JP6288375B2 - エネルギーマネジメントシステム - Google Patents

エネルギーマネジメントシステム Download PDF

Info

Publication number
JP6288375B2
JP6288375B2 JP2017525174A JP2017525174A JP6288375B2 JP 6288375 B2 JP6288375 B2 JP 6288375B2 JP 2017525174 A JP2017525174 A JP 2017525174A JP 2017525174 A JP2017525174 A JP 2017525174A JP 6288375 B2 JP6288375 B2 JP 6288375B2
Authority
JP
Japan
Prior art keywords
voltage
converter
unit
calibration
bus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017525174A
Other languages
English (en)
Other versions
JPWO2016208400A1 (ja
Inventor
浩平 柴田
浩平 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JPWO2016208400A1 publication Critical patent/JPWO2016208400A1/ja
Application granted granted Critical
Publication of JP6288375B2 publication Critical patent/JP6288375B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/12Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Direct Current Feeding And Distribution (AREA)

Description

本発明は、住宅又は工場等において発電された電力を使用するエネルギーマネジメントシステムに関する。
発電機、例えばソーラパネルで発電された電力を住宅等で使用する太陽光発電システムは直流電圧バス(以下、HVDCバスと言う)を備えている。このHVDCバスには、PVコンバータ、インバータ及び双方向DC−DCコンバータ等が接続される。PVコンバータは、太陽光発電装置で生成された電力を所定の電圧でHVDCバスに出力する。双方向DC−DCコンバータには蓄電池が接続され、蓄電池とHVDCバスとの間で授受される直流電圧を所定の定電圧に変換する。さらに、インバータは、発電機で発電された電力又は蓄電池に蓄電された電力を電力系統へ送電し、また、電力系統からの電力をHVDCバスに供給する。
例えば、特許文献1には、直流電圧バスに複数の電源ユニットを接続し、協調制御が可能な電源システムが開示されている。特許文献1に記載の電源システムは、直流電圧バスに、太陽光発電ユニット等、複数の電源ユニットが接続され、直流電圧バスの電圧に基づいて、直流電圧バスとの間で授受する電力の授受量を自律的に決定している。なお、一般的に、このような太陽光発電システム等においては、HVDCバスの電圧を所定の値に保つために、HVDCバスの電圧を検出するための検出回路を備え、当該検出結果が所定の電圧となるようにスイッチング制御等により電圧を制御している。
特開2005−224009号公報
しかしながら、太陽光発電システム等は長期間の使用が想定され、その長期使用中に上述の検出回路による電圧の検出結果に誤差(ズレ)が生じることがある。例えば、特許文献1では、HVDCバスの電圧の真値に対して各電源ユニットの検出電圧がばらついてしまい、結果的に直流電圧バスの電圧が安定しないおそれがある。
すなわち、各電源ユニットが検出した検出電圧の値が異なるため、HVDCバス電圧の安定した制御が困難となる。したがって、検出回路の長期使用による誤差への対策が必要となる。また、HVDCバスに接続されているPVコンバータ等の各部品は所望の電圧値(例えば380V)よりも高い電圧が印加され続けると、寿命が短くなってしまうという課題がある。したがって、直流電圧バスの電圧は、可能な限り、所望の電圧値に近いながらも、低めの電圧値で維持する設定とすることが望ましい。
そこで、本発明の目的は、時間の経過に伴って、複数の電圧検出部による電圧検出結果にズレが生じても、直流電圧バスの電圧を安定させるための対策を講ずることができ、かつ、部品の寿命を長くすることが可能なエネルギーマネジメントシステムを提供することにある。
本発明に係るエネルギーマネジメントシステムは、直流電圧バスと、前記直流電圧バスに接続され、発電された電力を前記直流電圧バスへ出力する発電装置と、前記直流電圧バスに接続され、前記直流電圧バスから直流電圧が入力され、又は、前記直流電圧バスへ直流電圧を出力する双方向DC−DCコンバータと、前記直流電圧バスに接続され、前記直流電圧バスから入力される直流電圧を交流電圧へ変換するインバータと、を備え、前記発電装置、前記双方向DC−DCコンバータ及び前記インバータそれぞれは、前記直流電圧バスの電圧を検出する電圧検出部と、前記電圧検出部が検出する電圧が目標値と一致するようスイッチング制御するスイッチング制御手段と、を有し、それぞれの前記電圧検出部により検出された電圧を比較し、最も高い電圧を校正値として設定する校正値設定手段と、前記最も高い電圧を検出した電圧検出部以外の電圧検出部の検出電圧を、前記校正値で校正する校正手段とをさらに備えることを特徴とする。
発電装置、双方向DC−DCコンバータ及びインバータそれぞれでの電圧検出結果は、時間の経過に伴って生じる誤差により、一致しなくなる。そこで、この構成では、異なる検出結果それぞれが、検出結果のなかで最も高い電圧になるように校正する。そして、発電装置、双方向DC−DCコンバータ及びインバータそれぞれは、その校正後の電圧値を用いてスイッチング制御する。これにより、時間の経過に伴って、複数の電圧検出部による電圧検出結果にズレが生じても、直流電圧バスの電圧を安定させることができる。
また、検出電圧の中で最も高い電圧値を校正値として設定し、校正後の値で直流電圧バスの電圧を制御すれば、発電装置、双方向DC−DCコンバータ及びインバータそれぞれでの各部品に掛かる電圧を下げる方向とすることができる。これにより、部品の寿命を長くすることが可能となる。
本発明に係るエネルギーマネジメントシステムは、コントローラエリアネットワークを備え、前記発電装置、前記双方向DC−DCコンバータ及び前記インバータは、前記コントローラエリアネットワークに接続されていてもよい。
この構成では、マスタースレーブの設定が不要で、ノイズに強いシリアルバス通信で相互通信が可能となる。
本発明に係るエネルギーマネジメントシステムは、所定期間において、前記直流電圧バスの電圧変動が最小となるタイミングを設定する設定手段、を備え、前記校正手段は、前記設定手段が設定したタイミングで校正する構成でもよい。
この構成では、直流電圧バスの電圧変動が少ないときに電圧を校正することで、正確な校正を行うことができる。
本発明に係るエネルギーマネジメントシステムは、周囲温度を検出する温度検出手段と、前記温度検出手段が検出した温度に応じて、前記電圧検出部による検出電圧を補正する補正手段とを備えていてもよい。
この構成では、季節又は時間帯等によって温度が異なることに起因する、電圧の検出結果の誤差をさらに抑えることができる。
前記発電装置、前記双方向DC−DCコンバータ及び前記インバータはそれぞれ、前記温度検出手段を有している構成でもよい。
この構成では、より正確な温度を検出でき、その結果、温度が異なることに起因する、電圧の検出結果の誤差をさらに抑えることができる。
本発明によれば、時間の経過に伴って電圧検出結果にズレがあっても、直流電圧バスの電圧を所定値に安定させるための対策を講ずることができるとともに、部品の寿命を長くすることが可能なエネルギーマネジメントシステムを提供することができる。
図1は、実施形態に係るエネルギーマネジメントシステムを示す図である。 図2は、発電装置が有するPVコンバータの構成を示す図である。 図3は、双方向DC−DCコンバータの構成を示す図である。 図4は、インバータの構成を示す図である。 図5は、検出バス電圧校正制御を説明するための図である。 図6は、双方向DC−DCコンバータでの動作を示すフローチャートである。 図7は、PVコンバータ及びインバータでの動作を示すフローチャートである。
図1は、本実施形態に係るエネルギーマネジメントシステム1を示す図である。
エネルギーマネジメントシステム1は、発電装置20、双方向DC−DCコンバータ30、インバータ40及び制御部50を備えている。発電装置20、双方向DC−DCコンバータ30及びインバータ40は、HVDCバス10に接続されている。HVDCバス10は、本発明に係る「直流電圧バス」の一例である。また、発電装置20、双方向DC−DCコンバータ30及びインバータ40は、コントローラエリアネットワーク(CAN:Controller Area Network)によって互いにデータ通信可能に接続されている。CANにより各装置が接続されることで、マスタースレーブの設定が不要で、ノイズに強いシリアルバス通信で装置間の相互通信が可能となる。
発電装置20は、光発電パネル21とPVコンバータ22とを備えている。PVコンバータ22は、光発電パネル21で発生した電力をHVDCバス10へ出力する。なお、発電装置20は、風力発電装置又はガス発電装置等であってもよい。
発電装置20は、出力電圧及び出力電流を検出する。そして、検出した出力電圧及び出力電流に基づき、出力電力を最大にする最大電力点追従(MPPT:Maximum Power Point Tracking)制御を行う。光発電パネル21による発電量は、環境(設置場所又は天候等)によって変動する。そこで、発電装置20は、MPPT制御を行うことで、その時の環境に応じた最大電力を出力する。
双方向DC-DCコンバータ30には、蓄電池B1が接続されている。双方向DC-DCコンバータ30は、PVコンバータ22からHVDCバス10へ出力される直流電圧を変圧(昇圧又は降圧)し、蓄電池B1に充電する。また、双方向DC−DCコンバータ30は、蓄電池B1に充電された直流電圧を変圧し、HVDCバス10へ出力する。
インバータ40は、開閉器S1,S2を介して、電力系統101と、分電盤102とに接続されている。分電盤102には、不図示のAC出力端子(ACコンセント等)が接続されている。そのAC出力端子には、電子レンジ、洗濯機、エアコン等の負荷が接続される。インバータ40は、HVDCバス10から入力される直流電圧を交流電圧に変換し、電力系統101側へ出力する。また、インバータ40は、電力系統101側から入力される交流電圧を直流電圧に変換し、HVDCバス10へ出力する。
開閉器S1,S2は、電力系統101に異常(例えば、停電)がない平時ではオンされる。また、電力系統101が異常の場合には、開閉器S1,S2はオフされる。開閉器S1,S2がオフされることで、インバータ40から出力される電圧が電力系統101へ流れ込むことを防止できる。
制御部50は、エネルギーマネジメントシステム1全体の制御を行う。例えば、制御部50は、電力系統101の異常の有無に応じて、開閉器S1,S2のオンオフ制御を行う。
制御部50は、タイミング設定部51を有している。タイミング設定部51は、本発明に係る「設定手段」の一例である。タイミング設定部51は、後述する検出バス電圧校正制御を実行するタイミングを設定する。
検出バス電圧校正制御は、HVDCバス10の電圧が安定しているとき(電圧変動が少ないとき)に行われることが好ましい。このため、タイミング設定部51は、例えば、HVDCバス10の電圧変動が±10V以内の状態、PVコンバータ22等での電力授受がほぼない状態、日中の太陽光の発電が終わった直後、又は夜間の蓄電池の放電が終了した直後の待機状態等を条件として、タイミングを設定する。特に、所定の期間(例えば、1日、1週間、1か月、1年間等)において、HVDCバス10の電圧変動が最小となるタイミングを設定することが望ましい。なお、タイミングは、予め設定されていてもよい。
以下に、発電装置20、双方向DC−DCコンバータ30及びインバータ40それぞれの構成について詳述する。
図2は、発電装置20が有するPVコンバータ22の構成を示す図である。
PVコンバータ22は、電圧検出部221、温度補償部222、電圧値出力部223、電圧校正部224、コンバータ部225及び制御部226を有している。
電圧検出部221は、PVコンバータ22の出力電圧、すなわち、HVDCバス10の電圧を検出する。PVコンバータ22は、HVDCバス10に接続された分圧抵抗R21,R22を有している。電圧検出部221は、この分圧抵抗R21,R22により、HVDCバス10の電圧を検出する。
温度補償部222は、PVコンバータ22(内部及び周囲)の温度を検出し、検出した温度に応じて、電圧検出部221が検出する電圧を補正する。温度補償部222は、本発明に係る「温度検出手段」及び「補正手段」の一例である。エネルギーマネジメントシステム1内の温度は、時間帯又は季節によって変化する。この温度変化によって、分圧抵抗R21,R22の抵抗値は変化する。このため、電圧検出部221による電圧検出結果には温度による誤差を伴う。そこで、温度補償部222は、温度特性に基づき、電圧検出部221が検出する電圧を補正する。これにより、電圧検出部221による電圧の検出結果の誤差をさらに抑えることができる。
なお、温度特性は、例えば製造時におけるエネルギーマネジメントシステム1の無負荷時と定格運転動作時との感度校正を行い、温度上昇値と感度補正値との変化より算出される。また、温度特性は時間経過とともに大きく変化することは考えづらく、一度設定した温度特性は固定とすることが望ましい。
電圧値出力部223は、電圧検出部221が検出した電圧値を、双方向DC−DCコンバータ30へ出力する。このとき、温度補償部222により補正されている場合には、電圧値出力部223は、補正後の電圧値を出力する。なお、前記のように、発電装置20と双方向DC−DCコンバータ30とはCANによって接続されているため、ノイズによる影響を受けることなく、PVコンバータ22から双方向DC−DCコンバータ30へ出力される電圧値を出力できる。
電圧校正部224は、電圧検出部221が検出した電圧を校正する。電圧校正部224は、本発明に係る「校正手段」の一例である。後に詳述するが、双方向DC−DCコンバータ30では、電圧の校正値が設定される。電圧校正部224は、双方向DC−DCコンバータ30からその校正値を取得する。そして、電圧校正部224は、電圧検出部221が検出した電圧を、その校正値に校正する。例えば、電圧検出部221が検出した電圧が378Vであり、双方向DC−DCコンバータ30により設定された校正値が380Vである場合、電圧校正部224は、電圧検出部221が検出した電圧を380Vに校正する。
制御部226は、コンバータ部225をスイッチング制御する。制御部226は、本発明に係る「スイッチング制御手段」の一例である。制御部226には、電圧検出部221が検出した電圧がフィードバックされる。そして、制御部226は、電圧検出部221が検出する電圧が目標値に近づくように、コンバータ部225をスイッチング制御する。このとき、制御部226にフィードバックされる電圧は、温度補償部222により補正され、電圧校正部224により校正された電圧である。
図3は、双方向DC−DCコンバータ30の構成を示す図である。
双方向DC-DCコンバータ30は、電圧検出部31、温度補償部32、校正値設定部33、電圧校正部34、コンバータ部35及び制御部36を有している。
電圧検出部31は、双方向DC−DCコンバータ30のHVDCバス10側への出力電圧、すなわち、HVDCバス10の電圧を検出する。双方向DC−DCコンバータ30は、HVDCバス10に接続された分圧抵抗R31,R32を有している。電圧検出部31は、この分圧抵抗R31,R32により、HVDCバス10の電圧を検出する。
温度補償部32は、PVコンバータ22の温度補償部222と同様、双方向DC−DCコンバータ30の温度を検出し、検出した温度に応じて、電圧検出部31が検出する電圧を補正する。温度補償部32は、本発明に係る「温度検出手段」及び「補正手段」の一例である。
校正値設定部33は、発電装置20及びインバータ40で検出された電圧と、電圧検出部31が検出した電圧と比較して、最も高い電圧値を校正値に設定する。校正値設定部33は、設定した校正値を、発電装置20及びインバータ40へ出力する。
すなわち、校正値設定部33は、発電装置20、インバータ40及び双方向DC−DCコンバータ30それぞれで検出された電圧のうち、最も高い電圧値を校正値として設定する。そして、電圧検出部221、41それぞれが検出した電圧を、上述の校正値に校正できるよう、当該校正値を発電装置20及びインバータ40に伝達する。校正値設定部33は、本発明に係る「校正値設定手段」の一例である。
電圧校正部34は、電圧検出部31が検出した電圧を、校正値設定部33が設定した校正値に校正する。電圧校正部34は、本発明に係る「校正手段」の一例である。
制御部36は、コンバータ部35をスイッチング制御する。制御部36は、本発明に係る「スイッチング制御手段」の一例である。制御部36には、電圧検出部31が検出した電圧がフィードバックされる。そして、制御部36は、電圧検出部31が検出する電圧が目標値に近づくように、コンバータ部35をスイッチング制御する。このとき、制御部36にフィードバックされる電圧は、温度補償部32により補正され、電圧校正部34により校正された電圧である。
図4は、インバータ40の構成を示す図である。
インバータ40は、電圧検出部41、温度補償部42、電圧値出力部43、電圧校正部44、インバータ部45及び制御部46を有している。
電圧検出部41は、インバータ40の出力電圧、すなわち、HVDCバス10の電圧を検出する。インバータ40は、HVDCバス10に接続された分圧抵抗R41,R42を有している。電圧検出部41は、この分圧抵抗R41,R42により、HVDCバス10の電圧を検出する。
温度補償部42は、PVコンバータ22の温度補償部222と同様、インバータ40(内部及び周囲)の温度を検出し、検出した温度に応じて、電圧検出部41が検出する電圧を補正する。温度補償部42は、本発明に係る「温度検出手段」及び「補正手段」の一例である。
電圧値出力部43は、電圧検出部41が検出した電圧値を、双方向DC−DCコンバータ30へ出力する。このとき、温度補償部42により温度補正されている場合には、電圧値出力部43は、補正後の電圧値を出力する。
電圧校正部44は、電圧検出部41が検出した電圧を、双方向DC−DCコンバータ30の校正値設定部33で設定された校正値に校正する。
制御部46は、インバータ部45をスイッチング制御する。制御部46は、本発明に係る「スイッチング制御手段」の一例である。制御部46には、電圧検出部41が検出した電圧がフィードバックされる。そして、制御部46は、電圧検出部41が検出する電圧が目標値に近づくように、インバータ部45をスイッチング制御する。このとき、制御部46にフィードバックされる電圧は、温度補償部42により補正され、電圧校正部44により校正された電圧である。
次に、以上のように構成されたエネルギーマネジメントシステム1において実行される検出バス電圧校正制御について説明する。
図5は、検出バス電圧校正制御を説明するための図である。
通常、PVコンバータ22、双方向DC−DCコンバータ30及びインバータ40それぞれが検出するHVDCバス10の電圧は、一致することが理想である。しかしながら、エネルギーマネジメントシステム1の長期使用等により検出精度が低下し、図5に示すように、検出結果にバラつきが生じることがある。そこで、検出バス電圧校正制御では、検出された電圧値を比較し、最も高い電圧値を校正値に設定する。校正値の設定は、前記のように、双方向DC−DCコンバータ30が有する校正値設定部33により行われる。
例えば、図5に示す「case1」の場合、PVコンバータ22が検出した電圧は378V、双方向DC−DCコンバータ30が検出した電圧は380V、インバータ40が検出した電圧は385Vである。この場合、校正値設定部33は、校正値を最も高い電圧385Vに設定する。校正値設定部33は、設定した校正値を、PVコンバータ22及びインバータ40へ出力する。
PVコンバータ22、双方向DC−DCコンバータ30及びインバータ40それぞれでは、検出したHVDCバス10の電圧を校正値(385V)に校正する。そして、PVコンバータ22、双方向DC−DCコンバータ30及びインバータ40それぞれは、校正後の電圧を用いて、出力電圧が目標値に近づくようにスイッチング制御する。
例えば、PVコンバータ22では、検出した電圧は378Vであるが、校正値385Vに校正される。そして、PVコンバータ22は、校正後の電圧値に基づいて、目標値の電圧が出力されるよう、スイッチング制御する。双方向DC−DCコンバータ30では、検出した電圧は380Vであるが、校正値385Vに校正される。そして、双方向DC−DCコンバータ30は、校正後の電圧値に基づいて、目標値の電圧が出力されるよう、スイッチング制御する。
このように、PVコンバータ22、双方向DC−DCコンバータ30及びインバータ40それぞれで検出した電圧を校正値に合わせることで、HVDCバス10の電圧は一定値に調整される。また、電圧の校正値を、検出電圧の中で最も高い電圧に設定することで、HVDCバス10の校正後の電圧は、校正前よりも低くなる方向となる。
仮に、HVDCバス10の電圧が380Vとなるように制御していた場合、PVコンバータ22、双方向DC−DCコンバータ30及びインバータ40それぞれが検出したHVDCバス10の電圧を385Vに校正することで、HVDCバス10の電圧は、約375V(≒380×380/385)に制御されることとなる。
なお、図5に示す「case2」の場合、校正値設定部33は、校正値を380Vに設定する。この場合、HVDCバス10の電圧は、380V(=380×380/380)に制御されることとなる。また、「case3」の場合、校正値設定部33は、校正値を387Vに設定する。この場合、HVDCバス10の電圧は、約373V(≒380×380/387)に制御されることとなる。
もし、この検出バス電圧校正制御において、検出電圧の中で最も低い電圧値に合わせる設計とした場合、校正後のHVDCバス10の電圧は、高い電圧に制御される方向に傾く。この場合、PVコンバータ22等の各部品には高い電圧が印加されることになる。長時間、高電圧が印加されることで、各部品の寿命等は低下する。しかし、本実施形態のように、検出電圧の中で最も高い電圧値を校正値として設定し、校正後の値でHVDCバス10の電圧を制御すれば、PVコンバータ22等の各部品に掛かる電圧を下げる方向とすることができる。よって、各部品の信頼性の向上を図ることができる。
以下に、PVコンバータ22、双方向DC−DCコンバータ30及びインバータ40それぞれで実行される動作について説明する。
図6は、双方向DC−DCコンバータ30での動作を示すフローチャートである。
双方向DC−DCコンバータ30は、校正タイミングであるか否かを判定する(S11)。校正タイミングは、制御部50のタイミング設定部51で設定される検出バス電圧校正制御の実行タイミングである。校正タイミングでない場合(S11:NO)、本処理は終了する。
校正タイミングである場合(S11:YES)、電圧検出部31は電圧を検出する(S12)。次に、温度補償部32は温度を検出し(S13)、温度特性を用いて、電圧検出部31が検出した電圧を補正する(S14)。
校正値設定部33は、電圧検出部31が検出した電圧、並びに、PVコンバータ22及びインバータ40で検出された電圧を取得する(S15)。そして、校正値設定部33は、これらの電圧の中で最も高い電圧値を校正値に設定する(S16)。電圧校正部34は、S12で電圧検出部31が検出した電圧を、設定した校正値に校正する(S17)。その後、制御部36は、校正後の電圧を用いて、目標値の電圧が出力されるよう、コンバータ部35をスイッチング制御する。
図7は、PVコンバータ22及びインバータ40での動作を示すフローチャートである。PVコンバータ22及びインバータ40での動作は同じであるため、以下では、PVコンバータ22について説明する。
PVコンバータ22は、制御部50のタイミング設定部51で設定された校正タイミングであるか否かを判定する(S21)。校正タイミングでない場合(S21:NO)、本処理は終了する。校正タイミングである場合(S21:YES)、電圧検出部221は電圧を検出する(S22)。次に、温度補償部222は温度を検出し(S23)、温度特性に基づいて、電圧検出部221が検出した電圧を補正する(S24)。
電圧値出力部223は、電圧検出部221が検出した電圧を双方向DC−DCコンバータ30へ出力する(S25)。そして、電圧校正部224は、双方向DC−DCコンバータ30で設定された校正値を受信したか否かを判定する(S26)。受信していない場合(S26:NO)、電圧校正部224は受信するまで待機する。
校正値を双方向DC−DCコンバータ30から受信した場合(S26:YES)、電圧校正部224は、S22で電圧検出部221が検出した電圧を、設定した校正値に校正する(S27)。その後、制御部226は、校正後の電圧を用いて、目標値の電圧が出力されるよう、コンバータ部225をスイッチング制御する。
なお、本実施形態では、双方向DC−DCコンバータ30が校正値を設定する構成としているが、校正値は、PVコンバータ22、インバータ40又は制御部50のいずれで設定されてもよい。
また、本実施形態では、より正確な温度を検出するために、発電装置20、双方向DC−DCコンバータ30及びインバータ40それぞれで温度検出しているが、エネルギーマネジメントシステム1内の一つの場所で温度検出し、発電装置20等は、その検出結果を用いて電圧補正を行うようにしてもよい。
B1…蓄電池
R21,R22…分圧抵抗
R31,R32…分圧抵抗
R41,R42…分圧抵抗
S1,S2…開閉器
1…エネルギーマネジメントシステム
10…HVDCバス
20…発電装置
21…光発電パネル
22…PVコンバータ
30…DC−DCコンバータ
31…電圧検出部
32…温度補償部
33…校正値設定部
34…電圧校正部
35…コンバータ部
36…制御部
40…インバータ
41…電圧検出部
42…温度補償部
43…電圧値出力部
44…電圧校正部
45…インバータ部
46…制御部
50…制御部
51…タイミング設定部
101…電力系統
102…分電盤
221…電圧検出部
222…温度補償部
223…電圧値出力部
224…電圧校正部
225…コンバータ部
226…制御部

Claims (5)

  1. 直流電圧バスと、
    前記直流電圧バスに接続され、発電された電力を前記直流電圧バスへ出力する発電装置と、
    前記直流電圧バスに接続され、前記直流電圧バスから直流電圧が入力され、又は、前記直流電圧バスへ直流電圧を出力する双方向DC−DCコンバータと、
    前記直流電圧バスに接続され、前記直流電圧バスから入力される直流電圧を交流電圧へ変換するインバータと、
    を備え、
    前記発電装置、前記双方向DC−DCコンバータ及び前記インバータそれぞれは、
    前記直流電圧バスの電圧を検出する電圧検出部と、
    前記電圧検出部が検出する電圧が目標値と一致するようスイッチング制御するスイッチング制御手段と、
    を有し、
    それぞれの前記電圧検出部により検出された電圧を比較し、最も高い電圧を校正値として設定する校正値設定手段と、
    前記最も高い電圧を検出した電圧検出部以外の電圧検出部の検出電圧を、前記校正値で校正する校正手段と、
    をさらに備えるエネルギーマネジメントシステム。
  2. コントローラエリアネットワークを備え、
    前記発電装置、前記双方向DC−DCコンバータ及び前記インバータは、前記コントローラエリアネットワークに接続されている、
    請求項1に記載のエネルギーマネジメントシステム。
  3. 所定期間において、前記直流電圧バスの電圧変動が最小となるタイミングを設定する設定手段、
    を備え、
    前記校正手段は、
    前記設定手段が設定したタイミングで校正する、
    請求項1又は2に記載のエネルギーマネジメントシステム。
  4. 周囲温度を検出する温度検出手段と、
    前記温度検出手段が検出した温度に応じて、前記電圧検出部による検出電圧を補正する補正手段と、
    を備える、
    請求項1から3のいずれかに記載のエネルギーマネジメントシステム。
  5. 前記発電装置、前記双方向DC−DCコンバータ及び前記インバータはそれぞれ、前記温度検出手段を有している、
    請求項4に記載のエネルギーマネジメントシステム。
JP2017525174A 2015-06-24 2016-06-09 エネルギーマネジメントシステム Active JP6288375B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015126178 2015-06-24
JP2015126178 2015-06-24
PCT/JP2016/067161 WO2016208400A1 (ja) 2015-06-24 2016-06-09 エネルギーマネジメントシステム

Publications (2)

Publication Number Publication Date
JPWO2016208400A1 JPWO2016208400A1 (ja) 2018-03-01
JP6288375B2 true JP6288375B2 (ja) 2018-03-07

Family

ID=57585639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017525174A Active JP6288375B2 (ja) 2015-06-24 2016-06-09 エネルギーマネジメントシステム

Country Status (5)

Country Link
US (1) US10218214B2 (ja)
EP (1) EP3316439B1 (ja)
JP (1) JP6288375B2 (ja)
CN (1) CN107743673B (ja)
WO (1) WO2016208400A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11601007B2 (en) * 2019-02-04 2023-03-07 Tdk Corporation DC power supply system
JP7272186B2 (ja) * 2019-08-29 2023-05-12 富士電機株式会社 パワーコンディショナおよびパワーコンディショナシステム
DE102019215408A1 (de) * 2019-10-08 2021-04-08 Vitesco Technologies GmbH Verfahren und Vorrichtung zum Rekalibrieren von Energiezählern in Elektrofahrzeugen
CN117200568B (zh) * 2023-11-06 2024-02-27 广州奥鹏能源科技有限公司 一种储能电源用双向逆变器软启动系统及其控制方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3529740B2 (ja) 2001-03-29 2004-05-24 シャープ株式会社 スイッチング電源装置
AU2003903839A0 (en) * 2003-07-24 2003-08-07 Cochlear Limited Battery characterisation
JP4191625B2 (ja) * 2004-02-05 2008-12-03 マイウェイ技研株式会社 分散電源システム
JP4841282B2 (ja) 2006-03-24 2011-12-21 富士通セミコンダクター株式会社 電源装置の制御回路、電源装置、およびその制御方法
JP5451504B2 (ja) * 2009-10-02 2014-03-26 パナソニック株式会社 配電システム
US8970176B2 (en) * 2010-11-15 2015-03-03 Bloom Energy Corporation DC micro-grid
JP5766097B2 (ja) * 2011-11-15 2015-08-19 京セラ株式会社 パワーコンディショナ、パワーコンディショナの制御方法およびパワーコンディショナシステム
JP2014099986A (ja) * 2012-11-14 2014-05-29 Toshiba Corp 複合蓄電システム
CN103117557A (zh) * 2013-03-06 2013-05-22 东南大学 一种组合式单相两级光伏发电系统并网电流控制方法
JP2015192529A (ja) * 2014-03-28 2015-11-02 株式会社三社電機製作所 パワーコンディショナー

Also Published As

Publication number Publication date
US20180115186A1 (en) 2018-04-26
CN107743673A (zh) 2018-02-27
JPWO2016208400A1 (ja) 2018-03-01
EP3316439A1 (en) 2018-05-02
WO2016208400A1 (ja) 2016-12-29
CN107743673B (zh) 2021-01-26
US10218214B2 (en) 2019-02-26
EP3316439A4 (en) 2019-01-02
EP3316439B1 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
JP6288375B2 (ja) エネルギーマネジメントシステム
KR102113054B1 (ko) 전지 감시 장치 및 방법
EP2824533B1 (en) Photovoltaic system
US8421400B1 (en) Solar-powered battery charger and related system and method
US8816667B2 (en) Maximum power point tracking method
AU2011225422B8 (en) Photovoltaic generation system and power feeding system
JP6081125B2 (ja) 太陽光発電装置および電力管理システム、並びに、そのための電力負荷と計測装置
JP6549986B2 (ja) 電流フィードバックを用いたドループ補償
US9391537B2 (en) Photovoltaic system and power supply system
US11159016B2 (en) Systems and methods to increase the reliability and the service life time of photovoltaic (PV) modules
US20200259418A1 (en) Parallel power supply device
JP2008090672A (ja) 電力変換装置および電力変換方法
WO2016170811A1 (ja) エネルギーマネジメントシステム
US20120033466A1 (en) Partial power micro-converter architecture
CN116868469A (zh) 使用ac发电机源的dc光伏输入仿真
US10381842B2 (en) Power supply system
JP2017192191A (ja) Dc/dcコンバータ及び太陽発電システム
JP6242128B2 (ja) 電力変換装置
US20180248478A1 (en) Switching power-supply apparatus and droop characteristic correction method
JP2015192477A (ja) 制御装置、制御方法および発電システム
US10910839B2 (en) Power control system and control method for power control system
JP2018207786A (ja) 電力制御システムの制御方法、電力制御システム、及び電力制御装置
KR102361318B1 (ko) 지능형 태양광 모듈 컨트롤러 제어 방법 및 이를 위한 전력변환장치
JP6819154B2 (ja) パワーコンディショナ
US20140253085A1 (en) Digital programmable control systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171117

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171117

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20171205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R150 Certificate of patent or registration of utility model

Ref document number: 6288375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150