JP6290718B2 - 超音波検査装置及び超音波検査方法 - Google Patents

超音波検査装置及び超音波検査方法 Download PDF

Info

Publication number
JP6290718B2
JP6290718B2 JP2014116089A JP2014116089A JP6290718B2 JP 6290718 B2 JP6290718 B2 JP 6290718B2 JP 2014116089 A JP2014116089 A JP 2014116089A JP 2014116089 A JP2014116089 A JP 2014116089A JP 6290718 B2 JP6290718 B2 JP 6290718B2
Authority
JP
Japan
Prior art keywords
ultrasonic
subject
scanning device
nozzle
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014116089A
Other languages
English (en)
Other versions
JP2015230227A (ja
JP2015230227A5 (ja
Inventor
佑己 大島
佑己 大島
正男 遠藤
正男 遠藤
秀孝 小室
秀孝 小室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2014116089A priority Critical patent/JP6290718B2/ja
Publication of JP2015230227A publication Critical patent/JP2015230227A/ja
Publication of JP2015230227A5 publication Critical patent/JP2015230227A5/ja
Application granted granted Critical
Publication of JP6290718B2 publication Critical patent/JP6290718B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、被検体の複雑な三次元曲面形状の曲面部に沿って超音波探触子を走査する超音波検査装置及び超音波検査方法に関する。
発電プラントにおける構成機器の保全は正常な運転を維持するために必要であり、非破壊検査技術の果たす役割は重要性が高い。特に原子力プラントでは、原子炉圧力容器(RPV)や再循環系配管などの原子炉一次系機器の健全性確保が重要であり、規格により、供用期間中に経年変化を確認するための体積検査として超音波探傷試験(UT)が義務づけられている。
例えば図1で示す、原子炉圧力容器101と配管102を接続するノズル(管台)103は、供用前検査(PSI)及び供用中検査(ISI)の対象箇所である。図2(a)にてノズル103の軸方向断面(xz断面及びyz断面)を示すが、ノズル103の外面にはR部104、円筒部105、及び傾斜部106が形成されている。また、ノズル103の内面にはR部(ノズルコーナ部)107が形成されている。ノズル103の検査範囲108は、ノズル103の内面側の領域HIJKであり、R部107を含むとともに原子炉圧力容器101の板厚相当部分を含む範囲である。なお、ノズル103の軸方向から見た場合における検査範囲108と外面R部104との位置関係を、図2(b)に示す。
ノズル103の検査範囲108を探傷する際には、一般的に、図3(a)及び図3(b)で示すように、ノズル103の外面R部104上に超音波探触子1を設置する。そして、ノズル103の外面R部104の形状に倣うように、ノズル103の周方向及び軸方向に超音波探触子1を走査するとともに、超音波探触子1から超音波を送信する。このとき、例えばノズル103の軸方向断面では屈折角0度、ノズル103の径方向断面では屈折角θとなるように、超音波を入射させる。そして、ノズル103の欠陥(詳細には、例えばき裂や孔)等からのエコー(反射波)を超音波探触子1で受信する。
そして、エコーの反射源の位置を認識すれば、エコーの反射源がノズル103の表面形状の変化部等でなく欠陥であるかを判断できるし、欠陥の位置も知ることができる。そのため、従来、超音波の伝播経路を解析して、エコーの反射源の位置を認識することが提唱されている(例えば特許文献1参照)。
特開2002−257802号公報(特に、図2及び図3参照) 特開昭63−309852号公報
上述したノズル103の外面R部104は、複雑な三次元曲面形状(詳細には、ノズル103の周方向及び軸方向に曲率を持つ形状)を有する曲面部である。そのため、ノズル103の周方向における超音波探触子1の位置に応じてノズル103の軸方向断面の形状が変化し(上述の図2(a)参照)、ノズル103の周方向及び軸方向における超音波探触子1の位置に応じて超音波の入射方向を決定づける面の法線方向が変化する。そこで、例えば特許文献1に記載のように、超音波の伝播経路を解析する際に、被検体の三次元形状モデルを用いることが考えられる。
しかし、特許文献1に記載の被検体の三次元形状モデルは、その表面をポリゴンによって定義することで構成されている。すなわち、明確に記載されていないものの、多数の表面座標の設計値で構築されている。そのため、被検体の三次元形状モデルは実像に対して公差内の誤差が生じることから、超音波の伝播経路にも誤差が生じる。特に、上述したノズル103の外面R部104は公差が大きい部位であるから、超音波の伝播経路に大きな誤差が生じやすい。
そこで、例えば特許文献2に記載のように、走査装置に距離センサを搭載し、距離センサの位置を変えながら距離センサと被検体の表面との間の距離を測定して、多数の表面座標の計測値を取得し、多数の表面座標の計測値で被検体の三次元形状モデルを構築する方法も考えられる。しかし、この場合、滑らかな三次元形状モデルを構築するために多数の表面座標の計測値を取得する必要があり、多大な手間と時間を要する。
本発明の目的は、迅速かつ高精度に、被検体の三次元形状モデルを生成して、エコーの反射源の位置を評価することができる超音波検査装置及び超音波検査方法を提供することにある。
上記目的を達成するために、本発明の超音波検査装置は、被検体の複雑な三次元曲面形状の曲面部に沿って超音波探触子を走査する走査装置と、前記走査装置の駆動情報に基づいて取得された前記超音波探触子の位置情報から、若しくは前記走査装置の駆動情報及び前記走査装置に搭載された距離センサで検出された距離情報から、前記被検体の外形座標の計測値を取得する外形座標取得部と、前記被検体の三次元形状モデルを形状定義関数で構築するとともに、前記被検体の外形座標の計測値に基づいて前記形状定義関数のパラメータを演算する形状モデル生成部と、前記超音波探触子の走査位置毎に、前記超音波探触子による超音波の送受信を制御して、受信超音波の波形データを取得する送受信装置と、前記被検体の三次元形状モデルに基づき、前記超音波探触子の走査位置毎に超音波の伝播経路を解析する伝播経路解析部と、前記超音波の伝播経路とこれに対応する前記波形データに基づき、三次元探傷画像を生成する探傷画像生成部と、前記三次元探傷画像を、前記被検体の三次元形状モデルに重畳して表示する表示装置と、を備える。
また、上記目的を達成するために、本発明の超音波検査方法は、走査装置を用いて、被検体の複雑な三次元曲面形状の曲面部に沿って超音波探触子を走査した場合に、前記走査装置の駆動情報に基づいて取得された前記超音波探触子の位置情報から、若しくは前記走査装置の駆動情報及び前記走査装置に搭載された距離センサで検出された距離情報から、前記被検体の外形座標の計測値を取得する第1の手順と、前記被検体の三次元形状モデルを形状定義関数で構築するとともに、前記被検体の外形座標の計測値に基づいて前記形状定義関数のパラメータを演算する第2の手順と、前記走査装置を用いて、前記被検体の前記曲面部に沿って前記超音波探触子を走査し、前記超音波探触子の走査位置毎に、前記超音波探触子による超音波の送受信を行って、受信超音波の波形データを取得する第3の手順と、前記被検体の三次元形状モデルに基づき、前記超音波探触子の走査位置毎に超音波の伝播経路を解析する第4の手順と、前記超音波の伝播経路とこれに対応する前記波形データに基づき、探傷画像を生成する第5の手順と、前記探傷画像を、前記被検体の三次元形状モデルに重畳して表示する第6の手順と、を有する。
本発明によれば、迅速かつ高精度に、被検体の三次元形状モデルを生成して、エコーの反射源の位置を評価することができる。
本発明の検査対象の一例であるノズルの構造を表す斜視図である。 図1で示されたノズルの検査範囲を示すためのノズルの軸方向断面図、並びにノズルの軸方向から見た場合におけるノズルの検査範囲と外面R部との位置関係を示す図である。 図2で示されたノズルの検査範囲を探傷するときの超音波探触子の走査を説明するための図である。 本発明の第1の実施形態における超音波検査装置の構成を表すブロック図である。 本発明の第1の実施形態における走査装置の構造を表す図である。 本発明の第1の実施形態における走査装置の走査パターンの具体例を表すとともに、送受信装置で取得する波形データの具体例を表す図である。 本発明の第1の実施形態における表示装置の表示画面の具体例を表す図である。 本発明の第1の実施形態におけるノズルの三次元形状モデルの一部を構築する形状定義関数を説明するための図である。 本発明の第1の実施形態における超音波検査方法の手順を表すフローチャートである。 本発明の第1の実施形態におけるパラメータ入力画面の具体例を表す図である。 本発明の第1の実施形態におけるノズルの外形座標の計測値の具体例を表す図である。 本発明の第1の実施形態におけるパラメータの補正方法を説明するための図である。 本発明の第1の実施形態における超音波の伝播経路の具体例を表す図である。 本発明の第1の変形例における表示装置の表示画面の具体例を表す図である。 本発明の第2の実施形態における超音波検査装置の構成を表すブロック図である。 本発明の第2の実施形態における複数の接触式距離センサの構造を表す図である。 本発明の第2の変形例におけるレーザ式距離センサの構造を表す図である。 本発明の第3の変形例における走査装置の傾き調整方法を説明するための図であり、走査装置が傾いていない状態を示す。 本発明の第3の変形例における走査装置の傾き調整方法を説明するための図であり、走査装置が傾いている状態を示す。 本発明の第3の変形例における走査装置の傾き調整方法を説明するための図であり、周方向走査装置の移動位置と倣い走査装置の移動位置との関係を示す。
以下、本発明の検査対象として、上述したノズル103を例にとり、本発明の実施形態を説明する。
本発明の第1の実施形態を、図面を参照しつつ説明する。
図4は、本実施形態における超音波検査装置の構成を表すブロック図である。図5は、本実施形態における走査装置の構造を表す図である。
本実施形態の超音波検査装置は、斜角探傷用の超音波探触子1と、超音波探触子1を走査する走査装置2と、走査装置2を制御する制御装置3と、超音波探触子1による超音波の送受信を制御する送受信装置4と、各種の演算処理を実行する計算装置5と、各種のデータを記録する記憶装置6と、各種の情報を画面表示する表示装置7と、各種の条件を入力するとともに、各種の操作を実施するための入力装置8とを備えている。なお、計算装置5はコンピュータや電子部品を搭載した基板等で構成され、記憶装置6はハードディスクやランダムアクセスメモリ(RAM)等で構成されている。また、表示装置7はディスプレイ等で構成され、入力装置8はマウスやキーボード、タッチパネル等で構成されている。
走査装置2は、例えば、配管102の外周側に取付けられた環状の軌道9と、この軌道9に沿って(すなわち、図5中矢印D1の方向に)移動可能に設けられた周方向走査装置10と、この周方向走査装置10に設けられ、軌道9に対して垂直な方向(図5中矢印D2の方向)にアーム11を移動させる軸方向移動装置12と、アーム11の先端側(図5中右側)に設けられ、超音波探触子1を保持する倣い走査装置13とを備えている。
周方向走査装置10は、軌道9の外周側に形成されたラック14と噛み合うピニオン15と、このピニオン15を回転させるモータ(図示せず)と、このモータの回転量を検出するエンコーダ(図示せず)とを有している。そして、ピニオン15が回転することにより、周方向走査装置10が軌道9に沿って移動する。これに伴い、倣い走査装置13(すなわち、超音波探触子1)がノズル103の周方向に移動するようになっている。
軸方向移動装置12は、軌道9に対して垂直な方向にアーム11を移動させるモータ(図示せず)と、このモータの回転量を検出するエンコーダ(図示せず)とを有している。そして、アーム11が移動することにより、ノズル103の軸方向における倣い走査装置13の位置を調整可能としている。なお、倣い走査装置13には、原子炉圧力容器101との接触状態を検出するリミットセンサ16が設けられている。
倣い走査装置13は、ノズル103の軸方向(図5中矢印S3参照)に回動可能に設けられた探触子押付機構17と、この探触子押付機構17を回動させるモータ(図示せず)と、このモータの回転量を検出するエンコーダ(図示せず)とを有している。探触子押付機構17は、基端側がスライド可能に支持された押付アーム18と、この押付アーム18の先端側に取付けられ、超音波探触子1を保持する探触子ホルダ19と、押付アーム18をノズル103側に付勢して、超音波探触子1をノズル103の外面R部に押圧する付勢機構(詳細には、図示しないが、例えばバネ、空気圧シリンダ、又は油圧シリンダ)と、押付アーム18のスライド量を検出するエンコーダ(図示せず)とを有している。
探触子ホルダ19は、2軸のジンバル構造を有している。すなわち、超音波探触子1をノズル103の軸方向に回転可能に保持する内枠と、この内枠をノズルの周方向に回転可能に保持する外枠とを有している。これにより、上述した付勢機構によって押圧された超音波探触子1の姿勢を、ノズル103の外面R部104の法線方向に合わせるようになっている。そして、探触子押付機構17が回動することにより、ノズル103の外面R部104の形状に倣うように、超音波探触子1がノズル103の軸方向に移動するようになっている。
制御装置3は、走査装置2のリミットセンサ16及び複数のエンコーダからの検出情報を入力している。そして、リミットセンサ16が原子炉圧力容器に接触するように、アーム11の移動量を制御する。これにより、ノズル103の軸方向における倣い走査装置13の位置(言い換えれば、探触子押付機構17の回動中心位置)を制御するようになっている。また、例えば図6中左側に示すような走査パターンに基づき、周方向走査装置10の移動位置を制御するとともに、探触子押付機構17の回動角を制御する。これにより、ノズル103の外面R部104の形状に倣うように、ノズル103の周方向及び軸方向に超音波探触子1を走査させるようになっている。
超音波探触子1は、詳細を図示しないが、例えば1つの圧電素子及びシューを有している。超音波送受信装置4は、超音波探触子1の走査位置毎に、圧電素子に電圧を印加して圧電素子を振動させ、超音波を発生させる。そして、圧電素子からシューを介して送信された超音波が、ノズル103の外面で屈折し、ノズル103の内部に斜角で入射する(上述の図3(b)参照)。そして、ノズル103の内部に欠陥が存在する場合は、その欠陥で反射した超音波が圧電素子で受信され、波形信号(電気信号)に変換されて出力される。
送受信装置4は、超音波探触子1の走査位置毎に、圧電素子からの波形信号に対し所定の処理(詳細には、アナログ信号からデジタル信号への変換処理等)を行って波形データ(図6中右側参照)を取得して、記憶装置に記憶させるようになっている。波形データは、超音波の路程と波高値の関係からなる離散データである。
計算装置5は、探触子位置演算部20、伝播経路解析部21、及び探傷画像生成部22を有している。
探触子位置演算部20は、制御装置3を介して走査装置2の駆動情報(詳細には、上述した複数のエンコーダの検出情報等)を入力しており、走査装置2の駆動情報と走査装置2の幾何学的情報に基づき、三次元空間における超音波探触子1の走査位置を演算するようになっている。伝播経路解析部21は、記憶装置から読込んだ被検体(本実施形態では、ノズル)の三次元形状モデル(詳細は後述)に基づき、探触子位置演算部20で演算された超音波探触子1の走査位置などから、超音波の伝播経路を解析して、そのデータを記憶装置に記憶させるようになっている。
探傷画像生成部22は、超音波探触子1の走査位置に対応する波形データ及び超音波伝播経路データを、記憶装置から読込む。そして、超音波伝播経路に基づき、波形データの路程を三次元空間上の座標に変換し、三次元座標と波高値の組合せからなる波高データテーブルに変換する。そして、波高データテーブルに基づき、三次元探傷画像を生成して、記憶装置に記憶させる。
表示装置7は、伝播経路表示部23及び探傷画像表示部24を有している。伝播経路表示部23は、記憶装置6から超音波伝播経路データ及びノズルの三次元形状モデルを読込み、図7(a)で示すような画面25を表示する。この画面25では、超音波探触子のマーカ26A及び超音波伝播経路のマーカ26Bを、ノズルの三次元形状モデルの画像27に重畳して示す。探傷画像表示部24は、記憶装置6から三次元探傷画像及びノズルの三次元形状モデルを読込み、図7(b)で示すような画面28を表示する。この画面28では、三次元探傷画像(詳細には、例えばエコーの反射源の位置と大きさを示すエコー画像29を含むもの)を、ノズルの三次元形状モデルの画像27に重畳して示す。
ここで、本実施形態の大きな特徴として、計算装置5は、形状モデル生成部30及び外形座標取得部31をさらに有している。
形状モデル生成部30は、形状定義関数を用いて、被検体(本実施形態では、ノズル)の三次元形状モデルを構築するようになっている。具体的に、図8(a)及び図8(b)を用いて、ノズルの三次元形状モデルの一部を構築する形状定義関数を説明する。
三次元空間上の任意の座標をS=(x,y,z)とすると、ノズル103の外面円筒部105に相当する陰関数g(S)を、下記の式(1)で表現できる。すなわち、陰関数g(S)=0を満たす三次元座標Sの集合が、ノズル103の外面円筒部105を表す。また、原子炉圧力容器101の外面円筒部に相当する陰関数h(S)を、下記の式(2)で表現できる。すなわち、陰関数h(S)=0を満たす三次元座標Sの集合が、原子炉圧力容器101の外面円筒部を表す。ここで、Rtoは、ノズル103の外面円筒部105の半径であり、Rvoは、原子炉圧力容器101の外面円筒部の半径である。
Figure 0006290718
Figure 0006290718
ノズル103の外面円筒部105の半径Rtoをオフセット値aだけ拡大した曲面を仮想すれば、これに相当する陰関数G(S,a)を、下記の式(3)で表現できる。また、原子炉圧力容器101の外面円筒部の半径Rvoをオフセット値bだけ拡大した曲面を仮想すれば、これに相当する陰関数H(S,b)を、下記の式(4)で表現できる。
Figure 0006290718
Figure 0006290718
そして、上記の式(1)〜(4)を用いれば、ノズル103の外面R部104に相当する陰関数f(g,h)を、下記の式(5)で表現できる。
Figure 0006290718
ここで、図8(a)で示すように、αは、ノズル103の外面R部104と原子炉圧力容器101の外面円筒部の間の稜線までの、ノズル103の外面円筒部105の半径Rtoのオフセット値である。βは、ノズル103の外面R部104とノズル103の外面円筒部105の間の稜線までの、原子炉圧力容器101の外面円筒部の半径Rvoのオフセット値である。また、図8(b)で示すように、関数f(g,h)は、g(S)−h(S)関数空間上で境界条件(αp,0),(0,βp)を満たすものである。境界条件(αp,0)がG(S,α)=0かつh(S)=0に相当し、境界条件(0,βp)がg(S)=0かつH(S,β)=0に相当する。そして、関数f(g,h)は、図8(b)で示すようにg(S)−h(S)関数空間上で楕円曲線を表し、図8(a)で示すように三次元空間上で滑らかな(言い換えれば、1階微分値も連続的に変化する)曲面を表すものである。
上述の図4に戻り、外形座標取得部31は、探触子位置演算部20で演算された超音波探触子1の位置情報を入力している。そして、ノズル103の外面R部104に沿って走査された超音波探触子1の位置情報から、ノズル103の外形座標の計測値を取得する。形状モデル生成部30は、外形座標取得部31で取得されたノズル103の外形座標の計測値に基づいて、上述した形状定義関数のパラメータを演算する。そして、このようにして生成した三次元形状モデルを記憶装置に記憶させるようになっている。
次に、本実施形態の超音波検査方法を、図9を用いて説明する。図9は、本実施形態における超音波検査方法の手順を表すフローチャートである。
ステップS201にて、オペレータは、初期設定の一つとして、被検体の種類を選択することにより、形状定義関数を選択する。具体的には、例えば、供用中検査(ISI)の対象である複数の被検体が表示装置7でリスト表示され、一つの被検体(本実施形態では、ノズル103)を入力装置8で選択する。これに伴い、計算装置5の形状モデル生成部30が、対応する形状定義関数を選択する。
その後、ステップS202に進み、オペレータは、形状定義関数のパラメータの初期値を入力する。具体的には、例えばステップS201で選択された被検体(本実施形態では、ノズル103)に対応する形状定義関数のパラメータ入力画面32(図10参照)が表示装置7で表示され、パラメータ(図10では、パラメータH,H,Rvo,Rvi,Rto,Rti,R,Rf,Rf,Rf,Rf,θto)の初期値として設計値を入力装置8で入力する。
そして、ステップS203に進み、オペレータは、探傷条件(詳細には、例えば、超音波探触子1の幾何学的情報や音響特性情報、被検体の音響特性情報、被検体の検査範囲、走査装置2の幾何学的情報や走査パターン等)を入力装置8で入力する。なお、被検体の種類と探傷条件との関係を予め記憶したデータベースを設け、被検体の種類に応じて探傷条件を自動的に入力するようにしてもよい。なお、入力された各種の情報は、制御装置3、送受信装置4、並びに、計算装置5の探触子位置演算部20及び伝播経路解析部21等で適宜参照される。
そして、ステップS204に進み、オペレータは、走査装置2を構成する軌道9を配管102の外周側に取付ける。その後、走査装置2を構成する他の部品を取付けるとともに、超音波探触子1を取付ける。なお、配管102の軸方向と軌道9の周方向が直交しているかどうかを目視等で確認し、直交していなければ、軌道9の設置角度を調整する。
その後、ステップS205に進み、ノズル103の外形座標の計測を行う。詳細には、走査装置2が、ノズル103の外面R部104の形状に沿うように、ノズル103の周方向及び軸方向に超音波探触子1を走査する。但し、走査装置2の走査間隔は、後述の探傷を行う場合と異なり、例えばノズル103の周方向及び軸方向ともに15度ピッチ程度でよい。すなわち、走査間隔(サンプリング間隔)が小さくなれば多くの外形座標を計測できるものの、時間がかかってしまうため、必要な精度と時間のトレードオフを見極めて、走査間隔を設定することが好ましい。そして、計算装置5の探触子位置演算部20が、ノズル103の外面R部104に沿って走査された超音波探触子1の位置を演算する。そして、外形座標取得部31が、探触子位置演算部20で演算された超音波探触子1の位置情報から、例えば図11で示すようなノズル103の外形座標の計測値33(点群データ)を取得する。
その後、ステップS206に進み、形状定義関数のパラメータを補正する。詳細には、形状モデル生成部30が、形状定義関数のパラメータとして設計値を入力したときの三次元形状モデルの外面と外形座標の計測値33とを比較し、最小二乗法を用いたパラメータフィッティングを行う(図12参照)。ノズル103の外面R部104が公差の大きい部位であることから、ノズル103の外面円筒部105の半径Rtoや原子炉圧力容器101の外面円筒部の半径Rvoをほとんど変化させず、外面R部104の曲率半径Rfoによって変化するオフセット値α及びβを公差範囲内で変化させる。そして、ノズル103の外形座標の計測値33との残差の二乗和が最小となるパラメータを求める。
なお、離散的な点群データの補完法として、一般的に、ラグランジュ多項式を用いる方法が知られている。しかし、これは曲線を単一の多項式で表そうとするものであり、複雑な三次元曲面形状を表す場合には、ルンゲの現象に代表されるような振動現象が生じ、正確な形状を再現できない。また、スプライン関数のように複数の多項式を用いる補完法を用いれば、振動現象をある程度抑えることができるものの、完全ではなく、ある程度詳細なピッチで点群データを取得する必要がある。一方、本実施形態の形状定義関数を用いた補完法においては、そのパラメータの初期値として設計値が与えられており、異なる曲面と曲面をつなぐ接続条件や、公差に基づいてパラメータサーベイの範囲などが定義されている。そのため、振動現象が生じることなく、迅速に、滑らかな3次元曲面形状を表現することができる。
そして、ステップS207に進み、ノズル103の探傷を行う。詳細には、超音波探触子1が超音波を送受信し、送受信装置4が波形データを取得して、記憶装置に収録する。
そして、ステップS208に進み、計算置5の伝播経路分析部21が、ノズルの三次元形状モデルに基づき、現在の超音波探触子の走査位置における超音波の伝播経路を分析する。詳細には、ノズルの三次元形状モデルに基づき、超音波探触子の走査位置に対応するノズルの外面の超音波入射点を演算する。そして、その超音波入射点におけるノズルの外面の法線方向を演算し、このノズルの外面の法線方向及び探傷条件に基づいて超音波の入射方向を演算する。そして、超音波入射点及び入射方向を初期条件とし、レイトレース法と呼ばれる解析手法を用いて、超音波の伝播経路を演算する。そして、現在の超音波の伝播経路が、記憶装置に記憶されるとともに、表示装置7の伝播経路表示部23でノズルの三次元形状モデルに重畳されて表示される。
その後、ステップS209に進み、現在の超音波の伝播経路に基づき、対応する波形データを波高データテーブルに変換する。そして、波高データテーブルに基づき、三次元探傷画像を構成するボクセルの値を代入することで、三次元探傷画像を更新する。具体的には、例えば図13で示すように、検査範囲108の周囲に三次元探傷画像の生成範囲109が予め設定されており、この範囲109に対応するボクセルのうち、超音波ビーム34(言い換えれば、超音波の伝播経路35にビーム幅を持たせたもの)が通過するボクセル36を抽出する。そして、波高データテーブルに基づき、ビーム通過ボクセル36の値を内挿処理して代入する。ボクセル36にすでに値が代入されている場合は、最初に代入された値を残すか、常に新しい値で上書きするか、最大値を残すか、若しくは重み付け平均を取るような処理を選択して実行する。このようにして更新された三次元探傷画像が、記憶装置に記憶されるとともに、表示装置7の探傷画像表示部24でノズルの三次元形状モデルに重畳されて表示される。
そして、ステップS210に進み、計算装置5は、検査(言い換えれば、走査)が完了したか否かを判定する。検査が完了していない場合は、ステップS210の判定が満たされず、ステップS211に移る。ステップ211では、ノズル103の外面R部104に沿って超音波探触子1を移動させ、その後、上述したステップS207〜S209の手順を行う。検査が完了すれば、ステップS210の判定が満たされ、検査が終了する。
以上のような本実施形態においては、被検体の三次元形状モデルを形状定義関数で構築するとともに、被検体の外形座標の計測値に基づいて形状定義関数のパラメータを演算する。これにより、迅速かつ高精度に、被検体の三次元形状モデルを生成することができる。そして、この被検体の三次元形状モデルに基づき、超音波の伝播経路を解析し、この超音波の伝播経路に基づいて生成した三次元探傷画像等を表示する。したがって、迅速かつ高精度に、エコーの反射源の位置を評価することができる。
なお、上記第1の実施形態において、表示装置7は、超音波探触子のマーカ26A及び超音波伝播経路のマーカ26Bを、ノズルの三次元形状モデルの画像27に重畳して示す画面25と、三次元探傷画像(詳細には、例えばエコー画像29を含むもの)を、ノズルの三次元形状モデルの画像27に重畳して示す画面28とを表示する場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。すなわち、例えば、画面28を表示するものの、画面25を表示しなくともよい。また、画面25,28に代えて、例えば図14で示すように、超音波探触子のマーカ26A、超音波伝播経路のマーカ26B、及び三次元探傷画像を、ノズルの三次元形状モデルの画像27に重畳して示す画面37を表示してもよい。これらの場合も、上記同様の効果を得ることができる。
本発明の第2の実施形態を、図15及び図16により説明する。
図15は、本実施形態における超音波検査装置の構成を表すブロック図である。図16は、本実施形態における距離センサの構造を表す図である。なお、本実施形態において、上記第1の実施形態及び変形例と同等の部分は同一の符号を付し、適宜、説明を省略する。
本実施形態では、走査装置2の倣い走査装置13には、複数の接触式距離センサ38が設けられている。これら距離センサ36は、所定のピッチ角で扇状に配置されており、複数の方向におけるノズル103の外面との距離を同時に検出可能としている。
計算装置5の外形座標取得部31Aは、走査装置2の幾何学情報と、制御装置3を介して入力した走査装置2の駆動情報(詳細には、周方向走査装置10のエンコーダの検出情報や軸方向移動装置12のエンコーダの検出情報)から、距離センサ36の位置を演算する。そして、距離センサ38の位置情報及び検出情報から、ノズル103の外形座標の計測値を演算して取得するようになっている。
以上のように構成された本実施形態においても、上記第1の実施形態と同様、迅速かつ高精度に、被検体の三次元形状モデルを生成して、エコーの反射源の位置を評価することができる。
なお、上記第2の実施形態においては、複数の接触式距離センサ36を走査装置2に搭載した場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。すなわち、例えば図17で示すように、複数の方向におけるノズル103の外面との距離を同時に検出可能なレーザ式(非接触式)距離センサ38Aを、走査装置2に搭載してもよい。この場合も、上記同様の効果を得ることができる。
また、上記第1及び第2の実施形態においては、特に、説明しなかったが、走査装置2の走査パターン(上述の図6参照)を、超音波の伝播経路の解析に基づいて設定してもよい。すなわち、例えば超音波の伝播経路がノズル103の検査範囲108に到達するか否かを判定することにより、探触子押付機構17の回動角の範囲を提示又は自動設定してもよい。また、例えばノズル103の周方向及び軸方向における所望の検査ピッチに対応する走査ピッチ(すなわち、周方向走査装置10の移動ピッチ及び探触子押付機構17の回動ピッチ)を演算して提示又は自動設定してもよい。このような場合も、本発明の特徴の恩恵を被ることができる。すなわち、迅速かつ高精度に、走査パターンを設定することができる。
また、上記第1及び第2の実施形態においては、特に、説明しなかったが、走査装置2の軌道9の周方向と配管102の軸方向が直交しているかどうかを判断するための情報を取得して表示し、この情報に基づいて軌道9の設置角度(すなわち、走査装置2の設置角度)を調整するようにしてもよい。このような変形例を、図18〜図20を用いて説明する。なお、図18及び図19においては、便宜上、探触子押付機構17及び超音波探触子1の図示を省略している。
制御装置3は、周方向走査装置10を軌道9に沿って移動させつつ、リミットセンサ16が原子炉圧力容器101に接触するように、倣い走査装置13の位置を制御する。そして、走査装置2の駆動情報(詳細には、周方向走査装置10のエンコーダの検出情報や軸方向移動装置11のエンコーダの検出情報)及び走査装置2の幾何学情報から、周方向走査装置10の移動位置と倣い走査装置13の移動位置(言い換えれば、アーム11の移動方向における周方向走査装置10からリミットスイッチ16までの長さ)との関係(図20参照)を取得して、表示装置7に表示させる。
図18で示すように走査装置2が傾いていない場合(言い換えれば、走査装置2の軌道9の周方向と配管102の軸方向が直交している場合)は、図20中実線で示すように、周方向走査装置10の周方向方位0度における倣い走査装置13の移動位置Lと、周方向走査装置10の周方向方位180度における倣い走査装置13の移動位置L180が等しくなる。また、周方向走査装置10の周方向方位90度における倣い走査装置13の移動位置L90と、周方向走査装置10の周方向方位270度における倣い走査装置13の移動位置L270が等しくなる。
一方、図19で示すように走査装置2が傾いている場合(言い換えれば、走査装置2の軌道9の周方向と配管102の軸方向が直交していない場合)は、図20中点線で示すように、周方向走査装置10の周方向方位0度における倣い走査装置13の移動位置Mと、周方向走査装置10の周方向方位180度における倣い走査装置13の移動位置M180が異なるようになる。あるいは、図示しないが、周方向走査装置10の周方向方位90度における倣い走査装置13の移動位置M90と、周方向走査装置10の周方向方位270度における倣い走査装置13の移動位置M270が異なるようになる。したがって、それらの差分を減らすように、軌道9の設置角度(すなわち、走査装置2の設置角度)を調整すればよい。
また、上記実施形態においては、走査装置2は、図5等で示すような構造を有する場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。すなわち、ノズル103の外面R部104の形状に倣うように、ノズル103の周方向及び軸方向に超音波探触子1を走査できるのであれば、他の構造でもよい。この場合も、上記同様の効果を得ることができる。
また、上記実施形態においては、超音波探触子1は、1つの圧電素子及びシューを有する場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。すなわち、超音波探触子1は、一次元的又は二次元的に配列された複数の圧電素子を有してもよい。そして、送受信装置4は、超音波探触子1の走査位置毎に、各圧電素子の超音波送受信のタイミングを制御して超音波の送受信方向を走査し、超音波の送受信方向毎に、波形データを取得する。また、計算装置5の伝播経路解析部21は、被検体の形状モデルに基づき、超音波探触子1の走査位置及び超音波の送受信方向に応じて超音波の伝播経路を解析する。この場合も、上記同様の効果を得ることができる。
なお、以上においては、検査対象として、原子炉圧力容器101の側面に接合された、原子炉圧力容器101より小径のノズル(管台)103を例にとって説明したが、これに限られない。すなわち、例えば、円筒状の容器又は配管の側面に接合された、その容器又は配管より小径の管台でもよい。この場合も、上記同様の効果を得ることができる。
1 超音波探触子
2 走査装置
4 送受信装置
7 表示装置
21 伝播経路解析部
22 探傷画像生成部
30 形状モデル生成部
31 外形座標取得部
31A 外形座標取得部
38 接触式距離センサ
38A レーザ式距離センサ
101 原子炉圧力容器
102 配管
103 ノズル(管台)
104 外面R部

Claims (11)

  1. 被検体の複雑な三次元曲面形状の曲面部に沿って超音波探触子を走査する走査装置と、
    前記走査装置の駆動情報に基づいて取得された前記超音波探触子の位置情報から、若しくは前記走査装置の駆動情報及び前記走査装置に搭載された距離センサで検出された距離情報から、前記被検体の外形座標の計測値を取得する外形座標取得部と、
    前記被検体の三次元形状モデルを形状定義関数で構築するとともに、前記被検体の外形座標の計測値に基づいて前記形状定義関数のパラメータを演算する形状モデル生成部と、
    前記超音波探触子の走査位置毎に、前記超音波探触子による超音波の送受信を制御して、受信超音波の波形データを取得する送受信装置と、
    前記被検体の三次元形状モデルに基づき、前記超音波探触子の走査位置毎に超音波の伝播経路を解析する伝播経路解析部と、
    前記超音波の伝播経路とこれに対応する前記波形データに基づき、三次元探傷画像を生成する探傷画像生成部と、
    前記三次元探傷画像を、前記被検体の三次元形状モデルに重畳して表示する表示装置と、を備えたことを特徴とする超音波検査装置。
  2. 請求項1記載の超音波検査装置において、
    前記形状モデル生成部は、前記形状定義関数のパラメータの初期値として設計値を入力し、前記被検体の外形座標の計測値に基づいて前記形状定義関数のパラメータを補正することを特徴とする超音波検査装置。
  3. 請求項1記載の超音波検査装置において、
    前記表示装置は、前記超音波の伝播経路を、前記被検体の三次元形状モデルに重畳して表示することを特徴とする超音波検査装置。
  4. 請求項1記載の超音波検査装置において、
    前記表示装置は、前記探傷画像及び前記超音波の伝播経路を、前記被検体の三次元形状モデルに重畳して表示することを特徴とする超音波検査装置。
  5. 請求項1記載の超音波検査装置において、
    前記走査装置には、複数方向の距離を同時に検出可能な複数の接触式距離センサが搭載されており、
    前記外形座標取得部は、前記走査装置の駆動情報及び前記複数の接触式距離センサで検出された距離情報から、前記被検体の外形座標の計測値を取得することを特徴とする超音波検査装置。
  6. 請求項1記載の超音波検査装置において、
    前記走査装置には、複数方向の距離を同時に検出可能なレーザ式距離センサが搭載されており、
    前記外形座標取得部は、前記走査装置の駆動情報及び前記レーザ式距離センサで検出された距離情報から、前記被検体の外形座標の計測値を取得することを特徴とする超音波検査装置。
  7. 請求項1記載の超音波検査装置において、
    前記被検体は、円筒状の容器又は配管の側面に接合された、前記容器又は前記配管より小径の管台であることを特徴とする超音波検査装置。
  8. 走査装置を用いて、被検体の複雑な三次元曲面形状の曲面部に沿って超音波探触子を走査した場合に、前記走査装置の駆動情報に基づいて取得された前記超音波探触子の位置情報から、若しくは前記走査装置の駆動情報及び前記走査装置に搭載された距離センサで検出された距離情報から、前記被検体の外形座標の計測値を取得する第1の手順と、
    前記被検体の三次元形状モデルを形状定義関数で構築するとともに、前記被検体の外形座標の計測値に基づいて前記形状定義関数のパラメータを演算する第2の手順と、
    前記走査装置を用いて、前記被検体の前記曲面部に沿って前記超音波探触子を走査し、前記超音波探触子の走査位置毎に、前記超音波探触子による超音波の送受信を行って、受信超音波の波形データを取得する第3の手順と、
    前記被検体の三次元形状モデルに基づき、前記超音波探触子の走査位置毎に超音波の伝播経路を解析する第4の手順と、
    前記超音波の伝播経路とこれに対応する前記波形データに基づき、探傷画像を生成する第5の手順と、
    前記探傷画像を、前記被検体の三次元形状モデルに重畳して表示する第6の手順と、を有することを特徴とする超音波検査方法。
  9. 請求項8記載の超音波検査方法において、
    前記第2の手順は、前記形状定義関数のパラメータの初期値として設計値を入力し、前記被検体の外形座標の計測値に基づいて前記形状定義関数のパラメータを補正することを特徴とする超音波検査方法。
  10. 請求項8記載の超音波検査方法において、
    前記超音波の伝播経路を、前記被検体の三次元形状モデルに重畳して表示する第7の手順を有することを特徴とする超音波検査方法。
  11. 請求項8記載の超音波検査方法において、
    前記第6の手順は、前記探傷画像及び前記超音波の伝播経路を、前記被検体の三次元形状モデルに重畳して表示することを特徴とする超音波検査方法。
JP2014116089A 2014-06-04 2014-06-04 超音波検査装置及び超音波検査方法 Active JP6290718B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014116089A JP6290718B2 (ja) 2014-06-04 2014-06-04 超音波検査装置及び超音波検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014116089A JP6290718B2 (ja) 2014-06-04 2014-06-04 超音波検査装置及び超音波検査方法

Publications (3)

Publication Number Publication Date
JP2015230227A JP2015230227A (ja) 2015-12-21
JP2015230227A5 JP2015230227A5 (ja) 2017-03-23
JP6290718B2 true JP6290718B2 (ja) 2018-03-07

Family

ID=54887069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014116089A Active JP6290718B2 (ja) 2014-06-04 2014-06-04 超音波検査装置及び超音波検査方法

Country Status (1)

Country Link
JP (1) JP6290718B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101919028B1 (ko) * 2017-06-22 2019-01-31 두산중공업 주식회사 초음파 검사 방법과, 그를 위한 장치 및 시스템
KR101960914B1 (ko) * 2017-07-24 2019-03-21 전남대학교산학협력단 굴곡 구조를 포함하는 대상체의 손상 검출 시스템 및 방법
JP6829846B2 (ja) * 2019-06-03 2021-02-17 株式会社インフォマティクス 構造物の検査システム、構造物の検査方法及びプログラム
KR102647252B1 (ko) * 2020-09-08 2024-03-13 세메스 주식회사 액적을 검사하기 위한 장치 및 방법
CN112433003A (zh) * 2020-11-30 2021-03-02 中广核检测技术有限公司 一种用于t形结构件超声波检测的三维仿真方法
CN113267566A (zh) * 2021-06-30 2021-08-17 杭州晶志康电子科技有限公司 一种aoi自动灌胶检验系统及检验方法
CN114137088A (zh) * 2021-10-28 2022-03-04 航天材料及工艺研究所 曲母线回转体复合材料超声喷水穿透自动仿形检测系统
CN114324600B (zh) * 2022-03-03 2022-06-17 季华实验室 一种用于检测酒瓶表面孔径缺陷的无损检测方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197762A (ja) * 1986-02-26 1987-09-01 Hitachi Ltd 探触子の位置制御装置
JP2553867B2 (ja) * 1987-06-12 1996-11-13 新日本製鐵株式会社 超音波探傷装置
JPH06174703A (ja) * 1992-12-07 1994-06-24 Hitachi Ltd 曲面形状追従型超音波探傷装置と探触子姿勢制御方法
JP2002257802A (ja) * 2001-02-27 2002-09-11 Mitsubishi Heavy Ind Ltd 超音波信号可視化装置
JP5306024B2 (ja) * 2009-04-02 2013-10-02 株式会社東芝 超音波検査装置及び超音波検査方法
JP5968114B2 (ja) * 2011-09-20 2016-08-10 三菱日立パワーシステムズ株式会社 超音波探傷方法及び超音波探傷装置

Also Published As

Publication number Publication date
JP2015230227A (ja) 2015-12-21

Similar Documents

Publication Publication Date Title
JP6290718B2 (ja) 超音波検査装置及び超音波検査方法
JP7156782B2 (ja) 複合材料構造物のためのリンクル特性評価及び性能予測
JP5253424B2 (ja) 超音波探傷方法及び超音波探傷装置
US11022584B2 (en) Method and apparatus for scanning a test object and correcting for gain
EP2546641B1 (en) Ultrasonic flaw detector and ultrasonic flaw detection method for objects having a complex surface shape
JP2015230227A5 (ja)
WO2012008144A1 (ja) 超音波探傷装置および超音波探傷方法
EP3537145B1 (en) Method for measuring out-of-plane wrinkles in composite laminates
JP2011141124A (ja) 超音波探傷装置及び超音波探傷方法
JP2019219405A (ja) 物体における幾何学的特徴の決定のための方法およびシステム
JP5156707B2 (ja) 超音波検査方法及び装置
JP2014163805A (ja) 超音波検査方法および装置
JP5847666B2 (ja) 超音波検査装置及び方法
JP6290748B2 (ja) 超音波検査方法及び超音波検査装置
JP6068311B2 (ja) 超音波探傷装置及び超音波探傷方法
WO2015111143A1 (ja) 溶接部を検査する超音波探傷装置および溶接部を検査する超音波探傷方法、それを用いた鉄道車両構体の製造方法
US8770029B2 (en) Method and apparatus for ultrasonic testing
US20220011269A1 (en) Digital twin of an automated non-destructive ultrasonic testing system
JP5959677B2 (ja) 超音波探傷装置および超音波探傷方法
CA2850839C (en) Method and apparatus for scanning a test object
JP2014149156A (ja) 超音波検査方法及び装置
JP4738243B2 (ja) 超音波探傷システム
JP5150302B2 (ja) 超音波検査データ評価装置及び超音波検査データ評価方法
JP7372209B2 (ja) 超音波検査装置
JP6155691B2 (ja) 超音波探傷試験装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180208

R150 Certificate of patent or registration of utility model

Ref document number: 6290718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150