血栓効果を示す投与量で投与する場合に比べ、本発明に係る低分子量FGAGは、出血傾向が更に低下し、血栓症の治療及び/又は予防において有用であると認められる。
TAGとdLFG−1AのHPGPC解析結果を示す図である。 図2の中の図2(a)がTAGのH NMRスペクトルであり、図2(b)がdLFG−1AのH NMRスペクトルである。 TAGとdLFG−1Aの 13C NMRスペクトルである。 TAGとdLFG−1AのH−H COSY NMRスペクトルである。 図5において、図5(a)がTAGのH−H ROESYスペクトル、図5(b)がTAGのH−H TOCSYスペクトル、図5(c)がdLFG−1AのH−H ROESYスペクトル、図5(d)がdLFG−1AのH−H TOCSYスペクトルである。 dLFG−1AのH−13C HSQCスペクトルである。 AJG、LGG及びHNGのH NMRスペクトルである。 HEGとdHEGのH NMRスペクトルである。 dLFG−2AのH NMRスペクトルである。 dLFG−1EのHC−IIに依存的な抗トロンビン活性の用量効果関係を示す図である。 dLFG−1Eが第X因子活性化複合体活性を阻害するときの用量効果関係を示す図である。 β―脱離法を用いてFGAGを解重合するときの基本的な反応ステップを示すフローチャートである。
以下、実施例を挙げて本発明を詳細に説明するが、本発明の範囲がこれらに制限されるものではない。
バイカナマコ(Thelenota ananas)に由来の低分子量フコシル化グリコサミノグリカン誘導体(dLFG)の製造
1.1 材料
バイカナマコ(Thelenota ananas Jaeger)は市販のものを使い、内臓を取り除いてから体壁を乾燥した。塩化ベンゼトニウム、塩化ベンジル、テトラブチルアンモニウムヒドロキシド(ΤΒΑ)、Ν、Ν−ジメチルホルムアミド(DMF)、水酸化ナトリウム、塩化ナトリウム及びエタノール等の試薬は何れも市販の分析用試薬であった。
1.2 方法
(1)バイカナマコに由来のFGAG(FGAG from Thelenota ananas,TAG)の抽出と製造: バイカナマコの乾燥体壁300gから、Kariya et al.,J Biol Chem,1990,265(9):5081〜5085に記載の方法従ってTAGを製造し、収率が約1.5%、純度が98%(HPGPC、相対面積比較法)、重量平均分子量Mwが65,890Daであった。
(2)TAG4級アンモニウム塩の調製: ステップ(1)で得られたTAG1.2gをビーカに入れ、脱イオン水40mLを加えて溶解させた。攪拌しながら75mg/mLの塩化ベンゼトニウム溶液で滴下し、溶液に白い沈殿物が現れた。滴下終了後に遠心分離にかけ、沈殿物を脱イオン水で3回洗浄し、最終沈殿物を常温で24時間かけて真空乾燥し、FGAGアンモニウム塩を2.68g得た。
(3)TAGのベンジルエステル化: ステップ(2)で得られたTAG4級アンモニウム塩を丸底フラスコに入れ、27mLのDMFを加えて溶解させた。塩化ベンジル13.5mLを加え、窒素ガス雰囲気、35℃で攪拌しながら25時間反応させ、反応が終了した後、反応液に飽和NaCl35mL、無水エタノール300mLを加え、3500rpmで20分間遠心分離して上清を除去した。沈殿物を体積比が1:9の飽和NaCl−無水エタノール200mLで3回洗浄した後、脱イオン水100mLで溶解し、3500kDの透析バッグを用いて24時間透析して透析液を濃縮し、凍結乾燥してFGAGベンジルエステルを得た。 H−NMRでエステル化率が72%であると確認できた。
(4)TAGベンジルエステルテトラブチルアンモニウム塩の調製: 上記ステップ(3)で得られたTAGベンジルエステルを、イオン交換法(Dowex/r50W×8 50−100(H),60×3cm)により水素型に変換し、導電率計を使って監視しつつ0.4Mテトラブチルアンモニウムヒドロキシド溶液を滴下し、硫酸基と未エステル化のカルボキシ基を全部アンモニウム塩に変換させた。得られた溶液を凍結乾燥し、TAGベンジルエステルテトラブチルアンモニウム塩を合計1.326g得た。
(5)β−脱離解重合: 上記ステップ(4)で得られたTAGベンジルエステルテトラブチルアンモニウム塩800mgを8.0mLのDMFに溶かし、トリブチルアミン0.8mLを加えて60℃で攪拌しながら24時間反応させた後、溶液に体積比が1:9の飽和NaClと无水エタノールの混合液80mLを加え、3500rmpで15分間遠心分離して沈殿物を得た。沈殿物に8mLの0.1M NaOHを加え、30℃で40分間反応させて残りのカルボン酸エステルを加水分解し、0.1M HClでpHを中性に調整した後に無水エタノール80mLを加え、3500rpmで15分間遠心分離して沈殿物を得た。得られた沈殿物を8mLの水に溶かし、水素型のイオン交換樹脂カラム(Dowex/r50w×8 50−100(H),60×3cm)にかけ、その後、0.1MのNaOHでpHを中性に調整し、1kDの透析バッグを用いて脱イオン水で24時間透析し、凍結乾燥してβ−脱離解重合産物dLFG−1Aを約310mg得た。
(6)TAG及びそのβ−脱離解重合産物dLFG−1Aの理化学的特性、単糖組成及びスペクトル測定
分子量: 高効ゲル浸透クロマトグラフィー(HPGPC)を用いて測定した。検出条件として、アジレント・テクノロジー社製の1200シリーズクロマトグラフ、Shodex Ohpak SB−804 HQゲル浸透カラムを採用し、カラム温度が35℃、移動相が0.1M塩化ナトリウム、流速が0.5mL/分間であり、アジレント社の1100型RID―UVDシステムを用いて測定した。分子量確定済みの一連のFGAGを用いて検量線を作成し、GPCで分子量及び分布を算出した。
−OSO3−/COOモル比: 電気伝導測定法を利用して測定した。
旋光度: 中国薬局方(2010版)第2部付録に記載のVIE法に従って測定を行った。
固有粘度: 中国薬局方(2010版)第2部付録に記載のVIG法に従い、ウベローデ粘度計を用いて測定した。
単糖組成の測定: Elson−Morgon法によりアセチルガラクトサミン(D−GalNAc)の含有量を測定し、カルバゾール法によりグルクロン酸(D−GlcUA)の含有量を測定した(張惟傑、糖複合体の生化学研究技術(第2版)、浙江大学出版社、1999、p19〜20を参照可能)。4,5不飽和グルクロン酸残基(ΔUΑ)の含有量は、H NMRスペクトルにおけるH4の積分値とアセチルガラクトサミン(D−GalNAc)のメチル基の積分値との比により算出した。スイスブルカー社製のAVANCE AV 500超伝導式核磁気共鳴装置(500MHz)を用いたNMRスペクトル(検出条件として、溶媒がDO(Norell社の99.9Atom%D)であり、内部標準物質としてトリメチルシリルプロピオン酸(TSP−d4)を使用し、温度が300Kである。)を測定した。
紫外線吸収スペクトル(UV)の測定: 濃度が0.855mg/mLのdLFG溶液を用い、島津製作所製のUV−2450を用いて190〜400nmの波長範囲を走査した。
1.3 結果
TAG及び解重合産物dLFG−1Aの理化学的特性、単糖組成の測定結果を表1に示す。TAG及びdLFG−1AのHPGPC解析結果を図1に示す。測定結果から、TAGに比べ、dLFG−1Aの分子量及び固有粘度が大きく低下していることが確認できた。単糖組成の測定結果から、TAGとdLFG−1Aのヘキソサミン、ヘキスロン酸(UA、GlcUAとΔUA両者の合計)、デオキシヘキソース(Fuc)の組成比がさほど変わらないのが確認できた。後述のH NMRスペクトルから、TAGにΔUΑを含まず、dLFG−1Aに含まれるΔUAとGalNAcとのモル比が約0.18:1(モル比で、ΔUAが総ヘキスロン酸の約7.5%を占める。)であると確認できた。
UV分光光度計を用いて190nm〜400nmの波長範囲を走査した場合、ΔUΑ不飽和結合の存在が起因となって、dLFGが236nmにおいて最大紫外線吸収λmaxを示した。
図2にTAG及びdLFG−1AのH NMRスペクトル、図3にTAG及びdLFG−1Aの13C NMRスペクトル、図4にTAG及びdLFG−1AのH―H COSY NMRスペクトル、図5(a)にTAGのH―H ROESYスペクトル、図5(b)にTAGのH―H TOCSYスペクトル、図5(c)にdLFG−1AのH―H ROESYスペクトル、図5(d)にdLFG−1AのH―H TOCSYスペクトル、及び図6にdLFG−1AのH−13C HSQCスペクトルをそれぞれ示す。TAGのH NMR及びスペクトル信号の帰属に関しては、本出願人による中国特許公開第102247401A号の記載を参酌することもできる。
TAGのH NMRスペクトルにおいて、5.2〜5.7ppmの範囲に3組の比較的強い信号ピークが現れ、硫酸エステル化パターンの異なるα−フコース末端基における水素原子による信号であると認められ、そのうち、約5.6ppmに現れる信号は、L−フコース−2,4−ジ硫酸エステル基(Fuc2S4S)の末端基における水素原子によるものであり、約5.30〜5.39ppmに現れるピークは、L−フコース−3−硫酸エステル基(Fuc3S)及びL−フコース(Fuc4S)−4−硫酸エステル基の末端基における水素原子によるものであった。
GlcUA主鎖とGalNAc末端基のβ−水素信号は、約4.4〜4.6ppmに現れた。約1.0〜1.3ppm及び1.9〜2.0ppmに、それぞれFucメチル基及びGalNAcアセチル基のメチル基におけるプロトン信号ピークが現れた。硫酸エステル基の置換位置における糖環水素は、約4.2〜4.8ppmの範囲内に現れ、約3.6〜4.6ppmにある信号は、硫酸エステル基の置換位置とは別の糖環水素の重ね合わせによるものであった。
TAGスペクトルに比べ、dLFG−1AのH NMRスペクトルにおいて、約5.76及び5.82ppmに新たな信号ピークが現れ、関連のH NMRスペクトルから、これらの信号がΔUAの4位水素特有の信号に該当すると確定できる。
dLFG−1AのH−H COSYスペクトル及びTOCSYスペクトルから、ΔUAのH4、H3、H2及びH1プロトン信号が互いにカップリングして相関性が示された。H−H ROESYスペクトルから、Fucがα(1,3)グリコシド結合を介してGlcUA及びΔUAに結合していることが確認できた。なお、GlcUAに結合するFucの末端基水素信号に比べ、ΔUAに結合する同類Fucの末端基水素信号がやや高周波側に現れた(図2(a)、2(b)におけるFuc2S4Sの末端基水素信号、及びΔUAに結合するFuc2S4Sの末端基水素信号の位置を参考することができる)。
13C−NMRスペクトル(TMSを外部標準物とする)において、GlcUA及びGalNAcのC1ピークが約97〜104ppmに現れ、ΔUΑのC1ピークが約103.5ppmに現れ、C4の化学シフトが106.8ppmであり、C5の化学シフトが約148.5ppmであった。
水素スペクトル、炭素スペクトル及び関連のスペクトルの解析から、dLFG−1Αの主要構成単糖として、GlcUAとGalNAcがβ(1−3)とβ(1−4)グリコシド結合を介して互いに連結して多糖主鎖を構成し、主鎖の二糖構造単位になっているのが確認できた。GlcUAのΗ2、Η3化学シフトに基づき、更にROESY、H−13C HMBCを合わせて解析することにより、Fucがα(1→3)グリコシド結合を介してGlcUAに結合するのが確認できた。このことから、dLFG−1Aにおいて、非還元末端に位置するヘキスロン酸が主にΔUAで構成されることが実証された。
TAGのβ−脱離解重合による低重合度フコシル化グリコサミノグリカン誘導体(dLFG)の製造
2.1 材料
実施例1と同様の方法を用い、バイカナマコ由来のTAGを製造した。試薬は、実施例1と同じものを使用した。
2.2 方法
(1)TAG第4級アンモニウム塩の調製: 実施例1に記載の方法に従い、TAG第4級アンモニウム塩を5.02g製造した。
(2)ベンジルエステル化度が異なるTAGベンジルエステルの調製: ステップ(1)で得られたTAG第4級アンモニウム塩に50mLのDMFを加え、攪拌して溶解させた後、塩化ベンジル25mLを加え、35℃で攪拌しながら反応させた。所定の反応時間でサンプルを約15mL取って、各サンプル溶液にそれぞれ体積比でl:9の飽和NaCl−無水エタノール100mLを加え、3500rpmで20分間遠心分離し、得られた沈殿物を体積比がl:9の飽和NaCl−無水エタノール50mLで3回洗浄した。沈殿物を脱イオン水40mLに溶かした後、分画分子量が3500kDの透析バッグを用いて24時間透析した。透析で得られた各捕獲液が異なるエステル化度のTAGベンジルエステルの溶液であり、サンプルを採って凍結乾燥し、H−NMRスペクトル法によりエステル化度がそれぞれ9%、21%、28%、45%及び56%であると確定した。
(3)TAGベンジルエステルテトラブチルアンモニウムの調製: ステップ(2)で得られたエステル化度が異なるTAGベンジルエステルの各溶液を6mLに濃縮し、交換樹脂法を利用して水素型に変えた後、導電率計で監視しつつ0.4Mテトラブチルアンモニウムヒドロキシド溶液を滴下し、硫酸基と未エステル化のカルボキシ基を全部テトラブチルアンモニウム塩(pHを約7.5〜8.0に調整)に変換させた。得られた溶液を凍結乾燥し、エステル化度が異なるTAGベンジルエステルテトラブチルアンモニウム1.523g、1.518g、1.493g、1.490g及び1.731gを得た。
(4)分子量が異なるβ−脱離解重合産物dLFGの製造: ステップ(3)で得られたエステル化度が異なるTAGベンジルエステルテトラブチルアンモニウムに対し、アンモニウム塩50mg当たりにDMF・CHCl1mLと0.1M NaOH−EtOH1mLの割合でDMF又はCHCl、及び新たに調製した100mM NaOH−EtOHを加え、透明な黄色い溶液を得た。25℃で攪拌しながら1時間反応させた後、速やかに1N HClでpHを中性に調整することにより反応を中止させ、溶液に飽和塩化ナトリウム2mL、無水エタノール20mLを加え、3500rpmで15分間遠心分離した。上清を除去し、沈殿物を回収した。4mLのHOで該沈殿物を溶解し、イオン交換樹脂法を用いて産物を水素型に変え、0.1M NaOHでpHを7〜8に調整した。
(5)分子量が異なるβ−脱離解重合産物の精製: ステップ(4)で得られた各溶液を1kDの透析バッグに移し、脱イオン水で24時間透析し、凍結乾燥して分子量が異なるβ−脱離解重合産物dLFG−1B、dLFG−1C、dLFG−1D、dLFG−1E及びdLFG−1Fを得た。
(6)dLFG−1産物の測定: 実施例1に記載の方法を用いてdLFG−1B、−1C、−1D、−1E及び−1Fの分子量、−OSO3−/COOモル比、旋光度を測定した。
2.3 結果
下記表3に、dLFG−1B、dLFG−1C、dLFG−1D、dLFG−1E及びdLFG−lFの理化学的特性の測定結果を示す。測定結果から、バイカナマコ由来のTAGをβ−脱離により解重合したdLFG産物は、収率が比較的高く、なおかつ狭い分子量分布を有すると確認でき、導電率法を利用して測定した結果から、硫酸エステル基に特に変化がなく、固有粘度が分子量の低下につれて低下することが確認できた。
品種が異なるナマコに由来のFGAGのβ−脱離解重合産物の製造
3.1 材料
マナマコ(Apostichopus japonicus)、アカミシキリ(Holothuria edulis)、ブラジルナマコ(Ludwigothurea grisea)、ニセクロナマコ(Holothuria leucospilota)、及びイシナマコ(Holothuria nobilis)は何れも市販のものであり、体壁を分離して乾燥させた。
3.2 方法
(1) マナマコ、アカミシキリ、ブラジルナマコ、ニセクロナマコ及びイシナマコの体壁を乾燥した後に細かに粉砕し、粉砕物をそれぞれ300g取って実施例1に記載の方法(1)に従ってFGAGを抽出し、それぞれAJG、HEG、LGG、HLG及びHNGと表記した。
(2) AJG、HEG、LGG、HLG及びHNGをそれぞれ約1g用い、実施例に記載の方法(2)〜(5)に従ってβ−脱離解重合産物dLFGを製造し、それぞれdAJG、dHEG、dLGG、dHLG及びdHNGと表記した。前記FGAGのβ−脱離法による解重合は、図12に示されるステップに従って行った。
3.3 結果
上記ステップ(1)において、アカミシキリ、ブラジルナマコ、ニセクロナマコ及びイシナマコの乾燥体壁からAJG、HEG、LGG、HLG及びHNGを分離、精製する際の収率がそれぞれ約1.4%、0.9%、0.8%及び1.1%であり、重量平均分子量が何れも約50kD〜80kDの範囲にあった。図7のH NMRスペクトルにFGAG系化合物としてのAJG、LGG及びHNGの基本特性が示され、α−L−Fuc、β−D−GalNAc及びβ−D−GlcUAの末端基及び関連のプロトン信号が明確に示された。
上記ステップ(2)において、AJG、HEG、LGG、HLG及びHNGからdAJG(8.6kD)、dHEG(ll.5kD)、dLGG(9.3kD)、dHLG(10.2kD)及びdHNG(9.7kD)を製造する際の収率が約70%〜90%の範囲にあった。図8に示されるHEGとdHEGのH NMRスペクトルに、β−脱離により解重合された非還元性末端ΔUAの特徴的信号が現れた。
dAJG末端還元産物の製造
4.1 材料
実施例3と同様にして8.6kDのdAJGを製造した。水素化ホウ素ナトリウムは、市販の分析用試薬を使用した。
4.2 方法
dAJG500mgとNaBH250mgをそれぞれ0.1N NaOH溶液20mLに溶解し、NaBH溶液をdAJG溶液に加え、得られた溶液を室温で一晩攪拌し続けた。翌日、更に200mgNaBHを加え、引続き5時間攪拌した。その後、余分の水素化ホウ素ナトリウムを分解するために1N HClでpHを約10.3から約2.5に調整し、後に1N NaOHでpH値を中性に戻した。無水エタノール150mLを加え、遠心分離して上清を除去した後、無水エタノール50mLで2回洗浄し、沈殿物を脱イオン水20mlに溶かし、3kDの透析バッグを用いて脱イオン水で一晩透析し、透析で得られた捕獲液を凍結乾燥することにより末端基が還元されたrdAJGを得た。
4.3 結果
結果として、386.3mgのrdAJGが得られた。DNS(3,5−ジニトロサリチル酸)法を用いて測定した結果、rdAJGの末端基がほぼ全部還元されているのが確認できた。
dLFG−1Aの末端還元アミノ化産物dLFG−2Aの製造
5.1 材料
実施例1で製造したdLFG−1Aを用い、チラミン、シアノ水素化ホウ素ナトリウム等は何れも市販の分析用試薬であった。
5.2 方法
(1)dLFG−1Aの末端還元アミノ化: 実施例1で得られたdLFG−1A0.1gを3.5mLの0.2mMリン酸緩衝液(pH8.0)に溶かし、攪拌しながらそれぞれ過剰量の80mgチラミンと30mgシアノ水素化ホウ素ナトリウムを加えた後、35℃の恒温水槽で約72時間反応させた。反応終了後、95%のエタノール10mLを加え、遠心分離して沈殿物を得た。次に、沈殿物を95%のエタノール30mLで2回洗浄した後、35mLの0.1%NaClで該沈殿物を再び溶解し、遠心分離して不溶物を除去し、上清を1KDの透析バッグに入れて脱イオン水で24時間透析し、凍結乾燥してdLFG−2Aを82mg得た。
(2)理化学的特性及びスペクトル特性の測定: HPGPCを用いて分子量及び分布を測定した。また、−OSO3−/−COOモル比は電気伝導測定法を利用し、アセチルガラクトサミン(D−GalNAc)の含有量はElson−Morgon法を利用し、グルクロン酸(D−GlcUA)含有量はカルバゾール法を利用してそれぞれ測定した。D−GalNAc/L−Fucモル比については、H NMRスペクトルにおけるメチルピークの積分値により算出した(実施例1の場合と同様)。NMRスペクトルは、スイスブルカー社製のAVANCE AV 500超伝導式核磁気共鳴装置(500MHz)を用いて測定した。
5.3 結果
dLFG−1A投入量から算出したdLFG−2A産物の収率は、約82%であった。産物の組成について解析行った結果、D−GalNAc:D−GlcUA:L−Fuc:−OSO3−が約1.00:0.98:1.10:3.60であり、Mwが約8,969、PDIが約1.42であると確認でき、LGC−1A構造単位の重合度が約10である理論計算結果とほぼ一致した。dLFG−2AのH NMRスペクトルを図9に示す。
H NMR(D20,δ[ppm]):7.25(2’,6’H);6.83(3’,5’H);5.65,5.36,5.28(L−FucαH);3.38(8’H);2.82(7’H);2.02(D−GalNAc,CH);1.30〜1.32(L−Fuc,CH)。ベンゼン環における水素とΔUAのH4との積分比が約1:0.28であることから、産物の還元性末端が全て還元アミノ化されたと認められる。
還元アルキル化産物dHEG−PMPの製造
6.1 材料
HEG: 実施例3に記載の方法のステップ(1)に従い、アカミシキリに由来のFGAG系化合物を製造した。1−フェニル−3−メチル−5−ピラゾロン(PMP)は、純度が99%の生化学用試薬を使用した。
6.2 方法と結果
HEG100mgを実施例1に記載の方法のステップ(3)、(4)に従って処理し、HEGベンジルエステルテトラブチルアンモニウム塩132mgを得た。得られたHEGベンジルエステルテトラブチルアンモニウム塩をDMFで溶解し(最終濃度50mg/mL)、EtONa−EtOHを加えて最終濃度が20mMになるようにし、50℃で攪拌しながら0.5時間反応させた。その後、0.5mol/LのPMPメタノール溶液10mLを加え、攪拌しながら引き続き1.5時間反応させた。水10mLを加え、攪拌しながら室温まで冷却させ、1N HC1で反応溶液を中和した後、飽和塩化ナトリウム20mL及び無水エタノール200mLを加えた。遠心分離にて上清を除去し、10mLのHOで沈殿物を再び溶解し、3kDの透析バッグで透析した。その後、捕獲液を凍結乾燥し、dHEG−PMP産物102mgを得た。
dHEG−PMPのH NMRスペクトルから、産物の末端が全て還元アルキル化されているのが確定できた。
TAG由来のdLFGの抗凝固活性
7.1 材料
測定用サンプル: 一連の測定用サンプルとして、実施例1、2、5で得られたdLFG−1A〜lF、dLFG−2A、及びTAGをβ−脱離することにより得られたMwが約3.5kDのdLFG−1Gを用いた。
試薬: エノキサパリンナトリウム注射液(LMWH)は、サノフィ・アベンティス社製でMwが3500〜5500の範囲であり、血液凝固試験用のコントロール血漿、活性化部分トロンボプラスチン時間(APTT)測定キット、トロンビン時間(TT)測定キット、及びプロトロンビン時間測定キット(PT、乾燥粉体)は、何れもドイツTECO社製のものであった。他の試薬については、何れも市販の分析用試薬を使用した。
測定装置: ドイツTECO社製の血液凝固測定計MC−4000を用いた。
7.2 方法
サンプルの実際状況に合わせて脱イオン水で溶解し、一連の濃度となるようにした。血液凝固測定計MC−4000を用い、APTT、PT及びΤΤ測定キットのマニュアルに記載された方法に従って一連のdLFG化合物の抗凝固活性を測定した。
7.3 結果
dLFG−1A〜lF及びdLFG−2Aの抗凝固試験の結果を表4に示す。表4に示される結果から、dLFG−1A〜lF及びdLFG−2Aが何れも人血漿のAPTTを著しく延長することができ、APTTを倍増する(時間値を1倍延長する)際に必要とされる薬物濃度が何れも9gmL未満であり、陽性対照薬であるエノキサパリンナトリウム(9.31μg/mL)を上回り、これらの誘導体が内因性凝固を効果的に抑制することのできることが実証された。
試験結果から、更に、PT及びTTに対するdLFG−1A〜lF及びdLFG−2Aの影響が比較的弱く、陽性対照薬であるエノキサパリンナトリウムに及ばないと確認でき、これらの化合物が外因系凝固カスケード及び血液凝固系の共通ルートに対してさほど影響がないと実証できた。
dLFG誘導体の分子量とAPTT延長との間に一定の関連性が示され、分子量の増加につれて抗凝固活性も次第に高くなり、よって、分子量もdLFG誘導体の抗凝固活性を影響する1つの要因であると確認できた。したがって、抗凝固活性の観点から、本発明に係るdLFGの分子量が重量平均分子量で3、000Da以上であることが好ましいと確認できた。
凝固因子の活性に対するdLFGの影響
8.1 材料
測定用サンプル: 実施例7と同様にdLFG−1A〜dLFG−1Fを用いた。
試薬: 人コントロール血漿は、ドイツTECO社製であり、ノキサパリンナトリウム注射液(LMWH)は、サノフィ・アベンティス社製でMwが3500〜5500の範囲であり、ヘパリンは、シグマ社製でMwが18000以上であった。過硫酸化コンドロイチン硫酸(OSCS)は、中国薬品生物製品検定所製であり、トロンビン(IIa)100NIHU/mg、トロンビン測定用の発色基質(CS−0138)25mg/バイアル、及びヘパリン補因子II(HC−II)100μg/バイアルは、何れもフランスHYPHEN BioMed社製であり、第VIII因子(f.VIII)200IU/バイアルは、中国上海RAAS社製のものを使用した。第VIII因子測定用キットは、フランスHYPHEN BioMed社製であり、構成としてRがヒト第X因子、Rがヒト第IXa因子以外に、ヒトトロンビン、カルシウム及び合成リン脂質を含んでなる活性化剤、Rが第Xa因子特異性の発色基質SXa−11、及びRがTris−BSA緩衝液であった。また、CENTERCHEM社製で商品名Pefachrome8(実物は○で囲った数字で記載)FXIIa−5963を使用した。
測定装置: 米国BioTek−ELx社製の808型マイクロプレートリーダーを用いた。
8.2 方法
(1) 第X因子活性化複合体(f.Xase,Tenase)阻害活性の測定:第VIII因子測定用キットと第VIII因子を用いて測定方法を確立した。一連の濃度を有するdLFG−1A〜dLFG−lF溶液又は溶媒ブランク(Tris−BSA緩衝液、試薬R4)30μLを2.0IU/mLの第VIII因子(30μL)と混ぜ合わせた後、順にキットの試薬R2(30μL)、R1(30μL)を加えて37℃で2分間保持し、R3(30μL)を加えて37℃で引続き2分間保持してからOD405を測定した。Sheehan J.P.& Walke E.K.,Blood,2006,107:3876〜3882に記載の方法に従い、第X因子活性化複合体に対する各サンプルのEC50値を算出した。
(2) HC−II依存的な抗トロンビン(f.IIa)活性の測定:一連の濃度を有するdLFG−1A〜dLFG−lF溶液又は溶媒ブランク(Tris−HCl緩衝液、試薬R)30μLを96ウェルプレートに加えた後、1μΜのHC−IIを30μL加えて混ぜ合わせ、37℃で1分間保持した。次に、10U/mLの第IIa因子を30μL加えて37℃で1分間保持した後、4.5mΜの発色基質CS−0138を30μL加えて混合し、37℃で引続き2分間保持した後にOD405を測定した。溶媒ブランク(Tris−HCl)に基づいてΔODを算出し、Sheehan J.P.& Walke E.K.,Blood,2006,107:3876〜3882に記載の方法に従い、第IIa因子に対する各サンプルのEC50値を算出した。
(3) 第XII因子促進活性の測定:第XII因子の活性は、Hojima et al.,Blood,1984,63:1453〜1459に記載の方法に若干変動を加えて測定した。一連の濃度を有するdLFG−1A〜dLFG−1F溶液又は溶媒ブランク(20mM Tris−HCl緩衝液、pH7.4)30μLを96ウェルプレートに加えた後、濃度が312nΜのヒト凝固因子ΧΙΙ(1mM NaAc−HCl及び40mM NaCl/0.02% NaNを含み、pHが5.3である)30μLを加えて混合し、37℃で1分間保持した。次に、620nΜのプレカリクレイン30μLを加えて37℃で1分間保持し、更に、6mMのカリクレイン発色基質30μLを加えて混合してから37℃で保持し、一定時間ごとにOD405を測定してOD値の変化速度を算出した。
8.3 結果
凝固因子活性に対するdLFG−1A〜dLFG−1Fの影響を表5に示す。また、図10及び図11は、それぞれdLFG−1EのHC−II依存的な抗トロンビン活性の用量効果関係及び第X因子活性化複合体に対する阻害活性を示す図である。
表5及び図4、5に示されるように、本発明に係るdLFG−1A〜dLFG−1Fが第X因子活性化複合体に対して強い阻害活性を示し、50%の第X因子活性化複合体活性を抑制する際の有効濃度EC50が約0.5〜5nMであった。同時に、HC−II依存的な抗トロンビン活性も兼ね備え、約5.5〜40nMのEC50を示した。これらの化合物が強い抗凝固活性を示す原因として、第X因子活性化複合体が血液凝固系において内因系凝固機構の最下流に位置する標的であり、凝固反応の律速因子になっているためであると考えられる。
最近の研究から、特異の内因系凝固因子阻害剤が抗血栓活性を示すときに出血傾向を効果的に低減することのできることが示され、したがって、本発明に係るdLFG系化合物が抗血栓用途に適用可能であると認められる。一方、第XII因子が活性化されると、プレカリクレインを活性化させて低血圧等の望ましくない症状を誘発し、なお、過硫酸化コンドロイチン硫酸(OSCS)の生成も活発となって重篤の臨床症状を引き起こす虞があった。しかし、本発明者らの研究から、本発明に係るdLFG−1A〜dLFG−lFがOSCSと異なり、抗凝固効果を示す有効投与量で顕著な第XII因子促進活性を示さないことが確認できた。
低分子量フコシル化グリコサミノグリカンの注射用水溶液の調製
9.1 材料
実施例2と同様にし、Mwが7、066DaのdLFG−1Eを得た。
9.2 配合
dLFG−1Eの注射用水溶液を、下記表6に示される割合で配合した。
9.3 調製方法
配合量に従って低分子量フコシル化グリコサミノグリカンナトリウム塩を秤量し、注射用水を全量で添加した後に攪拌しながら完全に溶解させ、バッチ式の加熱加圧法で滅菌処理を施した。0.6%の薬用活性炭を添加して20分間攪拌した後、ブフナー漏斗及び3.0μm精密濾過膜を用いて濾過して活性炭を取り除き、熱源物質を除去した。中間体の含有量を測定し、合格となったものを0.22μmの精密濾過膜で濾過した。バイアルごとに1mLとなるように管状バイアルに分注し、バイアルに注入する際、注入量を監視しつつ合格したバイアルのみを包装して最終製品とした。
実施例10:低分子量フコシル化グリコサミノグリカンの凍結乾燥粉体の調製
10.1 材料
実施例2と同様にし、Mwが8、969DaのdLFG−2Aを得た。
10.2 配合
dLFG−2Aの注射用水溶液を、表7に示される割合で配合した。
10.3 調製方法
配合量に従って低分子量フコシル化グリコサミノグリカンナトリウム塩を秤量し、攪拌しながら完全に溶解させ、バッチ式の加熱加圧法で滅菌処理を施した。0.6%の薬用活性炭を添加して20分間攪拌した後、ブフナー漏斗及び3.0μm精密濾過膜を用いて濾過して活性炭を取り除き、熱源物質を除去した。中間体の含有量を測定し、合格となったものを0.22μmの精密濾過膜で濾過した。バイアルごとに0.5mLとなるように管状バイアルに分注し、開口にブチルゴム栓を押し付けて半分程度に密封した。凍結乾燥機に投入し、規定の凍結乾燥曲線に従って凍結乾燥した後、ゴム栓を全部押し付けて凍結乾燥機から取り出した。アルミ製キャップで堅固に密封し、目視で合格したか否かを判断し、合格したもののみを包装して最終製品とした。
凍結乾燥は、以下の手順に従って行った。すなわち、凍結乾燥機にサンプルを投入し、内部温度を−40℃に下げて3時間保持した。 冷却トラップ内を−50℃までに下げ、300μbarとなるまで真空を引いた。昇華が始まると、1時間かけて定速で−30℃に昇温し、2時間保持した。その後、2時間かけて定速で−20℃に昇温し、200〜300μbarの真空度で8時間保持した。次に、2時間かけて−5℃に昇温し、150〜200μbarの真空度で2時間保持し、再び乾燥処理した。その後、0.5時間かけて10℃にまで昇温し、80〜100μbarの真空度を維持しながら2時間処理した後、0.5時間かけて40℃に昇温し、最低真空度で4時間保持した。

Claims (14)

  1. 低分子量グリコサミノグリカン誘導体の構成単糖として、ヘキスロン酸、ヘキソサミン、デオキシヘキソース及びこれら単糖の硫酸エステルを含み、そのうち、前記ヘキスロン酸がD−グルクロン酸及びΔ4,5−ヘキスロン酸(4−デオキシ−スレオ−ヘキサ−4−エンピラノシルウロン酸)であり、前記ヘキソサミンがN−アセチルガラクトサミン(2−Ν−アセチルアミノ−2−デオキシ−D−ガラクトース)又はその末端基還元物であり、前記デオキシヘキソースがL−フコースであり、
    前記低分子量グリコサミノグリカン誘導体の単糖及び−OSO3−の組成比範囲が、モル比でヘキスロン酸:ヘキソサミン:デオキシヘキソース:硫酸エステル基=1:(1±0.3):(1±0.3):(3.0±1.0)であり、前記低分子量グリコサミノグリカン誘導体に含まれるヘキスロン酸において、Δ4,5−ヘキスロン酸の占有比率がモル比で2.5%以上であり、
    前記低分子量グリコサミノグリカン誘導体の分子量が、重量平均分子量(Mw)で3kD〜20kDの範囲であり、
    前記低分子量グリコサミノグリカン誘導体の多分散指数が1.0〜1.8の範囲にあり、
    前記低分子量グリコサミノグリカン誘導体は、下記式(I)に示す構造を有する同族グリコサミノグリカン誘導体の混合物である、低分子量グリコサミノグリカン誘導体又はその薬学的に許容可能な塩。
    (式(I)中、
    nは、平均値が2〜20の整数であり、
    −D−GlcUA−β1−は、−D−グルクロン酸−β1−イル−であり、
    −D−GalNAc−β1−は、−2−デオキシ−2−Ν−アセチルアミノ−D−ガラクトース−β1−イル−であり、
    L−Fuc−α1−は、−L−フコース−α1−イル−であり、
    ΔUA−1−は、Δ4,5−ヘキスロン酸−1−イル(4−デオキシ−スレオ−ヘキサ−4−エンピラノシルウロン酸−1−イル)であり、
    Rは、各々独立して−OH又は−OSO3−であり、
    R’は、−OH、C1〜C6アルコキシ、C7〜C10アリールオキシであり、
    は、下記式(II)又は(III)で表される反応基であり、且つ、前記混合物において、Rが式(II)で表される反応基の化合物とRが式(III)で表される反応基の化合物との比がモル比で2:1以上であり、
    式(II)又は式(III)中、Rは、上記と同じであり、
    は、下記式(IV)又は(V)で表される反応基であり、
    式(IV)又は式(V)中、Rは、上記と同じであり、
    は、カルボニル、ヒドロキシ、C1〜C6アルコキシ、C1〜C6アルコキシカルボニル、C6〜C12アリール、置換又は非置換の5員又は6員窒素含有複素環、又は−NHRであり、そのうち、−NHR中のRは、置換又は非置換の直鎖状又は分岐鎖状C1〜C6アルキル、置換又は非置換のC7〜C12アリール、置換又は非置換のヘテロ原子含有の複素環式アリールであり、
    式(V)中、R’は、上記と同じである。
  2. 前記低分子量グリコサミノグリカン誘導体の重量平均分子量が5kD〜l2kDの範囲であり、前記低分子量グリコサミノグリカン誘導体の多分散指数が1.1〜1.5の範囲にある、請求項1に記載の低分子量グリコサミノグリカン誘導体又はその薬学的に許容可能な塩。
  3. 前記薬学的に許容可能な塩は、前記低分子量グリコサミノグリカン誘導体のアルカリ金属塩、アルカリ土類金属塩、又は有機アンモニウム塩である、請求項1又は2に記載の低分子量グリコサミノグリカン誘導体又はその薬学的に許容可能な塩。
  4. 前記薬学的に許容可能な塩は、低分子量グリコサミノグリカン誘導体のナトリウム塩、カリウム塩又はカルシウム塩である、請求項3に記載の低分子量グリコサミノグリカン誘導体又はその薬学的に許容可能な塩。
  5. 請求項1に記載の低分子量グリコサミノグリカン誘導体又はその薬学的に許容可能な塩の製造方法であって、
    (1)棘皮動物に由来のフコシル化グリコサミノグリカンを原料とし、エステル化反応を経て前記フコシル化グリコサミノグリカンに含まれるヘキスロン酸の遊離カルボキシ基の全部又は一部をカルボン酸エステル基に変換し、カルボン酸エステル誘導体を取得し
    (2)ステップ(1)で得られるカルボン酸エステル誘導体を、非水溶媒及びアルカリ性試薬の存在下でエステル基のβ−脱離反応を経て低分子量グリコサミノグリカン誘導体を取得し、
    (3)ステップ(2)で得られる低分子量グリコサミノグリカン誘導体に対し、還元性末端を還元処理して末端が還元化された低分子量グリコサミノグリカン誘導体を取得し、
    (4)ステップ(2)とステップ(3)で得られる低分子量グリコサミノグリカン誘導体に対し、アルカリ分解法によりカルボン酸エステル基を遊離カルボキシ基に変換するステップを含んでなる、低分子量グリコサミノグリカン誘導体又はその薬学的に許容可能な塩の製造方法。
  6. 前記棘皮動物に由来のフコシル化グリコサミノグリカンは、棘皮動物門ナマコ綱動物の体壁及び/又は内臓に由来のフコシル化グリコサミノグリカンであり、
    前記棘皮動物門ナマコ綱動物として、マナマコ(Apostichopus japonicus)、クリイロナマコ(Actinopyga mauritiana)、チリメンナマコ(Actinopyga miliaris)、イモナマコモドキ(Acaudina molpadioides)、ジャノメナマコ(Bohadschia argus)、アカミシキリ(Holothuria edulis)、イシナマコ(Holothuria nobilis)、ニセクロナマコ(Holothuria leucospilota)、シナナマコ(Holothuria sinica)、クロナマコ(Holothuria vagabunda)、メキシコナマコ(Isostichopus badionotus)、ブラジルナマコ(Ludwigothurea grisea)、シカクナマコ(Stichopus chloronotus)、バイカナマコ(Thelenota ananas)及びアデヤカバイカナマコ(Thelenota anax)からなる群より選ばれる1種以上を用いた請求項5に記載の低分子量グリコサミノグリカン誘導体又はその薬学的に許容可能な塩の製造方法。
  7. 前記ステップ(1)において、更に、
    (i)棘皮動物に由来のフコシル化グリコサミノグリカンを第4級アンモニウム塩に変換し、
    (ii)前記(i)で得られる第4級アンモニウム塩を非プロトン性溶媒においてハロゲン化炭化水素、ハロゲン化芳香族炭化水素と反応させることにより、カルボキシ基の全部又は一部をエステル化したエステル化誘導体を得ることを含む、請求項5に記載の低分子量グリコサミノグリカン誘導体又はその薬学的に許容可能な塩の製造方法。
  8. 前記ステップ(2)における非水溶媒は、エタノール、メタノール、ジメチルホルムアミド、ジメチルスルホキシド、CHCl、CHCl、及びこれらの混合溶媒から任意に選ばれ、
    前記アルカリ性試薬は、NaOH、KOH、C1〜C4ナトリウムアルコラート、エチレンジアミン、トリブチルアミン、4−ジメチルアミノピリジン、及びこれらの混合物から任意に選ばれる、請求項5に記載の低分子量グリコサミノグリカン誘導体又はその薬学的に許容可能な塩の製造方法。
  9. 前記ステップ(3)において、前記末端の還元処理により、還元性末端の糖残基を糖アルコール、糖エーテル、糖エステル、芳香環及び/又は複素環によって置換された誘導体に変換する、請求項5に記載の低分子量グリコサミノグリカン誘導体又はその薬学的に許容可能な塩の製造方法。
  10. 前記ステップ(3)において、前記末端の還元処理により、還元性末端を還元アミノ化して窒素含有誘導体を形成する、請求項5に記載の低分子量グリコサミノグリカン誘導体又はその薬学的に許容可能な塩の製造方法。
  11. 抗凝固効果を示す有効量で請求項1〜4の何れか1項に記載の低分子量グリコサミノグリカン誘導体又はその薬学的に許容可能な塩と、薬用賦形剤とを含んでなる、薬物組成物。
  12. 前記薬物組成物の形態は、注射用水溶液又は注射用凍結乾燥粉体である、請求項11に記載の薬物組成物。
  13. 請求項1〜4の何れか1項に記載の低分子量グリコサミノグリカン誘導体又はその薬学的に許容可能な塩を用いたことを特徴とする血栓症の治療薬及び/又は予防薬の製造方法。
  14. 請求項11又は12に記載の薬物組成物を用いたことを特徴とする血栓症の治療薬及び/又は予防薬の製造方法。
JP2016504458A 2013-03-26 2013-12-20 低分子量グリコサミノグリカン誘導体及びその薬物組成物、これらの製造方法と用途 Active JP6293862B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201310099800.9 2013-03-26
CN201310099800.9A CN103145868B (zh) 2013-01-07 2013-03-26 一种低分子量糖胺聚糖衍生物及其药物组合物和其制备方法与应用
PCT/CN2013/090131 WO2014153995A1 (zh) 2013-03-26 2013-12-20 一种低分子量糖胺聚糖衍生物及其药物组合物和其制备方法与应用

Publications (2)

Publication Number Publication Date
JP2016514740A JP2016514740A (ja) 2016-05-23
JP6293862B2 true JP6293862B2 (ja) 2018-03-14

Family

ID=51625728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016504458A Active JP6293862B2 (ja) 2013-03-26 2013-12-20 低分子量グリコサミノグリカン誘導体及びその薬物組成物、これらの製造方法と用途

Country Status (5)

Country Link
US (1) US9896517B2 (ja)
EP (1) EP2980103B1 (ja)
JP (1) JP6293862B2 (ja)
CA (1) CA2907887C (ja)
WO (1) WO2014153995A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6980018B2 (ja) * 2017-01-10 2021-12-15 九芝堂股▲ふん▼有限公司Jiuzhitang Co., Ltd. 内因系テンナーゼ複合体を阻害するオリゴ糖、その製造方法と用途
CA3116889A1 (en) * 2018-10-18 2020-04-23 Topikos Pharmaceuticals, Inc. Organosilanes for the treatment of infections
KR20220105636A (ko) 2019-10-18 2022-07-27 토피코스 파마슈티칼스, 인크. 항미생물성 유기실란
CN111423523B (zh) * 2020-05-14 2021-10-26 中南民族大学 一种寡糖化合物及其药学上可接受的盐、制备方法及应用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2087907T3 (es) 1989-02-06 1996-08-01 Taiho Pharmaceutical Co Ltd Nuevo polisacarido sulfatado, sales farmaceuticamente aceptables del mismo, procedimiento para prepararlos y medicamento que los contiene como ingrediente activo.
US5519010A (en) * 1989-02-06 1996-05-21 Taiho Pharmaceutical Co., Ltd. Sulfated polysaccharide, pharmaceutically acceptable salt thereof, process for preparing same and medicament containing same as effective component
JP3455783B2 (ja) 1995-12-20 2003-10-14 大鵬薬品工業株式会社 血管内膜肥厚抑制剤
FR2857971B1 (fr) * 2003-07-24 2005-08-26 Aventis Pharma Sa Melanges d'oligosaccharides derives d'heparine, leur preparation et les compositions pharmaceutiques les contenant
US9029530B2 (en) * 2009-01-02 2015-05-12 Biomarin Pharmaceutical Inc. Detection of oligosaccharides
CN101735336B (zh) 2009-11-06 2012-07-18 深圳海王药业有限公司 低聚岩藻糖化糖胺聚糖及其制备方法
CN101724086B (zh) 2009-11-25 2012-09-26 深圳海王药业有限公司 低聚凤梨参糖胺聚糖及其制备方法
EP2384759A1 (en) * 2010-05-06 2011-11-09 Suomen Punainen Risti Veripalvelu Sulphated hyaluronic acid in combination with G-CSF for use in mobilising blood stem cells
CN102247401A (zh) 2011-05-05 2011-11-23 中国科学院昆明植物研究所 低分子量糖基化硫酸软骨素及其在抗hiv-1药物制备中的用途
CN102329397B (zh) 2011-10-19 2014-04-09 中国科学院昆明植物研究所 一种岩藻糖化糖胺聚糖衍生物及其制备方法
CN102558389B (zh) * 2011-12-22 2013-10-02 中国科学院昆明植物研究所 低分子量岩藻糖化糖胺聚糖的羧基还原衍生物及其制备方法与用途
CN103145868B (zh) * 2013-01-07 2015-09-16 中国科学院昆明植物研究所 一种低分子量糖胺聚糖衍生物及其药物组合物和其制备方法与应用

Also Published As

Publication number Publication date
CA2907887C (en) 2020-10-06
EP2980103A4 (en) 2017-01-11
CA2907887A1 (en) 2014-10-02
EP2980103B1 (en) 2020-11-04
US9896517B2 (en) 2018-02-20
EP2980103A1 (en) 2016-02-03
JP2016514740A (ja) 2016-05-23
US20160039949A1 (en) 2016-02-11
WO2014153995A1 (zh) 2014-10-02

Similar Documents

Publication Publication Date Title
AU2014377099B2 (en) Fuc3S4S substituted oligoglycosaminoglycan and preparation method thereof
CN102329397B (zh) 一种岩藻糖化糖胺聚糖衍生物及其制备方法
Wu et al. Physicochemical characteristics and anticoagulant activities of low molecular weight fractions by free-radical depolymerization of a fucosylated chondroitin sulphate from sea cucumber Thelenata ananas
DK173818B1 (da) Heparinderivat
CN103145868B (zh) 一种低分子量糖胺聚糖衍生物及其药物组合物和其制备方法与应用
WO2011063595A1 (zh) 低聚凤梨参糖胺聚糖及其制备方法
JP6248179B2 (ja) 末端2,5−脱水タロース又はその誘導体を含んでなる低分子量グリコサミノグリカン誘導体
JP6293862B2 (ja) 低分子量グリコサミノグリカン誘導体及びその薬物組成物、これらの製造方法と用途
HUE028635T2 (en) Sulfated polysaccharide compound and its preparation and use
US20240041918A1 (en) Oligosaccharide Compound for Inhibiting Intrinsic Coagulation Factor X-Enzyme Complex, and Preparation Method Therefor and Uses Thereof
TW200846014A (en) Low molecular weight heparins comprising at least one covalent bond with biotin or a biotin derivative, preparation process therefor and use thereof
Hu et al. Sulfation of citrus pectin by pyridine-sulfurtrioxide complex and its anticoagulant activity
CN108285498B (zh) 一种抑制内源性凝血因子x酶复合物的寡糖化合物及其制备方法与用途
JP2010518251A (ja) ビオチンまたはビオチン誘導体との少なくとも1つの共有結合を含むヘパリン、これらの調製方法およびこれらの使用
CN111423523B (zh) 一种寡糖化合物及其药学上可接受的盐、制备方法及应用
JPH03185001A (ja) ヘパリンのn―アセチル化物及びその製造方法
PT104739A (pt) Xantonas sulfatadas e análogos xantónicos glicosilados sulfatados com actividade anticoagulante e processos para a sua preparação

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160602

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180214

R150 Certificate of patent or registration of utility model

Ref document number: 6293862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250