JP6287858B2 - Gas barrier film, method for producing the same, and electronic device using the same - Google Patents
Gas barrier film, method for producing the same, and electronic device using the same Download PDFInfo
- Publication number
- JP6287858B2 JP6287858B2 JP2014552051A JP2014552051A JP6287858B2 JP 6287858 B2 JP6287858 B2 JP 6287858B2 JP 2014552051 A JP2014552051 A JP 2014552051A JP 2014552051 A JP2014552051 A JP 2014552051A JP 6287858 B2 JP6287858 B2 JP 6287858B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- film
- gas
- gas barrier
- barrier film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000004888 barrier function Effects 0.000 title claims description 253
- 238000004519 manufacturing process Methods 0.000 title claims description 45
- 238000000034 method Methods 0.000 claims description 160
- 239000000758 substrate Substances 0.000 claims description 121
- 238000000576 coating method Methods 0.000 claims description 88
- 239000011248 coating agent Substances 0.000 claims description 86
- 229920005989 resin Polymers 0.000 claims description 74
- 239000011347 resin Substances 0.000 claims description 74
- 150000003377 silicon compounds Chemical class 0.000 claims description 70
- 238000011282 treatment Methods 0.000 claims description 60
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 57
- 238000000231 atomic layer deposition Methods 0.000 claims description 53
- 229920001709 polysilazane Polymers 0.000 claims description 51
- 229910052710 silicon Inorganic materials 0.000 claims description 49
- 239000010703 silicon Substances 0.000 claims description 42
- 229910052782 aluminium Inorganic materials 0.000 claims description 39
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 32
- 230000008569 process Effects 0.000 claims description 29
- 238000005229 chemical vapour deposition Methods 0.000 claims description 28
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 26
- 238000012986 modification Methods 0.000 claims description 25
- 230000004048 modification Effects 0.000 claims description 24
- 238000009832 plasma treatment Methods 0.000 claims description 17
- 239000010936 titanium Substances 0.000 claims description 17
- 239000007788 liquid Substances 0.000 claims description 16
- 150000004767 nitrides Chemical class 0.000 claims description 15
- 229910052719 titanium Inorganic materials 0.000 claims description 13
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 11
- 238000002407 reforming Methods 0.000 claims description 7
- 239000010410 layer Substances 0.000 description 561
- 239000010408 film Substances 0.000 description 473
- 239000007789 gas Substances 0.000 description 412
- 239000000463 material Substances 0.000 description 112
- 229910052760 oxygen Inorganic materials 0.000 description 90
- 239000001301 oxygen Substances 0.000 description 90
- -1 aluminum compound Chemical class 0.000 description 86
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 86
- 230000015572 biosynthetic process Effects 0.000 description 83
- 229910052799 carbon Inorganic materials 0.000 description 63
- 238000009826 distribution Methods 0.000 description 61
- 238000010438 heat treatment Methods 0.000 description 61
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 58
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 56
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 56
- 238000005401 electroluminescence Methods 0.000 description 53
- 239000002585 base Substances 0.000 description 50
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 50
- 239000010409 thin film Substances 0.000 description 46
- 150000001875 compounds Chemical class 0.000 description 45
- 239000000203 mixture Substances 0.000 description 43
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 41
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 39
- 239000002994 raw material Substances 0.000 description 34
- 239000000243 solution Substances 0.000 description 34
- 238000006243 chemical reaction Methods 0.000 description 29
- 238000002347 injection Methods 0.000 description 29
- 239000007924 injection Substances 0.000 description 29
- 229910052751 metal Inorganic materials 0.000 description 29
- 239000002184 metal Substances 0.000 description 29
- 208000028659 discharge Diseases 0.000 description 28
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 28
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 24
- 229910052757 nitrogen Inorganic materials 0.000 description 24
- 238000007740 vapor deposition Methods 0.000 description 24
- 230000007547 defect Effects 0.000 description 23
- 230000005525 hole transport Effects 0.000 description 23
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 22
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 21
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 21
- 125000000217 alkyl group Chemical group 0.000 description 21
- 239000012298 atmosphere Substances 0.000 description 21
- 238000000151 deposition Methods 0.000 description 21
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 21
- 238000005452 bending Methods 0.000 description 20
- 229920001577 copolymer Polymers 0.000 description 20
- 229910004298 SiO 2 Inorganic materials 0.000 description 19
- 238000001035 drying Methods 0.000 description 19
- 125000004430 oxygen atom Chemical group O* 0.000 description 19
- 239000000523 sample Substances 0.000 description 19
- 238000011156 evaluation Methods 0.000 description 18
- 238000010926 purge Methods 0.000 description 18
- 125000004432 carbon atom Chemical group C* 0.000 description 17
- 238000007254 oxidation reaction Methods 0.000 description 17
- 239000003054 catalyst Substances 0.000 description 16
- 230000008021 deposition Effects 0.000 description 16
- 229910001873 dinitrogen Inorganic materials 0.000 description 16
- 239000011261 inert gas Substances 0.000 description 16
- 229910052814 silicon oxide Inorganic materials 0.000 description 16
- 239000000872 buffer Substances 0.000 description 15
- 238000001816 cooling Methods 0.000 description 15
- 230000003647 oxidation Effects 0.000 description 15
- 230000002829 reductive effect Effects 0.000 description 15
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 15
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 14
- 238000012545 processing Methods 0.000 description 14
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 13
- 239000002019 doping agent Substances 0.000 description 13
- 229920002451 polyvinyl alcohol Polymers 0.000 description 13
- 239000002904 solvent Substances 0.000 description 13
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 12
- 239000005977 Ethylene Substances 0.000 description 12
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 12
- 239000000975 dye Substances 0.000 description 12
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 12
- 229910052753 mercury Inorganic materials 0.000 description 12
- 230000001590 oxidative effect Effects 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- 239000004372 Polyvinyl alcohol Substances 0.000 description 11
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 11
- 229910052786 argon Inorganic materials 0.000 description 11
- 239000000919 ceramic Substances 0.000 description 11
- 238000005259 measurement Methods 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 11
- 239000000377 silicon dioxide Substances 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 238000005530 etching Methods 0.000 description 10
- 239000003960 organic solvent Substances 0.000 description 10
- 230000002265 prevention Effects 0.000 description 10
- 239000012495 reaction gas Substances 0.000 description 10
- 238000003980 solgel method Methods 0.000 description 10
- 238000002834 transmittance Methods 0.000 description 10
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 10
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 9
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 125000004429 atom Chemical group 0.000 description 9
- 239000007772 electrode material Substances 0.000 description 9
- 229910052734 helium Inorganic materials 0.000 description 9
- 239000001307 helium Substances 0.000 description 9
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 9
- 230000001678 irradiating effect Effects 0.000 description 9
- 239000002985 plastic film Substances 0.000 description 9
- 229920006255 plastic film Polymers 0.000 description 9
- 238000004544 sputter deposition Methods 0.000 description 9
- 230000003746 surface roughness Effects 0.000 description 9
- 229920001187 thermosetting polymer Polymers 0.000 description 9
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical group CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 8
- 238000000354 decomposition reaction Methods 0.000 description 8
- 238000010894 electron beam technology Methods 0.000 description 8
- 229910052749 magnesium Inorganic materials 0.000 description 8
- 239000011777 magnesium Substances 0.000 description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 8
- 150000002894 organic compounds Chemical class 0.000 description 8
- 239000004417 polycarbonate Substances 0.000 description 8
- 238000007789 sealing Methods 0.000 description 8
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 7
- 125000003118 aryl group Chemical group 0.000 description 7
- 239000011575 calcium Substances 0.000 description 7
- 150000001721 carbon Chemical group 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 229910001882 dioxygen Inorganic materials 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 150000003961 organosilicon compounds Chemical class 0.000 description 7
- 230000008439 repair process Effects 0.000 description 7
- 238000004528 spin coating Methods 0.000 description 7
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 7
- 229920005992 thermoplastic resin Polymers 0.000 description 7
- 238000001771 vacuum deposition Methods 0.000 description 7
- 229910052724 xenon Inorganic materials 0.000 description 7
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 229920000178 Acrylic resin Polymers 0.000 description 6
- 239000004925 Acrylic resin Substances 0.000 description 6
- 229910007991 Si-N Inorganic materials 0.000 description 6
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 6
- 229910006294 Si—N Inorganic materials 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- OBOXTJCIIVUZEN-UHFFFAOYSA-N [C].[O] Chemical compound [C].[O] OBOXTJCIIVUZEN-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 229910052791 calcium Inorganic materials 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 235000019441 ethanol Nutrition 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 230000005865 ionizing radiation Effects 0.000 description 6
- 239000002052 molecular layer Substances 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 229910052754 neon Inorganic materials 0.000 description 6
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 6
- 229920003023 plastic Polymers 0.000 description 6
- 239000004033 plastic Substances 0.000 description 6
- 229920001721 polyimide Polymers 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 125000005369 trialkoxysilyl group Chemical group 0.000 description 6
- 229920002554 vinyl polymer Polymers 0.000 description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 5
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 5
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 5
- 239000004642 Polyimide Substances 0.000 description 5
- 229910002808 Si–O–Si Inorganic materials 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 125000002723 alicyclic group Chemical group 0.000 description 5
- 238000005266 casting Methods 0.000 description 5
- 229920002678 cellulose Polymers 0.000 description 5
- 238000007599 discharging Methods 0.000 description 5
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 239000003999 initiator Substances 0.000 description 5
- 230000000670 limiting effect Effects 0.000 description 5
- POPVULPQMGGUMJ-UHFFFAOYSA-N octasilsesquioxane cage Chemical compound O1[SiH](O[SiH](O2)O[SiH](O3)O4)O[SiH]4O[SiH]4O[SiH]1O[SiH]2O[SiH]3O4 POPVULPQMGGUMJ-UHFFFAOYSA-N 0.000 description 5
- 229920000515 polycarbonate Polymers 0.000 description 5
- 229920001225 polyester resin Polymers 0.000 description 5
- 239000004645 polyester resin Substances 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 238000007639 printing Methods 0.000 description 5
- 229910000077 silane Inorganic materials 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 4
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 4
- VVBLNCFGVYUYGU-UHFFFAOYSA-N 4,4'-Bis(dimethylamino)benzophenone Chemical compound C1=CC(N(C)C)=CC=C1C(=O)C1=CC=C(N(C)C)C=C1 VVBLNCFGVYUYGU-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229940126062 Compound A Drugs 0.000 description 4
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 235000019439 ethyl acetate Nutrition 0.000 description 4
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 4
- NEXSMEBSBIABKL-UHFFFAOYSA-N hexamethyldisilane Chemical compound C[Si](C)(C)[Si](C)(C)C NEXSMEBSBIABKL-UHFFFAOYSA-N 0.000 description 4
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 4
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 4
- 229910001507 metal halide Inorganic materials 0.000 description 4
- 150000005309 metal halides Chemical class 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- 229920005668 polycarbonate resin Polymers 0.000 description 4
- 239000004431 polycarbonate resin Substances 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 4
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 150000003609 titanium compounds Chemical class 0.000 description 4
- 239000012808 vapor phase Substances 0.000 description 4
- 230000008016 vaporization Effects 0.000 description 4
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 3
- BZHCVCNZIJZMRN-UHFFFAOYSA-N 9h-pyridazino[3,4-b]indole Chemical class N1=CC=C2C3=CC=CC=C3NC2=N1 BZHCVCNZIJZMRN-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 3
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 3
- 239000001856 Ethyl cellulose Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 229920000877 Melamine resin Polymers 0.000 description 3
- 239000000020 Nitrocellulose Substances 0.000 description 3
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 3
- 239000006087 Silane Coupling Agent Substances 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 3
- 229940081735 acetylcellulose Drugs 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 3
- 150000004703 alkoxides Chemical class 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 3
- 239000012965 benzophenone Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 229920002301 cellulose acetate Polymers 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 238000003851 corona treatment Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- ISAOCJYIOMOJEB-UHFFFAOYSA-N desyl alcohol Natural products C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 3
- GCSJLQSCSDMKTP-UHFFFAOYSA-N ethenyl(trimethyl)silane Chemical compound C[Si](C)(C)C=C GCSJLQSCSDMKTP-UHFFFAOYSA-N 0.000 description 3
- 229920001249 ethyl cellulose Polymers 0.000 description 3
- 235000019325 ethyl cellulose Nutrition 0.000 description 3
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 150000002430 hydrocarbons Chemical group 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 150000002484 inorganic compounds Chemical class 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000010954 inorganic particle Substances 0.000 description 3
- 239000012948 isocyanate Substances 0.000 description 3
- 150000002513 isocyanates Chemical class 0.000 description 3
- 229910052743 krypton Inorganic materials 0.000 description 3
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 239000006224 matting agent Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229920001220 nitrocellulos Polymers 0.000 description 3
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 description 3
- 150000004866 oxadiazoles Chemical class 0.000 description 3
- 150000002923 oximes Chemical class 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 3
- 229920006122 polyamide resin Polymers 0.000 description 3
- 229920001230 polyarylate Polymers 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 229920005990 polystyrene resin Polymers 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000007127 saponification reaction Methods 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 3
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 3
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 3
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 2
- KWEKXPWNFQBJAY-UHFFFAOYSA-N (dimethyl-$l^{3}-silanyl)oxy-dimethylsilicon Chemical compound C[Si](C)O[Si](C)C KWEKXPWNFQBJAY-UHFFFAOYSA-N 0.000 description 2
- JZLWSRCQCPAUDP-UHFFFAOYSA-N 1,3,5-triazine-2,4,6-triamine;urea Chemical compound NC(N)=O.NC1=NC(N)=NC(N)=N1 JZLWSRCQCPAUDP-UHFFFAOYSA-N 0.000 description 2
- LEJBBGNFPAFPKQ-UHFFFAOYSA-N 2-(2-prop-2-enoyloxyethoxy)ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOC(=O)C=C LEJBBGNFPAFPKQ-UHFFFAOYSA-N 0.000 description 2
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 2
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 2
- INQDDHNZXOAFFD-UHFFFAOYSA-N 2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOC(=O)C=C INQDDHNZXOAFFD-UHFFFAOYSA-N 0.000 description 2
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 2
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 2
- XLLIQLLCWZCATF-UHFFFAOYSA-N 2-methoxyethyl acetate Chemical compound COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 2
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 description 2
- HCFAJYNVAYBARA-UHFFFAOYSA-N 4-heptanone Chemical compound CCCC(=O)CCC HCFAJYNVAYBARA-UHFFFAOYSA-N 0.000 description 2
- JHWGFJBTMHEZME-UHFFFAOYSA-N 4-prop-2-enoyloxybutyl prop-2-enoate Chemical compound C=CC(=O)OCCCCOC(=O)C=C JHWGFJBTMHEZME-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- GUUVPOWQJOLRAS-UHFFFAOYSA-N Diphenyl disulfide Chemical compound C=1C=CC=CC=1SSC1=CC=CC=C1 GUUVPOWQJOLRAS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000004640 Melamine resin Substances 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 229910008051 Si-OH Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910006358 Si—OH Inorganic materials 0.000 description 2
- 235000000126 Styrax benzoin Nutrition 0.000 description 2
- 244000028419 Styrax benzoin Species 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 235000008411 Sumatra benzointree Nutrition 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- SMEGJBVQLJJKKX-HOTMZDKISA-N [(2R,3S,4S,5R,6R)-5-acetyloxy-3,4,6-trihydroxyoxan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)O)OC(=O)C)O)O SMEGJBVQLJJKKX-HOTMZDKISA-N 0.000 description 2
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 2
- OBNDGIHQAIXEAO-UHFFFAOYSA-N [O].[Si] Chemical compound [O].[Si] OBNDGIHQAIXEAO-UHFFFAOYSA-N 0.000 description 2
- 239000011354 acetal resin Substances 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 229920006243 acrylic copolymer Polymers 0.000 description 2
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 229960002130 benzoin Drugs 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 125000004386 diacrylate group Chemical group 0.000 description 2
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- JJQZDUKDJDQPMQ-UHFFFAOYSA-N dimethoxy(dimethyl)silane Chemical compound CO[Si](C)(C)OC JJQZDUKDJDQPMQ-UHFFFAOYSA-N 0.000 description 2
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- UFRKOOWSQGXVKV-UHFFFAOYSA-N ethene;ethenol Chemical compound C=C.OC=C UFRKOOWSQGXVKV-UHFFFAOYSA-N 0.000 description 2
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 2
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 2
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 238000007646 gravure printing Methods 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 235000019382 gum benzoic Nutrition 0.000 description 2
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 150000002504 iridium compounds Chemical class 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000002346 layers by function Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 125000005395 methacrylic acid group Chemical group 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 2
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 150000002831 nitrogen free-radicals Chemical class 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical group [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920001228 polyisocyanate Polymers 0.000 description 2
- 239000005056 polyisocyanate Substances 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 2
- 125000001567 quinoxalinyl group Chemical class N1=C(C=NC2=CC=CC=C12)* 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- HJUGFYREWKUQJT-UHFFFAOYSA-N tetrabromomethane Chemical compound BrC(Br)(Br)Br HJUGFYREWKUQJT-UHFFFAOYSA-N 0.000 description 2
- UQMOLLPKNHFRAC-UHFFFAOYSA-N tetrabutyl silicate Chemical compound CCCCO[Si](OCCCC)(OCCCC)OCCCC UQMOLLPKNHFRAC-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical compound C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 2
- ZQZCOBSUOFHDEE-UHFFFAOYSA-N tetrapropyl silicate Chemical compound CCCO[Si](OCCC)(OCCC)OCCC ZQZCOBSUOFHDEE-UHFFFAOYSA-N 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 2
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 2
- JLGLQAWTXXGVEM-UHFFFAOYSA-N triethylene glycol monomethyl ether Chemical compound COCCOCCOCCO JLGLQAWTXXGVEM-UHFFFAOYSA-N 0.000 description 2
- JLGNHOJUQFHYEZ-UHFFFAOYSA-N trimethoxy(3,3,3-trifluoropropyl)silane Chemical compound CO[Si](OC)(OC)CCC(F)(F)F JLGNHOJUQFHYEZ-UHFFFAOYSA-N 0.000 description 2
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 2
- AXJAWMUPFHKOHY-UHFFFAOYSA-N trimethyl(octadecyl)silane Chemical compound CCCCCCCCCCCCCCCCCC[Si](C)(C)C AXJAWMUPFHKOHY-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- GIRKRMUMWJFNRI-UHFFFAOYSA-N tris(dimethylamino)silicon Chemical compound CN(C)[Si](N(C)C)N(C)C GIRKRMUMWJFNRI-UHFFFAOYSA-N 0.000 description 2
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 2
- 229920006337 unsaturated polyester resin Polymers 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 150000003755 zirconium compounds Chemical class 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- CNGTXGHYZBQUQS-UHFFFAOYSA-N ((1-(2-methoxyethoxy)ethoxy)methyl)benzene Chemical compound COCCOC(C)OCC1=CC=CC=C1 CNGTXGHYZBQUQS-UHFFFAOYSA-N 0.000 description 1
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- BVNZLSHMOBSFKP-UHFFFAOYSA-N (2-methylpropan-2-yl)oxysilane Chemical compound CC(C)(C)O[SiH3] BVNZLSHMOBSFKP-UHFFFAOYSA-N 0.000 description 1
- FGOSBCXOMBLILW-UHFFFAOYSA-N (2-oxo-1,2-diphenylethyl) benzoate Chemical compound C=1C=CC=CC=1C(=O)OC(C=1C=CC=CC=1)C(=O)C1=CC=CC=C1 FGOSBCXOMBLILW-UHFFFAOYSA-N 0.000 description 1
- MLIWQXBKMZNZNF-PWDIZTEBSA-N (2e,6e)-2,6-bis[(4-azidophenyl)methylidene]-4-methylcyclohexan-1-one Chemical compound O=C1\C(=C\C=2C=CC(=CC=2)N=[N+]=[N-])CC(C)C\C1=C/C1=CC=C(N=[N+]=[N-])C=C1 MLIWQXBKMZNZNF-PWDIZTEBSA-N 0.000 description 1
- LGPAKRMZNPYPMG-UHFFFAOYSA-N (3-hydroxy-2-prop-2-enoyloxypropyl) prop-2-enoate Chemical compound C=CC(=O)OC(CO)COC(=O)C=C LGPAKRMZNPYPMG-UHFFFAOYSA-N 0.000 description 1
- PSGCQDPCAWOCSH-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) prop-2-enoate Chemical compound C1CC2(C)C(OC(=O)C=C)CC1C2(C)C PSGCQDPCAWOCSH-UHFFFAOYSA-N 0.000 description 1
- LTQBNYCMVZQRSD-UHFFFAOYSA-N (4-ethenylphenyl)-trimethoxysilane Chemical compound CO[Si](OC)(OC)C1=CC=C(C=C)C=C1 LTQBNYCMVZQRSD-UHFFFAOYSA-N 0.000 description 1
- OAKFFVBGTSPYEG-UHFFFAOYSA-N (4-prop-2-enoyloxycyclohexyl) prop-2-enoate Chemical compound C=CC(=O)OC1CCC(OC(=O)C=C)CC1 OAKFFVBGTSPYEG-UHFFFAOYSA-N 0.000 description 1
- QGKMIGUHVLGJBR-UHFFFAOYSA-M (4z)-1-(3-methylbutyl)-4-[[1-(3-methylbutyl)quinolin-1-ium-4-yl]methylidene]quinoline;iodide Chemical compound [I-].C12=CC=CC=C2N(CCC(C)C)C=CC1=CC1=CC=[N+](CCC(C)C)C2=CC=CC=C12 QGKMIGUHVLGJBR-UHFFFAOYSA-M 0.000 description 1
- WUOACPNHFRMFPN-SECBINFHSA-N (S)-(-)-alpha-terpineol Chemical compound CC1=CC[C@@H](C(C)(C)O)CC1 WUOACPNHFRMFPN-SECBINFHSA-N 0.000 description 1
- RYSXWUYLAWPLES-MTOQALJVSA-N (Z)-4-hydroxypent-3-en-2-one titanium Chemical compound [Ti].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O RYSXWUYLAWPLES-MTOQALJVSA-N 0.000 description 1
- RUJPNZNXGCHGID-UHFFFAOYSA-N (Z)-beta-Terpineol Natural products CC(=C)C1CCC(C)(O)CC1 RUJPNZNXGCHGID-UHFFFAOYSA-N 0.000 description 1
- IDXCKOANSQIPGX-UHFFFAOYSA-N (acetyloxy-ethenyl-methylsilyl) acetate Chemical compound CC(=O)O[Si](C)(C=C)OC(C)=O IDXCKOANSQIPGX-UHFFFAOYSA-N 0.000 description 1
- ODIGIKRIUKFKHP-UHFFFAOYSA-N (n-propan-2-yloxycarbonylanilino) acetate Chemical compound CC(C)OC(=O)N(OC(C)=O)C1=CC=CC=C1 ODIGIKRIUKFKHP-UHFFFAOYSA-N 0.000 description 1
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- KKYDYRWEUFJLER-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,7,7,10,10,10-heptadecafluorodecyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)CCC(F)(F)F KKYDYRWEUFJLER-UHFFFAOYSA-N 0.000 description 1
- YQQFFTNDQFUNHB-UHFFFAOYSA-N 1,1-dimethylsiletane Chemical compound C[Si]1(C)CCC1 YQQFFTNDQFUNHB-UHFFFAOYSA-N 0.000 description 1
- SCEFCWXRXJZWHE-UHFFFAOYSA-N 1,2,3-tribromo-4-(2,3,4-tribromophenyl)sulfonylbenzene Chemical compound BrC1=C(Br)C(Br)=CC=C1S(=O)(=O)C1=CC=C(Br)C(Br)=C1Br SCEFCWXRXJZWHE-UHFFFAOYSA-N 0.000 description 1
- MYWOJODOMFBVCB-UHFFFAOYSA-N 1,2,6-trimethylphenanthrene Chemical compound CC1=CC=C2C3=CC(C)=CC=C3C=CC2=C1C MYWOJODOMFBVCB-UHFFFAOYSA-N 0.000 description 1
- GJZFGDYLJLCGHT-UHFFFAOYSA-N 1,2-diethylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=C(CC)C(CC)=CC=C3SC2=C1 GJZFGDYLJLCGHT-UHFFFAOYSA-N 0.000 description 1
- YFKBXYGUSOXJGS-UHFFFAOYSA-N 1,3-Diphenyl-2-propanone Chemical compound C=1C=CC=CC=1CC(=O)CC1=CC=CC=C1 YFKBXYGUSOXJGS-UHFFFAOYSA-N 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- VNQXSTWCDUXYEZ-UHFFFAOYSA-N 1,7,7-trimethylbicyclo[2.2.1]heptane-2,3-dione Chemical compound C1CC2(C)C(=O)C(=O)C1C2(C)C VNQXSTWCDUXYEZ-UHFFFAOYSA-N 0.000 description 1
- WGYZMNBUZFHYRX-UHFFFAOYSA-N 1-(1-methoxypropan-2-yloxy)propan-2-ol Chemical compound COCC(C)OCC(C)O WGYZMNBUZFHYRX-UHFFFAOYSA-N 0.000 description 1
- QWOZZTWBWQMEPD-UHFFFAOYSA-N 1-(2-ethoxypropoxy)propan-2-ol Chemical compound CCOC(C)COCC(C)O QWOZZTWBWQMEPD-UHFFFAOYSA-N 0.000 description 1
- VMCRQYHCDSXNLW-UHFFFAOYSA-N 1-(4-tert-butylphenyl)-2,2-dichloroethanone Chemical compound CC(C)(C)C1=CC=C(C(=O)C(Cl)Cl)C=C1 VMCRQYHCDSXNLW-UHFFFAOYSA-N 0.000 description 1
- VERMWGQSKPXSPZ-BUHFOSPRSA-N 1-[(e)-2-phenylethenyl]anthracene Chemical class C=1C=CC2=CC3=CC=CC=C3C=C2C=1\C=C\C1=CC=CC=C1 VERMWGQSKPXSPZ-BUHFOSPRSA-N 0.000 description 1
- XUIXZBXRQFZHIT-UHFFFAOYSA-N 1-[1-(1-hydroxypropan-2-yloxy)propan-2-yloxy]-3-methoxypropan-2-ol Chemical compound COCC(O)COC(C)COC(C)CO XUIXZBXRQFZHIT-UHFFFAOYSA-N 0.000 description 1
- WKBPZYKAUNRMKP-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)pentyl]1,2,4-triazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1C(CCC)CN1C=NC=N1 WKBPZYKAUNRMKP-UHFFFAOYSA-N 0.000 description 1
- ZDQNWDNMNKSMHI-UHFFFAOYSA-N 1-[2-(2-prop-2-enoyloxypropoxy)propoxy]propan-2-yl prop-2-enoate Chemical compound C=CC(=O)OC(C)COC(C)COCC(C)OC(=O)C=C ZDQNWDNMNKSMHI-UHFFFAOYSA-N 0.000 description 1
- KFBUECDOROPEBI-UHFFFAOYSA-N 1-butoxyethane-1,2-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.CCCCOC(O)CO KFBUECDOROPEBI-UHFFFAOYSA-N 0.000 description 1
- LIPRQQHINVWJCH-UHFFFAOYSA-N 1-ethoxypropan-2-yl acetate Chemical compound CCOCC(C)OC(C)=O LIPRQQHINVWJCH-UHFFFAOYSA-N 0.000 description 1
- GKMWWXGSJSEDLF-UHFFFAOYSA-N 1-methoxyethane-1,2-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(O)CO GKMWWXGSJSEDLF-UHFFFAOYSA-N 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- SFSLTRCPISPSKB-UHFFFAOYSA-N 10-methylideneanthracen-9-one Chemical compound C1=CC=C2C(=C)C3=CC=CC=C3C(=O)C2=C1 SFSLTRCPISPSKB-UHFFFAOYSA-N 0.000 description 1
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2,2'-azo-bis-isobutyronitrile Substances N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 1
- FIADVASZMLCQIF-UHFFFAOYSA-N 2,2,4,4,6,6,8,8-octamethyl-1,3,5,7,2,4,6,8-tetrazatetrasilocane Chemical compound C[Si]1(C)N[Si](C)(C)N[Si](C)(C)N[Si](C)(C)N1 FIADVASZMLCQIF-UHFFFAOYSA-N 0.000 description 1
- WGGNJZRNHUJNEM-UHFFFAOYSA-N 2,2,4,4,6,6-hexamethyl-1,3,5,2,4,6-triazatrisilinane Chemical compound C[Si]1(C)N[Si](C)(C)N[Si](C)(C)N1 WGGNJZRNHUJNEM-UHFFFAOYSA-N 0.000 description 1
- ANZPUCVQARFCDW-UHFFFAOYSA-N 2,2,4,4,6,6-hexamethyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocane Chemical compound C[Si]1(C)O[SiH2]O[Si](C)(C)O[Si](C)(C)O1 ANZPUCVQARFCDW-UHFFFAOYSA-N 0.000 description 1
- GKZPEYIPJQHPNC-UHFFFAOYSA-N 2,2-bis(hydroxymethyl)propane-1,3-diol prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OCC(CO)(CO)CO GKZPEYIPJQHPNC-UHFFFAOYSA-N 0.000 description 1
- PIZHFBODNLEQBL-UHFFFAOYSA-N 2,2-diethoxy-1-phenylethanone Chemical compound CCOC(OCC)C(=O)C1=CC=CC=C1 PIZHFBODNLEQBL-UHFFFAOYSA-N 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- MIGVPIXONIAZHK-UHFFFAOYSA-N 2,2-dimethylpropane-1,3-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OCC(C)(C)CO MIGVPIXONIAZHK-UHFFFAOYSA-N 0.000 description 1
- PUGOMSLRUSTQGV-UHFFFAOYSA-N 2,3-di(prop-2-enoyloxy)propyl prop-2-enoate Chemical compound C=CC(=O)OCC(OC(=O)C=C)COC(=O)C=C PUGOMSLRUSTQGV-UHFFFAOYSA-N 0.000 description 1
- QRIMLDXJAPZHJE-UHFFFAOYSA-N 2,3-dihydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(O)CO QRIMLDXJAPZHJE-UHFFFAOYSA-N 0.000 description 1
- OWPUOLBODXJOKH-UHFFFAOYSA-N 2,3-dihydroxypropyl prop-2-enoate Chemical compound OCC(O)COC(=O)C=C OWPUOLBODXJOKH-UHFFFAOYSA-N 0.000 description 1
- MVWPVABZQQJTPL-UHFFFAOYSA-N 2,3-diphenylcyclohexa-2,5-diene-1,4-dione Chemical class O=C1C=CC(=O)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 MVWPVABZQQJTPL-UHFFFAOYSA-N 0.000 description 1
- URZHQOCYXDNFGN-UHFFFAOYSA-N 2,4,6-trimethyl-2,4,6-tris(3,3,3-trifluoropropyl)-1,3,5,2,4,6-trioxatrisilinane Chemical compound FC(F)(F)CC[Si]1(C)O[Si](C)(CCC(F)(F)F)O[Si](C)(CCC(F)(F)F)O1 URZHQOCYXDNFGN-UHFFFAOYSA-N 0.000 description 1
- BVTLTBONLZSBJC-UHFFFAOYSA-N 2,4,6-tris(ethenyl)-2,4,6-trimethyl-1,3,5,2,4,6-trioxatrisilinane Chemical compound C=C[Si]1(C)O[Si](C)(C=C)O[Si](C)(C=C)O1 BVTLTBONLZSBJC-UHFFFAOYSA-N 0.000 description 1
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 1
- YHYCMHWTYHPIQS-UHFFFAOYSA-N 2-(2-hydroxyethoxy)-1-methoxyethanol Chemical compound COC(O)COCCO YHYCMHWTYHPIQS-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- WMYINDVYGQKYMI-UHFFFAOYSA-N 2-[2,2-bis(hydroxymethyl)butoxymethyl]-2-ethylpropane-1,3-diol Chemical compound CCC(CO)(CO)COCC(CC)(CO)CO WMYINDVYGQKYMI-UHFFFAOYSA-N 0.000 description 1
- WFSMVVDJSNMRAR-UHFFFAOYSA-N 2-[2-(2-ethoxyethoxy)ethoxy]ethanol Chemical compound CCOCCOCCOCCO WFSMVVDJSNMRAR-UHFFFAOYSA-N 0.000 description 1
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 1
- HEQOJEGTZCTHCF-UHFFFAOYSA-N 2-amino-1-phenylethanone Chemical compound NCC(=O)C1=CC=CC=C1 HEQOJEGTZCTHCF-UHFFFAOYSA-N 0.000 description 1
- DZZAHLOABNWIFA-UHFFFAOYSA-N 2-butoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCCCC)C(=O)C1=CC=CC=C1 DZZAHLOABNWIFA-UHFFFAOYSA-N 0.000 description 1
- NQBXSWAWVZHKBZ-UHFFFAOYSA-N 2-butoxyethyl acetate Chemical compound CCCCOCCOC(C)=O NQBXSWAWVZHKBZ-UHFFFAOYSA-N 0.000 description 1
- PTJDGKYFJYEAOK-UHFFFAOYSA-N 2-butoxyethyl prop-2-enoate Chemical compound CCCCOCCOC(=O)C=C PTJDGKYFJYEAOK-UHFFFAOYSA-N 0.000 description 1
- FPKCTSIVDAWGFA-UHFFFAOYSA-N 2-chloroanthracene-9,10-dione Chemical compound C1=CC=C2C(=O)C3=CC(Cl)=CC=C3C(=O)C2=C1 FPKCTSIVDAWGFA-UHFFFAOYSA-N 0.000 description 1
- ZCDADJXRUCOCJE-UHFFFAOYSA-N 2-chlorothioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(Cl)=CC=C3SC2=C1 ZCDADJXRUCOCJE-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- KYFDXXXNUGBKLT-UHFFFAOYSA-N 2-ethoxyethynyl(dimethyl)silane Chemical compound CCOC#C[SiH](C)C KYFDXXXNUGBKLT-UHFFFAOYSA-N 0.000 description 1
- XMLYCEVDHLAQEL-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1 XMLYCEVDHLAQEL-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- GWZMWHWAWHPNHN-UHFFFAOYSA-N 2-hydroxypropyl prop-2-enoate Chemical compound CC(O)COC(=O)C=C GWZMWHWAWHPNHN-UHFFFAOYSA-N 0.000 description 1
- 125000004200 2-methoxyethyl group Chemical group [H]C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- HFCUBKYHMMPGBY-UHFFFAOYSA-N 2-methoxyethyl prop-2-enoate Chemical compound COCCOC(=O)C=C HFCUBKYHMMPGBY-UHFFFAOYSA-N 0.000 description 1
- VUGMARFZKDASCX-UHFFFAOYSA-N 2-methyl-N-silylpropan-2-amine Chemical compound CC(C)(C)N[SiH3] VUGMARFZKDASCX-UHFFFAOYSA-N 0.000 description 1
- SDTMFDGELKWGFT-UHFFFAOYSA-N 2-methylpropan-2-olate Chemical compound CC(C)(C)[O-] SDTMFDGELKWGFT-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- MYISVPVWAQRUTL-UHFFFAOYSA-N 2-methylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C)=CC=C3SC2=C1 MYISVPVWAQRUTL-UHFFFAOYSA-N 0.000 description 1
- UMWZLYTVXQBTTE-UHFFFAOYSA-N 2-pentylanthracene-9,10-dione Chemical compound C1=CC=C2C(=O)C3=CC(CCCCC)=CC=C3C(=O)C2=C1 UMWZLYTVXQBTTE-UHFFFAOYSA-N 0.000 description 1
- RZVINYQDSSQUKO-UHFFFAOYSA-N 2-phenoxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC1=CC=CC=C1 RZVINYQDSSQUKO-UHFFFAOYSA-N 0.000 description 1
- KTALPKYXQZGAEG-UHFFFAOYSA-N 2-propan-2-ylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C(C)C)=CC=C3SC2=C1 KTALPKYXQZGAEG-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- YTPSFXZMJKMUJE-UHFFFAOYSA-N 2-tert-butylanthracene-9,10-dione Chemical compound C1=CC=C2C(=O)C3=CC(C(C)(C)C)=CC=C3C(=O)C2=C1 YTPSFXZMJKMUJE-UHFFFAOYSA-N 0.000 description 1
- MGADZUXDNSDTHW-UHFFFAOYSA-N 2H-pyran Chemical compound C1OC=CC=C1 MGADZUXDNSDTHW-UHFFFAOYSA-N 0.000 description 1
- QCAHUFWKIQLBNB-UHFFFAOYSA-N 3-(3-methoxypropoxy)propan-1-ol Chemical compound COCCCOCCCO QCAHUFWKIQLBNB-UHFFFAOYSA-N 0.000 description 1
- WWZPKECNXMOJPN-UHFFFAOYSA-N 3-(4-azidophenyl)-1-phenylpropan-1-one Chemical compound C1=CC(N=[N+]=[N-])=CC=C1CCC(=O)C1=CC=CC=C1 WWZPKECNXMOJPN-UHFFFAOYSA-N 0.000 description 1
- GBCNIMMWOPWZEG-UHFFFAOYSA-N 3-(diethoxymethylsilyl)-n,n-dimethylpropan-1-amine Chemical compound CCOC(OCC)[SiH2]CCCN(C)C GBCNIMMWOPWZEG-UHFFFAOYSA-N 0.000 description 1
- VLZDYNDUVLBNLD-UHFFFAOYSA-N 3-(dimethoxymethylsilyl)propyl 2-methylprop-2-enoate Chemical compound COC(OC)[SiH2]CCCOC(=O)C(C)=C VLZDYNDUVLBNLD-UHFFFAOYSA-N 0.000 description 1
- HHHPYRGQUSPESB-UHFFFAOYSA-N 3-(dimethoxymethylsilyl)propyl prop-2-enoate Chemical compound COC(OC)[SiH2]CCCOC(=O)C=C HHHPYRGQUSPESB-UHFFFAOYSA-N 0.000 description 1
- XBIUWALDKXACEA-UHFFFAOYSA-N 3-[bis(2,4-dioxopentan-3-yl)alumanyl]pentane-2,4-dione Chemical compound CC(=O)C(C(C)=O)[Al](C(C(C)=O)C(C)=O)C(C(C)=O)C(C)=O XBIUWALDKXACEA-UHFFFAOYSA-N 0.000 description 1
- GLISOBUNKGBQCL-UHFFFAOYSA-N 3-[ethoxy(dimethyl)silyl]propan-1-amine Chemical compound CCO[Si](C)(C)CCCN GLISOBUNKGBQCL-UHFFFAOYSA-N 0.000 description 1
- VXOAPUIMMKQAFU-UHFFFAOYSA-N 3-ethenylsulfanylpropyl(trimethyl)silane Chemical compound C[Si](C)(C)CCCSC=C VXOAPUIMMKQAFU-UHFFFAOYSA-N 0.000 description 1
- UIKUBYKUYUSRSM-UHFFFAOYSA-N 3-morpholinopropylamine Chemical compound NCCCN1CCOCC1 UIKUBYKUYUSRSM-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- CCOQPNDCFRSIOZ-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2,2,2-trifluoroacetate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(F)(F)F CCOQPNDCFRSIOZ-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical group CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- KBQVDAIIQCXKPI-UHFFFAOYSA-N 3-trimethoxysilylpropyl prop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C=C KBQVDAIIQCXKPI-UHFFFAOYSA-N 0.000 description 1
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- BMVWCPGVLSILMU-UHFFFAOYSA-N 5,6-dihydrodibenzo[2,1-b:2',1'-f][7]annulen-11-one Chemical compound C1CC2=CC=CC=C2C(=O)C2=CC=CC=C21 BMVWCPGVLSILMU-UHFFFAOYSA-N 0.000 description 1
- FVCSARBUZVPSQF-UHFFFAOYSA-N 5-(2,4-dioxooxolan-3-yl)-7-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C(C(OC2=O)=O)C2C(C)=CC1C1C(=O)COC1=O FVCSARBUZVPSQF-UHFFFAOYSA-N 0.000 description 1
- XAMCLRBWHRRBCN-UHFFFAOYSA-N 5-prop-2-enoyloxypentyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCOC(=O)C=C XAMCLRBWHRRBCN-UHFFFAOYSA-N 0.000 description 1
- JTHZUSWLNCPZLX-UHFFFAOYSA-N 6-fluoro-3-methyl-2h-indazole Chemical compound FC1=CC=C2C(C)=NNC2=C1 JTHZUSWLNCPZLX-UHFFFAOYSA-N 0.000 description 1
- DXPPIEDUBFUSEZ-UHFFFAOYSA-N 6-methylheptyl prop-2-enoate Chemical compound CC(C)CCCCCOC(=O)C=C DXPPIEDUBFUSEZ-UHFFFAOYSA-N 0.000 description 1
- HUKPVYBUJRAUAG-UHFFFAOYSA-N 7-benzo[a]phenalenone Chemical compound C1=CC(C(=O)C=2C3=CC=CC=2)=C2C3=CC=CC2=C1 HUKPVYBUJRAUAG-UHFFFAOYSA-N 0.000 description 1
- ZYASLTYCYTYKFC-UHFFFAOYSA-N 9-methylidenefluorene Chemical class C1=CC=C2C(=C)C3=CC=CC=C3C2=C1 ZYASLTYCYTYKFC-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229910017107 AlOx Inorganic materials 0.000 description 1
- 238000006677 Appel reaction Methods 0.000 description 1
- 229930091051 Arenine Natural products 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Natural products OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- KSAYSSBBYMJKSA-UHFFFAOYSA-N CN(C)[SiH](C=CC)N(C)C.CN(C)[Si](C)(C)N(C)C Chemical compound CN(C)[SiH](C=CC)N(C)C.CN(C)[Si](C)(C)N(C)C KSAYSSBBYMJKSA-UHFFFAOYSA-N 0.000 description 1
- GGWSEDLARZFJRY-UHFFFAOYSA-N COC(OC)[SiH2]C1=CC=CC=C1.C1(=CC=CC=C1)[Si](C)(C)C Chemical compound COC(OC)[SiH2]C1=CC=CC=C1.C1(=CC=CC=C1)[Si](C)(C)C GGWSEDLARZFJRY-UHFFFAOYSA-N 0.000 description 1
- QOGFQIGEQMWCJB-UHFFFAOYSA-N COC(OC)[Si]CCC(F)(F)F Chemical compound COC(OC)[Si]CCC(F)(F)F QOGFQIGEQMWCJB-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 239000005046 Chlorosilane Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YYLLIJHXUHJATK-UHFFFAOYSA-N Cyclohexyl acetate Chemical compound CC(=O)OC1CCCCC1 YYLLIJHXUHJATK-UHFFFAOYSA-N 0.000 description 1
- XMSXQFUHVRWGNA-UHFFFAOYSA-N Decamethylcyclopentasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 XMSXQFUHVRWGNA-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- CTKINSOISVBQLD-UHFFFAOYSA-N Glycidol Chemical compound OCC1CO1 CTKINSOISVBQLD-UHFFFAOYSA-N 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910000799 K alloy Inorganic materials 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- NQSMEZJWJJVYOI-UHFFFAOYSA-N Methyl 2-benzoylbenzoate Chemical compound COC(=O)C1=CC=CC=C1C(=O)C1=CC=CC=C1 NQSMEZJWJJVYOI-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N N-phenyl amine Natural products NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 1
- PYKLYTDTDCLJOL-UHFFFAOYSA-N N1=C(C=CC2=CC=CC=C12)S(=O)(=O)Cl.C1(=CC=CC2=CC=CC=C12)S(=O)(=O)Cl Chemical compound N1=C(C=CC2=CC=CC=C12)S(=O)(=O)Cl.C1(=CC=CC2=CC=CC=C12)S(=O)(=O)Cl PYKLYTDTDCLJOL-UHFFFAOYSA-N 0.000 description 1
- BRVAPKRQWKJGMF-UHFFFAOYSA-N N[SiH3].CN(C)[Si](N(C)C)(N(C)C)N(C)C Chemical compound N[SiH3].CN(C)[Si](N(C)C)(N(C)C)N(C)C BRVAPKRQWKJGMF-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- DRNPGEPMHMPIQU-UHFFFAOYSA-N O.[Ti].[Ti].CCCCO.CCCCO.CCCCO.CCCCO.CCCCO.CCCCO Chemical compound O.[Ti].[Ti].CCCCO.CCCCO.CCCCO.CCCCO.CCCCO.CCCCO DRNPGEPMHMPIQU-UHFFFAOYSA-N 0.000 description 1
- 241000282376 Panthera tigris Species 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 229910018557 Si O Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- 229910006360 Si—O—N Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 229910003087 TiOx Inorganic materials 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 229910003134 ZrOx Inorganic materials 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- GJWAPAVRQYYSTK-UHFFFAOYSA-N [(dimethyl-$l^{3}-silanyl)amino]-dimethylsilicon Chemical compound C[Si](C)N[Si](C)C GJWAPAVRQYYSTK-UHFFFAOYSA-N 0.000 description 1
- KNSXNCFKSZZHEA-UHFFFAOYSA-N [3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical class C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C KNSXNCFKSZZHEA-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- XQAXGZLFSSPBMK-UHFFFAOYSA-M [7-(dimethylamino)phenothiazin-3-ylidene]-dimethylazanium;chloride;trihydrate Chemical compound O.O.O.[Cl-].C1=CC(=[N+](C)C)C=C2SC3=CC(N(C)C)=CC=C3N=C21 XQAXGZLFSSPBMK-UHFFFAOYSA-M 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- WYUIWUCVZCRTRH-UHFFFAOYSA-N [[[ethenyl(dimethyl)silyl]amino]-dimethylsilyl]ethene Chemical compound C=C[Si](C)(C)N[Si](C)(C)C=C WYUIWUCVZCRTRH-UHFFFAOYSA-N 0.000 description 1
- PEGHITPVRNZWSI-UHFFFAOYSA-N [[bis(trimethylsilyl)amino]-dimethylsilyl]methane Chemical compound C[Si](C)(C)N([Si](C)(C)C)[Si](C)(C)C PEGHITPVRNZWSI-UHFFFAOYSA-N 0.000 description 1
- RQVFGTYFBUVGOP-UHFFFAOYSA-N [acetyloxy(dimethyl)silyl] acetate Chemical compound CC(=O)O[Si](C)(C)OC(C)=O RQVFGTYFBUVGOP-UHFFFAOYSA-N 0.000 description 1
- CNOSLBKTVBFPBB-UHFFFAOYSA-N [acetyloxy(diphenyl)silyl] acetate Chemical compound C=1C=CC=CC=1[Si](OC(C)=O)(OC(=O)C)C1=CC=CC=C1 CNOSLBKTVBFPBB-UHFFFAOYSA-N 0.000 description 1
- NOZAQBYNLKNDRT-UHFFFAOYSA-N [diacetyloxy(ethenyl)silyl] acetate Chemical compound CC(=O)O[Si](OC(C)=O)(OC(C)=O)C=C NOZAQBYNLKNDRT-UHFFFAOYSA-N 0.000 description 1
- TVJPBVNWVPUZBM-UHFFFAOYSA-N [diacetyloxy(methyl)silyl] acetate Chemical compound CC(=O)O[Si](C)(OC(C)=O)OC(C)=O TVJPBVNWVPUZBM-UHFFFAOYSA-N 0.000 description 1
- 125000004062 acenaphthenyl group Chemical group C1(CC2=CC=CC3=CC=CC1=C23)* 0.000 description 1
- 125000004054 acenaphthylenyl group Chemical group C1(=CC2=CC=CC3=CC=CC1=C23)* 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- OVKDFILSBMEKLT-UHFFFAOYSA-N alpha-Terpineol Natural products CC(=C)C1(O)CCC(C)=CC1 OVKDFILSBMEKLT-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- JPUHCPXFQIXLMW-UHFFFAOYSA-N aluminium triethoxide Chemical compound CCO[Al](OCC)OCC JPUHCPXFQIXLMW-UHFFFAOYSA-N 0.000 description 1
- 229920003180 amino resin Polymers 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- RJGDLRCDCYRQOQ-UHFFFAOYSA-N anthrone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3CC2=C1 RJGDLRCDCYRQOQ-UHFFFAOYSA-N 0.000 description 1
- 150000008425 anthrones Chemical class 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 125000003828 azulenyl group Chemical group 0.000 description 1
- 238000007611 bar coating method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- GCTPMLUUWLLESL-UHFFFAOYSA-N benzyl prop-2-enoate Chemical compound C=CC(=O)OCC1=CC=CC=C1 GCTPMLUUWLLESL-UHFFFAOYSA-N 0.000 description 1
- MRIWRLGWLMRJIW-UHFFFAOYSA-N benzyl(trimethyl)silane Chemical compound C[Si](C)(C)CC1=CC=CC=C1 MRIWRLGWLMRJIW-UHFFFAOYSA-N 0.000 description 1
- RFXODRCAZTVEOH-UHFFFAOYSA-N benzyl-ethoxy-dimethylsilane Chemical compound CCO[Si](C)(C)CC1=CC=CC=C1 RFXODRCAZTVEOH-UHFFFAOYSA-N 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 description 1
- ZNAAXKXXDQLJIX-UHFFFAOYSA-N bis(2-cyclohexyl-3-hydroxyphenyl)methanone Chemical compound C1CCCCC1C=1C(O)=CC=CC=1C(=O)C1=CC=CC(O)=C1C1CCCCC1 ZNAAXKXXDQLJIX-UHFFFAOYSA-N 0.000 description 1
- QRHCILLLMDEFSD-UHFFFAOYSA-N bis(ethenyl)-dimethylsilane Chemical compound C=C[Si](C)(C)C=C QRHCILLLMDEFSD-UHFFFAOYSA-N 0.000 description 1
- ZPOLOEWJWXZUSP-AATRIKPKSA-N bis(prop-2-enyl) (e)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C\C(=O)OCC=C ZPOLOEWJWXZUSP-AATRIKPKSA-N 0.000 description 1
- ZDWYFWIBTZJGOR-UHFFFAOYSA-N bis(trimethylsilyl)acetylene Chemical group C[Si](C)(C)C#C[Si](C)(C)C ZDWYFWIBTZJGOR-UHFFFAOYSA-N 0.000 description 1
- BNZSPXKCIAAEJK-UHFFFAOYSA-N bis(trimethylsilyl)methyl-trimethylsilane Chemical compound C[Si](C)(C)C([Si](C)(C)C)[Si](C)(C)C BNZSPXKCIAAEJK-UHFFFAOYSA-N 0.000 description 1
- 238000010504 bond cleavage reaction Methods 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 229930006711 bornane-2,3-dione Natural products 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 description 1
- MTKOCRSQUPLVTD-UHFFFAOYSA-N butan-1-olate;titanium(2+) Chemical compound CCCCO[Ti]OCCCC MTKOCRSQUPLVTD-UHFFFAOYSA-N 0.000 description 1
- 125000006226 butoxyethyl group Chemical group 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- HDJVQYDDUMXQHT-UHFFFAOYSA-N butyl(2,2-dimethoxyethenyl)silane Chemical compound C(CCC)[SiH2]C=C(OC)OC HDJVQYDDUMXQHT-UHFFFAOYSA-N 0.000 description 1
- SXPLZNMUBFBFIA-UHFFFAOYSA-N butyl(trimethoxy)silane Chemical compound CCCC[Si](OC)(OC)OC SXPLZNMUBFBFIA-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 150000001716 carbazoles Chemical class 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- SLLGVCUQYRMELA-UHFFFAOYSA-N chlorosilicon Chemical compound Cl[Si] SLLGVCUQYRMELA-UHFFFAOYSA-N 0.000 description 1
- 125000002676 chrysenyl group Chemical group C1(=CC=CC=2C3=CC=C4C=CC=CC4=C3C=CC12)* 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- KBLWLMPSVYBVDK-UHFFFAOYSA-N cyclohexyl prop-2-enoate Chemical compound C=CC(=O)OC1CCCCC1 KBLWLMPSVYBVDK-UHFFFAOYSA-N 0.000 description 1
- VMFHCJPMKUTMMQ-UHFFFAOYSA-N cyclopenta-2,4-dien-1-yl(trimethyl)silane Chemical compound C[Si](C)(C)C1C=CC=C1 VMFHCJPMKUTMMQ-UHFFFAOYSA-N 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- DDJSWKLBKSLAAZ-UHFFFAOYSA-N cyclotetrasiloxane Chemical compound O1[SiH2]O[SiH2]O[SiH2]O[SiH2]1 DDJSWKLBKSLAAZ-UHFFFAOYSA-N 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- FWLDHHJLVGRRHD-UHFFFAOYSA-N decyl prop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C=C FWLDHHJLVGRRHD-UHFFFAOYSA-N 0.000 description 1
- GWUJPMKBSYJFCK-UHFFFAOYSA-N decyl-dimethoxy-methylsilane Chemical compound CCCCCCCCCC[Si](C)(OC)OC GWUJPMKBSYJFCK-UHFFFAOYSA-N 0.000 description 1
- 238000007791 dehumidification Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 150000001983 dialkylethers Chemical class 0.000 description 1
- AFZSMODLJJCVPP-UHFFFAOYSA-N dibenzothiazol-2-yl disulfide Chemical compound C1=CC=C2SC(SSC=3SC4=CC=CC=C4N=3)=NC2=C1 AFZSMODLJJCVPP-UHFFFAOYSA-N 0.000 description 1
- PHSNFACJRATEMO-UHFFFAOYSA-N dibenzyl(dimethyl)silane Chemical compound C=1C=CC=CC=1C[Si](C)(C)CC1=CC=CC=C1 PHSNFACJRATEMO-UHFFFAOYSA-N 0.000 description 1
- OTARVPUIYXHRRB-UHFFFAOYSA-N diethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(OCC)CCCOCC1CO1 OTARVPUIYXHRRB-UHFFFAOYSA-N 0.000 description 1
- MNFGEHQPOWJJBH-UHFFFAOYSA-N diethoxy-methyl-phenylsilane Chemical compound CCO[Si](C)(OCC)C1=CC=CC=C1 MNFGEHQPOWJJBH-UHFFFAOYSA-N 0.000 description 1
- VSYLGGHSEIWGJV-UHFFFAOYSA-N diethyl(dimethoxy)silane Chemical compound CC[Si](CC)(OC)OC VSYLGGHSEIWGJV-UHFFFAOYSA-N 0.000 description 1
- QIGCTKTXDFYSPE-UHFFFAOYSA-N diethyl-methyl-phenylsilane Chemical compound CC[Si](C)(CC)C1=CC=CC=C1 QIGCTKTXDFYSPE-UHFFFAOYSA-N 0.000 description 1
- WZUCGJVWOLJJAN-UHFFFAOYSA-N diethylaminosilicon Chemical compound CCN([Si])CC WZUCGJVWOLJJAN-UHFFFAOYSA-N 0.000 description 1
- VJDVOZLYDLHLSM-UHFFFAOYSA-N diethylazanide;titanium(4+) Chemical compound [Ti+4].CC[N-]CC.CC[N-]CC.CC[N-]CC.CC[N-]CC VJDVOZLYDLHLSM-UHFFFAOYSA-N 0.000 description 1
- UCXUKTLCVSGCNR-UHFFFAOYSA-N diethylsilane Chemical compound CC[SiH2]CC UCXUKTLCVSGCNR-UHFFFAOYSA-N 0.000 description 1
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- AHUXYBVKTIBBJW-UHFFFAOYSA-N dimethoxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](OC)(OC)C1=CC=CC=C1 AHUXYBVKTIBBJW-UHFFFAOYSA-N 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- OIKHZBFJHONJJB-UHFFFAOYSA-N dimethyl(phenyl)silicon Chemical compound C[Si](C)C1=CC=CC=C1 OIKHZBFJHONJJB-UHFFFAOYSA-N 0.000 description 1
- ZBMGMUODZNQAQI-UHFFFAOYSA-N dimethyl(prop-2-enyl)silicon Chemical compound C[Si](C)CC=C ZBMGMUODZNQAQI-UHFFFAOYSA-N 0.000 description 1
- HQXKAHJBFCGGGP-UHFFFAOYSA-N dimethyl-[2-(3-methylbutoxy)ethenyl]silane Chemical compound CC(C)CCOC=C[SiH](C)C HQXKAHJBFCGGGP-UHFFFAOYSA-N 0.000 description 1
- HGSPSFLCJIQBDT-UHFFFAOYSA-N dimethyl-[2-(4-methylphenyl)ethenyl]silane Chemical compound C[SiH](C=CC1=CC=C(C=C1)C)C HGSPSFLCJIQBDT-UHFFFAOYSA-N 0.000 description 1
- KZFNONVXCZVHRD-UHFFFAOYSA-N dimethylamino(dimethyl)silicon Chemical compound CN(C)[Si](C)C KZFNONVXCZVHRD-UHFFFAOYSA-N 0.000 description 1
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 1
- UBHZUDXTHNMNLD-UHFFFAOYSA-N dimethylsilane Chemical compound C[SiH2]C UBHZUDXTHNMNLD-UHFFFAOYSA-N 0.000 description 1
- UKXCWLFBHULELL-UHFFFAOYSA-N diphenylmethanone;n-ethylethanamine Chemical compound CCNCC.C=1C=CC=CC=1C(=O)C1=CC=CC=C1 UKXCWLFBHULELL-UHFFFAOYSA-N 0.000 description 1
- PVQHOAILLPEZSC-UHFFFAOYSA-N diphenylmethanone;n-methylmethanamine Chemical compound CNC.C=1C=CC=CC=1C(=O)C1=CC=CC=C1 PVQHOAILLPEZSC-UHFFFAOYSA-N 0.000 description 1
- 125000005982 diphenylmethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- JTGAUXSVQKWNHO-UHFFFAOYSA-N ditert-butylsilicon Chemical compound CC(C)(C)[Si]C(C)(C)C JTGAUXSVQKWNHO-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- ZHKRBCQSLSTSAO-UHFFFAOYSA-N dodecyl(trimethyl)silane Chemical compound CCCCCCCCCCCC[Si](C)(C)C ZHKRBCQSLSTSAO-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 229920000775 emeraldine polymer Polymers 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- DOGXYPDTORJOGJ-UHFFFAOYSA-N ethenyl(diethyl)silicon Chemical compound CC[Si](CC)C=C DOGXYPDTORJOGJ-UHFFFAOYSA-N 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- VLNRSEGRGSDKLS-UHFFFAOYSA-N ethenyl-[4-[ethenyl(dimethyl)silyl]phenyl]-dimethylsilane Chemical compound C=C[Si](C)(C)C1=CC=C([Si](C)(C)C=C)C=C1 VLNRSEGRGSDKLS-UHFFFAOYSA-N 0.000 description 1
- BITPLIXHRASDQB-UHFFFAOYSA-N ethenyl-[ethenyl(dimethyl)silyl]oxy-dimethylsilane Chemical compound C=C[Si](C)(C)O[Si](C)(C)C=C BITPLIXHRASDQB-UHFFFAOYSA-N 0.000 description 1
- JEWCZPTVOYXPGG-UHFFFAOYSA-N ethenyl-ethoxy-dimethylsilane Chemical compound CCO[Si](C)(C)C=C JEWCZPTVOYXPGG-UHFFFAOYSA-N 0.000 description 1
- NUFVQEIPPHHQCK-UHFFFAOYSA-N ethenyl-methoxy-dimethylsilane Chemical compound CO[Si](C)(C)C=C NUFVQEIPPHHQCK-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- RSIHJDGMBDPTIM-UHFFFAOYSA-N ethoxy(trimethyl)silane Chemical compound CCO[Si](C)(C)C RSIHJDGMBDPTIM-UHFFFAOYSA-N 0.000 description 1
- HHBOIIOOTUCYQD-UHFFFAOYSA-N ethoxy-dimethyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(C)CCCOCC1CO1 HHBOIIOOTUCYQD-UHFFFAOYSA-N 0.000 description 1
- ADLWTVQIBZEAGJ-UHFFFAOYSA-N ethoxy-methyl-diphenylsilane Chemical compound C=1C=CC=CC=1[Si](C)(OCC)C1=CC=CC=C1 ADLWTVQIBZEAGJ-UHFFFAOYSA-N 0.000 description 1
- BHXIWUJLHYHGSJ-UHFFFAOYSA-N ethyl 3-ethoxypropanoate Chemical compound CCOCCC(=O)OCC BHXIWUJLHYHGSJ-UHFFFAOYSA-N 0.000 description 1
- 229940093858 ethyl acetoacetate Drugs 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 125000003914 fluoranthenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC=C4C1=C23)* 0.000 description 1
- YLQWCDOCJODRMT-UHFFFAOYSA-N fluoren-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C2=C1 YLQWCDOCJODRMT-UHFFFAOYSA-N 0.000 description 1
- 150000008376 fluorenones Chemical class 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 150000002240 furans Chemical class 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- CZWLNMOIEMTDJY-UHFFFAOYSA-N hexyl(trimethoxy)silane Chemical compound CCCCCC[Si](OC)(OC)OC CZWLNMOIEMTDJY-UHFFFAOYSA-N 0.000 description 1
- 229940083761 high-ceiling diuretics pyrazolone derivative Drugs 0.000 description 1
- 238000004050 hot filament vapor deposition Methods 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- SKWCWFYBFZIXHE-UHFFFAOYSA-K indium acetylacetonate Chemical compound CC(=O)C=C(C)O[In](OC(C)=CC(C)=O)OC(C)=CC(C)=O SKWCWFYBFZIXHE-UHFFFAOYSA-K 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229920000592 inorganic polymer Polymers 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- TYQCGQRIZGCHNB-JLAZNSOCSA-N l-ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(O)=C(O)C1=O TYQCGQRIZGCHNB-JLAZNSOCSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M methacrylate group Chemical group C(C(=C)C)(=O)[O-] CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- ZEIWWVGGEOHESL-UHFFFAOYSA-N methanol;titanium Chemical compound [Ti].OC.OC.OC.OC ZEIWWVGGEOHESL-UHFFFAOYSA-N 0.000 description 1
- POPACFLNWGUDSR-UHFFFAOYSA-N methoxy(trimethyl)silane Chemical compound CO[Si](C)(C)C POPACFLNWGUDSR-UHFFFAOYSA-N 0.000 description 1
- 229940095102 methyl benzoate Drugs 0.000 description 1
- DLNFKXNUGNBIOM-UHFFFAOYSA-N methyl(silylmethyl)silane Chemical compound C[SiH2]C[SiH3] DLNFKXNUGNBIOM-UHFFFAOYSA-N 0.000 description 1
- UIUXUFNYAYAMOE-UHFFFAOYSA-N methylsilane Chemical compound [SiH3]C UIUXUFNYAYAMOE-UHFFFAOYSA-N 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- KSVMTHKYDGMXFJ-UHFFFAOYSA-N n,n'-bis(trimethylsilyl)methanediimine Chemical compound C[Si](C)(C)N=C=N[Si](C)(C)C KSVMTHKYDGMXFJ-UHFFFAOYSA-N 0.000 description 1
- TXXWBTOATXBWDR-UHFFFAOYSA-N n,n,n',n'-tetramethylhexane-1,6-diamine Chemical compound CN(C)CCCCCCN(C)C TXXWBTOATXBWDR-UHFFFAOYSA-N 0.000 description 1
- DMQSHEKGGUOYJS-UHFFFAOYSA-N n,n,n',n'-tetramethylpropane-1,3-diamine Chemical compound CN(C)CCCN(C)C DMQSHEKGGUOYJS-UHFFFAOYSA-N 0.000 description 1
- ZSMNRKGGHXLZEC-UHFFFAOYSA-N n,n-bis(trimethylsilyl)methanamine Chemical compound C[Si](C)(C)N(C)[Si](C)(C)C ZSMNRKGGHXLZEC-UHFFFAOYSA-N 0.000 description 1
- OOHAUGDGCWURIT-UHFFFAOYSA-N n,n-dipentylpentan-1-amine Chemical compound CCCCCN(CCCCC)CCCCC OOHAUGDGCWURIT-UHFFFAOYSA-N 0.000 description 1
- NLSXOLJPOYUIKX-UHFFFAOYSA-N n-(3-trimethylsilylpropyl)butan-1-amine Chemical compound CCCCNCCC[Si](C)(C)C NLSXOLJPOYUIKX-UHFFFAOYSA-N 0.000 description 1
- BOYBHDHQCOROOJ-UHFFFAOYSA-N n-[butylamino(dimethyl)silyl]butan-1-amine Chemical compound CCCCN[Si](C)(C)NCCCC BOYBHDHQCOROOJ-UHFFFAOYSA-N 0.000 description 1
- NGAVXENYOVMGDJ-UHFFFAOYSA-N n-[ethylamino(dimethyl)silyl]ethanamine Chemical compound CCN[Si](C)(C)NCC NGAVXENYOVMGDJ-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- QHUOBLDKFGCVCG-UHFFFAOYSA-N n-methyl-n-trimethylsilylacetamide Chemical compound CC(=O)N(C)[Si](C)(C)C QHUOBLDKFGCVCG-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 239000000025 natural resin Substances 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 150000002908 osmium compounds Chemical class 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical group C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 150000007978 oxazole derivatives Chemical class 0.000 description 1
- 125000001820 oxy group Chemical group [*:1]O[*:2] 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- DSQPRECRRGZSCV-UHFFFAOYSA-N penta-1,4-dien-3-yl(phenyl)silane Chemical compound C=CC([SiH2]c1ccccc1)C=C DSQPRECRRGZSCV-UHFFFAOYSA-N 0.000 description 1
- ULDDEWDFUNBUCM-UHFFFAOYSA-N pentyl prop-2-enoate Chemical compound CCCCCOC(=O)C=C ULDDEWDFUNBUCM-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 125000001828 phenalenyl group Chemical group C1(C=CC2=CC=CC3=CC=CC1=C23)* 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- PARWUHTVGZSQPD-UHFFFAOYSA-N phenylsilane Chemical compound [SiH3]C1=CC=CC=C1 PARWUHTVGZSQPD-UHFFFAOYSA-N 0.000 description 1
- XVCSANIKJQVZCJ-UHFFFAOYSA-N phenylsilylmethyl acetate Chemical compound C(C)(=O)OC[SiH2]C1=CC=CC=C1 XVCSANIKJQVZCJ-UHFFFAOYSA-N 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 229960005235 piperonyl butoxide Drugs 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- QCTJRYGLPAFRMS-UHFFFAOYSA-N prop-2-enoic acid;1,3,5-triazine-2,4,6-triamine Chemical compound OC(=O)C=C.NC1=NC(N)=NC(N)=N1 QCTJRYGLPAFRMS-UHFFFAOYSA-N 0.000 description 1
- QTECDUFMBMSHKR-UHFFFAOYSA-N prop-2-enyl prop-2-enoate Chemical compound C=CCOC(=O)C=C QTECDUFMBMSHKR-UHFFFAOYSA-N 0.000 description 1
- KVIKMJYUMZPZFU-UHFFFAOYSA-N propan-2-ol;titanium Chemical compound [Ti].CC(C)O.CC(C)O KVIKMJYUMZPZFU-UHFFFAOYSA-N 0.000 description 1
- LYBIZMNPXTXVMV-UHFFFAOYSA-N propan-2-yl prop-2-enoate Chemical compound CC(C)OC(=O)C=C LYBIZMNPXTXVMV-UHFFFAOYSA-N 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- UIDUKLCLJMXFEO-UHFFFAOYSA-N propylsilane Chemical compound CCC[SiH3] UIDUKLCLJMXFEO-UHFFFAOYSA-N 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical class O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- 125000001725 pyrenyl group Chemical group 0.000 description 1
- WVIICGIFSIBFOG-UHFFFAOYSA-N pyrylium Chemical compound C1=CC=[O+]C=C1 WVIICGIFSIBFOG-UHFFFAOYSA-N 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical class C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- DLJHXMRDIWMMGO-UHFFFAOYSA-N quinolin-8-ol;zinc Chemical compound [Zn].C1=CN=C2C(O)=CC=CC2=C1.C1=CN=C2C(O)=CC=CC2=C1 DLJHXMRDIWMMGO-UHFFFAOYSA-N 0.000 description 1
- 229910052704 radon Inorganic materials 0.000 description 1
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 239000001022 rhodamine dye Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- QJVXKWHHAMZTBY-GCPOEHJPSA-N syringin Chemical compound COC1=CC(\C=C\CO)=CC(OC)=C1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 QJVXKWHHAMZTBY-GCPOEHJPSA-N 0.000 description 1
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 125000001935 tetracenyl group Chemical group C1(=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C12)* 0.000 description 1
- UVVUGWBBCDFNSD-UHFFFAOYSA-N tetraisocyanatosilane Chemical compound O=C=N[Si](N=C=O)(N=C=O)N=C=O UVVUGWBBCDFNSD-UHFFFAOYSA-N 0.000 description 1
- UFHILTCGAOPTOV-UHFFFAOYSA-N tetrakis(ethenyl)silane Chemical compound C=C[Si](C=C)(C=C)C=C UFHILTCGAOPTOV-UHFFFAOYSA-N 0.000 description 1
- 125000003698 tetramethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- ZUEKXCXHTXJYAR-UHFFFAOYSA-N tetrapropan-2-yl silicate Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)OC(C)C ZUEKXCXHTXJYAR-UHFFFAOYSA-N 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 150000003577 thiophenes Chemical class 0.000 description 1
- IBBLKSWSCDAPIF-UHFFFAOYSA-N thiopyran Chemical compound S1C=CC=C=C1 IBBLKSWSCDAPIF-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- HLLICFJUWSZHRJ-UHFFFAOYSA-N tioxidazole Chemical compound CCCOC1=CC=C2N=C(NC(=O)OC)SC2=C1 HLLICFJUWSZHRJ-UHFFFAOYSA-N 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- JMXKSZRRTHPKDL-UHFFFAOYSA-N titanium ethoxide Chemical compound [Ti+4].CC[O-].CC[O-].CC[O-].CC[O-] JMXKSZRRTHPKDL-UHFFFAOYSA-N 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- WOZZOSDBXABUFO-UHFFFAOYSA-N tri(butan-2-yloxy)alumane Chemical compound [Al+3].CCC(C)[O-].CCC(C)[O-].CCC(C)[O-] WOZZOSDBXABUFO-UHFFFAOYSA-N 0.000 description 1
- YZVRVDPMGYFCGL-UHFFFAOYSA-N triacetyloxysilyl acetate Chemical compound CC(=O)O[Si](OC(C)=O)(OC(C)=O)OC(C)=O YZVRVDPMGYFCGL-UHFFFAOYSA-N 0.000 description 1
- 125000005259 triarylamine group Chemical group 0.000 description 1
- MYWQGROTKMBNKN-UHFFFAOYSA-N tributoxyalumane Chemical compound [Al+3].CCCC[O-].CCCC[O-].CCCC[O-] MYWQGROTKMBNKN-UHFFFAOYSA-N 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- LXEXBJXDGVGRAR-UHFFFAOYSA-N trichloro(trichlorosilyl)silane Chemical compound Cl[Si](Cl)(Cl)[Si](Cl)(Cl)Cl LXEXBJXDGVGRAR-UHFFFAOYSA-N 0.000 description 1
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 1
- 239000005052 trichlorosilane Substances 0.000 description 1
- FRGPKMWIYVTFIQ-UHFFFAOYSA-N triethoxy(3-isocyanatopropyl)silane Chemical compound CCO[Si](OCC)(OCC)CCCN=C=O FRGPKMWIYVTFIQ-UHFFFAOYSA-N 0.000 description 1
- XVYIJOWQJOQFBG-UHFFFAOYSA-N triethoxy(fluoro)silane Chemical compound CCO[Si](F)(OCC)OCC XVYIJOWQJOQFBG-UHFFFAOYSA-N 0.000 description 1
- JCVQKRGIASEUKR-UHFFFAOYSA-N triethoxy(phenyl)silane Chemical compound CCO[Si](OCC)(OCC)C1=CC=CC=C1 JCVQKRGIASEUKR-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- LBNVCJHJRYJVPK-UHFFFAOYSA-N trimethyl(4-trimethylsilylbuta-1,3-diynyl)silane Chemical compound C[Si](C)(C)C#CC#C[Si](C)(C)C LBNVCJHJRYJVPK-UHFFFAOYSA-N 0.000 description 1
- CDGIKLPUDRGJQN-UHFFFAOYSA-N trimethyl(octoxy)silane Chemical compound CCCCCCCCO[Si](C)(C)C CDGIKLPUDRGJQN-UHFFFAOYSA-N 0.000 description 1
- KXFSUVJPEQYUGN-UHFFFAOYSA-N trimethyl(phenyl)silane Chemical compound C[Si](C)(C)C1=CC=CC=C1 KXFSUVJPEQYUGN-UHFFFAOYSA-N 0.000 description 1
- DCGLONGLPGISNX-UHFFFAOYSA-N trimethyl(prop-1-ynyl)silane Chemical compound CC#C[Si](C)(C)C DCGLONGLPGISNX-UHFFFAOYSA-N 0.000 description 1
- HYWCXWRMUZYRPH-UHFFFAOYSA-N trimethyl(prop-2-enyl)silane Chemical compound C[Si](C)(C)CC=C HYWCXWRMUZYRPH-UHFFFAOYSA-N 0.000 description 1
- GYIODRUWWNNGPI-UHFFFAOYSA-N trimethyl(trimethylsilylmethyl)silane Chemical compound C[Si](C)(C)C[Si](C)(C)C GYIODRUWWNNGPI-UHFFFAOYSA-N 0.000 description 1
- PQDJYEQOELDLCP-UHFFFAOYSA-N trimethylsilane Chemical compound C[SiH](C)C PQDJYEQOELDLCP-UHFFFAOYSA-N 0.000 description 1
- SIOVKLKJSOKLIF-HJWRWDBZSA-N trimethylsilyl (1z)-n-trimethylsilylethanimidate Chemical compound C[Si](C)(C)OC(/C)=N\[Si](C)(C)C SIOVKLKJSOKLIF-HJWRWDBZSA-N 0.000 description 1
- VFFKJOXNCSJSAQ-UHFFFAOYSA-N trimethylsilyl benzoate Chemical compound C[Si](C)(C)OC(=O)C1=CC=CC=C1 VFFKJOXNCSJSAQ-UHFFFAOYSA-N 0.000 description 1
- CWMFRHBXRUITQE-UHFFFAOYSA-N trimethylsilylacetylene Chemical group C[Si](C)(C)C#C CWMFRHBXRUITQE-UHFFFAOYSA-N 0.000 description 1
- 125000003960 triphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C3=CC=CC=C3C12)* 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- PKRKCDBTXBGLKV-UHFFFAOYSA-N tris(ethenyl)-methylsilane Chemical compound C=C[Si](C)(C=C)C=C PKRKCDBTXBGLKV-UHFFFAOYSA-N 0.000 description 1
- FUJPAQRDHMJPBB-UHFFFAOYSA-N tris(ethenyl)-phenylsilane Chemical compound C=C[Si](C=C)(C=C)C1=CC=CC=C1 FUJPAQRDHMJPBB-UHFFFAOYSA-N 0.000 description 1
- SCHZCUMIENIQMY-UHFFFAOYSA-N tris(trimethylsilyl)silicon Chemical compound C[Si](C)(C)[Si]([Si](C)(C)C)[Si](C)(C)C SCHZCUMIENIQMY-UHFFFAOYSA-N 0.000 description 1
- VEDJZFSRVVQBIL-UHFFFAOYSA-N trisilane Chemical compound [SiH3][SiH2][SiH3] VEDJZFSRVVQBIL-UHFFFAOYSA-N 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/401—Oxides containing silicon
- C23C16/402—Silicon dioxide
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/403—Oxides of aluminium, magnesium or beryllium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45555—Atomic layer deposition [ALD] applied in non-semiconductor technology
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
Landscapes
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Laminated Bodies (AREA)
- Chemical Vapour Deposition (AREA)
- Electroluminescent Light Sources (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Description
本発明は、ガスバリア性フィルム、その製造方法、およびこれを用いた電子デバイスに関する。 The present invention relates to a gas barrier film, a method for producing the same, and an electronic device using the same.
従来、プラスチック基板やフィルムの表面に、酸化アルミニウム、酸化マグネシウム、酸化ケイ素等の金属酸化物を含む薄膜(ガスバリア層)を形成したガスバリア性フィルムが、食品、医薬品等の分野で物品を包装する用途に用いられている。ガスバリア性フィルムを用いることによって、水蒸気や酸素等のガスによる物品の変質を防止することができる。 Conventionally, a gas barrier film in which a thin film (gas barrier layer) containing a metal oxide such as aluminum oxide, magnesium oxide, or silicon oxide is formed on the surface of a plastic substrate or film is used for packaging articles in the fields of food, medicine, etc. It is used for. By using the gas barrier film, it is possible to prevent alteration of the article due to gas such as water vapor or oxygen.
近年、このような水蒸気や酸素等の透過を防ぐガスバリア性フィルムについて、有機エレクトロルミネッセンス(EL)素子、液晶表示(LCD)素子等の電子デバイスへの展開が要望され、多くの検討がなされている。これらの電子デバイスにおいては、高いガスバリア性、例えば、ガラス基材に匹敵するガスバリア性が要求される。しかし、このような高いバリア性を有するガスバリア性フィルムは未だ得られていないのが現状である。 In recent years, with regard to such a gas barrier film that prevents permeation of water vapor, oxygen, and the like, development for electronic devices such as an organic electroluminescence (EL) element and a liquid crystal display (LCD) element has been requested, and many studies have been made. . In these electronic devices, a high gas barrier property, for example, a gas barrier property comparable to a glass substrate is required. However, the present situation is that a gas barrier film having such a high barrier property has not yet been obtained.
ガスバリア性フィルムを製造する方法としては、気相法による無機成膜方法を利用した方法が知られている。当該気相法による無機成膜方法としては、フィルム等の基材上に、プラズマCVD法(Chemical Vapor Deposition:化学気相成長法、化学蒸着法)によって金属(テトラエトキシシラン(TEOS)に代表される有機ケイ素化合物等)を酸素プラズマで酸化しながら蒸着して無機膜(ガスバリア層)を形成する方法、および半導体レーザー等を用いて金属を蒸発させて、酸素の存在下で基板上に堆積する真空蒸着法やスパッタ法により無機膜(ガスバリア層)を形成する方法等が挙げられる。 As a method for producing a gas barrier film, a method using an inorganic film forming method by a vapor phase method is known. As an inorganic film-forming method by the vapor phase method, a metal (tetraethoxysilane (TEOS)) is typically formed on a substrate such as a film by a plasma CVD method (Chemical Vapor Deposition). A method of forming an inorganic film (gas barrier layer) by oxidizing while oxidizing with an oxygen plasma, and evaporating metal using a semiconductor laser or the like, and depositing it on the substrate in the presence of oxygen Examples thereof include a method of forming an inorganic film (gas barrier layer) by vacuum deposition or sputtering.
これらの気相法による無機成膜方法は、食品、医薬品等の分野で物品を包装に用いられるガスバリア性フィルムの製造に用いられてきた。そして近年、当該無機成膜方法により製造されたガスバリア性フィルムを電子デバイスに適用すべく、さらに高いガスバリア性を得るための検討が行われている。 These inorganic film-forming methods by the vapor phase method have been used for the production of gas barrier films used for packaging articles in the fields of food, medicine and the like. In recent years, in order to apply a gas barrier film produced by the inorganic film forming method to an electronic device, studies for obtaining a higher gas barrier property have been conducted.
かような検討としては、例えば、蒸着法により形成された金属酸化物層上にポリシラザンを含む塗布液を改質処理して得られる酸化物層を形成させた積層体のガスバリア性フィルムが開示されている(例えば、特開平8−281861号公報、特開2012−106421号公報参照)。 As such studies, for example, a gas barrier film of a laminate in which an oxide layer obtained by modifying a coating liquid containing polysilazane on a metal oxide layer formed by a vapor deposition method is disclosed. (For example, refer to Japanese Patent Application Laid-Open Nos. 8-281861 and 2012-106421).
しかしながら、上記特開平8−281861号公報または特開2012−106421号公報に記載の従来のガスバリア性フィルムでは、ガスバリア性能は高いものの、フィルムを屈曲させた場合に、ガスバリア性能が低下する場合があった。特に、高温高湿条件下にフィルムが配置された場合、フィルムのガスバリア性能の低下が顕著となり、要求されるガスバリア性能に満たないものとなっていた。 However, the conventional gas barrier film described in the above Japanese Patent Application Laid-Open No. 8-28161 or Japanese Patent Application Laid-Open No. 2012-106421 has a high gas barrier performance, but the gas barrier performance may be lowered when the film is bent. It was. In particular, when the film is placed under high temperature and high humidity conditions, the gas barrier performance of the film is significantly reduced, and the required gas barrier performance is not achieved.
本発明は、上記課題に鑑みなされたものであり、高温高湿条件下であっても十分なガスバリア性能を示すガスバリア性フィルムを提供することを目的とする。 This invention is made | formed in view of the said subject, and it aims at providing the gas-barrier film which shows sufficient gas barrier performance even under high-temperature, high-humidity conditions.
本発明者らは、上記の問題を解決すべく、鋭意研究を行った。その結果、基材、第1の層、第2の層、および第3の層をこの順に含み、前記第1の層は、ケイ素、アルミニウムおよびチタンからなる群より選択される少なくとも1種の酸化物、窒化物、酸窒化物または酸炭化物の少なくとも1種を含み、かつ化学蒸着法により形成され、前記第2の層は、無機酸化物を含み、かつ原子層堆積法により形成され、前記第3の層は、ケイ素化合物を含有する液を塗布して形成される塗膜を改質処理して得られる、ガスバリア性フィルム、とすることにより、上記課題が解決された優れたガスバリア性フィルムが得られることを見出した。 The present inventors have intensively studied to solve the above problems. As a result, the substrate, the first layer, the second layer, and the third layer are included in this order, and the first layer is at least one oxidation selected from the group consisting of silicon, aluminum, and titanium. The second layer includes an inorganic oxide and is formed by an atomic layer deposition method, and includes at least one selected from the group consisting of oxide, nitride, oxynitride, and oxycarbide. The layer 3 is a gas barrier film obtained by modifying a coating film formed by applying a liquid containing a silicon compound, whereby an excellent gas barrier film in which the above problems have been solved is obtained. It was found that it can be obtained.
本発明は、基材、第1の層、第2の層、および第3の層をこの順に含み、第1の層は、ケイ素、アルミニウムおよびチタンからなる群より選択される少なくとも1種の酸化物、窒化物、酸窒化物または酸炭化物の少なくとも1種を含み、かつ化学蒸着法により形成され、第2の層は、無機酸化物を含み、かつ原子層堆積法により形成され、第3の層は、ケイ素化合物を含有する液を塗布して形成される塗膜を改質処理して得られる、ガスバリア性フィルム、に関する。本発明のガスバリア性フィルムは、優れたガスバリア性を有するとともに、屈曲時または高温高湿条件下であっても十分なガスバリア性能を示す。 The present invention includes a substrate, a first layer, a second layer, and a third layer in this order, and the first layer is at least one oxidation selected from the group consisting of silicon, aluminum, and titanium. The second layer includes an inorganic oxide and is formed by an atomic layer deposition method, and includes at least one of oxide, nitride, oxynitride, or oxycarbide and formed by chemical vapor deposition. The layer relates to a gas barrier film obtained by modifying a coating film formed by applying a liquid containing a silicon compound. The gas barrier film of the present invention has excellent gas barrier properties and exhibits sufficient gas barrier performance even when bent or under high temperature and high humidity conditions.
ガスバリア層を化学蒸着法(以下、単にCVD法とも称する)により形成することにより、ガスバリア性能が高いフィルムが得られ、また、CVD法は、成膜速度が速く、生産性が高いことから、CVD法によりガスバリア層を形成することはこれまでにも行われていた。しかしながら、CVD法により膜面を形成すると、膜面に欠陥が生じ、また、CVD法は膜面をエッチングしやすく、膜表面の平滑性が悪い。 By forming the gas barrier layer by a chemical vapor deposition method (hereinafter also simply referred to as a CVD method), a film having a high gas barrier performance can be obtained. Also, the CVD method has a high deposition rate and high productivity. The formation of a gas barrier layer by the method has been performed so far. However, when the film surface is formed by the CVD method, defects are generated on the film surface, and the CVD method is easy to etch the film surface and the film surface is not smooth.
かようなCVD法によるガスバリア層の欠点を補うべく、例えば上記特開平8−281861号公報や特開2012−106421号公報のようにCVD法によって形成される層(以下、CVD層とも称する)とケイ素化合物を改質することによって得られる層(以下、ケイ素化合物改質層とも称する)とを積層して得られるガスバリア性フィルムが提案されてきた。かようなガスバリア性フィルムは、異なる機構によってバリア層が形成されており、2つの層内のガスの通り道が異なり、このため両者を積層した場合、ガスバリア性能が向上する。さらに、CVD層の膜面欠陥に、ケイ素化合物改質層を形成される際に用いられる塗布液が含浸することによって、欠陥が補修され、ガスバリア性能が向上するものと考えられていた。 In order to compensate for the disadvantages of the gas barrier layer formed by the CVD method, for example, a layer formed by the CVD method (hereinafter also referred to as a CVD layer) as described in JP-A-8-281861 and JP-A-2012-106421. A gas barrier film obtained by laminating a layer obtained by modifying a silicon compound (hereinafter also referred to as a silicon compound modified layer) has been proposed. In such a gas barrier film, the barrier layer is formed by different mechanisms, and the gas passages in the two layers are different. Therefore, when both are laminated, the gas barrier performance is improved. Furthermore, it has been considered that defects on the surface of the CVD layer are impregnated with a coating solution used when the silicon compound modified layer is formed to repair the defects and improve the gas barrier performance.
しかしながら、本発明者らは、かようなガスバリア性フィルムが、屈曲時にガスバリア性能が低下し、求められるガスバリア性能を満たさなくなることを見出した。そして、かような現象が引き起こされる要因を鋭意検討した結果、ケイ素化合物改質層を形成する際に用いる塗布液を塗布する際に、塗布面であるCVD層に存在するピンホールなどの微小欠陥が塗布液によっては未だ十分に補修されていないのではないかと考えた。これは、塗布液が大きな欠陥には入り込むことができるが、微小欠陥には入り込めないことが原因ではないかと推定される。 However, the present inventors have found that such a gas barrier film deteriorates in gas barrier performance when bent and does not satisfy the required gas barrier performance. And as a result of intensive investigation of the factors that cause such a phenomenon, when applying the coating liquid used to form the silicon compound modified layer, minute defects such as pinholes present in the CVD layer that is the coating surface However, it was thought that some coating solutions were not sufficiently repaired. It is estimated that this may be caused by the fact that the coating liquid can enter large defects but cannot enter minute defects.
上記微小欠陥の存在による、ガスバリア性能の低下の原因として以下のようなメカニズムが考えられる。真空紫外光やプラズマなどでケイ素化合物を改質する際に膜を緻密化させるにしたがって、ケイ素化合物層の膜厚が減少し、膜中に応力が残る。ケイ素化合物改質層を形成する際に用いる塗布液の塗布面にピンホールなどの微小欠陥があると、上記残存した応力が、ピンホール箇所に集中し、微小なクラックを生成する結果、バリア性能が劣化するものと考えられる。したがって、ケイ素化合物改質層を形成する際に用いる塗布液によっても微小欠陥が依然として塗布面に存在し、かような微小欠陥への改質時の応力集中が、特に屈曲時のガスバリア性層の向上を妨げる主因であると考えた。 The following mechanism can be considered as the cause of the deterioration of the gas barrier performance due to the presence of the micro defects. As the silicon compound is densified when the silicon compound is modified by vacuum ultraviolet light or plasma, the film thickness of the silicon compound layer decreases and stress remains in the film. If there are minute defects such as pinholes on the coating surface of the coating solution used to form the silicon compound modified layer, the remaining stress concentrates on the pinholes and generates microcracks, resulting in barrier performance. Is considered to deteriorate. Therefore, even with the coating liquid used for forming the silicon compound modified layer, micro defects still exist on the coated surface, and stress concentration during the modification to such micro defects is particularly in the gas barrier layer during bending. We thought it was the main factor that hinders improvement.
本願発明者らは上記課題に鑑み、上記微小欠陥を補修する際にALD法によって形成される無機酸化物の第2の層をCVD層の上層に用いた結果、屈曲時のフィルム性能を向上させることができた。これは、ALD法により形成される無機酸化物は比較的分子量が小さく、微小欠陥を埋めることができ、微小欠陥の補修が可能となったためであると考えられる。 In view of the above problems, the present inventors have improved the film performance during bending as a result of using the second layer of the inorganic oxide formed by the ALD method as the upper layer of the CVD layer when repairing the micro defects. I was able to. This is considered to be because the inorganic oxide formed by the ALD method has a relatively small molecular weight, can fill in the minute defects, and can repair the minute defects.
また、ALD法により形成される無機酸化物層上に、ケイ素化合物改質層を形成させると、驚くべきことに、高温高湿時のガスバリア性能の低下が抑制され、十分なガスバリア性が確保されることを見出した。 Moreover, when a silicon compound modified layer is formed on an inorganic oxide layer formed by the ALD method, surprisingly, a decrease in gas barrier performance at high temperature and high humidity is suppressed, and sufficient gas barrier properties are secured. I found out.
上記高温高湿時のガスバリア性能の低下を抑制することができる理由として以下のようなメカニズムが考えられる。 The following mechanism can be considered as a reason why the deterioration of the gas barrier performance at the time of high temperature and high humidity can be suppressed.
ケイ素化合物改質層と第2の層との接触面積が、微小欠陥の補修によりCVD層がケイ素化合物改質層の下層となる場合よりも増大し、ケイ素化合物改質層と第2の層との密着性が向上する。ケイ素化合物改質層は高温高湿条件下では膨張する性質がある。ケイ素化合物改質層と第2の層との密着性が向上することにより、かような膨張に働く力を打ち消す力が増大し、ガスバリア性の低下を抑制できるものと考えられる。また、ALD法で堆積する膜で酸化物を形成することで、成膜面全面をOH基にすることができ、ケイ素化合物が原子単位で緻密に原子層堆積膜と密着し、ケイ素化合物改質層自体が緻密になるため、ガスバリア性能が向上するという面もあると考えられる。 The contact area between the silicon compound modified layer and the second layer is increased as compared with the case where the CVD layer is a lower layer of the silicon compound modified layer by repairing a minute defect, and the silicon compound modified layer and the second layer Improved adhesion. The silicon compound modified layer has the property of expanding under high temperature and high humidity conditions. By improving the adhesion between the silicon compound modified layer and the second layer, it is considered that the force that counteracts the force acting on the expansion increases, and the deterioration of the gas barrier property can be suppressed. In addition, by forming an oxide with a film deposited by the ALD method, the entire surface of the film can be made OH groups, and the silicon compound is closely adhered to the atomic layer deposited film in atomic units, thereby modifying the silicon compound. It is considered that the gas barrier performance is improved because the layer itself is dense.
なお、上記メカニズムは推定であり、本発明の効果はこれらメカニズムに拘泥されるものではない。 In addition, the said mechanism is estimation and the effect of this invention is not bound to these mechanisms.
したがって、本発明のガスバリア性フィルムにおいては、好適な一実施形態は、基材と、第1の層と、第1の層上に形成されてなる第2の層と、第3の層と、をこの順に有する形態である。さらに、好適な一実施形態は、基材と、第1の層と、第1の層上に形成されてなる第2の層と、第2の層上に形成されてなる第3の層と、をこの順に有する形態である。 Therefore, in the gas barrier film of the present invention, a preferred embodiment includes a base material, a first layer, a second layer formed on the first layer, a third layer, In this order. Further, a preferred embodiment includes a base material, a first layer, a second layer formed on the first layer, and a third layer formed on the second layer. , In this order.
また、第1の層、第2の層、および第3の層を有するガスバリア性ユニットは、基材の一方の表面上に形成されていてもよく、基材の両方の表面上に形成されていてもよい。また、該ガスバリア性ユニットは、ガスバリア性を必ずしも有しない層を含んでいてもよい。 In addition, the gas barrier unit having the first layer, the second layer, and the third layer may be formed on one surface of the base material, and is formed on both surfaces of the base material. May be. The gas barrier unit may include a layer that does not necessarily have a gas barrier property.
また、本発明のガスバリア性フィルムは、後述の実施例に記載の方法により測定された透過水分量が1×10−3g/(m2・24h)未満であることが好ましく、1×10−4g/(m2・24h)未満であることがより好ましい。Further, the gas-barrier film of the present invention is preferably transparent moisture content measured by the method described in Examples below is less than 1 × 10 -3 g / (m 2 · 24h), 1 × 10 - More preferably, it is less than 4 g / (m 2 · 24 h).
以下、本発明を実施するための好ましい形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although the preferable form for implementing this invention is demonstrated in detail, this invention is not limited to these.
〔第1の層(CVD層)〕
第1の層の1層当たりの厚みは特に限定されないが、ガスバリア性能および欠陥の生じやすさという観点から、通常、30〜500nmの範囲内であり、好ましくは50〜300nmである。第1の層は、各層がCVD法により形成される複数のサブレイヤーからなる積層構造であってもよい。この場合サブレイヤーの層数は、2〜10層であることが好ましい。また、各サブレイヤーが同じ組成であっても異なる組成であってもよい。[First layer (CVD layer)]
The thickness per layer of the first layer is not particularly limited, but is usually in the range of 30 to 500 nm, preferably 50 to 300 nm, from the viewpoint of gas barrier performance and the ease of occurrence of defects. The first layer may have a stacked structure including a plurality of sublayers in which each layer is formed by a CVD method. In this case, the number of sublayers is preferably 2 to 10 layers. Moreover, each sublayer may have the same composition or a different composition.
第1の層は、ケイ素、アルミニウムおよびチタンからなる群より選択される少なくとも1種の酸化物、窒化物、酸窒化物または酸炭化物の少なくとも1種を含む。ケイ素、アルミニウムおよびチタンからなる群より選択される少なくとも1種の酸化物、窒化物、酸窒化物または酸炭化物としては、具体的には、酸化ケイ素(SiO2)、窒化ケイ素、酸窒化ケイ素(SiON)、酸炭化ケイ素(SiOC)、酸化アルミニウム、酸化チタン、およびアルミニウムシリケートなどのこれらの複合体が挙げられる。これらは、副次的な成分として他の元素を含有してもよい。The first layer includes at least one oxide, nitride, oxynitride, or oxycarbide selected from the group consisting of silicon, aluminum, and titanium. Specific examples of the at least one oxide, nitride, oxynitride, or oxycarbide selected from the group consisting of silicon, aluminum, and titanium include silicon oxide (SiO 2 ), silicon nitride, silicon oxynitride ( These composites include SiON), silicon oxycarbide (SiOC), aluminum oxide, titanium oxide, and aluminum silicate. These may contain other elements as secondary components.
第1の層は上記化合物を有することで、ガスバリア性を有する。ここで、第1の層のガスバリア性は、基材上に第1の層を形成させた積層体で算出した際に、後述の実施例に記載の方法により測定された透過水分量が0.1g/(m2・24h)以下であることが好ましく、0.01g/(m2・24h)以下であることがより好ましい。The first layer has the above compound and thus has a gas barrier property. Here, when the gas barrier property of the first layer is calculated using a laminate in which the first layer is formed on the base material, the permeated water amount measured by the method described in Examples described later is 0. is preferably 1g / (m 2 · 24h) or less, and more preferably 0.01g / (m 2 · 24h) or less.
第1の層は、化学蒸着法(CVD法)で形成される。化学蒸着法(化学気相成長法、Chemical Vapor Deposition)は、基材上に、目的とする薄膜の成分を含む原料ガスを供給し、基板表面或いは気相での化学反応により膜を堆積する方法である。また、化学反応を活性化する目的で、プラズマなどを発生させる方法などがあり、熱CVD法、触媒化学気相成長法、光CVD法、真空プラズマCVD法、大気圧プラズマCVD法など公知のCVD方式等が挙げられる。特に限定されるものではないが、製膜速度や処理面積の観点から、プラズマCVD法を適用することが好ましい。化学蒸着法により第1の層を形成すると、ガスバリア性の点で有利である。 The first layer is formed by a chemical vapor deposition method (CVD method). Chemical vapor deposition (Chemical Vapor Deposition) is a method of depositing a film on a substrate by a chemical reaction in the surface of the substrate or in the gas phase by supplying a raw material gas containing the components of the target thin film onto the substrate. It is. In addition, for the purpose of activating the chemical reaction, there is a method of generating plasma or the like. Known CVD such as thermal CVD method, catalytic chemical vapor deposition method, photo CVD method, vacuum plasma CVD method, atmospheric pressure plasma CVD method, etc. The method etc. are mentioned. Although not particularly limited, it is preferable to apply the plasma CVD method from the viewpoint of film forming speed and processing area. Forming the first layer by chemical vapor deposition is advantageous in terms of gas barrier properties.
真空プラズマCVD法、大気圧または大気圧近傍の圧力下でのプラズマCVD法により得られるガスバリア層は、原材料(原料ともいう)である金属化合物、分解ガス、分解温度、投入電力などの条件を選ぶことで、目的の化合物を製造できるため好ましい。 The gas barrier layer obtained by the vacuum plasma CVD method, or the plasma CVD method under atmospheric pressure or near atmospheric pressure, selects conditions such as the raw material (also referred to as raw material) metal compound, decomposition gas, decomposition temperature, input power, etc. Therefore, the target compound can be produced, which is preferable.
例えば、ケイ素化合物を原料化合物として用い、分解ガスに酸素を用いれば、ケイ素酸化物が生成する。これはプラズマ空間内では非常に活性な荷電粒子・活性ラジカルが高密度で存在するため、プラズマ空間内では多段階の化学反応が非常に高速に促進され、プラズマ空間内に存在する元素は熱力学的に安定な化合物へと非常な短時間で変換されるためである。 For example, if a silicon compound is used as a raw material compound and oxygen is used as the decomposition gas, silicon oxide is generated. This is because highly active charged particles and active radicals exist in the plasma space at a high density, so that multistage chemical reactions are accelerated at high speed in the plasma space, and the elements present in the plasma space are thermodynamic. This is because it is converted into an extremely stable compound in a very short time.
原料化合物としては、ケイ素化合物、チタン化合物、およびアルミニウム化合物を用いる。 As a raw material compound, a silicon compound, a titanium compound, and an aluminum compound are used.
これらのうち、ケイ素化合物として、シラン、テトラメトキシシラン、テトラエトキシシラン、テトラn−プロポキシシラン、テトライソプロポキシシラン、テトラn−ブトキシシラン、テトラt−ブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、フェニルトリエトキシシラン、(3,3,3−トリフルオロプロピル)トリメトキシシラン、ヘキサメチルジシロキサン、ビス(ジメチルアミノ)ジメチルシラン、ビス(ジメチルアミノ)メチルビニルシラン、ビス(エチルアミノ)ジメチルシラン、N,O−ビス(トリメチルシリル)アセトアミド、ビス(トリメチルシリル)カルボジイミド、ジエチルアミノトリメチルシラン、ジメチルアミノジメチルシラン、ヘキサメチルジシラザン、ヘキサメチルシクロトリシラザン、ヘプタメチルジシラザン、ノナメチルトリシラザン、オクタメチルシクロテトラシラザン、テトラキスジメチルアミノシラン、テトライソシアナートシラン、テトラメチルジシラザン、トリス(ジメチルアミノ)シラン、トリエトキシフルオロシラン、アリルジメチルシラン、アリルトリメチルシラン、ベンジルトリメチルシラン、ビス(トリメチルシリル)アセチレン、1,4−ビストリメチルシリル−1,3−ブタジイン、ジ−t−ブチルシラン、1,3−ジシラブタン、ビス(トリメチルシリル)メタン、シクロペンタジエニルトリメチルシラン、フェニルジメチルシラン、フェニルトリメチルシラン、プロパルギルトリメチルシラン、テトラメチルシラン、トリメチルシリルアセチレン、1−(トリメチルシリル)−1−プロピン、トリス(トリメチルシリル)メタン、トリス(トリメチルシリル)シラン、ビニルトリメチルシラン、ヘキサメチルジシラン、オクタメチルシクロテトラシロキサン、テトラメチルシクロテトラシロキサン、ヘキサメチルシクロテトラシロキサン、Mシリケート51等が挙げられる。また、後述の好適な形態である(i)〜(ii)の要件を満たす層の形成の際に用いられる原料化合物であるケイ素化合物が挙げられる。 Among these, as silicon compounds, silane, tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, tetra t-butoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, Diethyldimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, phenyltriethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane, hexamethyldisiloxane, bis (dimethylamino) dimethylsilane Bis (dimethylamino) methylvinylsilane, bis (ethylamino) dimethylsilane, N, O-bis (trimethylsilyl) acetamide, bis (trimethylsilyl) carbodiimide, di Tylaminotrimethylsilane, dimethylaminodimethylsilane, hexamethyldisilazane, hexamethylcyclotrisilazane, heptamethyldisilazane, nonamethyltrisilazane, octamethylcyclotetrasilazane, tetrakisdimethylaminosilane, tetraisocyanatosilane, tetramethyldisilazane , Tris (dimethylamino) silane, triethoxyfluorosilane, allyldimethylsilane, allyltrimethylsilane, benzyltrimethylsilane, bis (trimethylsilyl) acetylene, 1,4-bistrimethylsilyl-1,3-butadiyne, di-t-butylsilane, 1,3-disilabutane, bis (trimethylsilyl) methane, cyclopentadienyltrimethylsilane, phenyldimethylsilane, phenyltrimethylsilane, Pargyltrimethylsilane, tetramethylsilane, trimethylsilylacetylene, 1- (trimethylsilyl) -1-propyne, tris (trimethylsilyl) methane, tris (trimethylsilyl) silane, vinyltrimethylsilane, hexamethyldisilane, octamethylcyclotetrasiloxane, tetramethyl Examples thereof include cyclotetrasiloxane, hexamethylcyclotetrasiloxane, M silicate 51, and the like. Moreover, the silicon compound which is a raw material compound used in the case of formation of the layer which satisfy | fills the requirements of (i)-(ii) which are the suitable forms mentioned later is mentioned.
チタン化合物としては、例えば、チタンメトキシド、チタンエトキシド、チタンイソプロポキシド、チタンテトライソポロポキシド、チタンn−ブトキシド、チタンジイソプロポキシド(ビス−2,4−ペンタンジオネート)、チタンジイソプロポキシド(ビス−2,4−エチルアセトアセテート)、チタンジ−n−ブトキシド(ビス−2,4−ペンタンジオネート)、チタンアセチルアセトネート、ブチルチタネートダイマー等が挙げられる。 Examples of the titanium compound include titanium methoxide, titanium ethoxide, titanium isopropoxide, titanium tetraisoporooxide, titanium n-butoxide, titanium diisopropoxide (bis-2,4-pentanedionate), titanium. Examples thereof include diisopropoxide (bis-2,4-ethylacetoacetate), titanium di-n-butoxide (bis-2,4-pentanedionate), titanium acetylacetonate, and butyl titanate dimer.
アルミニウム化合物としては、アルミニウムエトキシド、アルミニウムトリイソプロポキシド、アルミニウムイソプロポキシド、アルミニウムn−ブトキシド、アルミニウムs−ブトキシド、アルミニウムt−ブトキシド、アルミニウムアセチルアセトナート、トリエチルジアルミニウムトリ−s−ブトキシド等が挙げられる。 Examples of the aluminum compound include aluminum ethoxide, aluminum triisopropoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum s-butoxide, aluminum t-butoxide, aluminum acetylacetonate, and triethyl dialumonium tri-s-butoxide. Can be mentioned.
また、これらの金属を含む原料ガスを分解して無機化合物を得るための分解ガスとしては、水素ガス、メタンガス、アセチレンガス、一酸化炭素ガス、二酸化炭素ガス、窒素ガス、アンモニアガス、亜酸化窒素ガス、酸化窒素ガス、二酸化窒素ガス、酸素ガス、水蒸気などが挙げられる。また、上記分解ガスを、アルゴンガス、ヘリウムガスなどの不活性ガスと混合してもよい。 In addition, as a decomposition gas for decomposing a raw material gas containing these metals to obtain an inorganic compound, hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide gas, nitrogen gas, ammonia gas, nitrous oxide Examples include gas, nitrogen oxide gas, nitrogen dioxide gas, oxygen gas, and water vapor. Further, the decomposition gas may be mixed with an inert gas such as argon gas or helium gas.
原料化合物を含む原料ガスと、分解ガスを適宜選択することで所望のバリア層を得ることができる。化学蒸着法により形成される第1の層は、酸化物、窒化物、酸窒化物または酸炭化物である。 A desired barrier layer can be obtained by appropriately selecting a source gas containing a source compound and a decomposition gas. The first layer formed by chemical vapor deposition is an oxide, nitride, oxynitride or oxycarbide.
以下、CVD法のうち、好適な形態であるプラズマCVD法について具体的に説明する。 Hereinafter, the plasma CVD method which is a preferable form among the CVD methods will be specifically described.
図1は、本発明に係る第1の層の形成に用いられる真空プラズマCVD装置の一例を示す模式図である。 FIG. 1 is a schematic view showing an example of a vacuum plasma CVD apparatus used for forming the first layer according to the present invention.
図1において、真空プラズマCVD装置101は、真空槽102を有しており、真空槽102の内部の底面側には、サセプタ105が配置されている。また、真空槽102の内部の天井側には、サセプタ105と対向する位置にカソード電極103が配置されている。真空槽102の外部には、熱媒体循環系106と、真空排気系107と、ガス導入系108と、高周波電源109が配置されている。熱媒体循環系106内には熱媒体が配置されている。熱媒体循環系106には、熱媒体を移動させるポンプと、熱媒体を加熱する加熱装置と、冷却する冷却装置と、熱媒体の温度を測定する温度センサと、熱媒体の設定温度を記憶する記憶装置とを有する加熱冷却装置160が設けられている。 In FIG. 1, a vacuum plasma CVD apparatus 101 has a vacuum chamber 102, and a susceptor 105 is disposed on the bottom surface inside the vacuum chamber 102. Further, a cathode electrode 103 is disposed on the ceiling side inside the vacuum chamber 102 at a position facing the susceptor 105. A heat medium circulation system 106, a vacuum exhaust system 107, a gas introduction system 108, and a high-frequency power source 109 are disposed outside the vacuum chamber 102. A heat medium is disposed in the heat medium circulation system 106. The heat medium circulation system 106 stores a pump for moving the heat medium, a heating device for heating the heat medium, a cooling device for cooling, a temperature sensor for measuring the temperature of the heat medium, and a set temperature of the heat medium. A heating / cooling device 160 having a storage device is provided.
加熱冷却装置160は、熱媒体の温度を測定し、熱媒体を記憶された設定温度まで加熱又は冷却し、サセプタ105に供給するように構成されている。供給された熱媒体はサセプタ105の内部を流れ、サセプタ105を加熱又は冷却して加熱冷却装置160に戻る。このとき、熱媒体の温度は、設定温度よりも高温又は低温になっており、加熱冷却装置160は熱媒体を設定温度まで加熱又は冷却し、サセプタ105に供給する。かくして冷却媒体はサセプタと加熱冷却装置160の間を循環し、サセプタ105は、供給された設定温度の熱媒体によって加熱又は冷却される。 The heating / cooling device 160 is configured to measure the temperature of the heat medium, heat or cool the heat medium to a stored set temperature, and supply the heat medium to the susceptor 105. The supplied heat medium flows inside the susceptor 105, heats or cools the susceptor 105, and returns to the heating / cooling device 160. At this time, the temperature of the heat medium is higher or lower than the set temperature, and the heating and cooling device 160 heats or cools the heat medium to the set temperature and supplies the heat medium to the susceptor 105. Thus, the cooling medium circulates between the susceptor and the heating / cooling device 160, and the susceptor 105 is heated or cooled by the supplied heating medium having the set temperature.
真空槽102は真空排気系107に接続されており、この真空プラズマCVD装置101によって成膜処理を開始する前に、予め真空槽102の内部を真空排気すると共に、熱媒体を加熱して室温から設定温度まで昇温させておき、設定温度の熱媒体をサセプタ105に供給する。サセプタ105は使用開始時には室温であり、設定温度の熱媒体が供給されると、サセプタ105は昇温される。 The vacuum chamber 102 is connected to an evacuation system 107, and before the film formation process is started by the vacuum plasma CVD apparatus 101, the inside of the vacuum chamber 102 is evacuated in advance and the heat medium is heated from room temperature. The temperature is raised to a set temperature, and a heat medium having the set temperature is supplied to the susceptor 105. The susceptor 105 is at room temperature at the start of use, and when a heat medium having a set temperature is supplied, the susceptor 105 is heated.
一定時間、設定温度の熱媒体を循環させた後、真空槽102内の真空雰囲気を維持しながら真空槽102内に成膜対象の基板110を搬入し、サセプタ105上に配置する。 After circulating the heat medium at a set temperature for a certain time, the substrate 110 to be deposited is carried into the vacuum chamber 102 and placed on the susceptor 105 while maintaining the vacuum atmosphere in the vacuum chamber 102.
カソード電極103のサセプタ105に対向する面には多数のノズル(孔)が形成されている。 A number of nozzles (holes) are formed on the surface of the cathode electrode 103 facing the susceptor 105.
カソード電極103はガス導入系108に接続されており、ガス導入系108からカソード電極103にCVDガスを導入すると、カソード電極103のノズルから真空雰囲気の真空槽102内にCVDガスが噴出される。 The cathode electrode 103 is connected to a gas introduction system 108. When a CVD gas is introduced from the gas introduction system 108 to the cathode electrode 103, the CVD gas is ejected from the nozzle of the cathode electrode 103 into the vacuum chamber 102 in a vacuum atmosphere.
カソード電極103は高周波電源109に接続されており、サセプタ105及び真空槽102は接地電位に接続されている。 The cathode electrode 103 is connected to a high frequency power source 109, and the susceptor 105 and the vacuum chamber 102 are connected to a ground potential.
ガス導入系108から真空槽102内にCVDガスを供給し、加熱冷却装置160から一定温度の熱媒体をサセプタ105に供給しながら高周波電源109を起動し、カソード電極103に高周波電圧を印加すると、導入されたCVDガスのプラズマが形成される。プラズマ中で活性化されたCVDガスがサセプタ105上の基板110の表面に到達すると、基板110の表面に薄膜である第1の層が成長する。 When a CVD gas is supplied from the gas introduction system 108 into the vacuum chamber 102, a high-frequency power source 109 is activated while a heating medium having a constant temperature is supplied from the heating / cooling device 160 to the susceptor 105, and a high-frequency voltage is applied to the cathode electrode 103, Plasma of the introduced CVD gas is formed. When the CVD gas activated in the plasma reaches the surface of the substrate 110 on the susceptor 105, a first layer that is a thin film grows on the surface of the substrate 110.
この際のサセプタ105とカソード電極103との距離は適宜設定される。 At this time, the distance between the susceptor 105 and the cathode electrode 103 is set as appropriate.
また、原料ガスおよび分解ガスの流量は、原料ガスおよび分解ガス種等を考慮して適宜設定される。一実施形態として、原料ガスの流量は、30〜300sccmであり、分解ガスの流量は10〜1000sccmである。 Further, the flow rates of the raw material gas and the cracked gas are appropriately set in consideration of the raw material gas, the cracked gas type, and the like. In one embodiment, the flow rate of the source gas is 30 to 300 sccm, and the flow rate of the decomposition gas is 10 to 1000 sccm.
薄膜成長中は、加熱冷却装置160から一定温度の熱媒体がサセプタ105に供給されており、サセプタ105は、熱媒体によって加熱又は冷却され、一定温度に維持された状態で薄膜が形成される。一般に、薄膜を形成する際の成長温度の下限温度は、薄膜の膜質により決まっており、上限温度は、基板110上に既に形成されている薄膜のダメージの許容範囲により決まっている。下限温度や上限温度は形成する薄膜の材質や、既に形成されている薄膜の材質等によって異なるが、ガスバリア性の高い膜質を確保するために下限温度は50℃以上であり、上限温度は基材の耐熱温度以下であることが好ましい。 During the growth of the thin film, a heating medium having a constant temperature is supplied from the heating / cooling device 160 to the susceptor 105, and the susceptor 105 is heated or cooled by the heating medium, and a thin film is formed while being maintained at the constant temperature. Generally, the lower limit temperature of the growth temperature when forming a thin film is determined by the film quality of the thin film, and the upper limit temperature is determined by the allowable range of damage to the thin film already formed on the substrate 110. The lower limit temperature and upper limit temperature vary depending on the material of the thin film to be formed, the material of the thin film already formed, etc., but the lower limit temperature is 50 ° C. or more in order to ensure the film quality with a high gas barrier property, It is preferable that it is below the heat-resistant temperature.
真空プラズマCVD法で形成される薄膜の膜質と成膜温度の相関関係と、成膜対象物(基板110)が受けるダメージと成膜温度の相関関係とを予め求め、下限温度・上限温度が決定される。例えば、真空プラズマCVDプロセス中の基板110の温度は50〜250℃であることが好ましい。 The correlation between the film quality of the thin film formed by the vacuum plasma CVD method and the film formation temperature and the correlation between the damage to the film formation target (substrate 110) and the film formation temperature are obtained in advance, and the lower limit temperature and the upper limit temperature are determined. Is done. For example, the temperature of the substrate 110 during the vacuum plasma CVD process is preferably 50 to 250 ° C.
更に、カソード電極103に13.56MHz以上の高周波電圧を印加してプラズマを形成した場合の、サセプタ105に供給する熱媒体の温度と基板110の温度の関係が予め測定されており、真空プラズマCVDプロセス中に基板110の温度を、下限温度以上、上限温度以下に維持するために、サセプタ105に供給する熱媒体の温度が求められる。 Furthermore, the relationship between the temperature of the heat medium supplied to the susceptor 105 and the temperature of the substrate 110 when plasma is formed by applying a high frequency voltage of 13.56 MHz or more to the cathode electrode 103 is measured in advance, and vacuum plasma CVD is performed. In order to maintain the temperature of the substrate 110 between the lower limit temperature and the upper limit temperature during the process, the temperature of the heat medium supplied to the susceptor 105 is required.
例えば、下限温度(ここでは50℃)が記憶され、下限温度以上の温度に温度制御された熱媒体がサセプタ105に供給されるように設定されている。サセプタ105から還流された熱媒体は、加熱又は冷却され、50℃の設定温度の熱媒体がサセプタ105に供給される。例えば、CVDガスとして、シランガスとアンモニアガスと窒素ガスの混合ガスが供給され、基板110が、下限温度以上、上限温度以下の温度条件に維持された状態で、SiN膜が形成される。 For example, a lower limit temperature (here, 50 ° C.) is stored, and a heat medium whose temperature is controlled to a temperature equal to or higher than the lower limit temperature is set to be supplied to the susceptor 105. The heat medium refluxed from the susceptor 105 is heated or cooled, and a heat medium having a set temperature of 50 ° C. is supplied to the susceptor 105. For example, as a CVD gas, a mixed gas of silane gas, ammonia gas, and nitrogen gas is supplied, and the SiN film is formed in a state where the substrate 110 is maintained at a temperature condition not lower than the lower limit temperature and not higher than the upper limit temperature.
真空プラズマCVD装置101の起動直後は、サセプタ105は室温であり、サセプタ105から加熱冷却装置160に還流された熱媒体の温度は設定温度よりも低い。したがって、起動直後は、加熱冷却装置160は還流された熱媒体を加熱して設定温度に昇温させ、サセプタ105に供給することになる。この場合、サセプタ105及び基板110は熱媒体によって加熱、昇温され、基板110は、下限温度以上、上限温度以下の範囲に維持される。 Immediately after startup of the vacuum plasma CVD apparatus 101, the susceptor 105 is at room temperature, and the temperature of the heat medium returned from the susceptor 105 to the heating / cooling apparatus 160 is lower than the set temperature. Therefore, immediately after the activation, the heating / cooling device 160 heats the refluxed heat medium to raise the temperature to the set temperature, and supplies it to the susceptor 105. In this case, the susceptor 105 and the substrate 110 are heated and heated by the heat medium, and the substrate 110 is maintained in a range between the lower limit temperature and the upper limit temperature.
複数枚の基板110に連続して薄膜を形成すると、プラズマから流入する熱によってサセプタ105が昇温する。この場合、サセプタ105から加熱冷却装置160に還流される熱媒体は下限温度(50℃)よりも高温になっているため、加熱冷却装置160は熱媒体を冷却し、設定温度の熱媒体をサセプタ105に供給する。これにより、基板110を下限温度以上、上限温度以下の範囲に維持しながら薄膜を形成することができる。 When a thin film is continuously formed on the plurality of substrates 110, the susceptor 105 is heated by heat flowing from the plasma. In this case, since the heat medium recirculated from the susceptor 105 to the heating / cooling device 160 is higher than the lower limit temperature (50 ° C.), the heating / cooling device 160 cools the heat medium and converts the heat medium at the set temperature into the susceptor. It supplies to 105. Thereby, it is possible to form a thin film while maintaining the substrate 110 in a range between the lower limit temperature and the upper limit temperature.
このように、加熱冷却装置160は、還流された熱媒体の温度が設定温度よりも低温の場合には熱媒体を加熱し、設定温度よりも高温の場合は熱媒体を冷却し、いずれの場合も設定温度の熱媒体をサセプタに供給しており、その結果、基板110は下限温度以上、上限温度以下の温度範囲が維持される。 Thus, the heating / cooling device 160 heats the heating medium when the temperature of the refluxed heating medium is lower than the set temperature, and cools the heating medium when the temperature is higher than the set temperature. In addition, a heat medium having a set temperature is supplied to the susceptor, and as a result, the substrate 110 is maintained in a temperature range between the lower limit temperature and the upper limit temperature.
薄膜が所定膜厚に形成されたら、基板110を真空槽102の外部に搬出し、未成膜の基板110を真空槽102内に搬入し、上記と同様に、設定温度の熱媒体を供給しながら薄膜を形成する。 Once the thin film has been formed to a predetermined thickness, the substrate 110 is unloaded from the vacuum chamber 102, the undeposited substrate 110 is loaded into the vacuum chamber 102, and a heating medium having a set temperature is supplied as described above. A thin film is formed.
(第1の層の好適な形態)
また、本発明の第1の層の好適な一実施形態として、第1の層は構成元素に炭素、ケイ素、及び酸素を含むことが好ましい。より好適な形態は、以下の(i)〜(ii)の要件を満たす層である。(Suitable form of the first layer)
As a preferred embodiment of the first layer of the present invention, the first layer preferably contains carbon, silicon, and oxygen as constituent elements. A more preferable form is a layer that satisfies the following requirements (i) to (ii).
(i)第1の層の膜厚方向における第1の層表面からの距離(L)と、ケイ素原子、酸素原子、および炭素原子の合計量に対するケイ素原子の量の比率(ケイ素の原子比)との関係を示すケイ素分布曲線、前記Lとケイ素原子、酸素原子、および炭素原子の合計量に対する酸素原子の量の比率(酸素の原子比)との関係を示す酸素分布曲線、ならびに前記Lとケイ素原子、酸素原子、および炭素原子の合計量に対する炭素原子の量の比率(炭素の原子比)との関係を示す炭素分布曲線において、炭素分布曲線が少なくとも2つの極値を有する、
(ii)炭素分布曲線における炭素の原子比の最大値と最小値との差の絶対値が3at%以上である。(I) The distance (L) from the surface of the first layer in the film thickness direction of the first layer and the ratio of the amount of silicon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms (silicon atomic ratio) A distribution curve showing the relationship between L and the oxygen distribution curve showing the relationship between the ratio of the amount of oxygen atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms (atomic ratio of oxygen); In the carbon distribution curve showing the relationship between the ratio of the amount of carbon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms (the atomic ratio of carbon), the carbon distribution curve has at least two extreme values,
(Ii) The absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon in the carbon distribution curve is 3 at% or more.
かような組成をもつことで、ガスバリア性と屈曲性を高度に両立する観点から好ましい。 Having such a composition is preferable from the viewpoint of achieving both high gas barrier properties and flexibility.
更に、第1の層の全層厚の90%以上の領域において、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する各原子の平均原子比率が、下記式(A)又は(B)で表される序列の大小関係を有することが好ましい。 Furthermore, in the region of 90% or more of the total thickness of the first layer, the average atomic ratio of each atom relative to the total amount (100 at%) of silicon atoms, oxygen atoms and carbon atoms is expressed by the following formula (A) or (B It is preferable to have an order of magnitude relationship represented by
式(A) (炭素平均原子比率)<(ケイ素平均原子比率)<(酸素平均原子比率)
式(B) (酸素平均原子比率)<(ケイ素平均原子比率)<(炭素平均原子比率)であれば、屈曲耐性がさらに向上し、より好ましい。Formula (A) (carbon average atomic ratio) <(silicon average atomic ratio) <(oxygen average atomic ratio)
If the formula (B) (oxygen average atomic ratio) <(silicon average atomic ratio) <(carbon average atomic ratio), the bending resistance is further improved, which is more preferable.
以下、上記好適な実施形態について説明する。 The preferred embodiment will be described below.
(i)第1の層の膜厚方向における第1の層表面からの距離(L)と、ケイ素原子、酸素原子、および炭素原子の合計量に対するケイ素原子の量の比率(ケイ素の原子比)との関係を示すケイ素分布曲線、Lとケイ素原子、酸素原子、および炭素原子の合計量に対する酸素原子の量の比率(酸素の原子比)との関係を示す酸素分布曲線、ならびにLとケイ素原子、酸素原子、および炭素原子の合計量に対する炭素原子の量の比率(炭素の原子比)との関係を示す炭素分布曲線において、炭素分布曲線が少なくとも2つの極値を有することが好ましい。該第1の層は、炭素分布曲線が少なくとも3つの極値を有することが好ましく、少なくとも4つの極値を有することがより好ましいが、5つ以上有してもよい。炭素分布曲線が少なくとも2つの極値を有することで、炭素原子比率が濃度勾配を有して連続的に変化し、屈曲時のガスバリア性能が高まる。極値の数の上限は、バリア層の膜厚にも起因するため、一概に規定することはできない。 (I) The distance (L) from the surface of the first layer in the film thickness direction of the first layer and the ratio of the amount of silicon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms (silicon atomic ratio) Distribution curve showing the relationship between L and silicon, oxygen distribution curve showing the relationship between the ratio of the amount of oxygen atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms (atomic ratio of oxygen), and L and silicon atoms In the carbon distribution curve showing the relationship between the ratio of the amount of carbon atoms to the total amount of oxygen atoms and carbon atoms (the atomic ratio of carbon), the carbon distribution curve preferably has at least two extreme values. The first layer preferably has a carbon distribution curve having at least three extreme values, more preferably at least four extreme values, but may have five or more extreme values. When the carbon distribution curve has at least two extreme values, the carbon atom ratio continuously changes with a concentration gradient, and the gas barrier performance during bending is enhanced. Since the upper limit of the number of extreme values is also caused by the film thickness of the barrier layer, it cannot be specified unconditionally.
ここで、少なくとも3つの極値を有する場合においては、炭素分布曲線の有する1つの極値および該極値に隣接する極値における第1の層の膜厚方向における第1の層の表面からの距離(L)の差の絶対値(以下、単に「極値間の距離」とも称する)が、いずれも200nm以下であることが好ましく、100nm以下であることがより好ましく、75nm以下であることが特に好ましい。このような極値間の距離であれば、第1の層中に炭素原子比が多い部位(極大値)が適度な周期で存在するため、第1の層に適度な屈曲性を付与し、ガスバリア性フィルムの屈曲時のクラックの発生をより有効に抑制・防止できる。なお、本明細書において極値とは、第1の層の膜厚方向における第1の層の表面からの距離(L)に対する元素の原子比の極大値または極小値のことをいう。また、本明細書において極大値とは、第1の層の表面からの距離を変化させた場合に元素(酸素、ケイ素または炭素)の原子比の値が増加から減少に変わる点であって、かつその点の元素の原子比の値よりも、該点から第1の層の膜厚方向における第1の層の表面からの距離をさらに4〜20nm変化させた位置の元素の原子比の値が3at%以上減少する点のことをいう。すなわち、4〜20nmの範囲で変化させた際に、いずれかの範囲で元素の原子比の値が3at%以上減少していればよい。これは、第1の層の膜厚により変動する。例えば、第1の層が300nmである場合は、第1の層の膜厚方向における第1の層の表面からの距離を20nm変化させた位置の元素の原子比の値が3at%以上減少する点が好ましい。さらに、本明細書において極小値とは、第1の層の表面からの距離を変化させた場合に元素(酸素、ケイ素または炭素)の原子比の値が減少から増加に変わる点であり、かつその点の元素の原子比の値よりも、該点から第1の層の膜厚方向における第1の層の表面からの距離をさらに4〜20nm変化させた位置の元素の原子比の値が3at%以上増加する点のことをいう。すなわち、4〜20nmの範囲で変化させた際に、いずれかの範囲で元素の原子比の値が3at%以上増加していればよい。ここで、少なくとも3つの極値を有する場合の、極値間の距離の下限は、極値間の距離が小さいほどガスバリア性フィルムの屈曲時のクラック発生抑制/防止の向上効果が高いため、特に制限されない。 Here, in the case of having at least three extreme values, one extreme value of the carbon distribution curve and the extreme value adjacent to the extreme value from the surface of the first layer in the thickness direction of the first layer. The absolute value of the difference in distance (L) (hereinafter also simply referred to as “distance between extreme values”) is preferably 200 nm or less, more preferably 100 nm or less, and preferably 75 nm or less. Particularly preferred. If it is such a distance between extreme values, since the site | part (maximum value) with many carbon atom ratios exists in a suitable period in a 1st layer, moderate flexibility is provided to a 1st layer, Generation of cracks during bending of the gas barrier film can be more effectively suppressed / prevented. Note that the extreme value in this specification refers to the maximum value or the minimum value of the atomic ratio of the element to the distance (L) from the surface of the first layer in the film thickness direction of the first layer. In the present specification, the maximum value is a point where the value of the atomic ratio of the element (oxygen, silicon, or carbon) changes from increasing to decreasing when the distance from the surface of the first layer is changed, And the value of the atomic ratio of the element at the position where the distance from the surface of the first layer in the film thickness direction of the first layer is further changed by 4 to 20 nm from the value of the atomic ratio of the element at that point. This is the point where the value decreases by 3 at% or more. That is, when changing in the range of 4 to 20 nm, the atomic ratio value of the element should be reduced by 3 at% or more in any range. This varies depending on the thickness of the first layer. For example, when the first layer is 300 nm, the value of the atomic ratio of the element at the position where the distance from the surface of the first layer in the film thickness direction of the first layer is changed by 20 nm decreases by 3 at% or more. A point is preferable. Further, in this specification, the minimum value is a point where the value of the atomic ratio of the element (oxygen, silicon, or carbon) changes from decrease to increase when the distance from the surface of the first layer is changed, and The value of the atomic ratio of the element at a position where the distance from the surface of the first layer in the film thickness direction of the first layer from the point is further changed by 4 to 20 nm is more than the value of the atomic ratio of the element at that point. The point that increases by 3 at% or more. That is, when changing in the range of 4 to 20 nm, the atomic ratio value of the element only needs to increase by 3 at% or more in any range. Here, the lower limit of the distance between the extreme values in the case of having at least three extreme values is particularly high because the smaller the distance between the extreme values, the higher the effect of suppressing / preventing crack generation when the gas barrier film is bent. Not limited.
さらに、該第1の層は、(ii)炭素分布曲線における炭素の原子比の最大値および最小値の差の絶対値が3at%以上であることが好ましく、5at%以上であることがより好ましく、7at%以上であることがさらに好ましい。炭素分布曲線における炭素の原子比の最大値および最小値の差の絶対値が3at%以上であることで、屈曲時のガスバリア性能が高まる。なお、本明細書において、「最大値」とは、各元素の分布曲線において最大となる各元素の原子比であり、極大値の中で最も高い値である。同様にして、本明細書において、「最小値」とは、各元素の分布曲線において最小となる各元素の原子比であり、極小値の中で最も低い値である。 Further, in the first layer, (ii) the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon in the carbon distribution curve is preferably 3 at% or more, and more preferably 5 at% or more. And more preferably 7 at% or more. When the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon in the carbon distribution curve is 3 at% or more, the gas barrier performance during bending is enhanced. In the present specification, the “maximum value” is the atomic ratio of each element that is maximum in the distribution curve of each element, and is the highest value among the maximum values. Similarly, in this specification, the “minimum value” is the atomic ratio of each element that is the minimum in the distribution curve of each element, and is the lowest value among the minimum values.
また、第1の層の膜厚の90%以上(上限:100%)の領域で、(酸素の原子比)、(ケイ素の原子比)、(炭素の原子比)の順で多い(原子比がO>Si>C)ことが好ましい。ここで、第1の層の膜厚の少なくとも90%以上とは、バリア層中で連続していなくてもよく、単に90%以上の部分で上記した関係を満たしていればよい。かような条件となることで、得られるガスバリア性フィルムのガスバリア性や屈曲性が十分となる。ケイ素分布曲線、酸素分布曲線、および炭素分布曲線において、ケイ素の原子比、酸素の原子比、および炭素の原子比が、該第1の層の膜厚の90%以上の領域において、該条件を満たす場合には、層中におけるケイ素原子、酸素原子、および炭素原子の合計量に対するケイ素原子の含有量の原子比率は、25〜45at%であることが好ましく、30〜40at%であることがより好ましい。また、第1の層中におけるケイ素原子、酸素原子、および炭素原子の合計量に対する酸素原子の含有量の原子比率は、33〜67at%であることが好ましく、45〜67at%であることがより好ましい。さらに、第1の層中におけるケイ素原子、酸素原子、および炭素原子の合計量に対する炭素原子の含有量の原子比率は、3〜33at%であることが好ましく、3〜25at%であることがより好ましい。 Further, in the region of 90% or more (upper limit: 100%) of the film thickness of the first layer, (atomic ratio of oxygen), (atomic ratio of silicon), and (atomic ratio of carbon) increase in this order (atomic ratio) Is preferably O> Si> C). Here, at least 90% or more of the film thickness of the first layer does not have to be continuous in the barrier layer, and it is only necessary to satisfy the above-described relationship in a portion of 90% or more. By satisfying such conditions, the resulting gas barrier film has sufficient gas barrier properties and flexibility. In the silicon distribution curve, the oxygen distribution curve, and the carbon distribution curve, in the region where the atomic ratio of silicon, the atomic ratio of oxygen, and the atomic ratio of carbon are 90% or more of the film thickness of the first layer, the conditions are When satisfy | filling, it is preferable that the atomic ratio of content of the silicon atom with respect to the total amount of the silicon atom in the layer, an oxygen atom, and a carbon atom is 25-45 at%, and it is more preferable that it is 30-40 at% preferable. Further, the atomic ratio of the oxygen atom content to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the first layer is preferably 33 to 67 at%, more preferably 45 to 67 at%. preferable. Furthermore, the atomic ratio of the carbon atom content to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the first layer is preferably 3 to 33 at%, and more preferably 3 to 25 at%. preferable.
第1の層の酸素分布曲線は、少なくとも1つの極値を有することが好ましく、少なくとも2つの極値を有することがより好ましく、少なくとも3つの極値を有することがさらに好ましい。酸素分布曲線が極値を少なくとも1つ有する場合、得られるガスバリア性フィルムを屈曲させた場合におけるガスバリア性がより向上する。酸素分布曲線の極値の数の上限においても、バリア層の膜厚に起因する部分があり一概に規定できない。また、少なくとも3つの極値を有する場合においては、酸素分布曲線の有する1つの極値および該極値に隣接する極値における前記第1の層の膜厚方向における第1の層の表面からの距離の差の絶対値がいずれも200nm以下であることが好ましく、100nm以下であることがより好ましい。このような極値間の距離の距離であれば、ガスバリア性フィルムの屈曲時のクラックの発生をより有効に抑制・防止できる。 The oxygen distribution curve of the first layer preferably has at least one extreme value, more preferably has at least two extreme values, and more preferably has at least three extreme values. When the oxygen distribution curve has at least one extreme value, the gas barrier property when the obtained gas barrier film is bent is further improved. Even in the upper limit of the number of extreme values of the oxygen distribution curve, there is a portion caused by the film thickness of the barrier layer, and it cannot be generally defined. In the case of having at least three extreme values, one extreme value of the oxygen distribution curve and the extreme value adjacent to the extreme value from the surface of the first layer in the film thickness direction of the first layer. The absolute value of the difference in distance is preferably 200 nm or less, and more preferably 100 nm or less. With such a distance between extreme values, the occurrence of cracks during bending of the gas barrier film can be more effectively suppressed / prevented.
加えて、第1の層の酸素分布曲線における酸素の原子比の最大値および最小値の差の絶対値(以下、単に「Omax−Omin差」とも称する)が3at%以上であることが好ましく、5at%以上であることがより好ましく、6at%以上であることがより好ましく、7at%以上であることがさらに好ましい。上記絶対値が3at%以上であれば、得られるガスバリア性フィルムのフィルムを屈曲させた場合におけるガスバリア性がより向上する。In addition, the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of oxygen in the oxygen distribution curve of the first layer (hereinafter also simply referred to as “O max −O min difference”) is 3 at% or more. Preferably, it is 5 at% or more, more preferably 6 at% or more, and further preferably 7 at% or more. When the absolute value is 3 at% or more, the gas barrier property when the obtained gas barrier film is bent is further improved.
さらに、第1の層のケイ素分布曲線におけるケイ素の原子比の最大値および最小値の差の絶対値(以下、単に「Simax−Simin差」とも称する)が5at%未満であることが好ましく、4at%未満であることがより好ましく、3at%未満であることがさらに好ましい。上記絶対値が5at%未満である場合、得られるガスバリア性フィルムのガスバリア性および機械的強度がより向上する。ここで、Simax−Simin差の下限は、Simax−Simin差が小さいほどガスバリア性フィルムの屈曲時のクラック発生抑制/防止の向上効果が高いため、特に制限されない。Further, the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of silicon in the silicon distribution curve of the first layer (hereinafter also simply referred to as “Si max -Si min difference”) is preferably less than 5 at%. More preferably, it is less than 4 at%, and more preferably less than 3 at%. When the absolute value is less than 5 at%, the gas barrier property and mechanical strength of the obtained gas barrier film are further improved. The lower limit of Si max -Si min difference, since Si max improvement of cracking suppressing / preventing flexion enough gas barrier film -Si min difference is small is high, not particularly limited.
また、第1の層の膜厚方向に対する炭素及び酸素原子の合計量はほぼ一定であることが好ましい。これにより、第1の層は適度な屈曲性を発揮し、ガスバリア性フィルムの屈曲時のクラック発生をより有効に抑制・防止されうる。より具体的には、第1の層の膜厚方向における該第1の層の表面からの距離(L)とケイ素原子、酸素原子、および炭素原子の合計量に対する、酸素原子および炭素原子の合計量の比率(酸素および炭素の原子比)との関係を示す酸素炭素分布曲線において、酸素炭素分布曲線における酸素および炭素の原子比の合計の最大値および最小値の差の絶対値(以下、単に「OCmax−OCmin差」とも称する)が5at%未満であることが好ましく、4at%未満であることがより好ましく、3at%未満であることがさらに好ましい。絶対値が5at%未満であれば、得られるガスバリア性フィルムのガスバリア性がより向上する。Moreover, it is preferable that the total amount of carbon and oxygen atoms in the film thickness direction of the first layer is substantially constant. Thereby, the 1st layer exhibits moderate flexibility, and the crack generation at the time of bending of a gas barrier film can be controlled and prevented more effectively. More specifically, the sum of oxygen atoms and carbon atoms with respect to the distance (L) from the surface of the first layer in the film thickness direction of the first layer and the total amount of silicon atoms, oxygen atoms, and carbon atoms In the oxygen-carbon distribution curve showing the relationship with the ratio of the amount (atomic ratio of oxygen and carbon), the absolute value of the difference between the maximum value and the minimum value of the total atomic ratio of oxygen and carbon in the oxygen-carbon distribution curve (hereinafter, simply “OC max −OC min difference”) is preferably less than 5 at%, more preferably less than 4 at%, and even more preferably less than 3 at%. If an absolute value is less than 5 at%, the gas barrier property of the gas barrier film obtained will improve more.
ケイ素分布曲線、酸素分布曲線、炭素分布曲線、および酸素炭素分布曲線は、X線光電子分光法(XPS:Xray Photoelectron Spectroscopy)の測定とアルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により作成することができる。このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比(単位:at%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間は第1の層の膜厚方向における第1の層の表面からの距離(L)に概ね相関することから、「第1の層の膜厚方向における第1の層の表面からの距離」として、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出される第1の層の表面からの距離を採用することができる。なお、本発明では、ケイ素分布曲線、酸素分布曲線、炭素分布曲線および酸素炭素分布曲線は、下記測定条件にて作成した。 The silicon distribution curve, the oxygen distribution curve, the carbon distribution curve, and the oxygen carbon distribution curve can be obtained by combining X-ray photoelectron spectroscopy (XPS) measurement with rare gas ion sputtering such as argon. It can be created by so-called XPS depth profile measurement in which surface composition analysis is sequentially performed while exposing the surface. A distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio (unit: at%) of each element and the horizontal axis as the etching time (sputtering time). In the element distribution curve with the horizontal axis as the etching time in this way, the etching time generally correlates with the distance (L) from the surface of the first layer in the film thickness direction of the first layer. As the “distance from the surface of the first layer in the film thickness direction of the first layer”, from the surface of the first layer calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement. Can be adopted. In the present invention, the silicon distribution curve, oxygen distribution curve, carbon distribution curve, and oxygen carbon distribution curve were prepared under the following measurement conditions.
(測定条件)
エッチングイオン種:アルゴン(Ar+);
エッチング速度(SiO2熱酸化膜換算値):0.05nm/sec;
エッチング間隔(SiO2換算値):10nm;
X線光電子分光装置:Thermo Fisher Scientific社製、機種名“VG Theta Probe”;
照射X線:単結晶分光AlKα
X線のスポット及びそのサイズ:800×400μmの楕円形。(Measurement condition)
Etching ion species: Argon (Ar + );
Etching rate (converted to SiO 2 thermal oxide film): 0.05 nm / sec;
Etching interval (SiO 2 equivalent value): 10 nm;
X-ray photoelectron spectrometer: Model name “VG Theta Probe” manufactured by Thermo Fisher Scientific;
Irradiation X-ray: Single crystal spectroscopy AlKα
X-ray spot and size: 800 × 400 μm oval.
膜面全体において均一でかつ優れたガスバリア性を有する第1の層を形成するという観点から、第1の層が膜面方向(第1の層の表面に平行な方向)において実質的に一様であることが好ましい。ここで、第1の層が膜面方向において実質的に一様とは、XPSデプスプロファイル測定により第1の層の膜面の任意の2箇所の測定箇所について酸素分布曲線、炭素分布曲線および酸素炭素分布曲線を作成した場合に、その任意の2箇所の測定箇所において得られる炭素分布曲線が持つ極値の数が同じであり、それぞれの炭素分布曲線における炭素の原子比の最大値および最小値の差の絶対値が、互いに同じであるかもしくは5at%以内の差であることをいう。 From the viewpoint of forming the first layer having a uniform and excellent gas barrier property over the entire film surface, the first layer is substantially uniform in the film surface direction (direction parallel to the surface of the first layer). It is preferable that Here, the fact that the first layer is substantially uniform in the film surface direction means that the oxygen distribution curve, the carbon distribution curve, and the oxygen at any two measurement points on the film surface of the first layer by XPS depth profile measurement. When a carbon distribution curve is created, the number of extreme values of the carbon distribution curve obtained at any two measurement locations is the same, and the maximum and minimum values of the atomic ratio of carbon in each carbon distribution curve The absolute values of the differences are the same as each other or within 5 at%.
さらに、炭素分布曲線は実質的に連続であることが好ましい。ここで、炭素分布曲線が実質的に連続とは、炭素分布曲線における炭素の原子比が不連続に変化する部分を含まないことを意味し、具体的には、エッチング速度とエッチング時間とから算出される第1の層のうちの少なくとも1層の膜厚方向における該第1の層の表面からの距離(x、単位:nm)と、炭素の原子比(C、単位:at%)との関係において、下記数式(1)で表される条件を満たすことをいう。 Furthermore, the carbon distribution curve is preferably substantially continuous. Here, the carbon distribution curve is substantially continuous means that the carbon distribution curve does not include a portion where the atomic ratio of carbon changes discontinuously. Specifically, the carbon distribution curve is calculated from the etching rate and the etching time. Of the distance (x, unit: nm) from the surface of the first layer in the film thickness direction of at least one of the first layers to be formed, and the atomic ratio of carbon (C, unit: at%) In the relationship, this means that the condition represented by the following mathematical formula (1) is satisfied.
また、炭素分布曲線において、当該第1の層の炭素原子比率が層全体の平均値として8〜20at%の範囲内であることが好ましく、10〜20at%の範囲であることがより好ましい。当該範囲内にすることにより、ガスバリア性と屈曲性を十分に満たすガス第1の層を形成することができる。 In the carbon distribution curve, the carbon atom ratio of the first layer is preferably in the range of 8 to 20 at%, more preferably in the range of 10 to 20 at%, as an average value of the entire layer. By setting it within this range, it is possible to form the gas first layer that sufficiently satisfies the gas barrier property and the flexibility.
なお、第1の層がサブレイヤーを有する場合、上記条件(i)〜(ii)を全て満たすサブレイヤーが複数積層されて第1の層を形成していてもよい。サブレイヤーを2層以上備える場合には、複数のサブレイヤーの材質は、同一であってもよいし異なっていてもよい。 When the first layer has a sublayer, a plurality of sublayers that satisfy all of the above conditions (i) to (ii) may be stacked to form the first layer. When two or more sublayers are provided, the materials of the plurality of sublayers may be the same or different.
第1の層の好適な形態である、(i)〜(ii)の要件を満たす層は、プラズマCVD(PECVD)法により形成される層であることが好ましく、さらに基材を一対の成膜ローラー上に配置し、前記一対の成膜ローラー間に放電してプラズマを発生させるプラズマCVD法により形成されることがより好ましい。なお、前記プラズマCVD法はペニング放電プラズマ方式のプラズマCVD法であっても良い。 The layer satisfying the requirements of (i) to (ii), which is a preferred form of the first layer, is preferably a layer formed by a plasma CVD (PECVD) method, and a pair of films is formed on the substrate. More preferably, it is formed on a roller and formed by a plasma CVD method in which plasma is generated by discharging between the pair of film forming rollers. The plasma CVD method may be a Penning discharge plasma type plasma CVD method.
プラズマCVD法においてプラズマを発生させる際には、複数の成膜ローラーの間の空間にプラズマ放電を発生させることが好ましく、一対の成膜ローラーを用い、その一対の成膜ローラーのそれぞれに前記基材を配置して、一対の成膜ローラー間に放電してプラズマを発生させることがより好ましい。このようにして、一対の成膜ローラーを用い、その一対の成膜ローラー上に基材を配置して、かかる一対の成膜ローラー間に放電することにより、成膜時に一方の成膜ローラー上に存在する基材の表面部分を成膜しつつ、もう一方の成膜ローラー上に存在する基材の表面部分も同時に成膜することが可能となって効率よく薄膜を製造できるばかりか、通常のローラーを使用しないプラズマCVD法と比較して成膜レートを倍にでき、なおかつ、略同じ構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となり、効率よく上記条件(i)〜(ii)を全て満たす層を形成することが可能となる。 When generating plasma in the plasma CVD method, it is preferable to generate plasma discharge in a space between a plurality of film forming rollers. A pair of film forming rollers is used, and each of the pair of film forming rollers has the above-mentioned base. More preferably, a material is disposed and discharged between a pair of film forming rollers to generate plasma. In this way, by using a pair of film forming rollers, placing a base material on the pair of film forming rollers, and discharging between the pair of film forming rollers, one film forming roller It is possible not only to produce a thin film efficiently because it is possible to form a film on the surface part of the base material existing in the film while simultaneously forming a film on the surface part of the base material present on the other film forming roller. Compared with the plasma CVD method using no roller, the film formation rate can be doubled, and a film having substantially the same structure can be formed, so that the extreme value in the carbon distribution curve can be at least doubled, and it is efficient. It is possible to form a layer that satisfies all of the above conditions (i) to (ii).
また、このようにして一対の成膜ローラー間に放電する際には、一対の成膜ローラーの極性を交互に反転させることが好ましい。さらに、このようなプラズマCVD法に用いる成膜ガスとしては、有機ケイ素化合物と酸素とを含むものが好ましく、その成膜ガス中の酸素の含有量は、成膜ガス中の有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量未満であることが好ましい。また、本発明のガスバリア性フィルムにおいては、第1の層が連続的な成膜プロセスにより形成された層であることが好ましい。 Further, when discharging between the pair of film forming rollers in this way, it is preferable to reverse the polarities of the pair of film forming rollers alternately. Further, the film forming gas used in such a plasma CVD method preferably contains an organic silicon compound and oxygen, and the oxygen content in the film forming gas is the total amount of the organic silicon compound in the film forming gas. It is preferable that the amount of oxygen be less than the theoretical oxygen amount required for complete oxidation. In the gas barrier film of the present invention, the first layer is preferably a layer formed by a continuous film forming process.
また、生産性の観点から、ロールツーロール方式で基材の表面上に第1の層を形成させることが好ましい。また、このようなプラズマCVD法により第1の層を製造する際に用いることが可能な装置としては、特に制限されないが、少なくとも一対の成膜ローラーと、プラズマ電源とを備え、かつ一対の成膜ローラー間において放電することが可能な構成となっている装置であることが好ましく、例えば、図2に示す製造装置を用いた場合には、プラズマCVD法を利用しながらロールツーロール方式で製造することも可能となる。 Moreover, it is preferable to form a 1st layer on the surface of a base material by a roll-to-roll system from a viewpoint of productivity. In addition, an apparatus that can be used for manufacturing the first layer by such a plasma CVD method is not particularly limited, but includes at least a pair of film forming rollers and a plasma power source, and a pair of components. It is preferable that the apparatus has a configuration capable of discharging between film rollers. For example, when the manufacturing apparatus shown in FIG. 2 is used, the apparatus is manufactured by a roll-to-roll method using a plasma CVD method. It is also possible to do.
以下、図2を参照しながら、第1の層の形成方法について、より詳細に説明する。なお、図2は、第1の層(CVD層)を製造するために好適に利用することが可能な製造装置の一例を示す模式図である。また、以下の説明および図面中、同一または相当する要素には同一の符号を付し、重複する説明は省略する。 Hereinafter, the method for forming the first layer will be described in more detail with reference to FIG. FIG. 2 is a schematic diagram showing an example of a manufacturing apparatus that can be suitably used for manufacturing the first layer (CVD layer). In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
図2に示す製造装置31は、送り出しローラー32と、搬送ローラー33、34、35、36と、成膜ローラー39、40と、ガス供給管41と、プラズマ発生用電源42と、成膜ローラー39および40の内部に設置された磁場発生装置43、44と、巻取りローラー45とを備えている。また、このような製造装置においては、少なくとも成膜ローラー39、40と、ガス供給管41と、プラズマ発生用電源42と、磁場発生装置43、44とが図示を省略した真空チャンバ内に配置されている。さらに、このような製造装置31において真空チャンバは図示を省略した真空ポンプに接続されており、かかる真空ポンプにより真空チャンバ内の圧力を適宜調整することが可能となっている。 The manufacturing apparatus 31 shown in FIG. 2 includes a delivery roller 32, transport rollers 33, 34, 35, and 36, film formation rollers 39 and 40, a gas supply pipe 41, a plasma generation power source 42, and a film formation roller 39. And magnetic field generators 43 and 44 installed inside 40 and a winding roller 45. In such a manufacturing apparatus, at least the film forming rollers 39 and 40, the gas supply pipe 41, the plasma generating power source 42, and the magnetic field generating apparatuses 43 and 44 are arranged in a vacuum chamber (not shown). ing. Further, in such a manufacturing apparatus 31, the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by such a vacuum pump.
このような製造装置においては、一対の成膜ローラー(成膜ローラー39と成膜ローラー40)を一対の対向電極として機能させることが可能となるように、各成膜ローラーがそれぞれプラズマ発生用電源42に接続されている。そのため、このような製造装置31においては、プラズマ発生用電源42により電力を供給することにより、成膜ローラー39と成膜ローラー40との間の空間に放電することが可能であり、これにより成膜ローラー39と成膜ローラー40との間の空間にプラズマを発生させることができる。なお、このように、成膜ローラー39と成膜ローラー40とを電極としても利用する場合には、電極としても利用可能なようにその材質や設計を適宜変更すればよい。また、このような製造装置においては、一対の成膜ローラー(成膜ローラー39および40)は、その中心軸が同一平面上において略平行となるようにして配置することが好ましい。このようにして、一対の成膜ローラー(成膜ローラー39および40)を配置することにより、成膜レートを倍にでき、なおかつ、同じ構造の膜を成膜できるので炭素分布曲線における極値を少なくとも倍増させることが可能となる。そして、このような製造装置によれば、CVD法により基材2の表面上に第1の層3を形成することが可能であり、成膜ローラー39上において基材2の表面上に第1の層成分を堆積させつつ、さらに成膜ローラー40上においても基材2の表面上に第1の層成分を堆積させることもできるため、基材2の表面上に第1の層を効率よく形成することができる。 In such a manufacturing apparatus, each film-forming roller has a power source for plasma generation so that the pair of film-forming rollers (the film-forming roller 39 and the film-forming roller 40) can function as a pair of counter electrodes. 42. Therefore, in such a manufacturing apparatus 31, it is possible to discharge into the space between the film forming roller 39 and the film forming roller 40 by supplying electric power from the plasma generating power source 42. Plasma can be generated in the space between the film roller 39 and the film formation roller 40. In this way, when the film forming roller 39 and the film forming roller 40 are also used as electrodes, the material and design thereof may be appropriately changed so that they can also be used as electrodes. Moreover, in such a manufacturing apparatus, it is preferable to arrange | position a pair of film-forming roller (film-forming rollers 39 and 40) so that the central axis may become substantially parallel on the same plane. Thus, by arranging a pair of film forming rollers (film forming rollers 39 and 40), the film forming rate can be doubled and a film having the same structure can be formed. It is possible to double at least. And according to such a manufacturing apparatus, it is possible to form the 1st layer 3 on the surface of the base material 2 by CVD method, and it is 1st on the surface of the base material 2 on the film-forming roller 39. In addition, the first layer component can be deposited on the surface of the substrate 2 even on the film forming roller 40, so that the first layer is efficiently deposited on the surface of the substrate 2. Can be formed.
成膜ローラー39および成膜ローラー40の内部には、成膜ローラーが回転しても回転しないようにして固定された磁場発生装置43および44がそれぞれ設けられている。 Inside the film forming roller 39 and the film forming roller 40, magnetic field generators 43 and 44 fixed so as not to rotate even when the film forming roller rotates are provided, respectively.
成膜ローラー39および成膜ローラー40にそれぞれ設けられた磁場発生装置43および44は、一方の成膜ローラー39に設けられた磁場発生装置43と他方の成膜ローラー40に設けられた磁場発生装置44との間で磁力線がまたがらず、それぞれの磁場発生装置43、44がほぼ閉じた磁気回路を形成するように磁極を配置することが好ましい。このような磁場発生装置43、44を設けることにより、各成膜ローラー39、40の対向側表面付近に磁力線が膨らんだ磁場の形成を促進することができ、その膨出部にプラズマが収束され易くなるため、成膜効率を向上させることができる点で優れている。 The magnetic field generators 43 and 44 provided on the film forming roller 39 and the film forming roller 40 are respectively a magnetic field generating device 43 provided on one film forming roller 39 and a magnetic field generating device provided on the other film forming roller 40. It is preferable to arrange the magnetic poles so that the magnetic field lines do not cross between them and the magnetic field generators 43 and 44 form a substantially closed magnetic circuit. By providing such magnetic field generators 43 and 44, it is possible to promote the formation of a magnetic field in which magnetic lines of force swell near the opposing surface of each film forming roller 39 and 40, and the plasma is converged on the bulging portion. Since it becomes easy, it is excellent at the point which can improve the film-forming efficiency.
また、成膜ローラー39および成膜ローラー40にそれぞれ設けられた磁場発生装置43および44は、それぞれローラー軸方向に長いレーストラック状の磁極を備え、一方の磁場発生装置43と他方の磁場発生装置44とは向かい合う磁極が同一極性となるように磁極を配置することが好ましい。このような磁場発生装置43、44を設けることにより、それぞれの磁場発生装置43、44について、磁力線が対向するローラー側の磁場発生装置にまたがることなく、ローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場を容易に形成することができ、その磁場にプラズマを収束させることができため、ローラー幅方向に沿って巻き掛けられた幅広の基材2を用いて効率的に蒸着膜である第1の層3を形成することができる点で優れている。 The magnetic field generators 43 and 44 provided on the film forming roller 39 and the film forming roller 40 respectively have racetrack-shaped magnetic poles that are long in the roller axis direction, and one magnetic field generator 43 and the other magnetic field generator. It is preferable to arrange the magnetic poles so that the magnetic poles facing to 44 have the same polarity. By providing such magnetic field generators 43 and 44, the opposing space along the length direction of the roller shaft without straddling the magnetic field generator on the roller side where the magnetic lines of force of each of the magnetic field generators 43 and 44 are opposed. A racetrack-like magnetic field can be easily formed in the vicinity of the roller surface facing the (discharge region), and the plasma can be focused on the magnetic field, so that a wide base wound around the roller width direction can be obtained. The material 2 is excellent in that the first layer 3 that is a vapor deposition film can be efficiently formed.
成膜ローラー39および成膜ローラー40としては適宜公知のローラーを用いることができる。このような成膜ローラー39および40としては、より効率よく薄膜を形成せしめるという観点から、直径が同一のものを使うことが好ましい。また、このような成膜ローラー39および40の直径としては、放電条件、チャンバのスペース等の観点から、直径が300〜1000mmφの範囲、特に300〜700mmφの範囲が好ましい。成膜ローラーの直径が300mmφ以上であれば、プラズマ放電空間が小さくなることがないため生産性の劣化もなく、短時間でプラズマ放電の全熱量が基材2にかかることを回避できることから、基材2へのダメージを軽減でき好ましい。一方、成膜ローラーの直径が1000mmφ以下であれば、プラズマ放電空間の均一性等も含めて装置設計上、実用性を保持することができるため好ましい。 As the film forming roller 39 and the film forming roller 40, known rollers can be appropriately used. As such film forming rollers 39 and 40, those having the same diameter are preferably used from the viewpoint of forming a thin film more efficiently. Further, the diameters of the film forming rollers 39 and 40 are preferably in the range of 300 to 1000 mmφ, particularly in the range of 300 to 700 mmφ from the viewpoint of discharge conditions, chamber space, and the like. If the diameter of the film forming roller is 300 mmφ or more, the plasma discharge space will not be reduced, so that the productivity will not be deteriorated and it is possible to avoid applying the total amount of heat of the plasma discharge to the substrate 2 in a short time. It is preferable because damage to the material 2 can be reduced. On the other hand, if the diameter of the film forming roller is 1000 mmφ or less, it is preferable because practicality can be maintained in terms of apparatus design including uniformity of plasma discharge space.
このような製造装置31においては、基材2の表面がそれぞれ対向するように、一対の成膜ローラー(成膜ローラー39と成膜ローラー40)上に、基材2が配置されている。このようにして基材2を配置することにより、成膜ローラー39と成膜ローラー40との間の対向空間に放電を行ってプラズマを発生させる際に、一対の成膜ローラー間に存在する基材2のそれぞれの表面を同時に成膜することが可能となる。すなわち、このような製造装置によれば、プラズマCVD法により、成膜ローラー39上にて基材2の表面上に第1の層成分を堆積させ、さらに成膜ローラー40上にて第1の層成分を堆積させることができるため、基材2の表面上に第1の層を効率よく形成することが可能となる。 In such a manufacturing apparatus 31, the base material 2 is arrange | positioned on a pair of film-forming roller (The film-forming roller 39 and the film-forming roller 40) so that the surface of the base material 2 may respectively oppose. By disposing the base material 2 in this manner, when the plasma is generated by performing discharge in the facing space between the film formation roller 39 and the film formation roller 40, the base existing between the pair of film formation rollers is present. Each surface of the material 2 can be formed simultaneously. That is, according to such a manufacturing apparatus, the first layer component is deposited on the surface of the base material 2 on the film forming roller 39 by the plasma CVD method, and the first layer component is further formed on the film forming roller 40. Since the layer component can be deposited, the first layer can be efficiently formed on the surface of the substrate 2.
このような製造装置に用いる送り出しローラー32および搬送ローラー33、34、35、36としては適宜公知のローラーを用いることができる。また、巻取りローラー45としても、基材2上に第1の層3を形成したガスバリア性フィルム1を巻き取ることが可能なものであればよく、特に制限されず、適宜公知のローラーを用いることができる。 As the feed roller 32 and the transport rollers 33, 34, 35, and 36 used in such a manufacturing apparatus, known rollers can be appropriately used. Further, the winding roller 45 is not particularly limited as long as it can wind the gas barrier film 1 having the first layer 3 formed on the substrate 2, and a known roller is appropriately used. be able to.
ガス供給管41および真空ポンプとしては、原料ガス等を所定の速度で供給または排出することが可能なものを適宜用いることができる。 As the gas supply pipe 41 and the vacuum pump, those capable of supplying or discharging the raw material gas at a predetermined speed can be appropriately used.
また、ガス供給手段であるガス供給管41は、成膜ローラー39と成膜ローラー40との間の対向空間(放電領域;成膜ゾーン)の一方に設けることが好ましく、真空排気手段である真空ポンプ(図示せず)は、前記対向空間の他方に設けることが好ましい。このようにガス供給手段であるガス供給管41と、真空排気手段である真空ポンプを配置することにより、成膜ローラー39と成膜ローラー40との間の対向空間に効率良く成膜ガスを供給することができ、成膜効率を向上させることができる点で優れている。 The gas supply pipe 41 as a gas supply means is preferably provided in one of the facing spaces (discharge region; film formation zone) between the film formation roller 39 and the film formation roller 40, and is a vacuum as a vacuum exhaust means. A pump (not shown) is preferably provided on the other side of the facing space. As described above, by providing the gas supply pipe 41 as the gas supply means and the vacuum pump as the vacuum exhaust means, the film formation gas is efficiently supplied to the facing space between the film formation roller 39 and the film formation roller 40. It is excellent in that the film formation efficiency can be improved.
さらに、プラズマ発生用電源42としては、適宜公知のプラズマ発生装置の電源を用いることができる。このようなプラズマ発生用電源42は、これに接続された成膜ローラー39と成膜ローラー40とに電力を供給して、これらを放電のための対向電極として利用することを可能とする。このようなプラズマ発生用電源42としては、より効率よくプラズマCVDを実施することが可能となることから、一対の成膜ローラーの極性を交互に反転させることが可能なもの(交流電源など)を利用することが好ましい。また、このようなプラズマ発生用電源42としては、より効率よくプラズマCVDを実施することが可能となることから、印加電力を100W〜10kWとすることができ、かつ交流の周波数を50Hz〜500kHzとすることが可能なものであることがより好ましい。また、磁場発生装置43、44としては適宜公知の磁場発生装置を用いることができる。 Furthermore, as the plasma generating power source 42, a known power source of a plasma generating apparatus can be used as appropriate. Such a plasma generating power supply 42 supplies power to the film forming roller 39 and the film forming roller 40 connected thereto, and makes it possible to use these as counter electrodes for discharge. As such a plasma generation power source 42, since it is possible to perform plasma CVD more efficiently, a power source (AC power source or the like) capable of alternately reversing the polarities of a pair of film forming rollers is used. It is preferable to use it. Moreover, as such a plasma generating power source 42, it becomes possible to perform plasma CVD more efficiently, so that the applied power can be set to 100 W to 10 kW, and the AC frequency is set to 50 Hz to 500 kHz. More preferably, it is possible to do this. As the magnetic field generators 43 and 44, known magnetic field generators can be used as appropriate.
このような図2に示す製造装置31を用いて、例えば、原料ガスの種類、プラズマ発生装置の電極ドラムの電力、真空チャンバ内の圧力、成膜ローラーの直径、ならびにフィルムの搬送速度を適宜調整することにより、CVD法により形成される第1の層を製造することができる。すなわち、図2に示す製造装置31を用いて、成膜ガス(原料ガス等)を真空チャンバ内に供給しつつ、一対の成膜ローラー(成膜ローラー39および40)間に放電を発生させることにより、成膜ガス(原料ガス等)がプラズマによって分解され、成膜ローラー39上の基材2の表面上および成膜ローラー40上の基材2の表面上に、第1の層3がプラズマCVD法により形成される。この際、成膜ローラー39,40のローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場が形成して、磁場にプラズマを収束させる。このため、基材2が、図2中の成膜ローラー39のA及び成膜ローラー40のB地点を通過する際に、第1の層で炭素分布曲線の極大値が形成される。これに対して、基材2が、図2中の成膜ローラー39のC1およびC2地点、ならびに成膜ローラー40のC3およびC4地点を通過する際に、第1の層で炭素分布曲線の極小値が形成される。このため、2つの成膜ローラーに対して、通常、5つの極値が生成する。また、バリア層の極値間の距離(炭素分布曲線の有する1つの極値および該極値に隣接する極値におけるバリア層の膜厚方向におけるバリア層の表面からの距離(L)の差の絶対値)は、成膜ローラ39,40の回転速度(基材の搬送速度)によって調節できる。なお、このような成膜に際しては、基材2が送り出しローラー32や成膜ローラー39等により、それぞれ搬送されることにより、ロールツーロール方式の連続的な成膜プロセスにより基材2の表面上に第1の層3が形成される。 Using such a manufacturing apparatus 31 shown in FIG. 2, for example, the type of source gas, the power of the electrode drum of the plasma generator, the pressure in the vacuum chamber, the diameter of the film forming roller, and the film transport speed are appropriately adjusted. By doing so, the first layer formed by the CVD method can be manufactured. That is, using the manufacturing apparatus 31 shown in FIG. 2, a discharge is generated between the pair of film forming rollers (film forming rollers 39 and 40) while supplying a film forming gas (raw material gas, etc.) into the vacuum chamber. Thus, the film formation gas (raw material gas or the like) is decomposed by plasma, and the first layer 3 is plasma on the surface of the base material 2 on the film formation roller 39 and on the surface of the base material 2 on the film formation roller 40. It is formed by the CVD method. At this time, a racetrack-shaped magnetic field is formed in the vicinity of the roller surface facing the opposing space (discharge region) along the length direction of the roller axis of the film forming rollers 39 and 40, and the plasma is converged on the magnetic field. For this reason, when the base material 2 passes A point of the film-forming roller 39 and B point of the film-forming roller 40 in FIG. 2, the maximum value of the carbon distribution curve is formed in the first layer. On the other hand, when the base material 2 passes the points C1 and C2 of the film forming roller 39 and the points C3 and C4 of the film forming roller 40 in FIG. 2, the carbon distribution curve is minimized in the first layer. A value is formed. For this reason, five extreme values are usually generated for two film forming rollers. Further, the distance between the extreme values of the barrier layer (the difference between the distance (L) from the surface of the barrier layer in the thickness direction of the barrier layer at one extreme value of the carbon distribution curve and the extreme value adjacent to the extreme value) (Absolute value) can be adjusted by the rotational speed of the film forming rollers 39 and 40 (base material transport speed). In such film formation, the substrate 2 is conveyed by the delivery roller 32, the film formation roller 39, and the like, respectively, so that the surface of the substrate 2 is formed by a roll-to-roll continuous film formation process. The first layer 3 is formed.
ガス供給管41から対向空間に供給される成膜ガス(原料ガス等)としては、原料化合物を含む原料ガス、反応ガス、キャリアガス、放電ガスが単独または2種以上を混合して用いることができる。第1の層3の形成に用いる成膜ガス中の原料ガスとしては、形成する第1の層3の材質に応じて適宜選択して使用することができる。 As the film forming gas (raw material gas etc.) supplied from the gas supply pipe 41 to the facing space, the raw material gas containing the raw material compound, the reactive gas, the carrier gas, and the discharge gas may be used alone or in combination of two or more. it can. The source gas in the film forming gas used for forming the first layer 3 can be appropriately selected and used according to the material of the first layer 3 to be formed.
上記(i)〜(ii)の要件を満たす層を形成するためには、原料化合物として有機ケイ素化合物を用いることが好ましい。このような有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン(HMDSO)、ヘキサメチルジシラン(HMDS)、1,1,3,3−テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサンが挙げられる。これらの有機ケイ素化合物の中でも、化合物の取り扱い性および得られる第1の層のガスバリア性等の特性の観点から、ヘキサメチルジシロキサン、1,1,3,3−テトラメチルジシロキサンが好ましい。これらの有機ケイ素化合物は、単独でもまたは2種以上を組み合わせても使用することができる。 In order to form a layer that satisfies the requirements (i) to (ii) above, it is preferable to use an organosilicon compound as a raw material compound. Examples of such organosilicon compounds include hexamethyldisiloxane (HMDSO), hexamethyldisilane (HMDS), 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, and hexamethyldisilane. , Methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), phenyltrimethoxysilane, methyltriethoxy Examples include silane and octamethylcyclotetrasiloxane. Among these organosilicon compounds, hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoint of the handling properties of the compound and the gas barrier properties of the obtained first layer. These organosilicon compounds can be used alone or in combination of two or more.
また、成膜ガスとしては、原料ガスの他に反応ガスを用いてもよい。このような反応ガスとしては、原料ガスと反応して酸化物、窒化物等の無機化合物となるガスを適宜選択して使用することができる。酸化物を形成するための反応ガスとしては、例えば、酸素、オゾンを用いることができる。また、窒化物を形成するための反応ガスとしては、例えば、窒素、アンモニアを用いることができる。これらの反応ガスは、単独でもまたは2種以上を組み合わせても使用することができ、例えば酸窒化物を形成する場合には、酸化物を形成するための反応ガスと窒化物を形成するための反応ガスとを組み合わせて使用することができる。 In addition to the source gas, a reactive gas may be used as the film forming gas. As such a reactive gas, a gas that reacts with the raw material gas to become an inorganic compound such as an oxide or a nitride can be appropriately selected and used. As a reaction gas for forming an oxide, for example, oxygen or ozone can be used. Moreover, as a reactive gas for forming nitride, nitrogen and ammonia can be used, for example. These reaction gases can be used singly or in combination of two or more. For example, when forming an oxynitride, a reaction gas for forming an oxide and a nitride are formed. It can be used in combination with a reaction gas.
成膜ガスとしては、原料ガスを真空チャンバ内に供給するために、必要に応じて、キャリアガスを用いてもよい。さらに、成膜ガスとしては、プラズマ放電を発生させるために、必要に応じて、放電用ガスを用いてもよい。このようなキャリアガスおよび放電用ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガス;水素を用いることができる。 As the film forming gas, a carrier gas may be used as necessary to supply the source gas into the vacuum chamber. Further, as a film forming gas, a discharge gas may be used as necessary in order to generate plasma discharge. As such carrier gas and discharge gas, known ones can be used as appropriate, for example, rare gases such as helium, argon, neon, xenon; hydrogen can be used.
このような成膜ガスが原料ガスと反応ガスを含有する場合には、原料ガスと反応ガスの比率としては、原料ガスと反応ガスとを完全に反応させるために理論上必要となる反応ガスの量の比率よりも、反応ガスの比率を過剰にし過ぎないことが好ましい。反応ガスの比率を過剰にし過ぎないことで、形成される第1の層3によって、優れたバリア性や耐屈曲性を得ることができる点で優れている。また、成膜ガスが有機ケイ素化合物と酸素とを含有するものである場合には、成膜ガス中の有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。 When such a film-forming gas contains a source gas and a reactive gas, the ratio of the source gas and the reactive gas is the reaction gas that is theoretically necessary for completely reacting the source gas and the reactive gas. It is preferable not to make the ratio of the reaction gas excessive rather than the ratio of the amount. By making the ratio of the reaction gas not excessive, the first layer 3 to be formed is excellent in that excellent barrier properties and bending resistance can be obtained. Moreover, when the film-forming gas contains an organosilicon compound and oxygen, the amount is preferably less than or equal to the theoretical oxygen amount necessary for complete oxidation of the entire amount of the organosilicon compound in the film-forming gas.
以下、成膜ガスとして、原料ガスとしてのヘキサメチルジシロキサン(有機ケイ素化合物、HMDSO、(CH3)6Si2O)と、反応ガスとしての酸素(O2)を含有するものとを用い、ケイ素−酸素系の薄膜を製造する場合を例に挙げて、成膜ガス中の原料ガスと反応ガスとの好適な比率等について、より詳細に説明する。Hereinafter, as a film forming gas, hexamethyldisiloxane (organosilicon compound, HMDSO, (CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reaction gas are used, Taking a case of producing a silicon-oxygen-based thin film as an example, a suitable ratio of the raw material gas and the reactive gas in the film forming gas will be described in more detail.
原料ガスとしてのヘキサメチルジシロキサン(HMDSO、(CH3)6Si2O)と、反応ガスとしての酸素(O2)と、を含有する成膜ガスをプラズマCVDにより反応させてケイ素−酸素系の薄膜を作製する場合、その成膜ガスにより下記反応式(1)で表されるような反応が起こり、二酸化ケイ素が生成する。A film-forming gas containing hexamethyldisiloxane (HMDSO, (CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reaction gas is reacted by plasma CVD to form a silicon-oxygen system When the thin film is produced, a reaction represented by the following reaction formula (1) occurs by the film forming gas, and silicon dioxide is generated.
このような反応においては、ヘキサメチルジシロキサン1モルを完全酸化するのに必要な酸素量は12モルである。そのため、成膜ガス中に、ヘキサメチルジシロキサン1モルに対して酸素を12モル以上含有させて完全に反応させた場合には、均一な二酸化ケイ素膜が形成されてしまうため、上記条件(i)〜(ii)を全て満たす第1の層を形成することができなくなってしまう。そのため、本発明において、第1の層を形成する際には、上記反応式(1)の反応が完全に進行してしまわないように、ヘキサメチルジシロキサン1モル(ヘキサメチルジシロキサンの流量)に対して酸素量(酸素の流量)を化学量論比の12モル(流量比12倍)より少なくすることが好ましい。なお、実際のプラズマCVDチャンバ内の反応では、原料のヘキサメチルジシロキサンと反応ガスの酸素とは、ガス供給部から成膜領域へ供給されて成膜されるので、反応ガスの酸素のモル量(流量)が原料のヘキサメチルジシロキサンのモル量(流量)の12倍のモル量(流量)であったとしても、現実には完全に反応を進行させることはできず、酸素の含有量を化学量論比に比して大過剰に供給して初めて反応が完結すると考えられる(例えば、CVDにより完全酸化させて酸化ケイ素を得るために、酸素のモル量(流量)を原料のヘキサメチルジシロキサンのモル量(流量)の20倍以上程度とする場合もある)。そのため、原料のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)は、化学量論比である12倍量以下(より好ましくは、10倍以下)の量であることが好ましい。このような比でヘキサメチルジシロキサンおよび酸素を含有させることにより、完全に酸化されなかったヘキサメチルジシロキサン中の炭素原子や水素原子が第1の層中に取り込まれ、上記条件(i)〜(ii)を満たす第1の層を形成することが可能となって、得られるガスバリア性フィルムにおいて優れたガスバリア性および耐屈曲性を発揮させることが可能となる。なお、有機EL素子や太陽電池などのような透明性を必要とするデバイス用のフレキシブル基板への利用の観点から、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)の下限は、ヘキサメチルジシロキサンのモル量(流量)の0.1倍より多い量とすることが好ましく、0.5倍より多い量とすることがより好ましい。 In such a reaction, the amount of oxygen required to completely oxidize 1 mol of hexamethyldisiloxane is 12 mol. Therefore, when the film forming gas contains 12 moles or more of oxygen with respect to 1 mole of hexamethyldisiloxane and is completely reacted, a uniform silicon dioxide film is formed. ) To (ii) cannot be formed. Therefore, in the present invention, when forming the first layer, 1 mol of hexamethyldisiloxane (flow rate of hexamethyldisiloxane) is set so that the reaction of the above reaction formula (1) does not proceed completely. In contrast, the oxygen amount (oxygen flow rate) is preferably less than the stoichiometric ratio of 12 moles (flow rate ratio 12 times). In the actual reaction in the plasma CVD chamber, the raw material hexamethyldisiloxane and the reaction gas oxygen are supplied from the gas supply unit to the film formation region to form a film, so the molar amount of oxygen in the reaction gas Even if the (flow rate) is 12 times the molar amount (flow rate) of the raw material hexamethyldisiloxane (flow rate), the reaction cannot actually proceed completely, and the oxygen content is reduced. It is considered that the reaction is completed only when a large excess is supplied compared to the stoichiometric ratio (for example, in order to obtain silicon oxide by complete oxidation by CVD, the molar amount (flow rate) of oxygen is changed to the hexamethyldioxide raw material. (It may be about 20 times or more the molar amount (flow rate) of siloxane). Therefore, the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of the raw material hexamethyldisiloxane is preferably an amount of 12 times or less (more preferably 10 times or less) which is the stoichiometric ratio. . By containing hexamethyldisiloxane and oxygen in such a ratio, carbon atoms and hydrogen atoms in hexamethyldisiloxane that have not been completely oxidized are taken into the first layer, and the above conditions (i) to The first layer satisfying (ii) can be formed, and excellent gas barrier properties and flex resistance can be exhibited in the obtained gas barrier film. From the viewpoint of use as a flexible substrate for devices that require transparency, such as organic EL elements and solar cells, the molar amount of oxygen relative to the molar amount (flow rate) of hexamethyldisiloxane in the deposition gas The lower limit of (flow rate) is preferably greater than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane, more preferably greater than 0.5 times.
また、真空チャンバ内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.5Pa〜50Paの範囲とすることが好ましい。 Moreover, although the pressure (vacuum degree) in a vacuum chamber can be suitably adjusted according to the kind etc. of source gas, it is preferable to set it as the range of 0.5 Pa-50 Pa.
また、このようなプラズマCVD法において、成膜ローラー39と成膜ローラー40との間に放電するために、プラズマ発生用電源42に接続された電極ドラム(本実施形態においては、成膜ローラー39および40に設置されている)に印加する電力は、原料ガスの種類や真空チャンバ内の圧力等に応じて適宜調整することができるものであり一概に言えるものでないが、0.1〜10kWの範囲とすることが好ましい。このような印加電力が100W以上であれば、パーティクルが発生を十分に抑制することができ、他方、10kW以下であれば、成膜時に発生する熱量を抑えることができ、成膜時の基材表面の温度が上昇するのを抑制できる。そのため基材が熱負けすることなく、成膜時に皺が発生するのを防止できる点で優れている。 In such a plasma CVD method, in order to discharge between the film forming roller 39 and the film forming roller 40, an electrode drum connected to the plasma generating power source 42 (in this embodiment, the film forming roller 39) is used. The electric power to be applied to the power source can be adjusted as appropriate according to the type of the raw material gas, the pressure in the vacuum chamber, etc. It is preferable to be in the range. If such an applied power is 100 W or more, the generation of particles can be sufficiently suppressed, and if it is 10 kW or less, the amount of heat generated during film formation can be suppressed, and the substrate during film formation can be suppressed. An increase in surface temperature can be suppressed. Therefore, it is excellent in that wrinkles can be prevented during film formation without causing the substrate to lose heat.
基材2の搬送速度(ライン速度)は、原料ガスの種類や真空チャンバ内の圧力等に応じて適宜調整することができるが、0.25〜100m/minの範囲とすることが好ましく、0.5〜20m/minの範囲とすることがより好ましい。ライン速度が0.25m/min以上であれば、基材に熱に起因する皺の発生を効果的に抑制することができる。他方、100m/min以下であれば、生産性を損なうことなく、第1の層として十分な厚みを確保することができる点で優れている。 Although the conveyance speed (line speed) of the base material 2 can be appropriately adjusted according to the type of raw material gas, the pressure in the vacuum chamber, and the like, it is preferably in the range of 0.25 to 100 m / min. More preferably, it is in the range of 5 to 20 m / min. If the line speed is 0.25 m / min or more, generation of wrinkles due to heat in the substrate can be effectively suppressed. On the other hand, if it is 100 m / min or less, it is excellent at the point which can ensure sufficient thickness as a 1st layer, without impairing productivity.
上記したように、本実施形態のより好ましい態様としては、第1の層を、図2に示す対向ロール電極を有するプラズマCVD装置(ロールツーロール方式)を用いたプラズマCVD法によって成膜する。これは、対向ロール電極を有するプラズマCVD装置(ロールツーロール方式)を用いて量産する場合に、可撓性(屈曲性)に優れ、機械的強度、特にロールツーロールでの搬送時の耐久性と、バリア性能とが両立する第1の層を効率よく製造することができるためである。このような製造装置は、太陽電池や電子部品などに使用される温度変化に対する耐久性が求められるガスバリア性フィルムを、安価でかつ容易に量産することができる点でも優れている。 As described above, as a more preferable aspect of the present embodiment, the first layer is formed by a plasma CVD method using the plasma CVD apparatus (roll-to-roll method) having the counter roll electrode shown in FIG. This is excellent in flexibility (flexibility) and mechanical strength, especially when transported by roll-to-roll, when mass-produced using a plasma CVD apparatus (roll-to-roll method) having a counter roll electrode. This is because it is possible to efficiently manufacture the first layer in which the barrier performance is compatible. Such a manufacturing apparatus is also excellent in that it can inexpensively and easily mass-produce gas barrier films that are required for durability against temperature changes used in solar cells and electronic components.
図3は、極値等を有さないガスバリア層のXPSデプスプロファイルによる層の厚さ方向の各元素プロファイルの一例である。当該ガスバリア層は、平坦電極(水平搬送)タイプのプラズマ放電でのCVD法で形成しており、炭素原子成分の濃度勾配の連続的な変化が起こらない様子がわかる。図3において、符号A〜Dは、A:炭素分布曲線、B:ケイ素分布曲線、C:酸素分布曲線、D:酸素炭素分布曲線を各々表す。 FIG. 3 is an example of each element profile in the layer thickness direction according to the XPS depth profile of the gas barrier layer having no extreme value or the like. The gas barrier layer is formed by a CVD method using a flat electrode (horizontal transport) type plasma discharge, and it can be seen that a continuous change in the concentration gradient of the carbon atom component does not occur. In FIG. 3, symbols A to D represent A: carbon distribution curve, B: silicon distribution curve, C: oxygen distribution curve, and D: oxygen carbon distribution curve, respectively.
〔第2の層(無機酸化物層)〕
第2の層は、原子層堆積法(ALD法)により形成された無機酸化物層である。[Second layer (inorganic oxide layer)]
The second layer is an inorganic oxide layer formed by an atomic layer deposition method (ALD method).
無機酸化物としては、特に限定されず、アルミニウム、チタン、ケイ素、ジルコニウム、ハフニウム、ランタンなどの酸化物および複合酸化物が挙げられる。樹脂基材上に成膜することを考慮し50℃〜120℃の温度で良質な膜が得られる観点から、無機酸化物がAl2O3、TiO2、SiO2およびZrOからなる群から選択される少なくとも1種を含むことが好ましい。微小な欠陥に材料を含浸できることから、材料の分子量の大きさを考慮して、無機酸化物がTMA(トリメチルアルミニウム)やTiCl(塩化チタン)が使えるAl2O3およびTiO2を含むことが更に好ましく、ガスバリア性能および高温高湿条件下でのガスバリア性能を考慮すると、無機酸化物がAl2O3を含むことが特に好ましく、第2の層がAl2O3層であることが最も好ましい。The inorganic oxide is not particularly limited, and examples thereof include oxides and composite oxides such as aluminum, titanium, silicon, zirconium, hafnium, and lanthanum. In view of forming a film on a resin substrate, the inorganic oxide is selected from the group consisting of Al 2 O 3 , TiO 2 , SiO 2 and ZrO from the viewpoint of obtaining a good film at a temperature of 50 ° C. to 120 ° C. It is preferable to contain at least one selected from the above. Since the minute defects can be impregnated with the material, in consideration of the molecular weight of the material, the inorganic oxide further contains Al 2 O 3 and TiO 2 that can use TMA (trimethylaluminum) and TiCl (titanium chloride). Preferably, considering the gas barrier performance and gas barrier performance under high temperature and high humidity conditions, the inorganic oxide particularly preferably contains Al 2 O 3 , and the second layer is most preferably an Al 2 O 3 layer.
また、各ガスの導入時間や、成膜温度、成膜時の圧力を調整することによりAlOx、TiOx、SiOx、ZrOxなどの中間酸化物、窒化物なども可能であり、必要により使用することは問題ない。 In addition, by adjusting the introduction time of each gas, the film formation temperature, and the pressure during film formation, intermediate oxides such as AlOx, TiOx, SiOx, ZrOx, nitrides, and the like are also possible. no problem.
ALD法とは、2種以上のガス(第1のガスおよび第2のガス)を基材上に交互に導入することにより、原子層を1層ごとに堆積させる方法である。より詳細には、はじめに第1のガスを基材上に導入してガス分子層(単原子層)を形成させる。次いで不活性ガスを導入することにより、第1のガスをパージ(除去)する。なお、形成された第1のガスのガス分子層は、化学吸着により不活性ガスを導入してもパージされない。次に、第2のガスを導入して形成されたガス分子層を酸化して無機膜が形成される。最後に、不活性ガスを導入することにより、第2のガスをパージし、ALD法の1サイクルが完了する。上記サイクルを繰り返すことにより、原子層が1層ずつ堆積されて、所定の膜厚を有する第1のガスバリア層を形成することができる。なお、ALD法は、基板の表面の凹凸によらず、陰影部分も含めて無機膜を形成することができる。 The ALD method is a method of depositing atomic layers one by one by introducing two or more kinds of gases (first gas and second gas) alternately onto a substrate. More specifically, first, a first gas is introduced onto a substrate to form a gas molecular layer (monoatomic layer). Next, the first gas is purged (removed) by introducing an inert gas. Note that the gas molecule layer of the formed first gas is not purged even when an inert gas is introduced by chemical adsorption. Next, the gas molecular layer formed by introducing the second gas is oxidized to form an inorganic film. Finally, the second gas is purged by introducing an inert gas, and one cycle of the ALD method is completed. By repeating the above cycle, the atomic layers are deposited one by one, and the first gas barrier layer having a predetermined film thickness can be formed. Note that the ALD method can form an inorganic film including a shaded portion regardless of unevenness on the surface of the substrate.
ガス分子の基材への吸着のため基材表面の活性化が必要である。このため、製膜温度は、ある程度高温であることが好ましく、基材のプラスチック基板のガラス転移温度あるいは分解開始温度を超えない範囲で適宜調整すればよい。プラスチック基材を用いる場合、通常反応器内の温度は、50〜200℃程度である。サイクル1回の堆積速度は通常、0.01〜0.3nmであり、製膜サイクルを繰り返すことによって所望の膜厚とする。 Activation of the substrate surface is necessary for the adsorption of gas molecules onto the substrate. For this reason, the film forming temperature is preferably high to some extent, and may be appropriately adjusted within a range not exceeding the glass transition temperature or decomposition start temperature of the plastic substrate as the base material. When using a plastic substrate, the temperature in the reactor is usually about 50 to 200 ° C. The deposition rate for one cycle is usually 0.01 to 0.3 nm, and a desired film thickness is obtained by repeating the film forming cycle.
例えば、第2の層の無機酸化物が酸化アルミニウムの場合、第1のガスはアルミニウム化合物を気化して得られるガスであり、第2のガスは酸化性ガスでありうる。また、不活性ガスは、上記第1のガスおよび/または第2のガスと反応しないガスである。 For example, when the inorganic oxide of the second layer is aluminum oxide, the first gas can be a gas obtained by vaporizing an aluminum compound, and the second gas can be an oxidizing gas. The inert gas is a gas that does not react with the first gas and / or the second gas.
アルミニウム化合物としては、アルミニウムを含み、気化できるものであれば特に制限はない。アルミニウム化合物の具体例としては、トリメチルアルミニウム(TMA)、トリエチルアルミニウム(TEA)、およびトリクロロアルミニウムが挙げられる。 The aluminum compound is not particularly limited as long as it contains aluminum and can be vaporized. Specific examples of the aluminum compound include trimethylaluminum (TMA), triethylaluminum (TEA), and trichloroaluminum.
その他、形成する無機酸化物膜によって原料ガスを適宜選択すればよく、例えば、M.Ritala:Appl.Surf.Sci.112,223(1997)に記載のものを使用することができる。具体的には、第2の層の無機酸化物が酸化ケイ素の場合、第1のガスはケイ素化合物を気化して得られるガスである。かようなケイ素化合物としては、モノクロロシラン(SiH3Cl、MCS)、ヘキサクロロジシラン(Si2Cl6、HCD)、テトラクロロシラン(SiCl4、STC)、トリクロロシラン(SiHCl3、TCS)等の他のクロロシラン系や、トリシラン(Si3H8、TS)、ジシラン(Si2H6、DS)、モノシラン(SiH4、MS)等の無機原料や、アミノシラン系のテトラキスジメチルアミノシラン(Si[N(CH3)2]4、4DMAS)、トリスジメチルアミノシラン(Si[N(CH3)2]3H、3DMASi)、ビスジエチルアミノシラン(Si[N(C2H5)2]2H2、2DEAS)、ビスターシャリーブチルアミノシラン(SiH2[NH(C4H9)]2、BTBAS)などが挙げられる。In addition, the source gas may be appropriately selected depending on the inorganic oxide film to be formed. Ritala: Appl. Surf. Sci. 112, 223 (1997) can be used. Specifically, when the inorganic oxide of the second layer is silicon oxide, the first gas is a gas obtained by vaporizing a silicon compound. Such silicon compounds include monochlorosilane (SiH 3 Cl, MCS), hexachlorodisilane (Si 2 Cl 6 , HCD), tetrachlorosilane (SiCl 4 , STC), trichlorosilane (SiHCl 3 , TCS) and the like. Inorganic raw materials such as chlorosilane, trisilane (Si 3 H 8 , TS), disilane (Si 2 H 6 , DS), monosilane (SiH 4 , MS), and aminosilane tetrakisdimethylaminosilane (Si [N (CH 3 ) 2] 4,4DMAS), tris (dimethylamino) silane (Si [N (CH 3) 2] 3 H, 3DMASi), bis diethylamino silane (Si [N (C 2 H 5) 2] 2 H 2, 2DEAS), Bicester tert-butylamino silane (SiH 2 [NH (C 4 H 9)] 2, B BAS) and the like.
また、第2の層の無機酸化物が酸化チタンの場合、第1のガスはチタン化合物を気化して得られるガスである。かようなチタン化合物としては、四塩化チタン(TiCl4)、チタン(IV)イソプロポキシド(Ti[(OCH)(CH3)2]4)、テトラキスジメチルアミノチタン([(CH3)2N]4Ti、TDMATi)、テトラキスジエチルアミノチタン(Ti[N(CH2CH3)2]4、TDEATi、)などが挙げられる。When the inorganic oxide of the second layer is titanium oxide, the first gas is a gas obtained by vaporizing a titanium compound. Such titanium compounds include titanium tetrachloride (TiCl 4) , titanium (IV) isopropoxide (Ti [(OCH) (CH 3 ) 2 ] 4 ), tetrakisdimethylamino titanium ([(CH 3 ) 2 N ] 4 Ti, TDMATi), tetrakis (diethylamino) titanium (Ti [N (CH 2 CH 3) 2] 4, TDEATi,) and the like.
また、第2の層の無機酸化物が酸化ジルコニウムの場合、前記第1のガスはジルコニウム化合物を気化して得られるガスである。かようなジルコニウム化合物としては、テトラキスジメチルアミノジルコニウム(IV);[(CH3)2N]4Zrなどが挙げられる。When the inorganic oxide of the second layer is zirconium oxide, the first gas is a gas obtained by vaporizing a zirconium compound. Examples of such zirconium compounds include tetrakisdimethylaminozirconium (IV); [(CH 3 ) 2 N] 4 Zr and the like.
酸化性ガスとしては、ガス分子層を酸化できるものであれば特に制限はなく、例えば、オゾン(O3)、水(H2O)、過酸化水素(H2O2)、メタノール(CH3OH)、およびエタノール(C2H5OH)等が用いられうる。また、酸素ラジカルを用いることも可能である。ラジカルを用いる場合は、高周波電源(例えば、周波数13.56MHzの電源)を用いてガスを励起させることで、高密度な酸素ラジカルを生じさせることが可能であり、酸化および窒化反応をより促進させることができる。装置の大型化や実用性等を考慮すると、13.56MHzの電源を用いたICP(InductivelyCoupledPlasma)モードでの放電が望ましい。The oxidizing gas is not particularly limited as long as it can oxidize the gas molecular layer. For example, ozone (O 3 ), water (H 2 O), hydrogen peroxide (H 2 O 2 ), methanol (CH 3 ). OH), ethanol (C 2 H 5 OH) and the like can be used. It is also possible to use oxygen radicals. When radicals are used, high-density oxygen radicals can be generated by exciting the gas using a high-frequency power source (for example, a power source having a frequency of 13.56 MHz), which further promotes oxidation and nitridation reactions. be able to. Considering the increase in size and practicality of the apparatus, it is desirable to discharge in ICP (Inductively Coupled Plasma) mode using a 13.56 MHz power source.
また、窒化物、及び窒酸化物にしたい場合は、窒素ラジカルを用いることができる。窒素ラジカルは、前述の酸素ラジカル生成と同様にして生成することができる。 In addition, nitrogen radicals can be used when nitrides and nitride oxides are desired. Nitrogen radicals can be generated in the same manner as the oxygen radical generation described above.
また、装置の大きさ、1サイクル時間の短縮の観点から、酸化性ガスとしてオゾン、酸素ラジカルを用いることが好ましい。更に低温で緻密な膜を形成する観点からは、酸素ラジカルを用いることが好ましい。 Further, from the viewpoint of shortening the size of the apparatus and the cycle time, it is preferable to use ozone or oxygen radical as the oxidizing gas. Further, from the viewpoint of forming a dense film at a low temperature, it is preferable to use oxygen radicals.
不活性ガスとしては、希ガス(ヘリウム、ネオン、アルゴン、クリプトン、キセノン)、窒素ガス等が用いられうる。 As the inert gas, a rare gas (helium, neon, argon, krypton, xenon), nitrogen gas, or the like can be used.
第1のガスの導入時間は、0.05〜10秒であることが好ましく、0.1〜3秒であることがより好ましく、0.5〜2秒であることがさらに好ましい。第1のガスの導入時間が0.05秒以上であると、ガス分子層を形成できる時間が十分に確保できることから好ましい。一方、第1のガスの導入時間が10秒以下であると、1サイクルに要する時間が低減できることから好ましい。 The introduction time of the first gas is preferably 0.05 to 10 seconds, more preferably 0.1 to 3 seconds, and further preferably 0.5 to 2 seconds. It is preferable for the introduction time of the first gas to be 0.05 seconds or longer because sufficient time for forming the gas molecular layer can be secured. On the other hand, when the introduction time of the first gas is 10 seconds or less, it is preferable because the time required for one cycle can be reduced.
また、第1のガスをパージするための不活性ガスの導入時間は、0.05〜10秒であることが好ましく、0.5〜6秒であることがより好ましく、1〜4秒であることがさらに好ましい。不活性ガスの導入時間が0.05秒以上であると、第1のガスを十分にパージできることから好ましい。一方、不活性ガスの導入時間が10秒以下であると、1サイクルに要する時間を低減でき、形成されたガス分子層への影響が少なくなることから好ましい。 The introduction time of the inert gas for purging the first gas is preferably 0.05 to 10 seconds, more preferably 0.5 to 6 seconds, and 1 to 4 seconds. More preferably. It is preferable that the introduction time of the inert gas is 0.05 seconds or longer because the first gas can be sufficiently purged. On the other hand, when the introduction time of the inert gas is 10 seconds or less, it is preferable because the time required for one cycle can be reduced and the influence on the formed gas molecular layer is reduced.
さらに第2のガスの導入時間は、0.05〜10秒であることが好ましく、0.1〜3秒であることがより好ましい。第2のガスの導入時間が0.05秒以上であると、ガス分子層を酸化できる時間が十分に確保できることから好ましい。一方、第2のガスの導入時間が10秒以下であると、1サイクルに要する時間が低減でき、副反応が防止されうることから好ましい。 Furthermore, the introduction time of the second gas is preferably 0.05 to 10 seconds, and more preferably 0.1 to 3 seconds. It is preferable for the introduction time of the second gas to be 0.05 seconds or longer because sufficient time for oxidizing the gas molecular layer can be secured. On the other hand, when the introduction time of the second gas is 10 seconds or less, the time required for one cycle can be reduced, and side reactions can be prevented.
また、第2のガスをパージするための不活性ガスの導入時間は、0.05〜10秒であることが好ましい。不活性ガスの導入時間が0.05秒以上であると、第2のガスを十分にパージできることから好ましい。一方、不活性ガスの導入時間が10秒以下であると、1サイクルに要する時間が低減でき、形成された原子層への影響が少ないことから好ましい。 In addition, the inert gas introduction time for purging the second gas is preferably 0.05 to 10 seconds. It is preferable that the introduction time of the inert gas is 0.05 seconds or longer because the second gas can be sufficiently purged. On the other hand, an inert gas introduction time of 10 seconds or less is preferable because the time required for one cycle can be reduced and the influence on the formed atomic layer is small.
無機酸化物層の厚さは、1〜100nmであることが好ましく、10〜50nmであることがより好ましい。無機酸化物層の膜厚が1nm以上であると、微細欠陥の補修といったALD層の効果が適切に得られ、ALDの製膜速度を考慮すると生産性の観点から100nm以下であることが好ましい。 The thickness of the inorganic oxide layer is preferably 1 to 100 nm, and more preferably 10 to 50 nm. When the thickness of the inorganic oxide layer is 1 nm or more, the effect of the ALD layer such as the repair of fine defects can be appropriately obtained, and the thickness is preferably 100 nm or less from the viewpoint of productivity in consideration of the ALD film forming speed.
また、第1の層と、第2の層との膜厚との関係において、第1の層の膜厚が第2の層の膜厚の30倍未満であることが好ましく、2〜10倍であることがより好ましい。両者の膜厚をかような範囲とすることで、ガスバリア性能が向上する。これは、第2の層の微小欠陥補修効果が適切に得られるためであると考えられる。 Further, in the relationship between the film thickness of the first layer and the second layer, the film thickness of the first layer is preferably less than 30 times the film thickness of the second layer, and is preferably 2 to 10 times. It is more preferable that Gas barrier performance improves by making both film thickness into such a range. This is considered to be because the micro defect repair effect of the second layer is appropriately obtained.
無機酸化物層は、ALD法により形成されるため、下層の欠陥補修が行われやすい。この結果、ALD法により形成された無機酸化物層の膜面は平滑性が高い。したがって、下層の欠陥補修の程度を示しうる指標として、無機酸化物層の上層(好適にはケイ素化合物改質層)と接する面の中心線平均表面粗さ(Ra)を用いることが好適であると考えられる。ここで、無機酸化物層の上層と接する面の中心線平均表面粗さ(Ra)は、0.8〜100nmであることが好ましく、1.0〜10nmであることがより好ましい。かような範囲であれば、ALD層による欠陥の補修が好適に行われていると判断でき、フィルム全体のガスバリア性能が向上する。なお、中心線平均表面粗さ(Ra)は、実施例に記載の方法により測定することができる。 Since the inorganic oxide layer is formed by the ALD method, it is easy to repair defects in the lower layer. As a result, the film surface of the inorganic oxide layer formed by the ALD method has high smoothness. Accordingly, it is preferable to use the centerline average surface roughness (Ra) of the surface in contact with the upper layer (preferably the silicon compound modified layer) of the inorganic oxide layer as an index that can indicate the degree of defect repair of the lower layer. it is conceivable that. Here, the center line average surface roughness (Ra) of the surface in contact with the upper layer of the inorganic oxide layer is preferably 0.8 to 100 nm, and more preferably 1.0 to 10 nm. If it is such a range, it can be judged that the defect repair by the ALD layer is performed suitably, and the gas barrier performance of the whole film improves. The centerline average surface roughness (Ra) can be measured by the method described in the examples.
なお、第2の層はガスバリア性能を有するが、第1の層および第3の層のガスバリア性が高いため、第2の層単独でのガスバリア性能は高くなくともよい。したがって、第2の層のガスバリア性能は、基材上に第2の層を形成させた積層体における後述の実施例に記載の方法により測定された透過水分量が0.5g/(m2・24h)以下であることが好ましく、0.1g/(m2・24h)以下であることがより好ましい。Although the second layer has gas barrier performance, the gas barrier performance of the second layer alone may not be high because the gas barrier properties of the first layer and the third layer are high. Therefore, the gas barrier performance of the second layer is such that the amount of permeated moisture measured by the method described in Examples below in the laminate in which the second layer is formed on the substrate is 0.5 g / (m 2 · 24 h) or less, and more preferably 0.1 g / (m 2 · 24 h) or less.
〔第3の層(ケイ素化合物改質層)〕
第3の層は、ケイ素化合物を含有する液を塗布して形成される塗膜を改質処理して形成される。[Third layer (silicon compound modified layer)]
The third layer is formed by modifying a coating film formed by applying a liquid containing a silicon compound.
(ケイ素化合物)
ケイ素化合物としては、ケイ素化合物を含有する塗布液の調製が可能であれば特に限定はされない。(Silicon compound)
The silicon compound is not particularly limited as long as a coating solution containing the silicon compound can be prepared.
具体的には、例えば、パーヒドロポリシラザン、オルガノポリシラザン、シルセスキオキサン、テトラメチルシラン、トリメチルメトキシシラン、ジメチルジメトキシシラン、メチルトリメトキシシラン、トリメチルエトキシシラン、ジメチルジエトキシシラン、メチルトリエトキシシラン、テトラメトキシシラン、テトラメトキシシラン、ヘキサメチルジシロキサン、ヘキサメチルジシラザン、1,1−ジメチル−1−シラシクロブタン、トリメチルビニルシラン、メトキシジメチルビニルシラン、トリメトキシビニルシラン、エチルトリメトキシシラン、ジメチルジビニルシラン、ジメチルエトキシエチニルシラン、ジアセトキシジメチルシラン、ジメトキシメチル−3,3,3−トリフルオロプロピルシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、アリールトリメトキシシラン、エトキシジメチルビニルシラン、アリールアミノトリメトキシシラン、N−メチル−N−トリメチルシリルアセトアミド、3−アミノプロピルトリメトキシシラン、メチルトリビニルシラン、ジアセトキシメチルビニルシラン、メチルトリアセトキシシラン、アリールオキシジメチルビニルシラン、ジエチルビニルシラン、ブチルトリメトキシシラン、3−アミノプロピルジメチルエトキシシラン、テトラビニルシラン、トリアセトキシビニルシラン、テトラアセトキシシラン、3−トリフルオロアセトキシプロピルトリメトキシシラン、ジアリールジメトキシシラン、ブチルジメトキシビニルシラン、トリメチル−3−ビニルチオプロピルシラン、フェニルトリメチルシラン、ジメトキシメチルフェニルシラン、フェニルトリメトキシシラン、3−アクリロキシプロピルジメトキシメチルシラン、3−アクリロキシプロピルトリメトキシシラン、ジメチルイソペンチロキシビニルシラン、2−アリールオキシエチルチオメトキシトリメチルシラン、3−グリシドキシプロピルトリメトキシシラン、3−アリールアミノプロピルトリメトキシシラン、ヘキシルトリメトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ジメチルエチキシフェニルシラン、ベンゾイロキシトリメチルシラン、3−メタクリロキシプロピルジメトキシメチルシラン、3−メタクリロキシプロピルトリメトキシシラン、3−イソシアネートプロピルトリエトキシシラン、ジメチルエトキシ−3−グリシドキシプロピルシラン、ジブトキシジメチルシラン、3−ブチルアミノプロピルトリメチルシラン、3−ジメチルアミノプロピルジエトキシメチルシラン、2−(2−アミノエチルチオエチル)トリエトキシシラン、ビス(ブチルアミノ)ジメチルシラン、ジビニルメチルフェニルシラン、ジアセトキシメチルフェニルシラン、ジメチル−p−トリルビニルシラン、p−スチリルトリメトキシシラン、ジエチルメチルフェニルシラン、ベンジルジメチルエトキシシラン、ジエトキシメチルフェニルシラン、デシルメチルジメトキシシラン、ジエトキシ−3−グリシドキシプロピルメチルシラン、オクチロキシトリメチルシラン、フェニルトリビニルシラン、テトラアリールオキシシラン、ドデシルトリメチルシラン、ジアリールメチルフェニルシラン、ジフェニルメチルビニルシラン、ジフェニルエトキシメチルシラン、ジアセトキシジフェニルシラン、ジベンジルジメチルシラン、ジアリールジフェニルシラン、オクタデシルトリメチルシラン、メチルオクタデシルジメチルシラン、ドコシルメチルジメチルシラン、1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン、1,3−ジビニル−1,1,3,3−テトラメチルジシラザン、1,4−ビス(ジメチルビニルシリル)ベンゼン、1,3−ビス(3−アセトキシプロピル)テトラメチルジシロキサン、1,3,5−トリメチル−1,3,5−トリビニルシクロトリシロキサン、1,3,5−トリス(3,3,3−トリフルオロプロピル)−1,3,5−トリメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、1,3,5,7−テトラエトキシ−1,3,5,7−テトラメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン等を挙げることができる。 Specifically, for example, perhydropolysilazane, organopolysilazane, silsesquioxane, tetramethylsilane, trimethylmethoxysilane, dimethyldimethoxysilane, methyltrimethoxysilane, trimethylethoxysilane, dimethyldiethoxysilane, methyltriethoxysilane, Tetramethoxysilane, tetramethoxysilane, hexamethyldisiloxane, hexamethyldisilazane, 1,1-dimethyl-1-silacyclobutane, trimethylvinylsilane, methoxydimethylvinylsilane, trimethoxyvinylsilane, ethyltrimethoxysilane, dimethyldivinylsilane, dimethyl Ethoxyethynylsilane, diacetoxydimethylsilane, dimethoxymethyl-3,3,3-trifluoropropylsilane, 3,3,3-trifluoro Propyltrimethoxysilane, aryltrimethoxysilane, ethoxydimethylvinylsilane, arylaminotrimethoxysilane, N-methyl-N-trimethylsilylacetamide, 3-aminopropyltrimethoxysilane, methyltrivinylsilane, diacetoxymethylvinylsilane, methyltriacetoxysilane , Aryloxydimethylvinylsilane, diethylvinylsilane, butyltrimethoxysilane, 3-aminopropyldimethylethoxysilane, tetravinylsilane, triacetoxyvinylsilane, tetraacetoxysilane, 3-trifluoroacetoxypropyltrimethoxysilane, diaryldimethoxysilane, butyldimethoxyvinylsilane , Trimethyl-3-vinylthiopropylsilane, phenyltrimethylsilane Dimethoxymethylphenylsilane, phenyltrimethoxysilane, 3-acryloxypropyldimethoxymethylsilane, 3-acryloxypropyltrimethoxysilane, dimethylisopentyloxyvinylsilane, 2-aryloxyethylthiomethoxytrimethylsilane, 3-glycidoxypropyl Trimethoxysilane, 3-arylaminopropyltrimethoxysilane, hexyltrimethoxysilane, heptadecafluorodecyltrimethoxysilane, dimethylethyphenylsilane, benzoyloxytrimethylsilane, 3-methacryloxypropyldimethoxymethylsilane, 3-methacryl Loxypropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, dimethylethoxy-3-glycidoxypropylsilane, dibu Toxidimethylsilane, 3-butylaminopropyltrimethylsilane, 3-dimethylaminopropyldiethoxymethylsilane, 2- (2-aminoethylthioethyl) triethoxysilane, bis (butylamino) dimethylsilane, divinylmethylphenylsilane, di Acetoxymethylphenylsilane, dimethyl-p-tolylvinylsilane, p-styryltrimethoxysilane, diethylmethylphenylsilane, benzyldimethylethoxysilane, diethoxymethylphenylsilane, decylmethyldimethoxysilane, diethoxy-3-glycidoxypropylmethylsilane , Octyloxytrimethylsilane, phenyltrivinylsilane, tetraaryloxysilane, dodecyltrimethylsilane, diarylmethylphenylsilane, diphenylmethyl Nylsilane, diphenylethoxymethylsilane, diacetoxydiphenylsilane, dibenzyldimethylsilane, diaryldiphenylsilane, octadecyltrimethylsilane, methyloctadecyldimethylsilane, docosylmethyldimethylsilane, 1,3-divinyl-1,1,3,3- Tetramethyldisiloxane, 1,3-divinyl-1,1,3,3-tetramethyldisilazane, 1,4-bis (dimethylvinylsilyl) benzene, 1,3-bis (3-acetoxypropyl) tetramethyldi Siloxane, 1,3,5-trimethyl-1,3,5-trivinylcyclotrisiloxane, 1,3,5-tris (3,3,3-trifluoropropyl) -1,3,5-trimethylcyclotri Siloxane, octamethylcyclotetrasiloxane, 1, 3, 5 7-tetraethoxy-1,3,5,7-tetramethyl cyclotetrasiloxane, may be mentioned decamethylcyclopentasiloxane like.
上記シルセスキオキサンとしては、例えば、Mayaterials製Q8シリーズのOctakis(tetramethylammonium)pentacyclo−octasiloxane−octakis(yloxide)hydrate;Octa(tetramethylammonium)silsesquioxane、Octakis(dimethylsiloxy)octasilsesquioxane、Octa[[3−[(3−ethyl−3−oxetanyl)methoxy]propyl]dimethylsiloxy]octasilsesquioxane;Octaallyloxetane silsesquioxane、Octa[(3−Propylglycidylether)dimethylsiloxy]silsesquioxane;Octakis[[3−(2,3−epoxypropoxy)propyl]dimethylsiloxy]octasilsesquioxane、Octakis[[2−(3,4−epoxycyclohexyl)ethyl]dimethylsiloxy]octasilsesquioxane、Octakis[2−(vinyl)dimethylsiloxy]silsesquioxane;Octakis(dimethylvinylsiloxy)octasilsesquioxane、Octakis[(3−hydroxypropyl)dimethylsiloxy]octasilsesquioxane、Octa[(methacryloylpropyl)dimethylsilyloxy]silsesquioxane、Octakis[(3−methacryloxypropyl)dimethylsiloxy]octasilsesquioxane及び有機基を含まない水素化シルセスキオキサン等が挙げられる。 As the silsesquioxanes such, Mayaterials made Q8 series of Octakis (tetramethylammonium) pentacyclo-octasiloxane-octakis (yloxide) hydrate; Octa (tetramethylammonium) silsesquioxane, Octakis (dimethylsiloxy) octasilsesquioxane, Octa [[3 - [(3- ethyl-3-oxyethyl) methyoxy] propyl] diethylsiloxy] octasilsesquioxane; ) Dimethylsiloxy] silsesquioxane; Octakis [[3- (2,3-epoxypropoxy) propyl] dimethylsiloxy] octasilsesquioxane, Octakis [[2- (3,4-epoxycyclohexyl) ethyl] dimethylsiloxy] octasilsesquioxane, Octakis [2- (vinyl) dimethylsiloxy] silsesquioxane; Octakis (dimethylvinylsilyloxy) octasilesquioxane, Octakis [(3-hydroxypropyloyl) dimethylsiloxy] octasilsesquioxane ethacryloylpropyl) dimethylsilyloxy] silsesquioxane, Octakis [(3-methacryloxypropyl) dimethylsiloxysequixane, and hydrogenated silseses that do not contain organic groups.
中でも、成膜性、クラック等の欠陥が少ないこと、残留有機物の少なさの点で、パーヒドロポリシラザン、オルガノポリシラザン等のポリシラザン;シルセスキオキサン等のポリシロキサン等が好ましく、ガスバリア性能が高く、屈曲時および高温高湿条件下であってもバリア性能が維持されることから、ポリシラザンがより好ましい。 Among them, polysilazane such as perhydropolysilazane and organopolysilazane; polysiloxane such as silsesquioxane, etc. are preferable in terms of film formation, fewer defects such as cracks, and less residual organic matter, and high gas barrier performance. Polysilazane is more preferable because the barrier performance is maintained even when bent and under high temperature and high humidity conditions.
ポリシラザンとは、ケイ素−窒素結合を有するポリマーであり、Si−N、Si−H、N−H等の結合を有するSiO2、Si3N4、および両方の中間固溶体SiOxNy等のセラミック前駆体無機ポリマーである。Polysilazane is a polymer having a silicon-nitrogen bond, and ceramics such as SiO 2 , Si 3 N 4 , and both intermediate solid solutions SiO x N y having bonds such as Si—N, Si—H, and N—H. It is a precursor inorganic polymer.
具体的には、ポリシラザンは、好ましくは下記の構造を有する。 Specifically, the polysilazane preferably has the following structure.
上記一般式(I)において、R1、R2およびR3は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1、R2およびR3は、それぞれ、同じであってもあるいは異なるものであってもよい。ここで、アルキル基としては、炭素原子数1〜8の直鎖、分岐鎖または環状のアルキル基が挙げられる。より具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、2−エチルヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などがある。また、アリール基としては、炭素原子数6〜30のアリール基が挙げられる。より具体的には、フェニル基、ビフェニル基、ターフェニル基などの非縮合炭化水素基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基などの縮合多環炭化水素基が挙げられる。(トリアルコキシシリル)アルキル基としては、炭素原子数1〜8のアルコキシ基で置換されたシリル基を有する炭素原子数1〜8のアルキル基が挙げられる。より具体的には、3−(トリエトキシシリル)プロピル基、3−(トリメトキシシリル)プロピル基などが挙げられる。上記R1〜R3に場合によって存在する置換基は、特に制限はないが、例えば、アルキル基、ハロゲン原子、ヒドロキシル基(−OH)、メルカプト基(−SH)、シアノ基(−CN)、スルホ基(−SO3H)、カルボキシル基(−COOH)、ニトロ基(−NO2)などがある。なお、場合によって存在する置換基は、置換するR1〜R3と同じとなることはない。例えば、R1〜R3がアルキル基の場合には、さらにアルキル基で置換されることはない。これらのうち、好ましくは、R1、R2およびR3は、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、フェニル基、ビニル基、3−(トリエトキシシリル)プロピル基または3−(トリメトキシシリルプロピル)基である。In the general formula (I), R 1 , R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. . At this time, R 1 , R 2 and R 3 may be the same or different. Here, as an alkyl group, a C1-C8 linear, branched or cyclic alkyl group is mentioned. More specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n -Hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group and the like. Moreover, as an aryl group, a C6-C30 aryl group is mentioned. More specifically, non-condensed hydrocarbon groups such as phenyl group, biphenyl group, terphenyl group; pentarenyl group, indenyl group, naphthyl group, azulenyl group, heptaenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenenyl group , Condensed polycyclic hydrocarbon groups such as acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrenyl group, aceantrirenyl group, triphenylenyl group, pyrenyl group, chrysenyl group, naphthacenyl group, etc. Can be mentioned. Examples of the (trialkoxysilyl) alkyl group include an alkyl group having 1 to 8 carbon atoms having a silyl group substituted with an alkoxy group having 1 to 8 carbon atoms. More specifically, 3- (triethoxysilyl) propyl group, 3- (trimethoxysilyl) propyl group and the like can be mentioned. The substituent optionally present in R 1 to R 3 is not particularly limited. For example, an alkyl group, a halogen atom, a hydroxyl group (—OH), a mercapto group (—SH), a cyano group (—CN), There are a sulfo group (—SO 3 H), a carboxyl group (—COOH), a nitro group (—NO 2 ), and the like. In addition, the substituent which exists depending on the case does not become the same as R < 1 > -R < 3 > to substitute. For example, when R 1 to R 3 are alkyl groups, they are not further substituted with an alkyl group. Of these, R 1 , R 2 and R 3 are preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a phenyl group, a vinyl group, 3 -(Triethoxysilyl) propyl group or 3- (trimethoxysilylpropyl) group.
また、上記一般式(I)において、nは、整数であり、一般式(I)で表される構造を有するポリシラザンが150〜150,000g/モルの数平均分子量を有するように定められることが好ましい。 In the general formula (I), n is an integer, and the polysilazane having the structure represented by the general formula (I) is determined to have a number average molecular weight of 150 to 150,000 g / mol. preferable.
上記一般式(I)で表される構造を有する化合物において、好ましい態様の一つは、R1、R2およびR3のすべてが水素原子であるパーヒドロポリシラザンである。In the compound having the structure represented by the general formula (I), one of preferred embodiments is perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms.
または、ポリシラザンとしては、下記一般式(II)で表される構造を有する。 Alternatively, polysilazane has a structure represented by the following general formula (II).
上記一般式(II)において、R1’、R2’、R3’、R4’、R5’およびR6’は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1’、R2’、R3’、R4’、R5’およびR6’は、それぞれ、同じであってもあるいは異なるものであってもよい。上記における、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基は、上記一般式(I)の定義と同様であるため、説明を省略する。In the general formula (II), R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, An aryl group, a vinyl group or a (trialkoxysilyl) alkyl group. In this case, R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ may be the same or different. The substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group in the above is the same as the definition of the general formula (I), and thus the description is omitted.
また、上記一般式(II)において、n’およびpは、整数であり、一般式(II)で表される構造を有するポリシラザンが150〜150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、n’およびpは、同じであってもあるいは異なるものであってもよい。 In the general formula (II), n ′ and p are integers, and the polysilazane having the structure represented by the general formula (II) is determined to have a number average molecular weight of 150 to 150,000 g / mol. It is preferred that Note that n ′ and p may be the same or different.
上記一般式(II)のポリシラザンのうち、R1’、R3’およびR6’が各々水素原子を表し、R2’、R4’およびR5’が各々メチル基を表す化合物;R1’、R3’およびR6’が各々水素原子を表し、R2’、R4’が各々メチル基を表し、R5’がビニル基を表す化合物;R1’、R3’、R4’およびR6’が各々水素原子を表し、R2’およびR5’が各々メチル基を表す化合物が好ましい。Among the polysilazanes of the above general formula (II), R 1 ′ , R 3 ′ and R 6 ′ each represent a hydrogen atom, and R 2 ′ , R 4 ′ and R 5 ′ each represent a methyl group; R 1 ' , R 3' and R 6 ' each represents a hydrogen atom, R 2' , R 4 ' each represents a methyl group, and R 5' represents a vinyl group; R 1 ' , R 3' , R 4 A compound in which ' and R 6' each represent a hydrogen atom and R 2 ' and R 5' each represents a methyl group is preferred.
または、ポリシラザンとしては、下記一般式(III)で表される構造を有する。 Alternatively, polysilazane has a structure represented by the following general formula (III).
上記一般式(III)において、R1”、R2”、R3”、R4”、R5”、R6”、R7”、R8”およびR9”は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1”、R2”、R3”、R4”、R5”、R6”、R7”、R8”およびR9”は、それぞれ、同じであってもあるいは異なるものであってもよい。上記における、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基は、上記一般式(I)の定義と同様であるため、説明を省略する。In the general formula (III), R 1 ″ , R 2 ″ , R 3 ″ , R 4 ″ , R 5 ″ , R 6 ″ , R 7 ″ , R 8 ″ and R 9 ″ are each independently A hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group, wherein R 1 ″ , R 2 ″ , R 3 ″ , R 4 ″ , R 5 ″ , R 6 ″ , R 7 ″ , R 8 ″ and R 9 ″ may be the same or different. The substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group in the above is the same as the definition of the general formula (I), and thus the description is omitted.
また、上記一般式(III)において、n”、p”およびqは、整数であり、一般式(III)で表される構造を有するポリシラザンが150〜150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、n”、p”およびqは、同じであってもあるいは異なるものであってもよい。 In the general formula (III), n ″, p ″ and q are integers, and the polysilazane having the structure represented by the general formula (III) has a number average molecular weight of 150 to 150,000 g / mol. It is preferable to be determined as follows. Note that n ″, p ″, and q may be the same or different.
上記一般式(III)のポリシラザンのうち、R1”、R3”およびR6”が各々水素原子を表し、R2”、R4”、R5”およびR8”が各々メチル基を表し、R9”が(トリエトキシシリル)プロピル基を表し、R7”がアルキル基または水素原子を表す化合物が好ましい。Of the polysilazanes of the above general formula (III), R 1 ″ , R 3 ″ and R 6 ″ each represent a hydrogen atom, and R 2 ″ , R 4 ″ , R 5 ″ and R 8 ″ each represent a methyl group. , R 9 ″ represents a (triethoxysilyl) propyl group, and R 7 ″ represents an alkyl group or a hydrogen atom.
一方、そのSiと結合する水素原子部分の一部がアルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地である基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より(平均)膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。このため、用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。 On the other hand, the organopolysilazane in which a part of the hydrogen atom portion bonded to Si is substituted with an alkyl group or the like has improved adhesion to the base material as a base by having an alkyl group such as a methyl group and is hard. The ceramic film made of brittle polysilazane can be toughened, and there is an advantage that the occurrence of cracks can be suppressed even when the (average) film thickness is increased. For this reason, perhydropolysilazane and organopolysilazane may be selected as appropriate according to the application, and may be used in combination.
パーヒドロポリシラザンは、直鎖構造と6および8員環を中心とする環構造が存在した構造と推定されている。その分子量は数平均分子量(Mn)で約600〜2000程度(ポリスチレン換算)で、液体または固体の物質があり、その状態は分子量により異なる。 Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. Its molecular weight is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), and there are liquid or solid substances, and the state varies depending on the molecular weight.
ポリシラザンは有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン層形成用塗布液として使用することができる。ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ株式会社製のアクアミカ(登録商標) NN120−10、NN120−20、NAX120−20、NN110、NN310、NN320、NL110A、NL120A、NL120−20、NL150A、NP110、NP140、SP140等が挙げられる。 Polysilazane is commercially available in a solution state dissolved in an organic solvent, and the commercially available product can be used as it is as a coating solution for forming a polysilazane layer. As a commercial item of polysilazane solution, AZ Electronic Materials Co., Ltd. Aquamica (registered trademark) NN120-10, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL120-20, NL150A, NP110 NP140, SP140 and the like.
本発明で使用できるポリシラザンの別の例としては、以下に制限されないが、例えば、上記ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5−238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6−122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6−240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6−299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6−306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7−196986号公報)等の、低温でセラミック化するポリシラザンが挙げられる。 Another example of the polysilazane that can be used in the present invention is not limited to the following. For example, a silicon alkoxide-added polysilazane obtained by reacting the above polysilazane with a silicon alkoxide (Japanese Patent Laid-Open No. 5-238827) or glycidol is reacted. Glycidol-added polysilazane (Japanese Patent Laid-Open No. 6-122852) obtained by reaction, alcohol-added polysilazane obtained by reacting alcohol (Japanese Patent Laid-Open No. 6-240208), metal carboxylate obtained by reacting metal carboxylate Addition polysilazane (JP-A-6-299118), acetylacetonate complex-added polysilazane (JP-A-6-306329) obtained by reacting a metal-containing acetylacetonate complex, metal obtained by adding metal fine particles Fine particle added polysila Emissions, such as (JP-A-7-196986), and a polysilazane ceramic at low temperatures.
本発明に係る第3の層中におけるポリシラザンの含有率としては、第3の層の全重量を100重量%としたとき、100重量%でありうる。また、第3の層がポリシラザン以外のものを含む場合には、層中におけるポリシラザンの含有率は、10重量%以上99重量%以下であることが好ましく、40重量%以上95重量%以下であることがより好ましく、特に好ましくは70重量%以上95重量%以下である。 The content of polysilazane in the third layer according to the present invention can be 100% by weight when the total weight of the third layer is 100% by weight. When the third layer contains a material other than polysilazane, the content of polysilazane in the layer is preferably 10% by weight or more and 99% by weight or less, and 40% by weight or more and 95% by weight or less. More preferably, it is 70 to 95 weight%.
第3の層の形成方法は、特に制限されず、公知の方法が適用できるが、有機溶剤中にケイ素化合物および必要に応じて触媒を含むケイ素化合物改質層形成用塗布液を公知の湿式塗布方法により塗布し、この溶剤を蒸発させて除去し、次いで、改質処理を行う方法が好ましい。 The method for forming the third layer is not particularly limited, and a known method can be applied. However, a known wet coating is applied to a silicon compound-modified layer forming coating solution containing a silicon compound and, if necessary, a catalyst in an organic solvent. A method of applying by a method, evaporating and removing the solvent, and then performing a modification treatment is preferable.
(ケイ素化合物改質層形成用塗布液)
ケイ素化合物改質層形成用塗布液を調製するための溶剤としては、ケイ素化合物を溶解できるものであれば特に制限されないが、ケイ素化合物と容易に反応してしまう水および反応性基(例えば、ヒドロキシル基、あるいはアミン基等)を含まず、ケイ素化合物に対して不活性の有機溶剤が好ましく、非プロトン性の有機溶剤がより好ましい。具体的には、溶剤としては、非プロトン性溶剤;例えば、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒;塩化メチレン、トリクロロエタン等のハロゲン炭化水素溶媒;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ジブチルエーテル、ジオキサン、テトラヒドロフラン等の脂肪族エーテル、脂環式エーテル等のエーテル類:例えば、テトラヒドロフラン、ジブチルエーテル、モノ−およびポリアルキレングリコールジアルキルエーテル(ジグライム類)などを挙げることができる。上記溶剤は、ケイ素化合物の溶解度や溶剤の蒸発速度等の目的にあわせて選択され、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。(Coating liquid for forming silicon compound modified layer)
The solvent for preparing the coating solution for forming the silicon compound modified layer is not particularly limited as long as it can dissolve the silicon compound, but water and reactive groups (for example, hydroxyl group) that easily react with the silicon compound. An organic solvent that is inert to the silicon compound and more preferably an aprotic organic solvent. Specifically, the solvent includes an aprotic solvent; for example, carbon such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, and turben. Hydrogen solvents; Halogen hydrocarbon solvents such as methylene chloride and trichloroethane; Esters such as ethyl acetate and butyl acetate; Ketones such as acetone and methyl ethyl ketone; Aliphatic ethers such as dibutyl ether, dioxane and tetrahydrofuran; Alicyclic ethers and the like Ethers: Examples include tetrahydrofuran, dibutyl ether, mono- and polyalkylene glycol dialkyl ethers (diglymes), and the like. The solvent is selected according to the purpose such as the solubility of the silicon compound and the evaporation rate of the solvent, and may be used alone or in the form of a mixture of two or more.
ケイ素化合物改質層形成用塗布液におけるケイ素化合物の濃度は、特に制限されず、層の膜厚や塗布液のポットライフによっても異なるが、好ましくは1〜80重量%、より好ましくは5〜50重量%、特に好ましくは10〜40重量%である。 The concentration of the silicon compound in the coating solution for forming a silicon compound-modified layer is not particularly limited and varies depending on the film thickness of the layer and the pot life of the coating solution, but is preferably 1 to 80% by weight, more preferably 5 to 50. % By weight, particularly preferably 10 to 40% by weight.
ケイ素化合物改質層形成用塗布液は、改質を促進するために、触媒を含有することが好ましい。本発明に適用可能な触媒としては、塩基性触媒が好ましく、特に、N,N−ジエチルエタノールアミン、N,N−ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3−モルホリノプロピルアミン、N,N,N’,N’−テトラメチル−1,3−ジアミノプロパン、N,N,N’,N’−テトラメチル−1,6−ジアミノヘキサン等のアミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N−複素環式化合物が挙げられる。これらのうち、アミン触媒を用いることが好ましい。この際添加する触媒の濃度としては、ケイ素化合物を基準としたとき、好ましくは0.1〜10モル%、より好ましくは0.5〜7モル%の範囲である。触媒添加量をこの範囲とすることで、反応の急激な進行よる過剰なシラノール形成、および膜密度の低下、膜欠陥の増大などを避けることができる。 The coating liquid for forming a silicon compound modified layer preferably contains a catalyst in order to promote the modification. As the catalyst applicable to the present invention, a basic catalyst is preferable, and in particular, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, N ', N'-tetramethyl-1,3-diaminopropane, amine catalysts such as N, N, N', N'-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, propion Examples thereof include metal catalysts such as Pd compounds such as acid Pd, Rh compounds such as Rh acetylacetonate, and N-heterocyclic compounds. Of these, it is preferable to use an amine catalyst. The concentration of the catalyst added at this time is preferably in the range of 0.1 to 10 mol%, more preferably 0.5 to 7 mol%, based on the silicon compound. By setting the addition amount of the catalyst within this range, it is possible to avoid excessive silanol formation due to rapid progress of the reaction, decrease in film density, increase in film defects, and the like.
ケイ素化合物改質層形成用塗布液には、必要に応じて下記に挙げる添加剤を用いることができる。例えば、セルロースエーテル類、セルロースエステル類;例えば、エチルセルロース、ニトロセルロース、セルロースアセテート、セルロースアセトブチレート等、天然樹脂;例えば、ゴム、ロジン樹脂等、合成樹脂;例えば、重合樹脂等、縮合樹脂;例えば、アミノプラスト、特に尿素樹脂、メラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステルもしくは変性ポリエステル、エポキシド、ポリイソシアネートもしくはブロック化ポリイソシアネート、ポリシロキサン等である。 In the coating solution for forming a silicon compound modified layer, the following additives may be used as necessary. For example, cellulose ethers, cellulose esters; for example, ethyl cellulose, nitrocellulose, cellulose acetate, cellulose acetobutyrate, etc., natural resins; for example, rubber, rosin resin, etc., synthetic resins; Aminoplasts, especially urea resins, melamine formaldehyde resins, alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, polysiloxanes, and the like.
また、特開2005−231039号に記載のようにケイ素化合物改質層の形成にゾルゲル法を用いることができる。ゾルゲル法により改質層を形成する際に用いられる塗布液は、ケイ素化合物、ならびにポリビニルアルコ−ル系樹脂およびエチレン・ビニルアルコ−ル共重合体の少なくとも1種を含むことが好ましい。さらに、塗布液は、ゾルーゲル法触媒、酸、水、および、有機溶剤を含むことが好ましい。ゾルゲル法では、かような塗布液を用いて重縮合することにより改質層が得られる。 Further, as described in JP-A-2005-231039, a sol-gel method can be used for forming the silicon compound modified layer. The coating liquid used when forming the modified layer by the sol-gel method preferably contains a silicon compound and at least one of a polyvinyl alcohol-based resin and an ethylene / vinyl alcohol copolymer. Furthermore, the coating solution preferably contains a sol-gel method catalyst, an acid, water, and an organic solvent. In the sol-gel method, a modified layer is obtained by polycondensation using such a coating solution.
ゾルゲル法に用いられるケイ素化合物としては、一般式RA OSi(ORB)pで表されるアルコキシドを用いることが好ましい。ここで、RAおよびRBはそれぞれ独立して、炭素数1〜20のアルキル基を表し、Oは、0以上の整数を表し、pは、1以上の整数を表す。上記のアルコキシシランの具体例としては、例えば、テトラメトキシシラン Si(OCH3)4、テトラエトキシシラン Si(OC2H5)4、テトラプロポキシシラン Si(0C3H7)4、テトラブトキシシラン Si(OC4H9)4、その他等を使用することができる。かようなケイ素化合物としては、市販品を使用してもよく、エチルシリケート40(コルコート株式会社製)などを用いてもよい。As a silicon compound used for the sol-gel method, it is preferable to use an alkoxide represented by the general formula R A O Si (OR B ) p . Here, R A and R B each independently represents an alkyl group having 1 to 20 carbon atoms, O represents an integer of 0 or more, p is an integer of 1 or greater. Specific examples of the above alkoxysilane include, for example, tetramethoxysilane Si (OCH 3 ) 4 , tetraethoxysilane Si (OC 2 H 5 ) 4 , tetrapropoxysilane Si (0C 3 H 7 ) 4 , tetrabutoxysilane Si (OC 4 H 9 ) 4 , etc. can be used. As such a silicon compound, a commercially available product may be used, or ethyl silicate 40 (manufactured by Colcoat Co., Ltd.) may be used.
塗布液において、ポリビニルアルコ一ル系樹脂およびエチレン・ビニルアルコ−ル共重合体とを組み合わせて使用する場合、それぞれの配合割合としては、重量比で、ポリビニルアルコ一ル系樹脂:エチレン・ビニルアルコ−ル共重合体=10:0.05〜10:6であることが好ましい。また、ポリビニルアルコ−ル系樹脂及び/又はエチレン・ビニルアルコール共重合体の塗布液中の含有量は、上記のケイ素化合物の合計量100重量部に対して5〜500重量部の範囲であり、好ましくは、約20〜200重量部位の配合割合で調製することが好ましい。ポリビニルアルコ一ル系樹脂としては、一般に、ポリ酢酸ビニルをケン化して得られるものを使用することができる。上記のポリビニルアルコール系樹脂としては、酢酸基が数十%残存している部分ケン化ポリビニルアルコール系樹脂、酢酸基が残存しない完全ケン化ポリビニルアルコールでも、または、OH基が変性された変性ポリビニルアルコール系樹脂のいずれでもよい。ポリビニルアルコール系樹脂の具体例としては、クラレ社製のクラレポバール、日本合成化学工業社製のゴーセノール等を使用することができる。また、本発明において、エチレン・ビニルアルコール共重合体としては、エチレンと酢酸ビニルとの共重合体のケン化物、すなわち、エチレン−酢酸ビニルランダム共重合体をケン化して得られるものを使用することができる。具体的には、酢酸基が数十モル%残存している部分ケン化物から、酢酸基が数モル%しか残存していないかまたは酢酸基が残存しない完全ケン化物まで含み、特に限定されるものではないが、ガスバリア性の観点から好ましいケン化度は、80モル%以上、より好ましくは、90モル%以上、さらに好ましくは、95モル%以上であるものを使用することが好ましい。また、上記のエチレン・ビニルアルコール共重合体中のエチレンに由来する繰り返し単位の含量(以下「エチレン含量」ともいう)は、通常、0〜50モル%、好ましくは、20〜45モル%であるものを使用することが好ましいものである。上記のエチレン・ビニルアルコール共重合体の具体例としては、株式会社クラレ製、エバールEP−F101(エチレン含量;32モル%)、日本合成化学工業株式会社製、ソアノールD2908(エチレン含量;29モル%)等を使用することができる。ゾルーゲル法触媒、主として、重縮合触媒としては、水に実質的に不溶であり、かつ有機溶媒に可溶な第三アミンが用いられる。具体的には、例えば、N、N−ジメチルベンジルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、その他等を使用することができる。また、酸としては、上記ゾルーゲル法の触媒、主として、アルコキシドやシランカップリング剤などの加水分解のための触媒として用いられる。上記の酸としては、例えば、硫酸、塩酸、硝酸などの鉱酸、ならびに、酢酸、酒石酸な等の有機酸、その他等を使用することができる。更に、塗布液には、上記のアルコキシドの合計モル量1モルに対して0.1〜100モル、好ましくは、0.8から2モルの割合の水を含有させることが好ましい。 When a polyvinyl alcohol resin and an ethylene / vinyl alcohol copolymer are used in combination in the coating solution, the blending ratio of each is, in terms of weight ratio, polyvinyl alcohol resin: ethylene / vinyl alcohol. The copolymer is preferably 10: 0.05 to 10: 6. The content of the polyvinyl alcohol-based resin and / or the ethylene / vinyl alcohol copolymer in the coating solution is in the range of 5 to 500 parts by weight with respect to 100 parts by weight of the total amount of the silicon compound, Preferably, it is preferably prepared at a blending ratio of about 20 to 200 parts by weight. As the polyvinyl alcohol resin, those obtained by saponifying polyvinyl acetate can be generally used. Examples of the polyvinyl alcohol resin include partially saponified polyvinyl alcohol resin in which several tens of percent of acetate groups remain, completely saponified polyvinyl alcohol in which acetate groups do not remain, or modified polyvinyl alcohol in which OH groups have been modified. Any of these resins may be used. Specific examples of the polyvinyl alcohol-based resin include Kuraray Poval manufactured by Kuraray Co., Ltd. and Gohsenol manufactured by Nippon Synthetic Chemical Industry Co., Ltd. In the present invention, as the ethylene-vinyl alcohol copolymer, a saponified product of a copolymer of ethylene and vinyl acetate, that is, a product obtained by saponifying an ethylene-vinyl acetate random copolymer should be used. Can do. Specific examples include partial saponification products in which several tens mol% of acetic acid groups remain to complete saponification products in which acetic acid groups remain only a few mol% or no acetic acid groups remain. However, it is preferable to use a saponification degree that is preferably 80 mol% or more, more preferably 90 mol% or more, and still more preferably 95 mol% or more from the viewpoint of gas barrier properties. The content of repeating units derived from ethylene in the ethylene / vinyl alcohol copolymer (hereinafter also referred to as “ethylene content”) is usually 0 to 50 mol%, preferably 20 to 45 mol%. It is preferable to use one. Specific examples of the ethylene / vinyl alcohol copolymer include Kuraray Co., Ltd., Eval EP-F101 (ethylene content: 32 mol%), Nippon Synthetic Chemical Industry Co., Ltd., Soarnol D2908 (ethylene content: 29 mol%). ) Etc. can be used. As a sol-gel method catalyst, mainly a polycondensation catalyst, a tertiary amine that is substantially insoluble in water and soluble in an organic solvent is used. Specifically, for example, N, N-dimethylbenzylamine, tripropylamine, tributylamine, tripentylamine, and the like can be used. The acid is used as a catalyst for the sol-gel method, mainly as a catalyst for hydrolysis of alkoxides, silane coupling agents and the like. Examples of the acid include mineral acids such as sulfuric acid, hydrochloric acid, and nitric acid, organic acids such as acetic acid and tartaric acid, and the like. Furthermore, it is preferable that the coating solution contains water in a proportion of 0.1 to 100 mol, preferably 0.8 to 2 mol, relative to 1 mol of the total molar amount of the alkoxide.
ゾルゲル法による塗布液に用いられる、有機溶媒としては、例えば、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、n−ブタノール、その他等を用いることができる。また、溶媒中に可溶化されたエチレン・ビニルアルコール共重合体は、例えば、ソアノール(商品名)として市販されているものを使用することができる。さらに、ゾルゲル法による塗布液には例えば、シランカップリング剤等も添加することができるものである。 As an organic solvent used for the coating solution by the sol-gel method, for example, methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butanol, and the like can be used. Moreover, what is marketed as Soarnol (brand name) can be used for the ethylene-vinyl alcohol copolymer solubilized in the solvent, for example. Furthermore, for example, a silane coupling agent or the like can be added to the coating solution by the sol-gel method.
(塗れ性向上処理)
次いで、ケイ素化合物改質層形成用塗布液を下層(好適にはALD層)に塗布するが、塗布前に、特開2011−143577号に記載の塗れ性向上処理、および該処理を行う前に加熱(加熱処理)を行ってもよい。(Paintability improving treatment)
Next, the silicon compound-modified layer forming coating solution is applied to the lower layer (preferably the ALD layer), but before coating, the wettability improving process described in JP-A-2011-143577 and before performing the process. Heating (heat treatment) may be performed.
塗れ性向上処理の具体的な方法としては、酸化性ガス雰囲気下での光照射処理(エキシマ照射、UVオゾン酸化など)、あるいは、プラズマ照射処理(真空酸素プラズマ、大気圧酸素プラズマなど)などのドライ処理に加え、コロナ放電処理などを適用することができる。あるいは、積層体を加熱したアルカリ液中で処理後、純水で洗浄するなどのウェット処理も適用可能である。不要な水分などを除去する工程が別途必要にならない点で、ドライ処理がより好ましい。 Specific methods for improving paintability include light irradiation treatment in an oxidizing gas atmosphere (excimer irradiation, UV ozone oxidation, etc.), plasma irradiation treatment (vacuum oxygen plasma, atmospheric pressure oxygen plasma, etc.), etc. In addition to the dry treatment, a corona discharge treatment or the like can be applied. Alternatively, wet treatment such as washing with pure water after treating the laminate in a heated alkaline solution is also applicable. Dry processing is more preferable in that a separate step of removing unnecessary moisture is not required.
また、ドライ処理のなかでも、大気プロセスが可能で、かつ短時間化、低コスト化が可能な、酸化性ガス雰囲気下での光照射処理が最も好ましい。酸化性ガスとは、酸素、オゾン、原子状酸素のことを表す。塗れ性向上処理時の酸素濃度としては、0.05%〜21%(実際に検出される酸素濃度は、±10%の範囲を含む。)の範囲であることが好ましく、0.1%〜1%の範囲であることがより好ましい。 Among dry treatments, light irradiation treatment in an oxidizing gas atmosphere is most preferable because an atmospheric process can be performed and the time can be reduced and the cost can be reduced. An oxidizing gas represents oxygen, ozone, or atomic oxygen. The oxygen concentration during the wettability improving treatment is preferably in the range of 0.05% to 21% (the actually detected oxygen concentration includes a range of ± 10%), preferably 0.1% to A range of 1% is more preferable.
塗れ性向上処理に適用する光照射処理としては、酸化性ガス雰囲気下での光照射処理における光が、紫外光であることがより好ましい。紫外光を照射することで活性酸素やオゾンが発生し、処理表面におけるOH基、あるいはCOOH基などの反応性基の生成がより進行する。更に反応性オゾンの不足分を光照射部とは異なる部分で、放電法などの公知の方法により酸素からオゾンを生成し、紫外線照射部に導入しても良い。このときに照射する紫外線の波長は特に限定されるところではないが、紫外光の波長は100nm〜450nmが好ましく、150nm〜300nm程度の真空紫外光を照射することがより好ましい。光源は、低圧水銀灯、重水素ランプ、キセノンエキシマランプ、メタルハライドランプ、エキシマレーザーなどを用いることができる。ランプの出力としては400W〜30kW、照度としては100mW/cm2〜100kW/cm2、照射エネルギーとしては10mJ/cm2〜5000mJ/cm2が好ましく、100mJ/cm2〜2000mJ/cm2がより好ましい。また、紫外線照射の際の照度は1mW/cm2〜10W/cm2が好ましい。上記の中でも、波長としては、100nm〜200nmの真空紫外光が最も好ましく、酸化反応をより低温、短時間で進めることが可能となる。また、光源としては、キセノンエキシマランプなどの希ガスエキシマランプが最も好ましく用いられる。また、連続的に照射するだけでなく複数回の照射を行ってもよく、複数回の照射が短時間ないわゆるパルス照射であっても良い。As the light irradiation treatment applied to the paintability improving treatment, the light in the light irradiation treatment in an oxidizing gas atmosphere is more preferably ultraviolet light. Irradiation with ultraviolet light generates active oxygen and ozone, and the generation of reactive groups such as OH groups or COOH groups on the treated surface further proceeds. Further, ozone may be generated from oxygen by a known method such as a discharge method at a portion different from the light irradiation portion for the shortage of reactive ozone, and introduced into the ultraviolet irradiation portion. Although the wavelength of the ultraviolet ray irradiated at this time is not particularly limited, the wavelength of the ultraviolet light is preferably 100 nm to 450 nm, and more preferably vacuum ultraviolet light of about 150 nm to 300 nm is irradiated. As the light source, a low-pressure mercury lamp, a deuterium lamp, a xenon excimer lamp, a metal halide lamp, an excimer laser, or the like can be used. As the output of the lamp 400W~30kW, more preferably preferably 10mJ / cm 2 ~5000mJ / cm 2 , 100mJ / cm 2 ~2000mJ / cm 2 as 100mW / cm 2 ~100kW / cm 2 , irradiation energy as illuminance . Moreover, the illuminance at the time of ultraviolet irradiation is preferably 1 mW / cm 2 to 10 W / cm 2 . Among these, as the wavelength, vacuum ultraviolet light of 100 nm to 200 nm is most preferable, and the oxidation reaction can be advanced at a lower temperature and in a shorter time. As a light source, a rare gas excimer lamp such as a xenon excimer lamp is most preferably used. In addition to continuous irradiation, multiple irradiations may be performed, and so-called pulse irradiation in which multiple irradiations are performed in a short time may be used.
塗れ性向上処理に要する時間は、選択する光源ランプや照度、あるいは処理条件などにより異なるが、おおまかに0.1秒から15分程度が好ましい。また、樹脂基材や塗布表面に与えるダメージを考慮すると、より短時間であることが好ましく、0.1秒から5分程度がより好ましい。 The time required for the paintability improving process varies depending on the light source lamp to be selected, the illuminance, or the processing conditions, but is preferably about 0.1 to 15 minutes. Moreover, considering the damage given to the resin base material or the coating surface, the time is preferably shorter, and more preferably about 0.1 second to 5 minutes.
コロナ放電処理は、通常用いられている処理条件、例えば、電極先端と被処理基布間の距離0.2〜5mmの条件で、その処理量としては、1m2当たり10W・分以上、好ましくは10〜200W・分の範囲、さらに好ましくは20〜180W・分の範囲である。The corona discharge treatment is a treatment condition that is usually used, for example, a distance of 0.2 to 5 mm between the electrode tip and the substrate to be treated, and the treatment amount is 10 W · min or more per 1 m 2 , preferably The range is 10 to 200 W · min, and more preferably 20 to 180 W · min.
プラズマ照射処理は、アルゴン、ヘリウム、クリプトン、ネオン、キセノン、水素、窒素、酸素、オゾン、一酸化炭素、二酸化炭素、二酸化硫黄等の単体ガスまたはこれらの混合ガス、例えば、酸素濃度5〜15容量%を含有する酸素と窒素の混合ガスを、対向電極間に供給して、電圧を印加してプラズマ放電を発生させることによって実施できる。プラズマ処理条件としては、例えば、処理するプラスチック基材が通過する電極間の距離は、基材の厚み、印加電圧の大きさ、混合ガスの流量等に応じて適宜決定されるが、通常0.1〜20mm、好ましくは0.2〜10mmの範囲であり、上記電極間に印加する電圧は印加した際の電界強度が1〜40kV/cmとなるように印加するのが好ましく、その際の交流電源の周波数は、1〜100kHz、好ましくは、1〜100kHzの範囲である。 The plasma irradiation treatment is performed by using a single gas such as argon, helium, krypton, neon, xenon, hydrogen, nitrogen, oxygen, ozone, carbon monoxide, carbon dioxide, sulfur dioxide, or a mixed gas thereof, for example, an oxygen concentration of 5 to 15 volumes. It can be implemented by supplying a mixed gas of oxygen and nitrogen containing% between the counter electrodes and applying a voltage to generate plasma discharge. As the plasma treatment conditions, for example, the distance between the electrodes through which the plastic substrate to be treated passes is appropriately determined according to the thickness of the substrate, the magnitude of the applied voltage, the flow rate of the mixed gas, etc. The voltage applied between the electrodes is preferably in the range of 1 to 20 mm, preferably 0.2 to 10 mm, and the electric field strength when applied is preferably 1 to 40 kV / cm. The frequency of the power source is in the range of 1 to 100 kHz, preferably 1 to 100 kHz.
さらに、塗れ性向上処理を行う前、塗れ性向上処理と同時、あるいは塗れ性向上処理を行った後に加熱処理を行うことが好ましい。具体的には、塗れ性向上処理を行う前や後に加熱する場合は、例えば、積層体をホットプレート上やオーブン中で加熱したり、赤外線ヒーターで加熱したりする方法が適用できる。また、塗れ性向上処理時に基材を加熱する場合は、エキシマ照射処理、あるいは、UVオゾン酸化処理などを行う際に、基材を設置する台を加熱したり、加熱雰囲気下で処理したりする方法が適用できる。バラツキを含めた塗布性、及び密着性の観点から、塗れ性向上処理時に積層体を加熱することがより好ましい。加熱する温度は、好ましくは、30℃〜150℃であり、より好ましくは、50℃〜100℃である。30℃より低いと前述したような加熱の効果が得られず、また、150℃より高いと、基材やその他の構成要素にダメージを与えてしまう懸念が生じる。該加熱処理の温度は、基材を設置する台やロールなどの温度が検出可能な装置である場合は、その設定温度で制御し、検出できない装置である場合は、処理前あるいは処理後に別途、水銀やアルコールなどの温度計(溶液の場合)、熱電対を用いた表面温度計、放射温度計、ファイバー温度計、サーモラベルなどによって検出し確認した。 Furthermore, it is preferable to perform the heat treatment before the wettability improving process, simultaneously with the wettability improving process, or after the wettability improving process. Specifically, in the case of heating before or after the wettability improving treatment, for example, a method of heating the laminate on a hot plate or in an oven or heating with an infrared heater can be applied. In addition, when the substrate is heated during the wettability improving process, the base on which the substrate is installed is heated or the process is performed in a heated atmosphere when performing the excimer irradiation process or the UV ozone oxidation process. The method is applicable. From the viewpoint of applicability including variation and adhesion, it is more preferable to heat the laminate during the wettability improving treatment. The heating temperature is preferably 30 ° C to 150 ° C, more preferably 50 ° C to 100 ° C. When the temperature is lower than 30 ° C., the heating effect as described above cannot be obtained. When the temperature is higher than 150 ° C., there is a concern that the base material and other components are damaged. When the temperature of the heat treatment is an apparatus capable of detecting the temperature of a base or roll on which the substrate is installed, it is controlled at the set temperature, and when the apparatus cannot be detected, separately before or after the treatment, It was detected and confirmed with a thermometer such as mercury or alcohol (in the case of a solution), a surface thermometer using a thermocouple, a radiation thermometer, a fiber thermometer, or a thermo label.
(ケイ素化合物改質層形成用塗布液を塗布する方法)
ケイ素化合物改質層形成用塗布液を塗布する方法としては、従来公知の適切な湿式塗布方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。(Method of applying a coating solution for forming a silicon compound modified layer)
As a method for applying the silicon compound-modified layer forming coating solution, a conventionally known appropriate wet coating method may be employed. Specific examples include a spin coating method, a roll coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method.
塗布厚さは、目的に応じて適切に設定され得る。例えば、塗布厚さは、乾燥後の厚さが10nm〜10μm程度であることが好ましく、15nm〜1μmであることがより好ましく、20〜500nmであることがさらに好ましい。膜厚が10nm以上であれば十分なバリア性を得ることができ、10μm以下であれば、層形成時に安定した塗布性を得ることができ、かつ高い光線透過性を実現できる。 The coating thickness can be appropriately set according to the purpose. For example, the coating thickness is preferably about 10 nm to 10 μm after drying, more preferably 15 nm to 1 μm, and even more preferably 20 to 500 nm. If the film thickness is 10 nm or more, sufficient barrier properties can be obtained, and if it is 10 μm or less, stable coating properties can be obtained during layer formation, and high light transmittance can be realized.
塗布液を塗布した後は、塗膜を乾燥させることが好ましい。塗膜を乾燥することによって、塗膜中に含有される有機溶媒を除去することができる。この際、塗膜に含有される有機溶媒は、すべてを乾燥させてもよいが、一部残存させていてもよい。一部の有機溶媒を残存させる場合であっても、好適なガスバリア層が得られうる。なお、残存する溶媒は後に除去されうる。 After applying the coating solution, it is preferable to dry the coating film. By drying the coating film, the organic solvent contained in the coating film can be removed. At this time, all of the organic solvent contained in the coating film may be dried or may be partially left. Even when a part of the organic solvent is left, a suitable gas barrier layer can be obtained. The remaining solvent can be removed later.
塗膜の乾燥温度は、適用する基材によっても異なるが、50〜200℃であることが好ましい。例えば、ガラス転位温度(Tg)が70℃のポリエチレンテレフタレート基材を基材として用いる場合には、乾燥温度は、熱による基材の変形等を考慮して150℃以下に設定することが好ましい。上記温度は、ホットプレート、オーブン、ファーネスなどを使用することによって設定されうる。乾燥時間は短時間に設定することが好ましく、例えば、乾燥温度が150℃である場合には30分以内に設定することが好ましい。また、乾燥雰囲気は、大気雰囲気下、窒素雰囲気下、アルゴン雰囲気下、真空雰囲気下、酸素濃度をコントロールした減圧雰囲気下等のいずれの条件であってもよい。 Although the drying temperature of a coating film changes also with the base material to apply, it is preferable that it is 50-200 degreeC. For example, when a polyethylene terephthalate substrate having a glass transition temperature (Tg) of 70 ° C. is used as the substrate, the drying temperature is preferably set to 150 ° C. or less in consideration of deformation of the substrate due to heat. The temperature can be set by using a hot plate, oven, furnace or the like. The drying time is preferably set to a short time. For example, when the drying temperature is 150 ° C., the drying time is preferably set within 30 minutes. The drying atmosphere may be any condition such as an air atmosphere, a nitrogen atmosphere, an argon atmosphere, a vacuum atmosphere, or a reduced pressure atmosphere with a controlled oxygen concentration.
ケイ素化合物改質層形成用塗布液を塗布して得られた塗膜(以下、単にケイ素化合物塗膜とする)は、改質処理前または改質処理中に水分を除去する工程を含んでいてもよい。水分を除去する方法としては、低湿度環境を維持して除湿する形態が好ましい。低湿度環境における湿度は温度により変化するので、温度と湿度の関係は露点温度の規定により好ましい形態が示される。好ましい露点温度は4℃以下(温度25℃/湿度25%)で、より好ましい露点温度は−5℃(温度25℃/湿度10%)以下であり、維持される時間は第3の層の膜厚によって適宜設定することが好ましい。第3の層の膜厚が1.0μm以下の条件においては、露点温度は−5℃以下で、維持される時間は1分以上であることが好ましい。なお、露点温度の下限は特に制限されないが、通常、−50℃以上であり、−40℃以上であることが好ましい。改質処理前、あるいは改質処理中に水分を除去することによって、シラノールに転化した第3の層の脱水反応を促進する観点から好ましい形態である。 A coating film obtained by applying a coating solution for forming a silicon compound modified layer (hereinafter simply referred to as a silicon compound coating film) includes a step of removing moisture before or during the modification treatment. Also good. As a method for removing moisture, a form of dehumidification while maintaining a low humidity environment is preferable. Since humidity in a low-humidity environment varies depending on temperature, a preferable form is shown for the relationship between temperature and humidity by defining the dew point temperature. A preferable dew point temperature is 4 ° C. or lower (temperature 25 ° C./humidity 25%), a more preferable dew point temperature is −5 ° C. (temperature 25 ° C./humidity 10%) or lower, and the maintained time is the film of the third layer. It is preferable to set appropriately depending on the thickness. Under the condition that the film thickness of the third layer is 1.0 μm or less, it is preferable that the dew point temperature is −5 ° C. or less and the time for which it is maintained is 1 minute or more. The lower limit of the dew point temperature is not particularly limited, but is usually −50 ° C. or higher and preferably −40 ° C. or higher. This is a preferred form from the viewpoint of promoting the dehydration reaction of the third layer converted to silanol by removing water before or during the modification treatment.
(第3の層の改質処理)
本発明における改質処理とは、ケイ素化合物の酸化ケイ素または酸化窒化ケイ素への転化反応を指し、具体的には本発明のガスバリア性フィルムが全体としてガスバリア性(水蒸気透過率が、1×10−3g/(m2・24h)以下)を発現するに貢献できるレベルの無機薄膜を形成する処理をいう。したがって、第3の層もガスバリア性を有するガスバリア層である。(Third layer modification treatment)
The modification treatment in the present invention refers to a conversion reaction of a silicon compound into silicon oxide or silicon oxynitride. Specifically, the gas barrier film of the present invention as a whole has a gas barrier property (water vapor permeability is 1 × 10 − 3 g / (m 2 · 24 h) or less) is a treatment for forming an inorganic thin film at a level that can contribute to the development. Therefore, the third layer is also a gas barrier layer having gas barrier properties.
ケイ素化合物の酸化ケイ素または酸化窒化ケイ素への転化反応は、第3の層の転化反応に基づく公知の方法を選ぶことができる。改質処理としては、具体的には、プラズマ処理、紫外線照射処理、熱処理が挙げられる。ただし、熱処理による改質の場合、ケイ素化合物の置換反応による酸化ケイ素膜または酸化窒化ケイ素層の形成には450℃以上の高温が必要であるため、プラスチック等のフレキシブル基板においては、適応が難しい。このため、熱処理は他の改質処理と組み合わせて行うことが好ましい。 As the conversion reaction of the silicon compound into silicon oxide or silicon oxynitride, a known method based on the conversion reaction of the third layer can be selected. Specific examples of the modification treatment include plasma treatment, ultraviolet irradiation treatment, and heat treatment. However, in the case of modification by heat treatment, the formation of a silicon oxide film or a silicon oxynitride layer by a substitution reaction of a silicon compound requires a high temperature of 450 ° C. or higher, so that it is difficult to adapt to a flexible substrate such as plastic. For this reason, it is preferable to perform the heat treatment in combination with other reforming treatments.
したがって、本発明のガスバリア性フィルムを作製に際しては、プラスチック基板への適応という観点から、より低温で、転化反応が可能なプラズマ処理や紫外線照射処理による転化反応が好ましい。 Therefore, in producing the gas barrier film of the present invention, from the viewpoint of adapting to a plastic substrate, a conversion reaction by a plasma treatment or an ultraviolet irradiation treatment capable of a conversion reaction at a lower temperature is preferable.
(プラズマ処理)
本発明において、改質処理として用いることのできるプラズマ処理は、公知の方法を用いることができるが、好ましくは大気圧プラズマ処理等をあげることが出来る。大気圧近傍でのプラズマCVD処理を行う大気圧プラズマCVD法は、真空下のプラズマCVD法に比べ、減圧にする必要がなく生産性が高いだけでなく、プラズマ密度が高密度であるために成膜速度が速く、更には通常のCVD法の条件に比較して、大気圧下という高圧力条件では、ガスの平均自由工程が非常に短いため、極めて均質の膜が得られる。(Plasma treatment)
In the present invention, a known method can be used for the plasma treatment that can be used as the reforming treatment, and an atmospheric pressure plasma treatment or the like can be preferably used. The atmospheric pressure plasma CVD method, which performs plasma CVD processing near atmospheric pressure, does not need to be reduced in pressure and is more productive than the plasma CVD method under vacuum. The film speed is high, and further, under a high pressure condition of atmospheric pressure as compared with the conditions of a normal CVD method, the gas mean free path is very short, so that a very homogeneous film can be obtained.
大気圧プラズマ処理の場合は、放電ガスとしては窒素ガスまたは周期表の第18属原子、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好ましい。 In the case of atmospheric pressure plasma treatment, nitrogen gas or 18th group atom of the periodic table, specifically helium, neon, argon, krypton, xenon, radon or the like is used as the discharge gas. Among these, nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferable because of low cost.
また、プラズマ処理としては、低圧プラズマ処理をおこなってもよい。低圧プラズマ処理は、減圧することによって酸素または水蒸気を実質的に含まない雰囲気にした後、ガスを装置内に導入することで行われる。低圧プラズマ処理では、低圧下のプラズマにより励起された原子、分子が基底状態もしくは下の準位に落ちる際の真空紫外の発光を利用する。低圧プラズマで発生する真空紫外光の波長は、プラズマを発生させるガス種に依存する。低圧プラズマ処理で利用する光の波長として50〜125nmの範囲が好ましい。 Further, as the plasma treatment, low-pressure plasma treatment may be performed. The low-pressure plasma treatment is performed by introducing a gas into the apparatus after reducing the pressure to make the atmosphere substantially free of oxygen or water vapor. In the low-pressure plasma treatment, vacuum ultraviolet emission is used when atoms and molecules excited by low-pressure plasma fall to the ground state or the lower level. The wavelength of the vacuum ultraviolet light generated by the low-pressure plasma depends on the gas species that generates the plasma. The wavelength of light used in the low-pressure plasma treatment is preferably in the range of 50 to 125 nm.
プラズマで形成された励起状態の原子が発した真空紫外光が、別の基底状態の原子に吸収され、その原子の励起に使われる自己吸収の影響がある。そのため、あまり圧力が高いと、発生した真空紫外光は雰囲気ガスの原子や分子に吸収され、蒸着膜に効率よく照射されない虞がある。よって、圧力は100Pa以下が好ましい。一方、圧力があまり低く過ぎると、プラズマの発生が困難になる場合がある。よって、圧力の下限はプラズマの発生方式により異なるが、概ね0.1Pa以上が好ましい。 The vacuum ultraviolet light emitted by the excited atoms formed in the plasma is absorbed by another ground state atom, which has the effect of self-absorption used to excite that atom. Therefore, if the pressure is too high, the generated vacuum ultraviolet light is absorbed by the atoms and molecules of the atmospheric gas, and the deposited film may not be efficiently irradiated. Therefore, the pressure is preferably 100 Pa or less. On the other hand, if the pressure is too low, the generation of plasma may be difficult. Therefore, the lower limit of the pressure varies depending on the plasma generation method, but is preferably about 0.1 Pa or more.
低圧プラズマのガス種は、主としてヘリウム(He)、ネオン(Ne)、およびアルゴン(Ar)から選択される1種以上の希ガスが用いられる。これらの励起された希ガス原子の発する主要な真空紫外光の波長は、ヘリウム(He)の場合で58.4nm、ネオン(Ne)の場合で73.6nmおよび74.4nm、アルゴン(Ar)の場合で104.8nmおよび106.7nmであることが知られている。 As the gas species of the low-pressure plasma, one or more rare gases selected from helium (He), neon (Ne), and argon (Ar) are mainly used. The wavelengths of the major vacuum ultraviolet light emitted by these excited rare gas atoms are 58.4 nm for helium (He), 73.6 nm and 74.4 nm for neon (Ne), and argon (Ar). In some cases it is known to be 104.8 nm and 106.7 nm.
低圧プラズマの生成に必要な電源の周波数は、1MHz〜100GHzが好ましい。この範囲であれば、プラズマ生成反応に直接寄与する電子に効率よくエネルギーを与えることができ、電子密度、すなわちプラズマ密度は高くなる。これに伴い、プラズマで発生する真空紫外光の強度も強くなる。また、エネルギーの伝達効率が向上する。電源の周波数は、より好ましくは、4MHz〜10GHzである。 The frequency of the power source necessary for generating the low-pressure plasma is preferably 1 MHz to 100 GHz. Within this range, energy can be efficiently given to electrons that directly contribute to the plasma generation reaction, and the electron density, that is, the plasma density increases. Along with this, the intensity of the vacuum ultraviolet light generated by the plasma also increases. In addition, energy transmission efficiency is improved. The frequency of the power source is more preferably 4 MHz to 10 GHz.
波長150nm以下の光を発するプラズマの生成方式は、従来公知の方式を用いることができる。好ましくは、幅広の基材に形成した蒸着膜の処理に対応できる方式がよく、例えば、容量結合プラズマ(CCP)、誘導結合プラズマ(ICP)、表面波プラズマ、電子サイクロトロン共鳴(ECR)プラズマ、ヘリコン波プラズマ等が挙げられる。 As a method for generating plasma that emits light having a wavelength of 150 nm or less, a conventionally known method can be used. Preferably, a method that can deal with the processing of a deposited film formed on a wide substrate is good. For example, capacitively coupled plasma (CCP), inductively coupled plasma (ICP), surface wave plasma, electron cyclotron resonance (ECR) plasma, helicon Wave plasma etc. are mentioned.
蒸着膜と対向したプラズマへの投入電力の大きさの指標として、プラズマの大きさを反映するプラズマ源の占める面積で規格化した投入電力密度を定義する。これは、単位面積あたりの蒸着膜に照射される真空紫外光の照射強度に相関するパラメータとなる。特に、容量結合プラズマのような有電極プラズマの場合、高周波を印加する側の電極面積が、実質的にプラズマの大きさを規定しており、これをプラズマ源の占める面積とする。 The input power density normalized by the area occupied by the plasma source reflecting the plasma magnitude is defined as an index of the magnitude of the input power to the plasma facing the deposited film. This is a parameter that correlates with the irradiation intensity of vacuum ultraviolet light applied to the deposited film per unit area. In particular, in the case of electroded plasma such as capacitively coupled plasma, the area of the electrode on the side where the high frequency is applied substantially defines the size of the plasma, and this is the area occupied by the plasma source.
投入電力密度は、好ましくは0.1〜20W/cm2であり、より好ましくは0.3〜10W/cm2である。この範囲であれば、十分な強度の照射ができ、基材の温度上昇による熱変形、プラズマの不均一化、電極などのプラズマ源を構成する部材の損傷などを防止することができる。The input power density is preferably 0.1 to 20 W / cm 2 , more preferably 0.3 to 10 W / cm 2 . If it is this range, irradiation with sufficient intensity | strength can be performed and the thermal deformation by the temperature rise of a base material, the nonuniformity of a plasma, damage to the members which comprise plasma sources, such as an electrode, etc. can be prevented.
(熱処理)
ケイ素化合物を含有する塗膜を他の改質処理、好適には後述のエキシマ照射処理等と組み合わせて、加熱処理することで、改質処理を効率よく行うことが出来る。(Heat treatment)
The modification treatment can be efficiently performed by heat-treating the coating film containing the silicon compound in combination with another modification treatment, preferably an excimer irradiation treatment described later.
また、ゾルゲル法を用いて層形成する場合には、加熱処理を用いることが好ましい。加熱条件としては、50〜300℃、好ましくは、70〜200℃の温度で、0.005〜60分間、好ましくは、0.01〜10分間、加熱・乾操することにより、縮合が行われ、層を形成することができる。 In the case of forming a layer using a sol-gel method, it is preferable to use a heat treatment. As heating conditions, condensation is performed by heating and drying at a temperature of 50 to 300 ° C., preferably 70 to 200 ° C., for 0.005 to 60 minutes, preferably 0.01 to 10 minutes. A layer can be formed.
加熱処理としては、例えば、ヒートブロック等の発熱体に基板を接触させ熱伝導により塗膜を加熱する方法、抵抗線等による外部ヒーターにより雰囲気を加熱する方法、IRヒーターの様な赤外領域の光を用いた方法等が上げられるが特に限定はされない。また、ケイ素化合物を含有する塗膜の平滑性を維持できる方法を適宜選択してよい。 As the heat treatment, for example, a method of heating a coating film by contacting a substrate with a heating element such as a heat block, a method of heating an atmosphere by an external heater such as a resistance wire, an infrared region such as an IR heater, etc. A method using light can be raised, but is not particularly limited. Moreover, you may select suitably the method which can maintain the smoothness of the coating film containing a silicon compound.
加熱処理時の塗膜の温度としては、50〜250℃の範囲に適宜調整することが好ましく、更に好ましくは50〜120℃の範囲である。 The temperature of the coating film during the heat treatment is preferably adjusted appropriately in the range of 50 to 250 ° C, more preferably in the range of 50 to 120 ° C.
また、加熱時間としては、1秒〜10時間の範囲が好ましく、更に好ましくは、10秒〜1時間の範囲が好ましい。 The heating time is preferably in the range of 1 second to 10 hours, more preferably in the range of 10 seconds to 1 hour.
本発明に於いて、好ましくはケイ素化合物を有する塗膜から形成した層(第3の層)自身がガスバリア性(好適には、水蒸気透過率が、1×10−3g/(m2・24h)以下)を発現しており、かような第3の層を得るための改質手段としては、後述するエキシマ光処理が特に好ましい。In the present invention, the layer (third layer) formed preferably from a coating film containing a silicon compound itself has a gas barrier property (preferably, the water vapor transmission rate is 1 × 10 −3 g / (m 2 · 24 h). ) The following excimer light treatment is particularly preferable as a modification means for obtaining such a third layer.
(紫外線照射処理)
改質処理の方法の1つとして、紫外線照射による処理も好ましい。紫外線(紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性を有する酸化ケイ素膜または酸化窒化ケイ素膜を形成することが可能である。(UV irradiation treatment)
As one of the modification treatment methods, treatment by ultraviolet irradiation is also preferable. Ozone and active oxygen atoms generated by ultraviolet rays (synonymous with ultraviolet light) have high oxidation ability, and can form silicon oxide films or silicon oxynitride films with high density and insulation properties at low temperatures. It is.
この紫外線照射により、基材が加熱され、セラミックス化(シリカ転化)に寄与するO2とH2Oや、紫外線吸収剤、ポリシラザン自身が励起、活性化されるため、ポリシラザンが励起し、ポリシラザンのセラミックス化が促進され、また得られるセラミックス膜が一層緻密になる。紫外線照射は、塗膜形成後であればいずれの時点で実施しても有効である。By this ultraviolet irradiation, the base material is heated, and O 2 and H 2 O contributing to ceramicization (silica conversion), an ultraviolet absorber, and polysilazane itself are excited and activated. The conversion to ceramics is promoted, and the resulting ceramic film becomes denser. Irradiation with ultraviolet rays is effective at any time after the formation of the coating film.
紫外線照射処理においては、常用されているいずれの紫外線発生装置を使用することも可能である。 In the ultraviolet irradiation treatment, any commonly used ultraviolet ray generator can be used.
なお、本発明でいう紫外線とは、一般には、10〜400nmの波長を有する電磁波をいうが、後述する真空紫外線(10〜200nm)処理以外の紫外線照射処理の場合は、好ましくは210〜375nmの紫外線を用いる。 The ultraviolet ray referred to in the present invention generally refers to an electromagnetic wave having a wavelength of 10 to 400 nm, but in the case of an ultraviolet irradiation treatment other than the vacuum ultraviolet ray (10 to 200 nm) treatment described later, it is preferably 210 to 375 nm. Use ultraviolet light.
紫外線の照射は、照射される第3の層を担持している基材がダメージを受けない範囲で、照射強度や照射時間を設定することが好ましい。 It is preferable that the irradiation intensity and the irradiation time are set within the range where the substrate carrying the third layer to be irradiated is not damaged.
基材としてプラスチックフィルムを用いた場合を例にとると、例えば、2kW(80W/cm×25cm)のランプを用い、基材表面の強度が20〜300mW/cm2、好ましくは50〜200mW/cm2になるように基材−紫外線照射ランプ間の距離を設定し、0.1秒〜10分間の照射を行うことができる。For example, when a plastic film is used as the substrate, for example, a 2 kW (80 W / cm × 25 cm) lamp is used, and the strength of the substrate surface is 20 to 300 mW / cm 2 , preferably 50 to 200 mW / cm. The distance between the substrate and the ultraviolet irradiation lamp is set so as to be 2, and irradiation can be performed for 0.1 second to 10 minutes.
一般に、紫外線照射処理時の基材温度が150℃以上になると、プラスチックフィルム等の場合には、基材が変形したり、その強度が劣化したりする等、基材の特性が損なわれることになる。しかしながら、ポリイミド等の耐熱性の高いフィルムや、金属等の基板の場合には、より高温での改質処理が可能である。したがって、この紫外線照射時の基材温度としては、一般的な上限はなく、基材の種類によって当業者が適宜設定することができる。また、紫外線照射雰囲気に特に制限はなく、空気中で実施すればよい。 In general, when the substrate temperature during ultraviolet irradiation treatment is 150 ° C. or more, in the case of a plastic film or the like, the properties of the substrate are impaired, such as deformation of the substrate or deterioration of its strength. Become. However, in the case of a film having high heat resistance such as polyimide or a substrate such as metal, a modification treatment at a higher temperature is possible. Accordingly, there is no general upper limit for the substrate temperature at the time of ultraviolet irradiation, and it can be appropriately set by those skilled in the art depending on the type of substrate. Moreover, there is no restriction | limiting in particular in ultraviolet irradiation atmosphere, What is necessary is just to implement in air.
このような紫外線の発生手段としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ(172nm、222nm、308nmの単一波長、例えば、ウシオ電機(株)製)、UV光レーザー、等が挙げられるが、特に限定されない。また、発生させた紫外線を第3の層に照射する際には、効率向上と均一な照射を達成する観点から、発生源からの紫外線を反射板で反射させてから第3の層に当てることが望ましい。 Examples of such ultraviolet ray generating means include metal halide lamps, high-pressure mercury lamps, low-pressure mercury lamps, xenon arc lamps, carbon arc lamps, and excimer lamps (single wavelengths of 172 nm, 222 nm, and 308 nm, for example, USHIO INC. )), UV light laser, and the like. In addition, when irradiating the generated ultraviolet rays to the third layer, from the viewpoint of achieving efficiency improvement and uniform irradiation, the ultraviolet rays from the generation source are reflected by the reflector and then applied to the third layer. Is desirable.
紫外線照射は、バッチ処理にも連続処理にも適合可能であり、使用する基材の形状によって適宜選定することができる。例えば、バッチ処理の場合には、第3の層を表面に有する積層体を上記のような紫外線発生源を具備した紫外線焼成炉で処理することができる。紫外線焼成炉自体は一般に知られており、例えば、アイグラフィクス(株)製の紫外線焼成炉を使用することができる。また、第3の層を表面に有する積層体が長尺フィルム状である場合には、これを搬送させながら上記のような紫外線発生源を具備した乾燥ゾーンで連続的に紫外線を照射することによりセラミックス化することができる。紫外線照射に要する時間は、使用する基材や第3の層の組成、濃度にもよるが、一般に0.1秒〜10分であり、好ましくは0.5秒〜3分である。 The ultraviolet irradiation can be adapted to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate to be used. For example, in the case of batch processing, a laminated body having the third layer on the surface can be processed in an ultraviolet baking furnace equipped with the above-described ultraviolet ray generation source. The ultraviolet baking furnace itself is generally known, and for example, an ultraviolet baking furnace manufactured by Eye Graphics Co., Ltd. can be used. Moreover, when the laminated body which has a 3rd layer on the surface is a elongate film form, by irradiating an ultraviolet-ray continuously in the drying zone equipped with the above ultraviolet-ray generation sources, conveying this. It can be made into ceramics. The time required for ultraviolet irradiation is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, although it depends on the base material used and the composition and concentration of the third layer.
(真空紫外線照射処理:エキシマ照射処理)
本発明において、最も好ましい改質処理方法は、真空紫外線照射による処理(エキシマ照射処理)である。真空紫外線照射による処理は、ポリシラザン化合物内の原子間結合力より大きい100〜200nmの光エネルギーを用い、好ましくは100〜180nmの波長の光エネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温(約200℃以下)で、酸化ケイ素膜の形成を行う方法である。なお、エキシマ照射処理を行う際は、上述したように熱処理を併用することが好ましく、その際の熱処理条件の詳細は上述したとおりである。(Vacuum ultraviolet irradiation treatment: excimer irradiation treatment)
In the present invention, the most preferable modification treatment method is treatment by vacuum ultraviolet irradiation (excimer irradiation treatment). The treatment by vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy with a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in the polysilazane compound, and bonds the atoms with only photons called photon processes. This is a method of forming a silicon oxide film at a relatively low temperature (about 200 ° C. or lower) by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly by action. In addition, when performing an excimer irradiation process, it is preferable to use heat processing together as mentioned above, and the detail of the heat processing conditions in that case is as having mentioned above.
本発明においての放射線源は、100〜180nmの波長の光を発生させるものであれば良いが、好適には約172nmに最大放射を有するエキシマラジエータ(例えば、Xeエキシマランプ)、約185nmに輝線を有する低圧水銀蒸気ランプ、並びに230nm以下の波長成分を有する中圧および高圧水銀蒸気ランプ、および約222nmに最大放射を有するエキシマランプである。 The radiation source in the present invention may be any radiation source that emits light having a wavelength of 100 to 180 nm, but is preferably an excimer radiator having a maximum emission at about 172 nm (for example, Xe excimer lamp), and has an emission line at about 185 nm. Low pressure mercury vapor lamps, and medium and high pressure mercury vapor lamps having a wavelength component of 230 nm or less, and excimer lamps having maximum emission at about 222 nm.
このうち、Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから、発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。 Among these, the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen.
また、波長の短い172nmの光のエネルギーは、有機物の結合を解離させる能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン層の改質を実現できる。 Moreover, it is known that the energy of light having a short wavelength of 172 nm has a high ability to dissociate organic bonds. Due to the high energy of the active oxygen, ozone and ultraviolet radiation, the polysilazane layer can be modified in a short time.
エキシマランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で、すなわち短い波長でエネルギーを照射するため、解射対象物の表面温度の上昇が抑えられる特徴を持っている。このため、熱の影響を受けやすいとされるPETなどのフレシキブルフィルム材料に適している。 Since the excimer lamp has high light generation efficiency, it can be turned on with low power. In addition, light having a long wavelength that causes a temperature increase due to light is not emitted, and energy is irradiated in the ultraviolet region, that is, in a short wavelength, so that the increase in the surface temperature of the target object is suppressed. For this reason, it is suitable for flexible film materials such as PET that are easily affected by heat.
紫外線照射時の反応には、酸素が必要であるが、真空紫外線は、酸素による吸収があるため紫外線照射工程での効率が低下しやすいことから、真空紫外線の照射は、可能な限り酸素濃度および水蒸気濃度の低い状態で行うことが好ましい。すなわち、真空紫外線照射時の酸素濃度は、10〜210,000体積ppmとすることが好ましく、より好ましくは50〜10,000体積ppmである。また、転化プロセスの間の水蒸気濃度は、好ましくは1000〜4000体積ppmの範囲である。 Oxygen is required for the reaction at the time of ultraviolet irradiation, but since vacuum ultraviolet rays are absorbed by oxygen, the efficiency in the ultraviolet irradiation process tends to decrease. It is preferable to carry out in a state where the water vapor concentration is low. That is, the oxygen concentration at the time of vacuum ultraviolet irradiation is preferably 10 to 210,000 volume ppm, more preferably 50 to 10,000 volume ppm. Also, the water vapor concentration during the conversion process is preferably in the range of 1000 to 4000 ppm by volume.
真空紫外線照射時に用いられる、照射雰囲気を満たすガスとしては乾燥不活性ガスとすることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。 As a gas that satisfies the irradiation atmosphere used at the time of irradiation with vacuum ultraviolet rays, a dry inert gas is preferable, and a dry nitrogen gas is particularly preferable from the viewpoint of cost. The oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
真空紫外線照射工程において、塗膜が受ける塗膜面での該真空紫外線の照度は30〜200mW/cm2であることが好ましく、50〜160mW/cm2であることがより好ましい。30mW/cm2未満では、改質効率が大きく低下する懸念があり、200mW/cm2を超えると、塗膜にアブレーションを生じたり、基材にダメージを与えたりする懸念が出てくる。In vacuum ultraviolet irradiation step, the illuminance of the vacuum ultraviolet rays in the coated surface of the coating film is subjected is preferably from 30~200mW / cm 2, more preferably 50~160mW / cm 2. If it is less than 30 mW / cm 2, there is a concern that the reforming efficiency is greatly reduced, and if it exceeds 200 mW / cm 2 , there is a concern that the coating film may be ablated or the substrate may be damaged.
塗膜面における真空紫外線の照射エネルギー量は、200〜5000mJ/cm2であることが好ましく、500〜3000mJ/cm2であることがより好ましい。200mJ/cm2未満では、改質が不十分となる懸念があり、5000mJ/cm2超えると過剰改質によるクラック発生や、基材の熱変形の懸念が出てくる。Irradiation energy amount of the VUV in the coated surface is preferably 200~5000mJ / cm 2, more preferably 500~3000mJ / cm 2. Is less than 200 mJ / cm 2, there is a fear that the reforming becomes insufficient, 5000 mJ / cm 2 than the cracking or due to excessive modification concerns the thermal deformation of the substrate emerges.
また、改質に用いられる真空紫外光は、CO、CO2およびCH4の少なくとも一種を含むガスで形成されたプラズマにより発生させてもよい。さらに、CO、CO2およびCH4の少なくとも一種を含むガス(以下、炭素含有ガスとも称する)は、炭素含有ガスを単独で使用してもよいが、希ガスまたはH2を主ガスとして、炭素含有ガスを少量添加することが好ましい。プラズマの生成方式としては容量結合プラズマなどが挙げられる。Further, the vacuum ultraviolet light used for reforming, CO, may be generated by plasma formed in a gas containing at least one of CO 2 and CH 4. Further, as the gas containing at least one of CO, CO 2 and CH 4 (hereinafter also referred to as carbon-containing gas), the carbon-containing gas may be used alone, but carbon containing rare gas or H 2 as the main gas. It is preferable to add a small amount of the contained gas. Examples of plasma generation methods include capacitively coupled plasma.
次に、好適な形態であるケイ素化合物がパーヒドロポリシラザンである場合に、真空紫外線照射工程でパーヒドロポリシラザンから酸窒化ケイ素、さらには酸化ケイ素が生じると推定される反応機構について、以下に説明する。 Next, the reaction mechanism presumed to generate silicon oxynitride and further silicon oxide from perhydropolysilazane in the vacuum ultraviolet irradiation process when the silicon compound which is a preferred form is perhydropolysilazane will be described below. .
(I)脱水素、それに伴うSi−N結合の形成
パーヒドロポリシラザン中のSi−H結合やN−H結合は真空紫外線照射による励起等で比較的容易に切断され、不活性雰囲気下ではSi−Nとして再結合すると考えられる(Siの未結合手が形成される場合もある)。すなわち、酸化することなくSiNy組成として硬化する。この場合はポリマー主鎖の切断は生じない。Si−H結合やN−H結合の切断は触媒の存在や、加熱によって促進される。切断されたHはH2として膜外に放出される。(I) Dehydrogenation and accompanying Si—N bond formation Si—H bonds and N—H bonds in perhydropolysilazane are relatively easily cleaved by excitation by vacuum ultraviolet irradiation, etc., and in an inert atmosphere, Si— It is considered that they are recombined as N (a dangling bond of Si may be formed). That is, the cured as SiN y composition without oxidizing. In this case, the polymer main chain is not broken. The breaking of Si—H bonds and N—H bonds is promoted by the presence of a catalyst and heating. The cut H is released out of the membrane as H 2 .
(II)加水分解・脱水縮合によるSi−O−Si結合の形成
パーヒドロポリシラザン中のSi−N結合は水により加水分解され、ポリマー主鎖が切断されてSi−OHを形成する。二つのSi−OHが脱水縮合してSi−O−Si結合を形成して硬化する。これは大気中でも生じる反応であるが、不活性雰囲気下での真空紫外線照射中では、照射の熱によって基材からアウトガスとして生じる水蒸気が主な水分源となると考えられる。水分が過剰となると脱水縮合しきれないSi−OHが残存し、SiO2.1〜SiO2.3の組成で示されるガスバリア性の低い硬化膜となる。(II) Formation of Si—O—Si Bonds by Hydrolysis / Dehydration Condensation Si—N bonds in perhydropolysilazane are hydrolyzed by water, and the polymer main chain is cleaved to form Si—OH. Two Si—OHs are dehydrated and condensed to form Si—O—Si bonds and harden. This is a reaction that occurs in the air, but during vacuum ultraviolet irradiation in an inert atmosphere, water vapor generated as outgas from the base material by the heat of irradiation is considered to be the main moisture source. When the water is excessive, Si—OH that cannot be dehydrated and condensed remains, and a cured film having a low gas barrier property represented by a composition of SiO 2.1 to SiO 2.3 is obtained.
(III)一重項酸素による直接酸化、Si−O−Si結合の形成
真空紫外線照射中、雰囲気下に適当量の酸素が存在すると、酸化力の非常に強い一重項酸素が形成される。パーヒドロポリシラザン中のHやNはOと置き換わってSi−O−Si結合を形成して硬化する。ポリマー主鎖の切断により結合の組み換えを生じる場合もあると考えられる。(III) Direct oxidation by singlet oxygen, formation of Si—O—Si bond When a suitable amount of oxygen is present in the atmosphere during irradiation with vacuum ultraviolet rays, singlet oxygen having a very strong oxidizing power is formed. H or N in the perhydropolysilazane is replaced with O to form a Si—O—Si bond and harden. It is thought that recombination of the bond may occur due to cleavage of the polymer main chain.
(IV)真空紫外線照射・励起によるSi−N結合切断を伴う酸化
真空紫外線のエネルギーはパーヒドロポリシラザン中のSi−Nの結合エネルギーよりも高いため、Si−N結合は切断され、周囲に酸素、オゾン、水等の酸素源が存在すると酸化されてSi−O−Si結合やSi−O−N結合が生じると考えられる。ポリマー主鎖の切断により結合の組み換えを生じる場合もあると考えられる。(IV) Oxidation with Si-N bond cleavage by vacuum ultraviolet irradiation / excitation Since the energy of vacuum ultraviolet light is higher than the bond energy of Si-N in perhydropolysilazane, the Si-N bond is cleaved, and oxygen, It is considered that when an oxygen source such as ozone or water is present, it is oxidized to form a Si—O—Si bond or a Si—O—N bond. It is thought that recombination of the bond may occur due to cleavage of the polymer main chain.
ポリシラザンを含有する層に真空紫外線照射を施した層の酸窒化ケイ素の組成の調整は、上述の(I)〜(IV)の酸化機構を適宜組み合わせて酸化状態を制御することで行うことができる。 The composition of the silicon oxynitride of the layer that has been subjected to vacuum ultraviolet ray irradiation on the polysilazane-containing layer can be adjusted by appropriately combining the oxidation mechanisms (I) to (IV) described above to control the oxidation state. .
ここで、ケイ素化合物として好適なポリシラザンにおける場合、シリカ転化(改質処理)では、Si−H、N−H結合の切断と、Si−O結合の生成が起こり、シリカ等のセラミックスに転化するが、この転化の度合はIR測定によって、以下に定義する式(1)により、SiO/SiN比で半定量的に評価することができる。 Here, in the case of polysilazane suitable as a silicon compound, in silica conversion (modification treatment), cleavage of Si—H and N—H bonds and generation of Si—O bonds occur, which are converted into ceramics such as silica. The degree of conversion can be evaluated semi-quantitatively by the SiO / SiN ratio by IR measurement and by the equation (1) defined below.
ここで、SiO吸光度は約1160cm−1、SiN吸光度は約840cm−1での吸収(吸光度)により算出する。SiO/SiN比が大きいほど、シリカ組成に近いセラミックスへの転化が進んでいることを示す。Here, the SiO absorbance is calculated by absorption (absorbance) at about 1160 cm −1 and the SiN absorbance at about 840 cm −1 . It shows that conversion to the ceramic close | similar to a silica composition is progressing, so that SiO / SiN ratio is large.
ここで、セラミックスへの転化度合の指標となるSiO/SiN比は0.3以上、好ましくは0.5以上とすることが好ましい。0.3未満では、期待するガスバリア性が得られないことがある。また、シリカ転化率(SiOxにおけるx)の測定方法としては、例えば、XPS法を用いて測定することができる。Here, the SiO / SiN ratio, which is an index of the degree of conversion to ceramics, is 0.3 or more, preferably 0.5 or more. If it is less than 0.3, the expected gas barrier property may not be obtained. Moreover, as a measuring method of silica conversion rate ( x in SiOx), it can measure using XPS method, for example.
第3の層の膜組成は、XPS表面分析装置を用いて、原子組成比を測定することで測定できる。また、バリア層を切断して切断面をXPS表面分析装置で原子組成比を測定することでも測定することができる。 The film composition of the third layer can be measured by measuring the atomic composition ratio using an XPS surface analyzer. It can also be measured by cutting the barrier layer and measuring the cut surface with an XPS surface analyzer.
また、第3の層の膜密度は、目的に応じて適切に設定され得る。例えば、第3の層の膜密度が、1.5〜2.6g/cm3の範囲にあることが好ましい。この範囲を外れると、膜の緻密さが低下しバリア性の劣化や、湿度による膜の酸化劣化が起こる場合がある。Further, the film density of the third layer can be appropriately set according to the purpose. For example, the film density of the third layer is preferably in the range of 1.5 to 2.6 g / cm 3 . If it is out of this range, the density of the film is lowered, and the barrier property may be deteriorated or the film may be oxidized and deteriorated due to humidity.
第3の層の厚さは、目的に応じて適切に設定され得る。例えば、第3の層の厚さは、10nm〜10μm程度であることが好ましく、15nm〜1μmであることがより好ましく、20〜500nmであることがさらに好ましい。膜厚が10nm以上であれば十分なバリア性を得ることができ、10μm以下であれば、層形成時に安定した塗布性を得ることができ、かつ高い光線透過性を実現できる。 The thickness of the third layer can be appropriately set according to the purpose. For example, the thickness of the third layer is preferably about 10 nm to 10 μm, more preferably 15 nm to 1 μm, and still more preferably 20 to 500 nm. If the film thickness is 10 nm or more, sufficient barrier properties can be obtained, and if it is 10 μm or less, stable coating properties can be obtained during layer formation, and high light transmittance can be realized.
また、第3の層の膜厚が第2の層の膜厚の3倍以上であることが好ましい。高温高湿条件下では、基材、または第1の層が膨張する。すると第2の層に応力が働き、層に影響を与える場合がある。しかしながら、本発明では第3の層が存在するため、第2の層に働く応力が緩和される。そして、上記膜厚の範囲であることによって、高温高湿条件下での上記応力緩和の効果が一層向上するため、ガスバリア性が維持される。なお、第3の層の膜厚は第2の層の膜厚の3〜15倍であることが好ましく、3〜5倍であることがより好ましい。 Moreover, it is preferable that the film thickness of the third layer is three times or more the film thickness of the second layer. Under high temperature and high humidity conditions, the substrate or the first layer expands. Then, a stress acts on the second layer, which may affect the layer. However, since the third layer exists in the present invention, the stress acting on the second layer is relieved. And since it is the range of the said film thickness, since the effect of the said stress relaxation on high temperature, high humidity conditions improves further, gas barrier property is maintained. The film thickness of the third layer is preferably 3 to 15 times that of the second layer, and more preferably 3 to 5 times.
第3の層の屈折率は、特に制限されないが、1.7〜2.1であることが好ましく、1.8〜2であることがより好ましく、1.9〜2.0であることが特に好ましい。このような屈折率を有するバリア層は、可視光線透過率が高く、かつ高いガスバリア能が安定して得られる。 The refractive index of the third layer is not particularly limited, but is preferably 1.7 to 2.1, more preferably 1.8 to 2, and 1.9 to 2.0. Particularly preferred. A barrier layer having such a refractive index has a high visible light transmittance, and a high gas barrier ability can be stably obtained.
〔基材〕
本発明のガスバリア性フィルムは、通常、基材として、プラスチックフィルムを用いる。用いられるプラスチックフィルムは、バリア性積層体を保持できるフィルムであれば材質、厚み等に特に制限はなく、使用目的等に応じて適宜選択することができる。前記プラスチックフィルムとしては、具体的には、ポリエステル樹脂、メタクリル樹脂、メタクリル酸−マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂が挙げられる。〔Base material〕
The gas barrier film of the present invention usually uses a plastic film as a substrate. The plastic film to be used is not particularly limited in material, thickness and the like as long as it can hold the barrier laminate, and can be appropriately selected depending on the purpose of use and the like. Specific examples of the plastic film include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyetherimide. Resin, Cellulose acylate resin, Polyurethane resin, Polyether ether ketone resin, Polycarbonate resin, Alicyclic polyolefin resin, Polyarylate resin, Polyether sulfone resin, Polysulfone resin, Cycloolefin copolymer, Fluorene ring modified polycarbonate resin, Alicyclic Examples thereof include thermoplastic resins such as modified polycarbonate resins, fluorene ring-modified polyester resins, and acryloyl compounds.
本発明のガスバリア性フィルムを有機EL素子等のデバイスの基板として使用する場合は、前記基材は耐熱性を有する素材からなることが好ましい。具体的には、線膨張係数が15ppm/K以上100ppm/K以下で、かつTgが100℃以上300℃以下の脂基材が使用される。該基材は、電子部品用途、ディスプレイ用積層フィルムとしての必要条件を満たしている。即ち、これらの用途に本発明のガスバリア性フィルムを用いる場合、ガスバリア性フィルムは、150℃以上の工程に曝されることがある。この場合、ガスバリア性フィルムにおける基材の線膨張係数が100ppm/Kを超えると、ガスバリア性フィルムを前記のような温度の工程に流す際に基板寸法が安定せず、熱膨張および収縮に伴い、遮断性性能が劣化する不都合や、或いは、熱工程に耐えられないという不具合が生じやすくなる。15ppm/K未満では、フィルムがガラスのように割れてしまいフレキシビリティが劣化する場合がある。 When the gas barrier film of the present invention is used as a substrate for a device such as an organic EL element, the base material is preferably made of a material having heat resistance. Specifically, a fat base material having a linear expansion coefficient of 15 ppm / K or more and 100 ppm / K or less and a Tg of 100 ° C. or more and 300 ° C. or less is used. The base material satisfies the requirements for use as a laminated film for electronic parts and displays. That is, when the gas barrier film of the present invention is used for these applications, the gas barrier film may be exposed to a process at 150 ° C. or higher. In this case, when the coefficient of linear expansion of the base material in the gas barrier film exceeds 100 ppm / K, the substrate dimensions are not stable when the gas barrier film is passed through the temperature process as described above, and thermal expansion and contraction occur. Inconvenience that the shut-off performance is deteriorated or a problem that the thermal process cannot withstand is likely to occur. If it is less than 15 ppm / K, the film may break like glass and the flexibility may deteriorate.
基材のTgや線膨張係数は、添加剤などによって調整することができる。基材として用いることができる熱可塑性樹脂のより好ましい具体例としては、例えば、ポリエチレンテレフタレート(PET:70℃)、ポリエチレンナフタレート(PEN:120℃)、ポリカーボネート(PC:140℃)、脂環式ポリオレフィン(例えば日本ゼオン株式会社製、ゼオノア(登録商標)1600:160℃)、ポリアリレート(PAr:210℃)、ポリエーテルスルホン(PES:220℃)、ポリスルホン(PSF:190℃)、シクロオレフィンコポリマー(COC:特開2001−150584号公報に記載の化合物:162℃)、ポリイミド(例えば三菱ガス化学株式会社製、ネオプリム(登録商標):260℃)、フルオレン環変性ポリカーボネート(BCF−PC:特開2000−227603号公報に記載の化合物:225℃)、脂環変性ポリカーボネート(IP−PC:特開2000−227603号公報に記載の化合物:205℃)、アクリロイル化合物(特開2002−80616号公報に記載の化合物:300℃以上)等が挙げられる(括弧内はTgを示す)。特に、透明性を求める場合には脂環式ポレオレフィン等を使用するのが好ましい。 The Tg and the linear expansion coefficient of the substrate can be adjusted with an additive or the like. More preferable specific examples of the thermoplastic resin that can be used as the substrate include, for example, polyethylene terephthalate (PET: 70 ° C.), polyethylene naphthalate (PEN: 120 ° C.), polycarbonate (PC: 140 ° C.), and alicyclic. Polyolefin (for example, ZEONOR (registered trademark) 1600: 160 ° C, manufactured by Nippon Zeon Co., Ltd.), polyarylate (PAr: 210 ° C), polyethersulfone (PES: 220 ° C), polysulfone (PSF: 190 ° C), cycloolefin copolymer (COC: Compound described in JP-A No. 2001-150584: 162 ° C.), polyimide (for example, Neoprim (registered trademark): 260 ° C. manufactured by Mitsubishi Gas Chemical Co., Ltd.), fluorene ring-modified polycarbonate (BCF-PC: JP In 2000-227603 Listed compound: 225 ° C.), alicyclic modified polycarbonate (IP-PC: compound described in JP 2000-227603 A: 205 ° C.), acryloyl compound (compound described in JP 2002-80616 A: 300 ° C.) And the like) (Tg is shown in parentheses). In particular, when transparency is required, it is preferable to use an alicyclic polyolefin or the like.
本発明のガスバリア性フィルムを偏光板と組み合わせて使用する場合、ガスバリア性フィルムのバリア性積層体がセルの内側に向くようにし、最も内側に(素子に隣接して)配置することが好ましい。このとき、偏光板よりセルの内側にガスバリア性フィルムが配置されることになるため、ガスバリア性フィルムのレターデーション値が重要になる。このような態様でのガスバリア性フィルムの使用形態は、レターデーション値が10nm以下の基材フィルムを用いたガスバリア性フィルムと円偏光板(1/4波長板+(1/2波長板)+直線偏光板)を積層して使用するか、あるいは1/4波長板として使用可能な、レターデーション値が100nm〜180nmの基材フィルムを用いたガスバリア性フィルムに直線偏光板を組み合わせて用いるのが好ましい。 When the gas barrier film of the present invention is used in combination with a polarizing plate, it is preferable that the gas barrier film is disposed so that the barrier laminate of the gas barrier film faces the inside of the cell and is located on the innermost side (adjacent to the element). At this time, since the gas barrier film is disposed inside the cell from the polarizing plate, the retardation value of the gas barrier film is important. The usage form of the gas barrier film in such an embodiment includes a gas barrier film using a base film having a retardation value of 10 nm or less and a circularly polarizing plate (¼ wavelength plate + (½ wavelength plate) + straight line. The polarizing plate is preferably used in combination with a linear polarizing plate in combination with a gas barrier film using a base film having a retardation value of 100 nm to 180 nm, which can be used as a quarter wavelength plate. .
レターデーションが10nm以下の基材フィルムとしては、例えば、セルローストリアセテート(富士フイルム株式会社製:フジタック(登録商標))、ポリカーボネート(帝人化成株式会社製:ピュアエース(登録商標)、株式会社カネカ製:エルメック(登録商標))、シクロオレフィンポリマー(JSR株式会社製:アートン(登録商標)、日本ゼオン株式会社製:ゼオノア(登録商標))、シクロオレフィンコポリマー(三井化学株式会社製:アペル(登録商標)(ペレット)、ポリプラスチック株式会社製:トパス(登録商標)(ペレット))、ポリアリレート(ユニチカ株式会社製:U100(ペレット))、透明ポリイミド(三菱ガス化学株式会社製:ネオプリム(登録商標))等を挙げることができる。 Examples of the substrate film having a retardation of 10 nm or less include, for example, cellulose triacetate (Fuji Film Co., Ltd .: Fujitac (registered trademark)), polycarbonate (Teijin Chemicals Co., Ltd .: Pure Ace (registered trademark), Kaneka Corporation): Elmec (registered trademark)), cycloolefin polymer (manufactured by JSR Corporation: Arton (registered trademark), Nippon Zeon Corporation: ZEONOR (registered trademark)), cycloolefin copolymer (manufactured by Mitsui Chemicals, Inc .: APPEL (registered trademark)) (Pellets), manufactured by Polyplastics Co., Ltd .: Topas (registered trademark) (pellets)), polyarylate (manufactured by Unitika Co., Ltd .: U100 (pellets)), transparent polyimide (manufactured by Mitsubishi Gas Chemical Co., Ltd .: Neoprim (registered trademark)) Etc.
また1/4波長板としては、上記のフィルムを適宜延伸することで所望のレターデーション値に調整したフィルムを用いることができる。 Moreover, as a quarter wavelength plate, the film adjusted to the desired retardation value by extending | stretching said film suitably can be used.
本発明のガスバリア性フィルムは有機EL素子等のデバイスとして利用されることから、プラスチックフィルムは透明であることが好ましい。すなわち、光線透過率が通常80%以上、好ましくは85%以上、さらに好ましくは90%以上である。光線透過率は、JIS K7105:1981に記載された方法、すなわち積分球式光線透過率測定装置を用いて全光線透過率および散乱光量を測定し、全光線透過率から拡散透過率を引いて算出することができる。 Since the gas barrier film of the present invention is used as a device such as an organic EL element, the plastic film is preferably transparent. That is, the light transmittance is usually 80% or more, preferably 85% or more, and more preferably 90% or more. The light transmittance is calculated by measuring the total light transmittance and the amount of scattered light using the method described in JIS K7105: 1981, that is, using an integrating sphere light transmittance measuring device, and subtracting the diffuse transmittance from the total light transmittance. can do.
ただし、本発明のガスバリア性フィルムをディスプレイ用途に用いる場合であっても、観察側に設置しない場合などは必ずしも透明性が要求されない。したがって、このような場合は、プラスチックフィルムとして不透明な材料を用いることもできる。不透明な材料としては、例えば、ポリイミド、ポリアクリロニトリル、公知の液晶ポリマーなどが挙げられる。 However, even when the gas barrier film of the present invention is used for display applications, transparency is not necessarily required when it is not installed on the observation side. Therefore, in such a case, an opaque material can be used as the plastic film. Examples of the opaque material include polyimide, polyacrylonitrile, and known liquid crystal polymers.
本発明のガスバリア性フィルムに用いられるプラスチックフィルムの厚みは、用途によって適宜選択されるため特に制限がないが、典型的には1〜800μmであり、好ましくは10〜200μmである。これらのプラスチックフィルムは、透明導電層、平滑層等の機能層を有していても良い。機能層については、上述したもののほか、特開2006−289627号公報の段落番号0036〜0038に記載されているものを好ましく採用できる。 The thickness of the plastic film used for the gas barrier film of the present invention is not particularly limited because it is appropriately selected depending on the application, but is typically 1 to 800 μm, preferably 10 to 200 μm. These plastic films may have functional layers such as a transparent conductive layer and a smooth layer. As for the functional layer, in addition to those described above, those described in paragraph numbers 0036 to 0038 of JP-A-2006-289627 can be preferably employed.
基材は、表面の平滑性が高いものが好ましい。表面の平滑性としては、平均表面粗さ(Ra)が2nm以下であるものが好ましい。下限は特にないが、実用上、0.01nm以上である。必要に応じて、基材の両面、少なくとも、バリア層を設ける側を研摩し、平滑性を向上させておいてもよい。 The substrate preferably has a high surface smoothness. As the surface smoothness, those having an average surface roughness (Ra) of 2 nm or less are preferable. Although there is no particular lower limit, it is practically 0.01 nm or more. If necessary, both surfaces of the substrate, at least the side on which the barrier layer is provided, may be polished to improve smoothness.
また、上記に挙げた樹脂等を用いた基材は、未延伸フィルムでもよく、延伸フィルムでもよい。 In addition, the base material using the above-described resins or the like may be an unstretched film or a stretched film.
本発明に用いられる基材は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。また、未延伸の基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法により、基材の流れ(縦軸)方向、または基材の流れ方向と直角(横軸)方向に延伸することにより延伸基材を製造することができる。この場合の延伸倍率は、基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向および横軸方向にそれぞれ2〜10倍が好ましい。 The base material used in the present invention can be produced by a conventionally known general method. For example, an unstretched substrate that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching. Further, the unstretched base material is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular simultaneous biaxial stretching, etc. A stretched substrate can be produced by stretching in the direction perpendicular to the flow direction of the substrate (horizontal axis). The draw ratio in this case can be appropriately selected according to the resin as the raw material of the substrate, but is preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction.
基材の両面、少なくとも本発明に係るバリア層(硬化型樹脂層)を設ける側には、接着性向上のための公知の種々の処理、コロナ放電処理、火炎処理、酸化処理、プラズマ処理、もしくは平滑層の積層等を、必要に応じて組み合わせて行うことができる。 Various known treatments for improving adhesion, corona discharge treatment, flame treatment, oxidation treatment, plasma treatment, or both sides of the substrate, at least on the side where the barrier layer (curable resin layer) according to the present invention is provided, or The smooth layers can be laminated and combined as necessary.
〔中間層〕
上述の基材、第1の層、第2の層、および第3の層間または表面には、本発明の効果を損なわない範囲で別途中間層を設けてもよい。[Middle layer]
An intermediate layer may be separately provided on the substrate, the first layer, the second layer, and the third interlayer or the surface as long as the effects of the present invention are not impaired.
(硬化性樹脂層)
本発明に係るガスバリア性フィルムは、基材上に、硬化性樹脂を硬化させて形成されてなる硬化性樹脂層を有することが好ましい。前記硬化性樹脂としては特に制限されず、活性エネルギー線硬化性材料等に対して紫外線等の活性エネルギー線を照射し硬化させて得られる活性エネルギー線硬化性樹脂や、熱硬化性材料を加熱することにより硬化して得られる熱硬化性樹脂等が挙げられる。該硬化性樹脂は、単独でもまたは2種以上組み合わせて用いてもよい。(Curable resin layer)
The gas barrier film according to the present invention preferably has a curable resin layer formed by curing a curable resin on a substrate. The curable resin is not particularly limited, and the active energy ray curable resin or the thermosetting material obtained by irradiating the active energy ray curable material or the like with an active energy ray such as an ultraviolet ray to be cured is heated. And thermosetting resins obtained by curing. These curable resins may be used alone or in combination of two or more.
かような硬化性樹脂層は、(1)基材表面を平滑にする、(2)積層される上層の応力を緩和する、(3)基材と上層との接着性を高める、の少なくとも一つの機能を有する。このため、該硬化性樹脂層は、後述の、平滑層、アンカーコート層(易接着層)と兼用されてもよい。 Such a curable resin layer is at least one of (1) smoothing the surface of the substrate, (2) relieving the stress of the upper layer to be laminated, and (3) improving the adhesion between the substrate and the upper layer. Has one function. For this reason, the curable resin layer may also be used as a smooth layer and an anchor coat layer (easy adhesion layer) described later.
活性エネルギー線硬化性材料としては、例えば、アクリレート化合物を含有する組成物、アクリレート化合物とチオール基を含有するメルカプト化合物とを含有する組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを含有する組成物等が挙げられる。具体的には、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)シリーズ(シリカ微粒子に重合性不飽和基を有する有機化合物を結合させてなる化合物)を用いることができる。また、上記のような組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している活性エネルギー線硬化性材料であれば特に制限はない。 Examples of the active energy ray-curable material include a composition containing an acrylate compound, a composition containing an acrylate compound and a mercapto compound containing a thiol group, epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, polyethylene Examples thereof include compositions containing polyfunctional acrylate monomers such as glycol acrylate and glycerol methacrylate. Specifically, it is possible to use a UV curable organic / inorganic hybrid hard coating material OPSTAR (registered trademark) series (compound obtained by bonding an organic compound having a polymerizable unsaturated group to silica fine particles) manufactured by JSR Corporation. it can. It is also possible to use any mixture of the above-mentioned compositions, and an active energy ray-curable material containing a reactive monomer having at least one photopolymerizable unsaturated bond in the molecule. If there is no restriction in particular.
光重合性不飽和結合を分子内に1個以上有する反応性モノマーとしては、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、イソブチルアクリレート、tert−ブチルアクリレート、n−ペンチルアクリレート、n−ヘキシルアクリレート、2−エチルヘキシルアクリレート、n−オクチルアクリレート、n−デシルアクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、アリルアクリレート、ベンジルアクリレート、ブトキシエチルアクリレート、ブトキシエチレングリコールアクリレート、シクロヘキシルアクリレート、ジシクロペンタニルアクリレート、2−エチルヘキシルアクリレート、グリセロールアクリレート、グリシジルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、イソボニルアクリレート、イソデキシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2−メトリキエチルアクリレート、メトキシエチレングリコールアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,4−ブタンジオールジアクリレート、1,5−ペンタンジオールジアクリレート、1,6−ヘキサジオールジアクリレート、1,3−プロパンジオールアクリレート、1,4−シクロヘキサンジオールジアクリレート、2,2−ジメチロールプロパンジアクリレート、グリセロールジアクリレート、トリプロピレングリコールジアクリレート、グリセロールトリアクリレート、トリメチロールプロパントリアクリレート、ポリオキシエチルトリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、エチレンオキサイド変性ペンタエリスリトールトリアクリレート、エチレンオキサイド変性ペンタエリスリトールテトラアクリレート、プロピオンオキサイド変性ペンタエリスリトールトリアクリレート、プロピオンオキサイド変性ペンタエリスリトールテトラアクリレート、トリエチレングリコールジアクリレート、ポリオキシプロピルトリメチロールプロパントリアクリレート、ブチレングリコールジアクリレート、1,2,4−ブタンジオールトリアクリレート、2,2,4−トリメチル−1,3−ペンタジオールジアクリレート、ジアリルフマレート、1,10−デカンジオールジメチルアクリレート、ペンタエリスリトールヘキサアクリレート、および、上記のアクリレートをメタクリレートに換えたもの、γ−メタクリロキシプロピルトリメトキシシラン、1−ビニル−2−ピロリドン等が挙げられる。上記の反応性モノマーは、1種または2種以上の混合物として、あるいはその他の化合物との混合物として使用することができる。 Examples of reactive monomers having at least one photopolymerizable unsaturated bond in the molecule include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, and n-pentyl. Acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, n-decyl acrylate, hydroxyethyl acrylate, hydroxypropyl acrylate, allyl acrylate, benzyl acrylate, butoxyethyl acrylate, butoxyethylene glycol acrylate, cyclohexyl acrylate, dicyclo Pentanyl acrylate, 2-ethylhexyl acrylate, glycerol acrylate, glycy Acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, isobornyl acrylate, isodexyl acrylate, isooctyl acrylate, lauryl acrylate, 2-methoxyethyl acrylate, methoxyethylene glycol acrylate, phenoxyethyl acrylate, stearyl acrylate, Ethylene glycol diacrylate, diethylene glycol diacrylate, 1,4-butanediol diacrylate, 1,5-pentanediol diacrylate, 1,6-hexadiol diacrylate, 1,3-propanediol acrylate, 1,4-cyclohexanediol Diacrylate, 2,2-dimethylolpropane diacrylate, glycerol diacrylate, tripropylene Glycol diacrylate, glycerol triacrylate, trimethylolpropane triacrylate, polyoxyethyltrimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, ethylene oxide modified pentaerythritol triacrylate, ethylene oxide modified pentaerythritol tetraacrylate, propion Oxide modified pentaerythritol triacrylate, propion oxide modified pentaerythritol tetraacrylate, triethylene glycol diacrylate, polyoxypropyltrimethylolpropane triacrylate, butylene glycol diacrylate, 1,2,4-butanediol triacrylate, 2,2, 4-to Limethyl-1,3-pentadiol diacrylate, diallyl fumarate, 1,10-decanediol dimethyl acrylate, pentaerythritol hexaacrylate, and acrylate replaced with methacrylate, γ-methacryloxypropyltrimethoxysilane, Examples thereof include 1-vinyl-2-pyrrolidone and the like. Said reactive monomer can be used as a 1 type, 2 or more types of mixture, or a mixture with another compound.
活性エネルギー線硬化性材料を含む組成物は、光重合開始剤を含有することが好ましい。 It is preferable that the composition containing an active energy ray-curable material contains a photopolymerization initiator.
光重合開始剤としては、例えば、ベンゾフェノン、o−ベンゾイル安息香酸メチル、4,4−ビス(ジメチルアミン)ベンゾフェノン、4,4−ビス(ジエチルアミン)ベンゾフェノン、α−アミノ・アセトフェノン、4,4−ジクロロベンゾフェノン、4−ベンゾイル−4−メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2−ジエトキシアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、2−ヒドロキシ−2−メチルプロピオフェノン、p−tert−ブチルジクロロアセトフェノン、チオキサントン、2−メチルチオキサントン、2−クロロチオキサントン、2−イソプロピルチオキサントン、ジエチルチオキサントン、ベンジルジメチルケタール、ベンジルメトキシエチルアセタール、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2−tert−ブチルアントラキノン、2−アミルアントラキノン、β−クロルアントラキノン、アントロン、ベンズアントロン、ジベンズスベロン、メチレンアントロン、4−アジドベンジルアセトフェノン、2,6−ビス(p−アジドベンジリデン)シクロヘキサン、2,6−ビス(p−アジドベンジリデン)−4−メチルシクロヘキサノン、2−フェニル−1,2−ブタジオン−2−(o−メトキシカルボニル)オキシム、1−フェニル−プロパンジオン−2−(o−エトキシカルボニル)オキシム、1,3−ジフェニル−プロパントリオン−2−(o−エトキシカルボニル)オキシム、1−フェニル−3−エトキシ−プロパントリオン−2−(o−ベンゾイル)オキシム、ミヒラーケトン、2−メチル[4−(メチルチオ)フェニル]−2−モノフォリノ−1−プロパン、2−ベンジル−2−ジメチルアミノ−1−(4−モノフォリノフェニル)−ブタノン−1、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、n−フェニルチオアクリドン、4,4−アゾビスイソブチロニトリル、ジフェニルジスルフィド、ベンズチアゾールジスルフィド、トリフェニルホスフィン、カンファーキノン、四臭化炭素、トリブロモフェニルスルホン、過酸化ベンゾイン、エオシン、メチレンブルー等の光還元性の色素とアスコルビン酸、トリエタノールアミン等の還元剤の組み合わせ等が挙げられ、これらの光重合開始剤を1種または2種以上の組み合わせで使用することができる。 Examples of the photopolymerization initiator include benzophenone, methyl o-benzoylbenzoate, 4,4-bis (dimethylamine) benzophenone, 4,4-bis (diethylamine) benzophenone, α-amino acetophenone, 4,4-dichloro. Benzophenone, 4-benzoyl-4-methyldiphenyl ketone, dibenzyl ketone, fluorenone, 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methylpropiophenone, p- tert-butyldichloroacetophenone, thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, diethylthioxanthone, benzyldimethyl ketal, benzylmethoxyethyl acetal, benzoy Methyl ether, benzoin butyl ether, anthraquinone, 2-tert-butylanthraquinone, 2-amylanthraquinone, β-chloroanthraquinone, anthrone, benzanthrone, dibenzsuberone, methyleneanthrone, 4-azidobenzylacetophenone, 2,6-bis (p-azide Benzylidene) cyclohexane, 2,6-bis (p-azidobenzylidene) -4-methylcyclohexanone, 2-phenyl-1,2-butadion-2- (o-methoxycarbonyl) oxime, 1-phenyl-propanedione-2- (O-ethoxycarbonyl) oxime, 1,3-diphenyl-propanetrione-2- (o-ethoxycarbonyl) oxime, 1-phenyl-3-ethoxy-propanetrione-2- (o-benzoyl) oxy , Michler's ketone, 2-methyl [4- (methylthio) phenyl] -2-monoforino-1-propane, 2-benzyl-2-dimethylamino-1- (4-monoforinophenyl) -butanone-1, naphthalenesulfonyl chloride Quinolinesulfonyl chloride, n-phenylthioacridone, 4,4-azobisisobutyronitrile, diphenyl disulfide, benzthiazole disulfide, triphenylphosphine, camphorquinone, carbon tetrabromide, tribromophenyl sulfone, benzoin peroxide And combinations of photoreducing dyes such as eosin and methylene blue and reducing agents such as ascorbic acid and triethanolamine. These photopolymerization initiators can be used alone or in combination of two or more. .
熱硬化性材料としては、具体的には、クラリアント社製のトゥットプロムシリーズ(有機ポリシラザン)、セラミックコート株式会社製のSP COAT耐熱クリアー塗料、アデカ社製のナノハイブリッドシリコーン、DIC株式会社製のユニディック(登録商標)V−8000シリーズ、EPICLON(登録商標) EXA−4710(超高耐熱性エポキシ樹脂)、信越化学工業株式会社製のシリコン樹脂 X−12−2400(商品名)、日東紡績株式会社製の無機・有機ナノコンポジット材料SSGコート、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂、ポリアミドアミン−エピクロルヒドリン樹脂等が挙げられる。 Specific examples of thermosetting materials include TutProm Series (Organic Polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid Silicone manufactured by Adeka, Unicom manufactured by DIC, Inc. Dick (registered trademark) V-8000 series, EPICLON (registered trademark) EXA-4710 (ultra-high heat resistant epoxy resin), silicon resin X-12-2400 (trade name) manufactured by Shin-Etsu Chemical Co., Ltd., Nitto Boseki Co., Ltd. Inorganic / organic nanocomposite material SSG coating, thermosetting urethane resin consisting of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, silicon resin, polyamidoamine-epichlorohydrin resin And the like.
硬化性樹脂層の形成方法は、特に制限はないが、硬化性材料を含む塗布液をスピンコーティング法、スプレー法、ブレードコーティング法、ディップ法、グラビア印刷法等のウエットコーティング法、または蒸着法等のドライコーティング法により塗布し塗膜を形成した後、可視光線、赤外線、紫外線、X線、α線、β線、γ線、電子線等の活性エネルギー線の照射および/または加熱により、前記塗膜を硬化させて形成する方法が好ましい。活性エネルギー線を照射する方法としては、例えば超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプ等を用い好ましくは100〜400nm、より好ましくは200〜400nmの波長領域の紫外線を照射する、または、走査型やカーテン型の電子線加速器から発せられる100nm以下の波長領域の電子線を照射する方法が挙げられる。 The method of forming the curable resin layer is not particularly limited, but a coating liquid containing a curable material is applied to a spin coating method, a spray method, a blade coating method, a dipping method, a gravure printing method or other wet coating method, or a vapor deposition method. After coating by the dry coating method, a coating film is formed, and then the coating is performed by irradiation with active energy rays such as visible light, infrared rays, ultraviolet rays, X rays, α rays, β rays, γ rays, electron rays and / or heating. A method of forming the film by curing is preferred. As a method of irradiating active energy rays, for example, an ultra-high pressure mercury lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a carbon arc, a metal halide lamp or the like is preferably used to irradiate ultraviolet rays in a wavelength region of 100 to 400 nm, more preferably 200 to 400 nm. Alternatively, a method of irradiating an electron beam having a wavelength region of 100 nm or less emitted from a scanning or curtain type electron beam accelerator can be used.
硬化性材料を溶媒に溶解または分散させた塗布液を用いて硬化性樹脂層を形成する際に使用する溶媒としては、メタノール、エタノール、n−プロピルアルコール、イソプロピルアルコール、エチレングリコール、プロピレングリコール等のアルコール類、α−もしくはβ−テルピネオール等のテルペン類等、アセトン、メチルエチルケトン、シクロヘキサノン、N−メチル−2−ピロリドン、ジエチルケトン、2−ヘプタノン、4−ヘプタノン等のケトン類、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、セロソルブ、メチルセロソルブ、エチルセロソルブ、カルビトール、メチルカルビトール、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、セロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、2−メトキシエチルアセテート、シクロヘキシルアセテート、2−エトキシエチルアセテート、3−メトキシブチルアセテート等の酢酸エステル類、ジエチレングリコールジアルキルエーテル、ジプロピレングリコールジアルキルエーテル、3−エトキシプロピオン酸エチル、安息香酸メチル、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等を挙げることができる。 Solvents used when forming a curable resin layer using a coating solution in which a curable material is dissolved or dispersed in a solvent include methanol, ethanol, n-propyl alcohol, isopropyl alcohol, ethylene glycol, propylene glycol, and the like. Alcohols, terpenes such as α- or β-terpineol, etc., ketones such as acetone, methyl ethyl ketone, cyclohexanone, N-methyl-2-pyrrolidone, diethyl ketone, 2-heptanone, 4-heptanone, toluene, xylene, tetramethyl Aromatic hydrocarbons such as benzene, cellosolve, methyl cellosolve, ethyl cellosolve, carbitol, methyl carbitol, ethyl carbitol, butyl carbitol, propylene glycol monomethyl ether, propylene glycol monoethyl Glycol ethers such as ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, ethyl acetate, butyl acetate, cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, carb Acetic esters such as tall acetate, ethyl carbitol acetate, butyl carbitol acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, 2-methoxyethyl acetate, cyclohexyl acetate, 2-ethoxyethyl acetate, 3-methoxybutyl acetate Diethylene glycol dialkyl ether, dip Propylene glycol dialkyl ethers, ethyl 3-ethoxypropionate, methyl benzoate, N, N- dimethylacetamide, N, may be mentioned N- dimethylformamide.
硬化性樹脂層は、上述の材料に加えて、必要に応じて、熱可塑性樹脂や酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を含有することができる。また、成膜性向上および膜のピンホール発生防止等のために適切な樹脂や添加剤を使用してもよい。熱可塑性樹脂としては、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体、酢酸ビニルおよびその共重合体、塩化ビニルおよびその共重合体、塩化ビニリデンおよびその共重合体等のビニル樹脂、ポリビニルホルマール、ポリビニルブチラール等のアセタール樹脂、アクリル樹脂およびその共重合体、メタクリル樹脂およびその共重合体等のアクリル樹脂、ポリスチレン樹脂、ポリアミド樹脂、線状ポリエステル樹脂、ポリカーボネート樹脂等が挙げられる。 The curable resin layer can contain additives such as a thermoplastic resin, an antioxidant, an ultraviolet absorber, and a plasticizer, if necessary, in addition to the above-described materials. In addition, an appropriate resin or additive may be used for improving the film formability and preventing the occurrence of pinholes in the film. Examples of the thermoplastic resin include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose and methylcellulose, vinyl acetate and copolymers thereof, vinyl chloride and copolymers thereof, vinylidene chloride and copolymers thereof and the like. Examples include resins, acetal resins such as polyvinyl formal and polyvinyl butyral, acrylic resins and copolymers thereof, acrylic resins such as methacrylic resins and copolymers thereof, polystyrene resins, polyamide resins, linear polyester resins, and polycarbonate resins.
硬化性樹脂層の厚さとしては、特に制限されないが、0.1〜10μmの範囲が好ましい。 Although it does not restrict | limit especially as thickness of a curable resin layer, The range of 0.1-10 micrometers is preferable.
硬化性樹脂層の平滑性は、中心線平均表面粗さ(Ra)は、0.3〜2.0nmであることが好ましく、0.3〜1.0nmであることがより好ましい。かような範囲であれば、基材表面を平滑にするという硬化性樹脂層の一目的を達成しうる。なお、中心線平均表面粗さ(Ra)は、実施例に記載の方法により測定することができる。 As for the smoothness of the curable resin layer, the centerline average surface roughness (Ra) is preferably 0.3 to 2.0 nm, and more preferably 0.3 to 1.0 nm. If it is such a range, the objective of the curable resin layer of smoothing the base-material surface can be achieved. The centerline average surface roughness (Ra) can be measured by the method described in the examples.
硬化性樹脂層の弾性率は、2.0〜20.0Paであることが好ましい。かような範囲であれば、膜面のハードコート性が向上し、上層積層による応力を緩和できるという硬化性樹脂層の一目的を達成しうる。なお、弾性率は、従来公知の弾性率測定方法により求めることができ、例えば、オリエンテック社製バイブロンDDV−2を用いて一定の歪みを一定の周波数(Hz)で掛ける条件下で測定する方法、測定装置としてRSA−II(レオメトリックス社製)を用い、基材上に硬化性樹脂層を形成した後、一定周波数で印加歪を変化させたとき得られる測定値により求める方法、あるいは、ナノインデンテーション法を適用したナノインデンター、例えば、MTSシステム社製のナノインデンター(Nano IndenterTMXP/DCM)により測定することができる。 The elastic modulus of the curable resin layer is preferably 2.0 to 20.0 Pa. If it is such a range, the hard coat property of a film surface will improve and the objective of the curable resin layer that the stress by upper layer lamination | stacking can be relieved can be achieved. The elastic modulus can be obtained by a conventionally known elastic modulus measuring method, for example, a method of measuring under a condition in which a constant strain is applied at a constant frequency (Hz) using Vibron DDV-2 manufactured by Orientec. , Using RSA-II (manufactured by Rheometrics) as a measuring device, forming a curable resin layer on a substrate, and then obtaining a measured value obtained by changing applied strain at a constant frequency, or nano It can be measured by a nano indenter to which the indentation method is applied, for example, a nano indenter (Nano IndenterTM XP / DCM) manufactured by MTS System.
(プライマー層(平滑層))
本発明のガスバリア性フィルムは、基材のバリア層を有する面にプライマー層(平滑層)を有していてもよい。プライマー層は突起等が存在する基材の粗面を平坦化するために設けられる。このようなプライマー層は、基本的には、活性エネルギー線硬化性材料または熱硬化性材料等を硬化させて形成される。プライマー層は、上記のような機能を有していれば、基本的に上記の硬化性樹脂層と同じ構成をとっても構わない。(Primer layer (smooth layer))
The gas barrier film of the present invention may have a primer layer (smooth layer) on the surface of the substrate having the barrier layer. The primer layer is provided for flattening the rough surface of the substrate on which protrusions and the like exist. Such a primer layer is basically formed by curing an active energy ray-curable material or a thermosetting material. The primer layer may basically have the same configuration as the curable resin layer as long as it has the above-described function.
前記活性エネルギー線硬化性材料および前記熱硬化性材料の例、およびプライマー層の形成方法は、上記の硬化性樹脂層の欄で説明したものと同様であるので、ここでは説明を省略する。 Examples of the active energy ray curable material and the thermosetting material, and the method for forming the primer layer are the same as those described in the column of the curable resin layer, and thus the description thereof is omitted here.
プライマー層の厚さとしては、特に制限されないが、0.1〜10μmの範囲が好ましい。 Although it does not restrict | limit especially as thickness of a primer layer, The range of 0.1-10 micrometers is preferable.
なお、該平滑層は、下記アンカーコート層として用いてもよい。 The smooth layer may be used as the following anchor coat layer.
(アンカーコート層)
本発明に係る基材表面には、バリア層との接着性(密着性)の向上を目的として、アンカーコート層を易接着層として形成してもよい。このアンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、およびアルキルチタネート等を、1または2種以上併せて使用することができる。上記アンカーコート剤は、市販品を使用してもよい。具体的には、シロキサン系UV硬化型ポリマー溶液(信越化学工業株式会社製、「X−12−2400」の3%イソプロピルアルコール溶液)を用いることができる。(Anchor coat layer)
On the surface of the substrate according to the present invention, an anchor coat layer may be formed as an easy-adhesion layer for the purpose of improving adhesion (adhesion) with the barrier layer. Examples of the anchor coating agent used in this anchor coat layer include polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, modified styrene resin, modified silicon resin, and alkyl titanate. One or two or more can be used in combination. A commercially available product may be used as the anchor coating agent. Specifically, a siloxane-based UV curable polymer solution (manufactured by Shin-Etsu Chemical Co., Ltd., 3% isopropyl alcohol solution of “X-12-2400”) can be used.
これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により基材上にコーティングし、溶剤、希釈剤等を乾燥除去することによりコーティングすることができる。上記のアンカーコート剤の塗布量としては、0.1〜5g/m2(乾燥状態)程度が好ましい。なお、市販の易接着層付き基材を用いてもよい。Conventionally known additives can be added to these anchor coating agents. The above-mentioned anchor coating agent is coated on a substrate by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, and the like, and is coated by drying and removing the solvent, diluent, etc. Can do. The application amount of the anchor coating agent is preferably about 0.1 to 5 g / m 2 (dry state). A commercially available base material with an easy-adhesion layer may be used.
または、アンカーコート層は、物理蒸着法または化学蒸着法といった気相法により形成することもできる。例えば、特開2008−142941号公報に記載のように、接着性等を改善する目的で酸化ケイ素を主体とした無機膜を形成することもできる。 Alternatively, the anchor coat layer can be formed by a vapor phase method such as physical vapor deposition or chemical vapor deposition. For example, as described in JP-A-2008-142941, an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving adhesion and the like.
また、アンカーコート層の厚さは、特に制限されないが、0.5〜10.0μm程度が好ましい。 The thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10.0 μm.
(ブリードアウト防止層)
本発明のガスバリア性フィルムにおいては、ブリードアウト防止層を設けることができる。ブリードアウト防止層は、硬化性樹脂層/平滑層を有するフィルムを加熱した際に、フィルム基材中から未反応のオリゴマー等が表面へ移行して、接触する面を汚染する現象を抑制する目的で、硬化性樹脂層/平滑層を有する基材の反対面に設けられる。ブリードアウト防止層は、この機能を有していれば、基本的に硬化性樹脂層/平滑層と同じ構成をとっても構わない。(Bleed-out prevention layer)
In the gas barrier film of the present invention, a bleed-out prevention layer can be provided. The purpose of the bleed-out prevention layer is to suppress the phenomenon in which unreacted oligomers migrate from the film base material to the surface when the film having the curable resin layer / smooth layer is heated and contaminate the contact surface. And provided on the opposite surface of the substrate having the curable resin layer / smooth layer. The bleed-out prevention layer may basically have the same configuration as the curable resin layer / smooth layer as long as it has this function.
ブリードアウト防止層に含ませることが可能な、ハードコート剤としては、分子中に2個以上の重合性不飽和基を有する多価不飽和有機化合物、あるいは分子中に1個の重合性不飽和基を有する単価不飽和有機化合物等を挙げることができる。 The hard coat agent that can be included in the bleed-out prevention layer is a polyunsaturated organic compound having two or more polymerizable unsaturated groups in the molecule, or one polymerizable unsaturated in the molecule. Examples thereof include monounsaturated organic compounds having a group.
ここで、多価不飽和有機化合物としては、例え、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等が挙げられる。 Here, as the polyunsaturated organic compound, for example, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, glycerol di (meth) acrylate, glycerol tri (meth) acrylate, 1,4-butanediol di (Meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, dicyclopentanyl di (meth) acrylate, pentaerythritol tri (meta ) Acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol monohydroxypenta (meth) acrylate, ditrimethylolpropane Tiger (meth) acrylate, diethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate.
また、単価不飽和有機化合物としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、アリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、グリセロール(メタ)アクリレート、グリシジル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−(2−エトキシエトキシ)エチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、2−メトキシプロピル(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート等が挙げられる。 Examples of unit unsaturated organic compounds include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, and lauryl. (Meth) acrylate, stearyl (meth) acrylate, allyl (meth) acrylate, cyclohexyl (meth) acrylate, methylcyclohexyl (meth) acrylate, isobornyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl ( (Meth) acrylate, glycerol (meth) acrylate, glycidyl (meth) acrylate, benzyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2- (2-eth Ciethoxy) ethyl (meth) acrylate, butoxyethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, methoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, 2- Examples include methoxypropyl (meth) acrylate, methoxydipropylene glycol (meth) acrylate, methoxytripropylene glycol (meth) acrylate, methoxypolypropylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate, and polypropylene glycol (meth) acrylate. .
その他の添加剤として、マット剤を含有してもよい。マット剤としては、平均粒子径が0.1〜5μm程度の無機粒子が好ましい。 As other additives, a matting agent may be contained. As the matting agent, inorganic particles having an average particle diameter of about 0.1 to 5 μm are preferable.
このような無機粒子としては、シリカ、アルミナ、タルク、クレイ、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、水酸化アルミニウム、二酸化チタン、酸化ジルコニウム等の1種または2種以上を併せて使用することができる。 As such inorganic particles, one or more of silica, alumina, talc, clay, calcium carbonate, magnesium carbonate, barium sulfate, aluminum hydroxide, titanium dioxide, zirconium oxide and the like can be used in combination. .
ここで、無機粒子からなるマット剤は、ハードコート剤の固形分100重量部に対して2重量部以上、好ましくは4重量部以上、より好ましくは6重量部以上、20重量部以下、好ましくは18重量部以下、より好ましくは16重量部以下の割合で混合されていることが望ましい。 Here, the matting agent composed of inorganic particles is 2 parts by weight or more, preferably 4 parts by weight or more, more preferably 6 parts by weight or more and 20 parts by weight or less, preferably 100 parts by weight of the solid content of the hard coating agent. It is desirable that they are mixed in a proportion of 18 parts by weight or less, more preferably 16 parts by weight or less.
また、ブリードアウト防止層には、ハードコート剤およびマット剤の他の成分として熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂、光重合開始剤等を含有させてもよい。 In addition, the bleed-out prevention layer may contain a thermoplastic resin, a thermosetting resin, an ionizing radiation curable resin, a photopolymerization initiator, and the like as other components of the hard coat agent and the mat agent.
このような熱可塑性樹脂としては、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体、酢酸ビニルおよびその共重合体、塩化ビニルおよびその共重合体、塩化ビニリデンおよびその共重合体等のビニル系樹脂、ポリビニルホルマール、ポリビニルブチラール等のアセタール系樹脂、アクリル樹脂およびその共重合体、メタクリル樹脂およびその共重合体等のアクリル系樹脂、ポリスチレン樹脂、ポリアミド樹脂、線状ポリエステル樹脂、ポリカーボネート樹脂等が挙げられる。 Examples of such thermoplastic resins include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, methylcellulose, vinyl acetate and copolymers thereof, vinyl chloride and copolymers thereof, vinylidene chloride and copolymers thereof. Vinyl resins such as polyvinyl formal, acetal resins such as polyvinyl formal and polyvinyl butyral, acrylic resins and copolymers thereof, acrylic resins such as methacrylic resins and copolymers thereof, polystyrene resins, polyamide resins, linear polyester resins, polycarbonates Examples thereof include resins.
また、熱硬化性樹脂としては、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂等が挙げられる。 Moreover, as a thermosetting resin, the thermosetting urethane resin which consists of an acrylic polyol and an isocyanate prepolymer, a phenol resin, a urea melamine resin, an epoxy resin, an unsaturated polyester resin, a silicon resin etc. are mentioned.
また、電離放射線硬化性樹脂としては、光重合性プレポリマーもしくは光重合性モノマー等の1種または2種以上を混合した電離放射線硬化塗料に、電離放射線(紫外線または電子線)を照射することで硬化するものを使用することができる。ここで光重合性プレポリマーとしては、1分子中に2個以上のアクリロイル基を有し、架橋硬化することにより3次元網目構造となるアクリル系プレポリマーが特に好ましく使用される。このアクリル系プレポリマーとしては、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート、メラミンアクリレート等が使用できる。また光重合性モノマーとしては、上記に記載した多価不飽和有機化合物等が使用できる。 In addition, as an ionizing radiation curable resin, an ionizing radiation (ultraviolet ray or electron beam) is irradiated to an ionizing radiation curable coating material in which one or more of a photopolymerizable prepolymer or a photopolymerizable monomer is mixed. Those that cure can be used. Here, as the photopolymerizable prepolymer, an acrylic prepolymer having two or more acryloyl groups in one molecule and having a three-dimensional network structure by crosslinking and curing is particularly preferably used. As this acrylic prepolymer, urethane acrylate, polyester acrylate, epoxy acrylate, melamine acrylate and the like can be used. Further, as the photopolymerizable monomer, the polyunsaturated organic compounds described above can be used.
また、光重合開始剤としては、アセトフェノン、ベンゾフェノン、ミヒラーケトン、ベンゾイン、ベンジルメチルケタール、ベンゾインベンゾエート、ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−(4−(メチルチオ)フェニル)−2−(4−モルフォリニル)−1−プロパン、α−アシロキシムエステル、チオキサンソン類等が挙げられる。 Examples of the photopolymerization initiator include acetophenone, benzophenone, Michler's ketone, benzoin, benzylmethyl ketal, benzoin benzoate, hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4- (methylthio) phenyl) -2- (4-morpholinyl). ) -1-propane, α-acyloxime ester, thioxanthone and the like.
以上のようなブリードアウト防止層は、ハードコート剤、および必要に応じて他の成分を配合して、適宜必要に応じて用いる希釈溶剤によって塗布液として調製し、塗布液を基材フィルム表面に従来公知の塗布方法によって塗布した後、電離放射線を照射して硬化させることにより形成することができる。なお、電離放射線を照射する方法としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプ等から発せられる好ましくは100〜400nm、より好ましくは200〜400nmの波長領域の紫外線を照射する、または走査型やカーテン型の電子線加速器から発せられる100nm以下の波長領域の電子線を照射することにより行うことができる。 The bleed-out prevention layer as described above is prepared as a coating solution by blending a hard coat agent and other components as necessary, and appropriately using a diluting solvent as necessary. After coating by a conventionally known coating method, it can be formed by irradiating with ionizing radiation and curing. In addition, as a method of irradiating with ionizing radiation, ultraviolet rays in a wavelength region of preferably 100 to 400 nm, more preferably 200 to 400 nm, emitted from an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a metal halide lamp or the like are irradiated. Alternatively, the irradiation can be performed by irradiating an electron beam having a wavelength region of 100 nm or less emitted from a scanning or curtain type electron beam accelerator.
本発明におけるブリードアウト防止層の厚さとしては、1〜10μm、好ましくは2〜7μmであることが望ましい。1μm以上にすることにより、フィルムとしての耐熱性を十分なものにし易くなり、10μm以下にすることにより、平滑フィルムの光学特性のバランスを調整し易くなると共に、硬化性樹脂層/平滑層を透明高分子フィルムの一方の面に設けた場合におけるガスバリア性フィルムのカールを抑え易くすることができるようになる。 The thickness of the bleed-out prevention layer in the present invention is 1 to 10 μm, preferably 2 to 7 μm. By making it 1 μm or more, it becomes easy to make the heat resistance as a film sufficient, and by making it 10 μm or less, it becomes easy to adjust the balance of optical properties of the smooth film, and the curable resin layer / smooth layer is transparent. When it is provided on one surface of the polymer film, curling of the gas barrier film can be easily suppressed.
本発明のガスバリア性フィルムには、必要に応じてさらに別の有機層や保護層、吸湿層、帯電防止層等の機能化層を設けることができる。 The gas barrier film of the present invention can be further provided with functionalized layers such as another organic layer, a protective layer, a hygroscopic layer, and an antistatic layer as necessary.
[ガスバリア性フィルムの製造方法]
本発明のガスバリア性フィルムの製造方法の好適な一実施形態は、化学蒸着法によりSi、AlおよびTiの少なくとも一種を含む酸化物、窒化物、酸窒化物および酸炭化物からなる群から選択される少なくとも1種を含む第1の層を形成する段階と、原子層堆積法により無機酸化物を含む第2の層を形成する段階と、ケイ素化合物を含有する液を塗布し、得られる塗膜を改質処理して得られる第3の層を形成する段階と、を含む、ガスバリア性フィルムの製造方法である。各工程の詳細は各層で上述したとおりである。さらに好適な一実施形態は、化学蒸着法によりSi、AlおよびTiの少なくとも一種を含む酸化物、窒化物、酸窒化物および酸炭化物からなる群から選択される少なくとも1種を含む第1の層を形成する段階と、前記第1の層上に、原子層堆積法により無機酸化物を含む第2の層を形成する段階と、前記第2の層上に、ケイ素化合物を含有する液を塗布し、得られる塗膜を改質処理して得られる第3の層を形成する段階と、を含む、ガスバリア性フィルムの製造方法である。[Method for producing gas barrier film]
A preferred embodiment of the method for producing a gas barrier film of the present invention is selected from the group consisting of oxides, nitrides, oxynitrides and oxycarbides containing at least one of Si, Al and Ti by chemical vapor deposition. A step of forming a first layer containing at least one kind, a step of forming a second layer containing an inorganic oxide by an atomic layer deposition method, a liquid containing a silicon compound, and a coating film obtained Forming a third layer obtained by the modification treatment. A method for producing a gas barrier film. Details of each step are as described above for each layer. In a more preferred embodiment, the first layer containing at least one selected from the group consisting of oxides, nitrides, oxynitrides and oxycarbides containing at least one of Si, Al and Ti by chemical vapor deposition. Forming a second layer containing an inorganic oxide on the first layer by atomic layer deposition, and applying a liquid containing a silicon compound on the second layer And a step of forming a third layer obtained by modifying the obtained coating film, and a method for producing a gas barrier film.
[電子デバイス]
上記したような本発明のガスバリア性フィルムは、優れたガスバリア性、透明性、屈曲性を有する。このため、本発明のガスバリア性フィルムは、電子デバイス等のパッケージ、光電変換素子(太陽電池素子)や有機エレクトロルミネッセンス(EL)素子、液晶表示素子等の等の電子デバイスに用いられるガスバリア性フィルムおよびこれを用いた電子デバイスなど、様々な用途に使用することができる。[Electronic device]
The gas barrier film of the present invention as described above has excellent gas barrier properties, transparency, and flexibility. Therefore, the gas barrier film of the present invention is a gas barrier film used for electronic devices such as packages such as electronic devices, photoelectric conversion elements (solar cell elements), organic electroluminescence (EL) elements, liquid crystal display elements, and the like. It can be used for various purposes such as an electronic device using the same.
(電子素子本体)
電子素子本体は電子デバイスの本体であり、本発明に係るガスバリア性フィルム側に配置される。電子素子本体としては、ガスバリア性フィルムによる封止が適用されうる公知の電子デバイスの本体が使用できる。例えば、有機EL素子、太陽電池(PV)、液晶表示素子(LCD)、電子ペーパー、薄膜トランジスタ、タッチパネル等が挙げられる。本発明の効果がより効率的に得られるという観点から、該電子素子本体は、有機EL素子または太陽電池であることが好ましい。これらの電子素子本体の構成についても、特に制限はなく、従来公知の構成を有しうる。(Electronic element body)
The electronic element main body is the main body of the electronic device, and is disposed on the gas barrier film side according to the present invention. As the electronic element body, a known electronic device body to which sealing with a gas barrier film can be applied can be used. For example, an organic EL element, a solar cell (PV), a liquid crystal display element (LCD), electronic paper, a thin film transistor, a touch panel, and the like can be given. From the viewpoint that the effects of the present invention can be obtained more efficiently, the electronic element body is preferably an organic EL element or a solar battery. There is no restriction | limiting in particular also about the structure of these electronic element main bodies, It can have a conventionally well-known structure.
以下、具体的な電子素子本体の一例として有機EL素子およびこれを用いた有機ELパネルについて説明する。 Hereinafter, an organic EL element and an organic EL panel using the same will be described as an example of a specific electronic element body.
(有機EL素子)
有機ELパネル9において、ガスバリアフィルム10で封止される有機EL素子5について説明する。(Organic EL device)
The organic EL element 5 sealed with the gas barrier film 10 in the organic EL panel 9 will be described.
本発明に係るガスバリア性フィルム10を封止フィルムとして用いた電子機器である有機ELパネル9の一例を図5に示す。有機ELパネル9は、図5に示すように、ガスバリアフィルム10と、ガスバリア性フィルム10上に形成されたITOなどの透明電極4と、透明電極4を介してガスバリア性フィルム10上に形成された有機EL素子5と、その有機EL素子5を覆うように接着剤層6を介して配設された対向フィルム7等を備えている。なお、透明電極4は、有機EL素子5の一部を成すともいえる。このガスバリア性フィルム10におけるガスバリア層が形成された面に、透明電極4と有機EL素子5が形成されるようになっている。また、対向フィルム7は、アルミ箔などの金属フィルムのほか、本発明に係るガスバリアフィルムを用いてもよい。対向フィルム7にガスバリア性フィルムを用いる場合、ガスバリア層が形成された面を有機EL素子5に向けて、接着剤層6によって貼付するようにすればよい。 An example of the organic EL panel 9 which is an electronic device using the gas barrier film 10 according to the present invention as a sealing film is shown in FIG. As shown in FIG. 5, the organic EL panel 9 was formed on the gas barrier film 10, the transparent electrode 4 such as ITO formed on the gas barrier film 10, and the transparent electrode 4. An organic EL element 5 and a counter film 7 disposed via an adhesive layer 6 so as to cover the organic EL element 5 are provided. It can be said that the transparent electrode 4 forms part of the organic EL element 5. The transparent electrode 4 and the organic EL element 5 are formed on the surface of the gas barrier film 10 on which the gas barrier layer is formed. The counter film 7 may be a gas barrier film according to the present invention in addition to a metal film such as an aluminum foil. When a gas barrier film is used as the counter film 7, the surface on which the gas barrier layer is formed may be attached to the organic EL element 5 with the adhesive layer 6.
(有機EL素子)
有機ELパネル9において、ガスバリア性フィルム10で封止される有機EL素子5について説明する。(Organic EL device)
The organic EL element 5 sealed with the gas barrier film 10 in the organic EL panel 9 will be described.
以下に有機EL素子5の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。 Although the preferable specific example of the layer structure of the organic EL element 5 is shown below, this invention is not limited to these.
(1)陽極/発光層/陰極
(2)陽極/正孔輸送層/発光層/陰極
(3)陽極/発光層/電子輸送層/陰極
(4)陽極/正孔輸送層/発光層/電子輸送層/陰極
(5)陽極/陽極バッファー層(正孔注入層)/正孔輸送層/発光層/電子輸送層/陰極バッファー層(電子注入層)/陰極
(陽極)
有機EL素子5における陽極(透明電極4)としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In2O3−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。(1) Anode / light emitting layer / cathode (2) Anode / hole transport layer / light emitting layer / cathode (3) Anode / light emitting layer / electron transport layer / cathode (4) Anode / hole transport layer / light emitting layer / electron Transport layer / cathode (5) Anode / anode buffer layer (hole injection layer) / hole transport layer / light emitting layer / electron transport layer / cathode buffer layer (electron injection layer) / cathode (anode)
As the anode (transparent electrode 4) in the organic EL element 5, an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
陽極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜として形成し、その薄膜をフォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。 For the anode, these electrode materials may be formed as a thin film by a method such as vapor deposition or sputtering, and the thin film may be formed into a desired shape pattern by photolithography, or if the pattern accuracy is not required ( The pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered.
この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましい。また、陽極としてのシート抵抗は数百Ω/□以下が好ましい。また、陽極の膜厚は材料にもよるが、通常10〜1000nm、好ましくは10〜200nmの範囲で選ばれる。 When light emission is taken out from the anode, it is desirable that the transmittance be larger than 10%. The sheet resistance as the anode is preferably several hundred Ω / □ or less. Moreover, although the film thickness of an anode is based also on material, it is 10-1000 nm normally, Preferably it is chosen in the range of 10-200 nm.
(陰極)
有機EL素子5における陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、リチウム/アルミニウム混合物、アルミニウム等が陰極として好適である。(cathode)
As the cathode in the organic EL element 5, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are suitable as the cathode.
陰極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましい。また、陰極の膜厚は通常10nm〜5μm、好ましくは50〜200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子5の陽極または陰極のいずれか一方が透明または半透明であれば、発光輝度が向上し好都合である。 The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as a cathode is preferably several hundred Ω / □ or less. The film thickness of the cathode is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm. In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element 5 is transparent or translucent, the light emission luminance is improved, which is convenient.
また、陰極の説明で挙げた上記金属を1〜20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。 Moreover, after manufacturing the said metal quoted by description of the cathode with the film thickness of 1-20 nm, the transparent transparent or semi-transparent cathode is produced by producing the electroconductive transparent material quoted by description of the anode on it. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
(注入層:電子注入層、正孔注入層)
注入層には電子注入層と正孔注入層があり、電子注入層と正孔注入層を必要に応じて設け、陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させる。(Injection layer: electron injection layer, hole injection layer)
The injection layer includes an electron injection layer and a hole injection layer, and an electron injection layer and a hole injection layer are provided as necessary, between the anode and the light emitting layer or the hole transport layer, and between the cathode and the light emitting layer or the electron transport. Exist between the layers.
注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。 An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance. “Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
陽極バッファー層(正孔注入層)は、特開平9−45479号公報、特開平9−260062号公報、特開平8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。 The details of the anode buffer layer (hole injection layer) are also described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, and the like. Examples thereof include a phthalocyanine buffer layer typified by phthalocyanine, an oxide buffer layer typified by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
陰極バッファー層(電子注入層)は、特開平6−325871号公報、特開平9−17574号公報、特開平10−74586号公報等にもその詳細が記載されており、具体的には、ストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるが、その膜厚は0.1nm〜5μmの範囲が好ましい。 Details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium Metal buffer layer typified by aluminum and aluminum, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. Is mentioned. The buffer layer (injection layer) is desirably a very thin film, and although it depends on the material, the film thickness is preferably in the range of 0.1 nm to 5 μm.
(発光層)
有機EL素子5における発光層は、電極(陰極、陽極)または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。(Light emitting layer)
The light emitting layer in the organic EL element 5 is a layer that emits light by recombination of electrons and holes injected from an electrode (cathode, anode) or an electron transport layer or a hole transport layer, and the light emitting portion is a light emitting layer. The interface between the light emitting layer and the adjacent layer may be used.
有機EL素子5の発光層には、以下に示すドーパント化合物(発光ドーパント)とホスト化合物(発光ホスト)が含有されることが好ましい。これにより、より一層発光効率を高くすることができる。 The light emitting layer of the organic EL element 5 preferably contains the following dopant compound (light emitting dopant) and host compound (light emitting host). Thereby, the luminous efficiency can be further increased.
(発光ドーパント)
発光ドーパントは、大きく分けて蛍光を発光する蛍光性ドーパントとリン光を発光するリン光性ドーパントの2種類がある。(Luminescent dopant)
There are two types of luminescent dopants: a fluorescent dopant that emits fluorescence and a phosphorescent dopant that emits phosphorescence.
蛍光性ドーパントの代表例としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、または希土類錯体系蛍光体等が挙げられる。 Representative examples of fluorescent dopants include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes. Stilbene dyes, polythiophene dyes, rare earth complex phosphors, and the like.
リン光性ドーパントの代表例としては、好ましくは元素の周期表で8属、9属、10属の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、オスミウム化合物であり、中でも最も好ましいのはイリジウム化合物である。発光ドーパントは複数種の化合物を混合して用いてもよい。 Typical examples of the phosphorescent dopant are preferably complex compounds containing metals of Group 8, Group 9, and Group 10 in the periodic table of elements, more preferably iridium compounds and osmium compounds, and most preferable among them. Is an iridium compound. The light emitting dopant may be used by mixing a plurality of kinds of compounds.
(発光ホスト)
発光ホスト(単にホストとも言う)とは、2種以上の化合物で構成される発光層中にて混合比(質量)の最も多い化合物のことを意味し、それ以外の化合物については「ドーパント化合物(単に、ドーパントとも言う)」という。例えば、発光層を化合物A、化合物Bという2種で構成し、その混合比がA:B=10:90であれば化合物Aがドーパント化合物であり、化合物Bがホスト化合物である。更に発光層を化合物A、化合物B、化合物Cの3種から構成し、その混合比がA:B:C=5:10:85であれば、化合物A、化合物Bがドーパント化合物であり、化合物Cがホスト化合物である。(Light emitting host)
A light-emitting host (also simply referred to as a host) means a compound having the largest mixing ratio (mass) in a light-emitting layer composed of two or more kinds of compounds. It is also simply called a dopant). For example, if the light emitting layer is composed of two types of compound A and compound B and the mixing ratio is A: B = 10: 90, compound A is a dopant compound and compound B is a host compound. Further, if the light emitting layer is composed of three types of compound A, compound B and compound C and the mixing ratio is A: B: C = 5: 10: 85, compound A and compound B are dopant compounds, and compound C is a host compound.
発光ホストとしては構造的には特に制限はないが、代表的にはカルバゾール誘導体、トリアリールアミン誘導体、芳香族ボラン誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有するもの、またはカルボリン誘導体やジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも一つの炭素原子が窒素原子で置換されているものを表す。)等が挙げられる。中でも、カルボリン誘導体、ジアザカルバゾール誘導体等が好ましく用いられる。 The light emitting host is not particularly limited in terms of structure, but is typically a basic skeleton such as a carbazole derivative, a triarylamine derivative, an aromatic borane derivative, a nitrogen-containing heterocyclic compound, a thiophene derivative, a furan derivative, or an oligoarylene compound. Or a carboline derivative or a diazacarbazole derivative (herein, a diazacarbazole derivative is one in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom) And the like). Of these, carboline derivatives, diazacarbazole derivatives and the like are preferably used.
そして、発光層は上記化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜化法により成膜して形成することができる。発光層としての膜厚は特に制限はないが、通常は5nm〜5μm、好ましくは5〜200nmの範囲で選ばれる。この発光層はドーパント化合物やホスト化合物が1種または2種以上からなる一層構造であってもよいし、あるいは同一組成または異種組成の複数層からなる積層構造であってもよい。 The light emitting layer can be formed by depositing the above compound by a known thinning method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method. Although the film thickness as a light emitting layer does not have a restriction | limiting in particular, Usually, 5 nm-5 micrometers, Preferably it is chosen in the range of 5-200 nm. The light emitting layer may have a single layer structure in which the dopant compound and the host compound are one kind or two or more kinds, or may have a laminated structure having a plurality of layers having the same composition or different compositions.
(正孔輸送層)
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。(Hole transport layer)
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。 The hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers. The above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。 The hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can. Although there is no restriction | limiting in particular about the film thickness of a positive hole transport layer, Usually, 5 nm-about 5 micrometers, Preferably it is 5-200 nm. The hole transport layer may have a single layer structure composed of one or more of the above materials.
(電子輸送層)
電子輸送層とは電子を輸送する機能を有する電子輸送材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。(Electron transport layer)
The electron transport layer is made of an electron transport material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer or a plurality of layers.
電子輸送材料としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq3)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、正孔注入層、正孔輸送層と同様に、n型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。The electron transport material only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer, and the material can be selected and used from conventionally known compounds. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and the central metals of these metal complexes are In, Mg Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as electron transport materials. In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material. Similarly to the hole injection layer and the hole transport layer, an inorganic semiconductor such as n-type-Si or n-type-SiC can also be used as the electron transport material.
電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。 The electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Although there is no restriction | limiting in particular about the film thickness of an electron carrying layer, Usually, 5 nm-about 5 micrometers, Preferably it is 5-200 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials.
(有機EL素子の作製方法)
有機EL素子5の作製方法について説明する。(Method for producing organic EL element)
A method for producing the organic EL element 5 will be described.
ここでは有機EL素子5の一例として、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の作製方法について説明する。 Here, as an example of the organic EL element 5, a method for producing an organic EL element composed of an anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode will be described.
まず、ガスバリア性フィルム10上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10〜200nmの膜厚になるように、例えば、蒸着やスパッタリング、プラズマCVD等の方法により形成させ、陽極を作製する。 First, a desired electrode material, for example, a thin film made of an anode material is formed on the gas barrier film 10 so as to have a film thickness of 1 μm or less, preferably 10 to 200 nm, for example, by vapor deposition, sputtering, plasma CVD, or the like. Then, an anode is produced.
次に、その上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層の有機化合物薄膜を形成させる。この有機化合物薄膜の成膜方法としては、蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、真空蒸着法、スピンコート法、インクジェット法、印刷法が特に好ましい。更に層毎に異なる成膜法を適用してもよい。成膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50〜450℃、真空度10−6〜10−2Pa、蒸着速度0.01〜50nm/秒、基板温度−50〜300℃、膜厚0.1nm〜5μm、好ましくは5〜200nmの範囲で適宜選ぶことが望ましい。Next, an organic compound thin film of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer, which are organic EL element materials, is formed thereon. As a method for forming this organic compound thin film, there are a vapor deposition method, a wet process (spin coating method, casting method, ink jet method, printing method), etc., but a homogeneous film is easily obtained and pinholes are not easily generated. From the point of view, the vacuum deposition method, the spin coating method, the ink jet method, and the printing method are particularly preferable. Further, different film forming methods may be applied for each layer. When a vapor deposition method is employed for film formation, the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C., a vacuum degree of 10 −6 to 10 −2 Pa, and a vapor deposition rate of 0.01 to It is desirable to select appropriately within the range of 50 nm / second, substrate temperature −50 to 300 ° C., film thickness 0.1 nm to 5 μm, preferably 5 to 200 nm.
これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。 After these layers are formed, a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably 50 to 200 nm, and a cathode is provided. Thus, a desired organic EL element can be obtained.
この有機EL素子5の作製は、一回の真空引きで一貫して陽極、正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる成膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。また、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。 The organic EL element 5 is preferably manufactured from the anode and the hole injection layer to the cathode consistently by a single evacuation, but may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere. In addition, it is also possible to reverse the production order and produce the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode in this order.
このようにして得られた有機EL素子5を備える多色の表示装置(有機ELパネル9)に、直流電圧を印加する場合には、陽極をプラス、陰極をマイナスの極性として電圧2〜40V程度を印加すると発光が観測できる。また、交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。 When a DC voltage is applied to the multicolor display device (organic EL panel 9) provided with the organic EL element 5 obtained in this manner, the voltage is about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. Luminescence can be observed by applying. An alternating voltage may be applied. The alternating current waveform to be applied may be arbitrary.
本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。 The effects of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples.
実施例1:ガスバリア性フィルムの作製
<試料の調製>
(基材)
熱可塑性樹脂である、両面に易接着加工された125μm厚みのポリエステルフィルム(帝人デュポンフィルム株式会社製、極低熱収PET Q83)を基材として用いた。Example 1: Production of gas barrier film <Preparation of sample>
(Base material)
A 125 μm thick polyester film (manufactured by Teijin DuPont Films Ltd., extremely low heat yield PET Q83), which is a thermoplastic resin and is easily bonded on both sides, was used as a base material.
(ブリードアウト防止層の形成)
上記基材の片面に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材OPSTAR Z7535を塗布、乾燥後の膜厚が4μmになるようにダイコーターで塗布した後、乾燥条件;80℃、3分で乾燥後、空気下、高圧水銀ランプ使用、硬化条件;1.0J/cm2で硬化を行い、ブリードアウト防止層を形成した。(Formation of bleed-out prevention layer)
A UV curable organic / inorganic hybrid hard coat material OPSTAR Z7535 manufactured by JSR Corporation was applied to one side of the substrate, and after applying with a die coater so that the film thickness after drying was 4 μm, drying conditions: 80 ° C., After drying for 3 minutes, curing was performed in air using a high-pressure mercury lamp, curing conditions: 1.0 J / cm 2 to form a bleed-out prevention layer.
(硬化性樹脂層(平滑層)の形成)
続けて上記基材の反対面に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材OPSTAR Z7501を塗布、乾燥後の膜厚が4μmになるようにダイコーターで塗布した後、乾燥条件;80℃、3分で乾燥後、空気雰囲気下、高圧水銀ランプ使用、硬化条件;1.0J/cm2で硬化を行い、硬化性樹脂層を形成した。このときの硬化性樹脂層表面のRaは0.8nmであった。(Formation of curable resin layer (smooth layer))
Subsequently, a UV curable organic / inorganic hybrid hard coat material OPSTAR Z7501 manufactured by JSR Corporation is applied to the opposite surface of the base material, and is applied with a die coater so that the film thickness after drying is 4 μm, followed by drying conditions; After drying at 80 ° C. for 3 minutes, curing was performed in an air atmosphere using a high-pressure mercury lamp, curing conditions: 1.0 J / cm 2 to form a curable resin layer. At this time, Ra on the surface of the curable resin layer was 0.8 nm.
[ガスバリア性フィルム1の作製]
(CVD層の形成)
図1に示す真空プラズマCVD装置を用いて、硬化性樹脂層を設けたフィルム上へSiOC膜の成膜を行った。この時使用した高周波電源は、27.12MHzの高周波電源で、電極間距離は20mmとした。原料ガスとしては、テトラエトキシシラン(TEOS)ガス流量を7.5sccm、酸素ガス流量を30sccmとして真空槽内へ導入した。このとき成膜開始時にフィルム基板温度を100℃、成膜時のガス圧を30Paに設定してSiOC膜50nmを形成した。[Preparation of gas barrier film 1]
(Formation of CVD layer)
Using a vacuum plasma CVD apparatus shown in FIG. 1, a SiOC film was formed on a film provided with a curable resin layer. The high frequency power source used at this time was a 27.12 MHz high frequency power source, and the distance between the electrodes was 20 mm. As source gases, a tetraethoxysilane (TEOS) gas flow rate of 7.5 sccm and an oxygen gas flow rate of 30 sccm were introduced into the vacuum chamber. At this time, the film substrate temperature was set to 100 ° C. at the start of film formation, and the gas pressure at the time of film formation was set to 30 Pa to form a SiOC film of 50 nm.
続いて上記と同じ装置を用いて、SiOC上にSiO2膜を形成した。この時、使用した高周波電源は、27.12MHzの高周波電源で、電極間距離は20mmとした。原料ガスとしては、シランガス流量を7.5sccm、酸素ガス流量を30sccmとして真空槽内へ導入した。このとき成膜開始時にフィルム基板温度を100℃、成膜時のガス圧を30Paに設定してSiO2膜50nmを形成した。このときCVD層表面のRaは7.4nmであった。Subsequently, using the same apparatus as described above, a SiO 2 film was formed on the SiOC. At this time, the high frequency power source used was a 27.12 MHz high frequency power source, and the distance between the electrodes was 20 mm. The source gas was introduced into the vacuum chamber with a silane gas flow rate of 7.5 sccm and an oxygen gas flow rate of 30 sccm. At this time, the film substrate temperature was set to 100 ° C. at the start of film formation, and the gas pressure at the time of film formation was set to 30 Pa to form a SiO 2 film of 50 nm. At this time, Ra on the surface of the CVD layer was 7.4 nm.
(ALD層の形成)
続いて、SiO2上にPicosun Oy社製SUNALE(登録商標)R−200ALDにて、アルミナAl2O3の薄膜を堆積させた。アルミニウム源としてトリメチルアルミニウム(TMA)、酸素源として水を用いた。(Formation of ALD layer)
Subsequently, a thin film of alumina Al 2 O 3 was deposited on SiO 2 using SUNALE (registered trademark) R-200ALD manufactured by Picsun Oy. Trimethylaluminum (TMA) was used as the aluminum source, and water was used as the oxygen source.
ALDフィルムを反応器内に取り付けて、その反応器を真空ポンプにて真空にし、次に窒素ガスをパージして反応器内の圧力を約800〜1100Paに調整し、次いで基材温度を100℃に調整した。次いで原料を以下のサイクルでパルス状に反応器内に導入した。パルスサイクルは、TMA:0.1秒、窒素パージ:4.0秒、水:0.1秒、窒素パージ:4.0秒、で行った。このときTMAおよび水からのAl2O3の堆積速度は0.1nm/サイクルであった。ここでは100サイクル行い10.0nmのAl2O3薄膜を形成した。このときALD層表面のRaは6.1nmであった。An ALD film is installed in the reactor, the reactor is evacuated with a vacuum pump, then purged with nitrogen gas to adjust the pressure in the reactor to about 800-1100 Pa, and then the substrate temperature is 100 ° C. Adjusted. The raw material was then introduced into the reactor in a pulsed manner in the following cycle. The pulse cycle was TMA: 0.1 seconds, nitrogen purge: 4.0 seconds, water: 0.1 seconds, nitrogen purge: 4.0 seconds. At this time, the deposition rate of Al 2 O 3 from TMA and water was 0.1 nm / cycle. Here, a cycle of 100 cycles was performed to form a 10.0 nm Al 2 O 3 thin film. At this time, Ra on the surface of the ALD layer was 6.1 nm.
(ポリシラザン層の形成)
続いてALD層上にポリシラザン塗膜を形成した。パーヒドロポリシラザンの10質量%ジブチルエーテル溶液(アクアミカ NN120−10、AZエレクトロニックマテリアルズ(株)製)と、アミン触媒(アクアミカ LExp. NAXCAT−10DB、AZエレクトロニックマテリアルズ(株)製)のN,N,N’,N’−テトラメチル−1,6−ジアミノヘキサンの10質量%ジブチルエーテル溶液を99対1の割合で混合した液体を、ワイヤレスバーにて、乾燥後の(平均)膜厚が、150nmとなるように塗布し、温度25℃、露点−5℃の乾燥空気で1分間乾燥して塗布試料を得た。得られた塗布試料を、温度85℃、湿度55%RHの雰囲気で2分間処理した。(Formation of polysilazane layer)
Subsequently, a polysilazane coating film was formed on the ALD layer. N, N of perhydropolysilazane 10 mass% dibutyl ether solution (Aquamica NN120-10, manufactured by AZ Electronic Materials Co., Ltd.) and amine catalyst (Aquamica LExp. NAXCAT-10DB, manufactured by AZ Electronic Materials Co., Ltd.) , N ′, N′-Tetramethyl-1,6-diaminohexane in a 10% by weight dibutyl ether solution mixed in a ratio of 99: 1, the (average) film thickness after drying with a wireless bar, It apply | coated so that it might become 150 nm, and it dried for 1 minute with the dry air of temperature 25 degreeC and dew point-5 degreeC, and obtained the application sample. The obtained coated sample was treated for 2 minutes in an atmosphere of a temperature of 85 ° C. and a humidity of 55% RH.
[ポリシラザン塗膜の改質処理]
ポリシラザン塗膜を乾燥した後の上記試料に対し、下記の装置、条件でエキシマ改質処理を施してポリシラザン改質層を形成した。改質処理時の露点温度は−20℃で実施した。改質後の膜厚は、120nmであった。
・改質処理装置
(株)エム・ディ・コム製エキシマ照射装置MODEL:MECL−M−1−200
波長:172nm
ランプ封入ガス:Xe
・改質処理条件
エキシマ光強度 :130mW/cm2(172nm)
試料と光源の距離 :2mm
ステージ加熱温度 :80℃
照射装置内の酸素濃度:0.3体積%
エキシマ光照射時のステージ搬送速度:10mm/秒
エキシマ光照射時のステージ搬送回数:3往復
このようにしてガスバリア性フィルム1を作製した。[Modification treatment of polysilazane coating film]
Excimer modification treatment was performed on the sample after drying the polysilazane coating film using the following apparatus and conditions to form a polysilazane modified layer. The dew point temperature during the reforming treatment was -20 ° C. The film thickness after modification was 120 nm.
・ Modification processing equipment Excimer irradiation equipment MODEL: MECL-M-1-200 manufactured by M.D.
Wavelength: 172nm
Lamp filled gas: Xe
-Modification treatment conditions Excimer light intensity: 130 mW / cm 2 (172 nm)
Distance between sample and light source: 2mm
Stage heating temperature: 80 ° C
Oxygen concentration in the irradiation device: 0.3% by volume
Stage conveyance speed at the time of excimer light irradiation: 10 mm / sec Number of stage conveyance times at the time of excimer light irradiation: 3 reciprocations Thus, the gas barrier film 1 was produced.
[ガスバリア性フィルム2の作製]
CVD層を下記のように形成した以外はガスバリア性フィルム1と同様にしてガスバリア性フィルム2を作製した。[Preparation of gas barrier film 2]
A gas barrier film 2 was produced in the same manner as the gas barrier film 1 except that the CVD layer was formed as follows.
(CVD層の形成)
図2に示す真空プラズマCVD装置を用いて、下記成膜条件にてCVD層を100nm形成した。このとき、CVD層表面の表面粗さRaは8.6nmであった。尚、このCVD層の膜厚組成は図4のようであった。(Formation of CVD layer)
A CVD layer having a thickness of 100 nm was formed using the vacuum plasma CVD apparatus shown in FIG. At this time, the surface roughness Ra of the CVD layer surface was 8.6 nm. The film thickness composition of this CVD layer was as shown in FIG.
ここで、図4において、符号A〜Dは、A:炭素分布曲線、B:ケイ素分布曲線、C:酸素分布曲線、D:酸素炭素分布曲線を各々表す。図4の炭素分布曲線において、極値は9個存在する。また、図4の炭素分布曲線において、炭素の原子比の最大値と最小値との差の絶対値は10at%以上である。 Here, in FIG. 4, symbols A to D represent A: carbon distribution curve, B: silicon distribution curve, C: oxygen distribution curve, and D: oxygen carbon distribution curve, respectively. In the carbon distribution curve of FIG. 4, there are nine extreme values. Moreover, in the carbon distribution curve of FIG. 4, the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon is 10 at% or more.
[プラズマ成膜条件]
・原料ガス(HMDSO)の供給量:50sccm(Standard Cubic Centimeter per Minute)
・酸素ガス(O2)の供給量:500sccm
・真空チャンバー内の真空度:3Pa
・プラズマ発生用電源からの印加電力:0.8kW
・プラズマ発生用電源の周波数:80kHz
・フィルムの搬送速度;1.5m/min
[ガスバリア性フィルム3の作製]
ポリシラザン膜の改質を下記のようにした以外はガスバリア性フィルム1と同様にしてガスバリア性フィルム3を作製した。[Plasma deposition conditions]
・ Supply amount of source gas (HMDSO): 50 sccm (Standard Cubic Centimeter per Minute)
・ Supply amount of oxygen gas (O 2 ): 500 sccm
・ Degree of vacuum in the vacuum chamber: 3Pa
・ Applied power from the power source for plasma generation: 0.8 kW
・ Power supply frequency for plasma generation: 80 kHz
-Film transport speed: 1.5 m / min
[Preparation of gas barrier film 3]
A gas barrier film 3 was produced in the same manner as the gas barrier film 1 except that the polysilazane film was modified as follows.
[ポリシラザン塗膜の改質処理]
作製したポリシラザン塗膜に対して下記条件にて低圧プラズマ処理を施した。[Modification treatment of polysilazane coating film]
The produced polysilazane coating film was subjected to low-pressure plasma treatment under the following conditions.
プラズマ処理装置:低圧容量結合プラズマ処理装置(ユーテック株式会社製)
ガス:Ar+CO (COは1vol%)
圧力:10Pa 基材加熱温度:室温(25℃)
投入電力密度:1.3W/cm2
周波数:13.56MHz
処理時間: 3秒
[ガスバリア性フィルム4の作製]
ALD層の形成を下記のようにして形成した以外は、ガスバリア性フィルム1と同様にしてガスバリア性フィルム4を作製した。Plasma processing equipment: Low-pressure capacitively coupled plasma processing equipment (manufactured by UTEC Co., Ltd.)
Gas: Ar + CO (CO is 1 vol%)
Pressure: 10 Pa Substrate heating temperature: Room temperature (25 ° C.)
Input power density: 1.3 W / cm 2
Frequency: 13.56MHz
Processing time: 3 seconds [Preparation of gas barrier film 4]
A gas barrier film 4 was produced in the same manner as the gas barrier film 1 except that the ALD layer was formed as follows.
(ALD層の形成)
Picosun Oy社製SUNALE(登録商標)R−200ALDにて、SiO2の薄膜を堆積させた。Si源としてトリスジメチルアミノシラン(3DMASi)、酸素源としてオゾンを用いた。(Formation of ALD layer)
A thin film of SiO 2 was deposited using SUNALE (registered trademark) R-200ALD manufactured by Picsun Oy. Trisdimethylaminosilane (3DMASi) was used as the Si source, and ozone was used as the oxygen source.
フィルムを反応器内に取り付けて、その反応器を真空ポンプにて真空にし、次に窒素ガスをパージして反応器内の圧力を約800〜1100Paに調整し、次いで基材温度を100℃に調整した。次いで原料を以下のサイクルでパルス状に反応器内に導入した。パルスサイクルは、3DMASi:0.1秒、窒素パージ:8.0秒、オゾン:0.1秒、窒素パージ:8.0秒、である。このとき3DMASiおよびオゾンからのSiO2の堆積速度は0.0625nm/サイクルであった。ここでは160サイクル行い10.0nmのSiO2薄膜を形成した。このときのRaは6.0nmであった。The film is mounted in a reactor, the reactor is evacuated with a vacuum pump, then nitrogen gas is purged to adjust the pressure in the reactor to about 800-1100 Pa, and then the substrate temperature is brought to 100 ° C. It was adjusted. The raw material was then introduced into the reactor in a pulsed manner in the following cycle. The pulse cycle is 3DMASi: 0.1 seconds, nitrogen purge: 8.0 seconds, ozone: 0.1 seconds, nitrogen purge: 8.0 seconds. At this time, the deposition rate of SiO 2 from 3DMASi and ozone was 0.0625 nm / cycle. Here, 160 cycles were performed to form a 10.0 nm SiO 2 thin film. Ra at this time was 6.0 nm.
[ガスバリア性フィルム5の作製]
ALD層の形成を下記のようにして形成した以外は、ガスバリア性フィルム1と同様にしてガスバリア性フィルム5を作製した。[Production of Gas Barrier Film 5]
A gas barrier film 5 was produced in the same manner as the gas barrier film 1 except that the ALD layer was formed as follows.
(ALD層の形成)
Picosun Oy社製SUNALE(登録商標)R−200ALDにて、TiO2の薄膜を堆積させた。Ti源としてテトラキスジメチルアミノチタン(TDMATi)、酸素源としてオゾンを用いた。(Formation of ALD layer)
A thin film of TiO 2 was deposited with SUNALE (registered trademark) R-200ALD manufactured by Picsun Oy. Tetrakisdimethylaminotitanium (TDMATi) was used as the Ti source, and ozone was used as the oxygen source.
フィルムを反応器内に取り付けて、その反応器を真空ポンプにて真空にし、次に窒素ガスをパージして反応器内の圧力を約800〜1100Paに調整し、次いで基材温度を100℃に調整した。次いで原料を以下のサイクルでパルス状に反応器内に導入した。パルスサイクルは、TDMATi:0.1秒、窒素パージ:4.0秒、オゾン:0.1秒、窒素パージ:4.0秒、である。このときTDMATiおよびオゾンからのTiO2の堆積速度は0.06nm/サイクルであった。ここでは167サイクル行い10.0nmのTiO2薄膜を形成した。このときのRaは6.0nmであった。The film is mounted in a reactor, the reactor is evacuated with a vacuum pump, then nitrogen gas is purged to adjust the pressure in the reactor to about 800-1100 Pa, and then the substrate temperature is brought to 100 ° C. It was adjusted. The raw material was then introduced into the reactor in a pulsed manner in the following cycle. The pulse cycle is TDMATi: 0.1 seconds, nitrogen purge: 4.0 seconds, ozone: 0.1 seconds, nitrogen purge: 4.0 seconds. At this time, the deposition rate of TiO 2 from TDMATi and ozone was 0.06 nm / cycle. Here, 167 cycles were performed to form a 10.0 nm TiO 2 thin film. Ra at this time was 6.0 nm.
[ガスバリア性フィルム6の作製]
ALD層の形成、及びCVD層の形成を下記のようにして形成した以外は、ガスバリア性フィルム1と同様にしてガスバリア性フィルム6を作製した。[Preparation of gas barrier film 6]
A gas barrier film 6 was produced in the same manner as the gas barrier film 1 except that the ALD layer and the CVD layer were formed as follows.
(CVD層の形成)
図1に示す真空プラズマCVD装置を用いて、硬化性樹脂層を設けたフィルム上へSiOC膜の成膜を行った。この時使用した高周波電源は、27.12MHzの高周波電源で、電極間距離は20mmとした。原料ガスとしては、テトラエトキシシラン(TEOS)ガス流量を7.5sccm、酸素ガス流量を30sccmとして真空槽内へ導入した。このとき成膜開始時にフィルム基板温度を100℃、成膜時のガス圧を30Paに設定してSiOC膜100nmを形成した。(Formation of CVD layer)
Using a vacuum plasma CVD apparatus shown in FIG. 1, a SiOC film was formed on a film provided with a curable resin layer. The high frequency power source used at this time was a 27.12 MHz high frequency power source, and the distance between the electrodes was 20 mm. As source gases, a tetraethoxysilane (TEOS) gas flow rate of 7.5 sccm and an oxygen gas flow rate of 30 sccm were introduced into the vacuum chamber. At this time, the film substrate temperature was set to 100 ° C. at the start of film formation, and the gas pressure at the time of film formation was set to 30 Pa to form a SiOC film of 100 nm.
続いて上記と同じ装置を用いて、SiOC上にSiO2膜を形成した。この時、使用した高周波電源は、27.12MHzの高周波電源で、電極間距離は20mmとした。原料ガスとしては、シランガス流量を7.5sccm、酸素ガス流量を30sccmとして真空槽内へ導入した。このとき成膜開始時にフィルム基板温度を100℃、成膜時のガス圧を30Paに設定してSiO2膜100nmを形成した。このときCVD層表面のRaは9.8nmであった。Subsequently, using the same apparatus as described above, a SiO 2 film was formed on the SiOC. At this time, the high frequency power source used was a 27.12 MHz high frequency power source, and the distance between the electrodes was 20 mm. The source gas was introduced into the vacuum chamber with a silane gas flow rate of 7.5 sccm and an oxygen gas flow rate of 30 sccm. At this time, the film substrate temperature was set to 100 ° C. at the start of film formation, and the gas pressure at the time of film formation was set to 30 Pa to form a SiO 2 film of 100 nm. At this time, Ra on the surface of the CVD layer was 9.8 nm.
(ALD層の形成)
続いて、SiO2膜上にPicosun Oy社製SUNALE(登録商標)R−200ALDにて、アルミナAl2O3の薄膜を堆積させた。アルミニウム源としてトリメチルアルミニウム(TMA)、酸素源として水を用いた。(Formation of ALD layer)
Subsequently, a thin film of alumina Al 2 O 3 was deposited on the SiO 2 film by SUNALE (registered trademark) R-200ALD manufactured by Picsun Oy. Trimethylaluminum (TMA) was used as the aluminum source, and water was used as the oxygen source.
ALDフィルムを反応器内に取り付けて、その反応器を真空ポンプにて真空にし、次に窒素ガスをパージして反応器内の圧力を約800〜1100Paに調整し、次いで基材温度を100℃に調整した。次いで原料を以下のサイクルでパルス状に反応器内に導入した。パルスサイクルは、TMA:0.1秒、窒素パージ:4.0秒、水:0.1秒、窒素パージ:4.0秒、で行った。このときTMAおよび水からのAl2O3の堆積速度は0.1nm/サイクルであった。ここでは200サイクル行い20.0nmのAl2O3薄膜を形成した。このときALD層表面のRaは7.1nmであった。An ALD film is installed in the reactor, the reactor is evacuated with a vacuum pump, then purged with nitrogen gas to adjust the pressure in the reactor to about 800-1100 Pa, and then the substrate temperature is 100 ° C. Adjusted. The raw material was then introduced into the reactor in a pulsed manner in the following cycle. The pulse cycle was TMA: 0.1 seconds, nitrogen purge: 4.0 seconds, water: 0.1 seconds, nitrogen purge: 4.0 seconds. At this time, the deposition rate of Al 2 O 3 from TMA and water was 0.1 nm / cycle. Here, 200 cycles were performed to form a 20.0 nm Al 2 O 3 thin film. At this time, Ra on the surface of the ALD layer was 7.1 nm.
[ガスバリア性フィルム7の作製]
ALD層の形成を下記のようにして形成した以外は、ガスバリア性フィルム1と同様にしてガスバリア性フィルム7を作製した。[Preparation of gas barrier film 7]
A gas barrier film 7 was produced in the same manner as the gas barrier film 1 except that the ALD layer was formed as follows.
(ALD層の形成)
続いて、SiO2上にPicosun Oy社製SUNALE(登録商標)R−200ALDにて、アルミナAl2O3の薄膜を堆積させた。アルミニウム源としてトリメチルアルミニウム(TMA)、酸素源として水を用いた。(Formation of ALD layer)
Subsequently, a thin film of alumina Al 2 O 3 was deposited on SiO 2 using SUNALE (registered trademark) R-200ALD manufactured by Picsun Oy. Trimethylaluminum (TMA) was used as the aluminum source, and water was used as the oxygen source.
ALDフィルムを反応器内に取り付けて、その反応器を真空ポンプにて真空にし、次に窒素ガスをパージして反応器内の圧力を約800〜1100Paに調整し、次いで基材温度を100℃に調整した。次いで原料を以下のサイクルでパルス状に反応器内に導入した。パルスサイクルは、TMA:0.1秒、窒素パージ:4.0秒、水:0.1秒、窒素パージ:4.0秒、で行った。このときTMAおよび水からのAl2O3の堆積速度は0.1nm/サイクルであった。ここでは300サイクル行い30.0nmのAl2O3薄膜を形成した。このときALD層表面のRaは5.3nmであった。An ALD film is installed in the reactor, the reactor is evacuated with a vacuum pump, then purged with nitrogen gas to adjust the pressure in the reactor to about 800-1100 Pa, and then the substrate temperature is 100 ° C. Adjusted. The raw material was then introduced into the reactor in a pulsed manner in the following cycle. The pulse cycle was TMA: 0.1 seconds, nitrogen purge: 4.0 seconds, water: 0.1 seconds, nitrogen purge: 4.0 seconds. At this time, the deposition rate of Al 2 O 3 from TMA and water was 0.1 nm / cycle. Here, 300 cycles were performed to form an Al 2 O 3 thin film of 30.0 nm. At this time, Ra on the surface of the ALD layer was 5.3 nm.
[ガスバリア性フィルム8の作製]
ALD層の形成を下記のようにして形成した以外は、ガスバリア性フィルム1と同様にしてガスバリア性フィルム8を作製した。[Preparation of gas barrier film 8]
A gas barrier film 8 was produced in the same manner as the gas barrier film 1 except that the ALD layer was formed as follows.
(ALD層の形成)
続いて、SiO2上にPicosun Oy社製SUNALE(登録商標)R−200ALDにて、アルミナAl2O3の薄膜を堆積させた。アルミニウム源としてトリメチルアルミニウム(TMA)、酸素源として水を用いた。(Formation of ALD layer)
Subsequently, a thin film of alumina Al 2 O 3 was deposited on SiO 2 using SUNALE (registered trademark) R-200ALD manufactured by Picsun Oy. Trimethylaluminum (TMA) was used as the aluminum source, and water was used as the oxygen source.
ALDフィルムを反応器内に取り付けて、その反応器を真空ポンプにて真空にし、次に窒素ガスをパージして反応器内の圧力を約800〜1100Paに調整し、次いで基材温度を100℃に調整した。次いで原料を以下のサイクルでパルス状に反応器内に導入した。パルスサイクルは、TMA:0.1秒、窒素パージ:4.0秒、水:0.1秒、窒素パージ:4.0秒、で行った。このときTMAおよび水からのAl2O3の堆積速度は0.1nm/サイクルであった。ここでは400サイクル行い40.0nmのAl2O3薄膜を形成した。このときALD層表面のRaは4.3nmであった。An ALD film is installed in the reactor, the reactor is evacuated with a vacuum pump, then purged with nitrogen gas to adjust the pressure in the reactor to about 800-1100 Pa, and then the substrate temperature is 100 ° C. Adjusted. The raw material was then introduced into the reactor in a pulsed manner in the following cycle. The pulse cycle was TMA: 0.1 seconds, nitrogen purge: 4.0 seconds, water: 0.1 seconds, nitrogen purge: 4.0 seconds. At this time, the deposition rate of Al 2 O 3 from TMA and water was 0.1 nm / cycle. Here, 400 cycles were performed to form a 40.0 nm Al 2 O 3 thin film. At this time, Ra on the surface of the ALD layer was 4.3 nm.
[ガスバリア性フィルム9の作製]
ポリシラザン層の塗膜厚みを45nmになるように固形分濃度を調整して形成した以外は、ガスバリア性フィルム1と同様にしてガスバリア性フィルム9を作製した。[Preparation of gas barrier film 9]
A gas barrier film 9 was produced in the same manner as the gas barrier film 1 except that the polysilazane layer was formed by adjusting the solid content concentration so that the coating thickness was 45 nm.
[ガスバリア性フィルム10の作製]
ALD層の形成、及びポリシラザン層の形成を下記のようにして形成した以外は、ガスバリア性フィルム1と同様にしてガスバリア性フィルム10を作製した。[Preparation of Gas Barrier Film 10]
A gas barrier film 10 was produced in the same manner as the gas barrier film 1 except that the ALD layer and the polysilazane layer were formed as follows.
(ALD層の形成)
続いて、SiO2膜上にPicosun Oy社製SUNALE(登録商標)R−200ALDにて、アルミナAl2O3の薄膜を堆積させた。アルミニウム源としてトリメチルアルミニウム(TMA)、酸素源として水を用いた。(Formation of ALD layer)
Subsequently, a thin film of alumina Al 2 O 3 was deposited on the SiO 2 film by SUNALE (registered trademark) R-200ALD manufactured by Picsun Oy. Trimethylaluminum (TMA) was used as the aluminum source, and water was used as the oxygen source.
ALDフィルムを反応器内に取り付けて、その反応器を真空ポンプにて真空にし、次に窒素ガスをパージして反応器内の圧力を約800〜1100Paに調整し、次いで基材温度を100℃に調整した。次いで原料を以下のサイクルでパルス状に反応器内に導入した。パルスサイクルは、TMA:0.1秒、窒素パージ:4.0秒、水:0.1秒、窒素パージ:4.0秒、で行った。このときTMAおよび水からのAl2O3の堆積速度は0.1nm/サイクルであった。ここでは200サイクル行い20.0nmのAl2O3薄膜を形成した。このときALD層表面のRaは5.0nmであった。An ALD film is installed in the reactor, the reactor is evacuated with a vacuum pump, then purged with nitrogen gas to adjust the pressure in the reactor to about 800-1100 Pa, and then the substrate temperature is 100 ° C. Adjusted. The raw material was then introduced into the reactor in a pulsed manner in the following cycle. The pulse cycle was TMA: 0.1 seconds, nitrogen purge: 4.0 seconds, water: 0.1 seconds, nitrogen purge: 4.0 seconds. At this time, the deposition rate of Al 2 O 3 from TMA and water was 0.1 nm / cycle. Here, 200 cycles were performed to form a 20.0 nm Al 2 O 3 thin film. At this time, Ra on the surface of the ALD layer was 5.0 nm.
(ポリシラザン層の形成)
ポリシラザン層の塗膜厚みを55nmになるように固形分濃度を調整して形成した。(Formation of polysilazane layer)
The polysilazane layer was formed by adjusting the solid content concentration so that the coating thickness was 55 nm.
[ガスバリア性フィルム11の作製]
ALD層の形成、及びポリシラザン層の形成を下記のようにして形成した以外は、ガスバリア性フィルム1と同様にしてガスバリア性フィルム11を作製した。[Production of Gas Barrier Film 11]
A gas barrier film 11 was produced in the same manner as the gas barrier film 1 except that the ALD layer and the polysilazane layer were formed as follows.
(ALD層の形成)
続いて、SiO2上にPicosun Oy社製SUNALE(登録商標)R−200ALDにて、アルミナAl2O3の薄膜を堆積させた。アルミニウム源としてトリメチルアルミニウム(TMA)、酸素源として水を用いた。(Formation of ALD layer)
Subsequently, a thin film of alumina Al 2 O 3 was deposited on SiO 2 using SUNALE (registered trademark) R-200ALD manufactured by Picsun Oy. Trimethylaluminum (TMA) was used as the aluminum source, and water was used as the oxygen source.
ALDフィルムを反応器内に取り付けて、その反応器を真空ポンプにて真空にし、次に窒素ガスをパージして反応器内の圧力を約800〜1100Paに調整し、次いで基材温度を100℃に調整した。次いで原料を以下のサイクルでパルス状に反応器内に導入した。パルスサイクルは、TMA:0.1秒、窒素パージ:4.0秒、水:0.1秒、窒素パージ:4.0秒、で行った。このときTMAおよび水からのAl2O3の堆積速度は0.1nm/サイクルであった。ここでは300サイクル行い30.0nmのAl2O3薄膜を形成した。このときALD層表面のRaは4.7nmであった。An ALD film is installed in the reactor, the reactor is evacuated with a vacuum pump, then purged with nitrogen gas to adjust the pressure in the reactor to about 800-1100 Pa, and then the substrate temperature is 100 ° C. Adjusted. The raw material was then introduced into the reactor in a pulsed manner in the following cycle. The pulse cycle was TMA: 0.1 seconds, nitrogen purge: 4.0 seconds, water: 0.1 seconds, nitrogen purge: 4.0 seconds. At this time, the deposition rate of Al 2 O 3 from TMA and water was 0.1 nm / cycle. Here, 300 cycles were performed to form an Al 2 O 3 thin film of 30.0 nm. At this time, Ra on the surface of the ALD layer was 4.7 nm.
(ポリシラザン層の形成)
ポリシラザン層の塗膜厚みを30nmになるように固形分濃度を調整して形成した。(Formation of polysilazane layer)
It was formed by adjusting the solid content concentration so that the coating thickness of the polysilazane layer was 30 nm.
[ガスバリア性フィルム12の作製]
ポリシラザン層の代わりにケイ素化合物改質層を下記のようにして形成した以外は、ガスバリア性フィルム1と同様にしてガスバリア性フィルム12を作製した。[Production of Gas Barrier Film 12]
A gas barrier film 12 was produced in the same manner as the gas barrier film 1 except that a silicon compound modified layer was formed as follows instead of the polysilazane layer.
(ケイ素化合物改質層の形成)
下記の表1に示す組成にしたがって、組成A.EVOH(エチレン共重合比率29%、日本合成化学工業株式会社製、ソアノールD2908)をイソプロピルアルコールおよびイオン交換水の混合溶媒にて溶解したEVOH溶液に、予め調製した組成B.のエチルシリケート40、イソプロピルアルコール、アセチルアセトンアルミニウム、イオン交換水からなる加水分解液を加えて攪拌、さらに予め調製した組成C.のポリビニルアルコール(クラレ社製、PVA110)、シランカップリング剤(エポキシシリカSH6040)、酢酸、イソプロピルアルコール及びイオン交換水からなる混合液を加えて攪拌し、無色透明のガスバリア性組成物を得た。(Formation of silicon compound modified layer)
According to the composition shown in Table 1 below, Composition prepared in advance in an EVOH solution in which EVOH (ethylene copolymerization ratio 29%, Nippon Synthetic Chemical Industry Co., Ltd., Soarnol D2908) was dissolved in a mixed solvent of isopropyl alcohol and ion-exchanged water was used. A hydrolyzate composed of ethyl silicate 40, isopropyl alcohol, acetylacetone aluminum and ion-exchanged water was added and stirred, and the composition prepared in advance C.I. A mixed liquid composed of polyvinyl alcohol (manufactured by Kuraray Co., PVA110), a silane coupling agent (epoxysilica SH6040), acetic acid, isopropyl alcohol and ion-exchanged water was added and stirred to obtain a colorless and transparent gas barrier composition.
上記で製造した塗布液を使用して、これをグラビアロールコート法によりコーティングし、次いで、100℃で30秒間、加熱処理して、厚さ0.4g/m2(0.2μm)(乾操状態)のケイ素化合物改質層を形成した。Using the coating solution produced above, this was coated by a gravure roll coating method and then heat-treated at 100 ° C. for 30 seconds to give a thickness of 0.4 g / m 2 (0.2 μm) (dry operation) The silicon compound modified layer of (state) was formed.
[ガスバリア性フィルム13の作製]
ガスバリア性フィルム1の形成において、ALD層形成を除いてガスバリア性フィルム13を作製した。[Production of Gas Barrier Film 13]
In the formation of the gas barrier film 1, a gas barrier film 13 was produced except for the formation of the ALD layer.
[ガスバリア性フィルム14の作製]
ガスバリア性フィルム2の形成において、ALD層形成を除いてガスバリア性フィルム14を作製した。[Production of Gas Barrier Film 14]
In the formation of the gas barrier film 2, the gas barrier film 14 was produced except for the formation of the ALD layer.
[ガスバリア性フィルム15の作製]
ガスバリア性フィルム1の形成において、CVD層の形成を以下のように変更し、かつALD層形成を除いてガスバリア性フィルム15を作製した。[Production of Gas Barrier Film 15]
In the formation of the gas barrier film 1, the formation of the CVD layer was changed as follows, and the gas barrier film 15 was produced except for the formation of the ALD layer.
(CVD層の形成)
市販のスパッタ装置の真空槽内に平滑層まで形成したフィルムをセットし、10−4Pa台まで真空引きし、放電ガスとしてアルゴンと酸素を分圧で0.5Pa導入した。雰囲気圧力が安定したところで放電を開始しSiターゲット上にプラズマを発生させ、スパッタリングプロセスを開始した。プロセスが安定したところでシャッターを開きフィルムへの酸化ケイ素層の形成を開始し、100nmの膜が堆積したところでシャッターを閉じて成膜を終了した。(Formation of CVD layer)
A film formed up to a smooth layer was set in a vacuum chamber of a commercially available sputtering apparatus, evacuated to a level of 10 −4 Pa, and argon and oxygen as discharge gases were introduced at a partial pressure of 0.5 Pa. When the atmospheric pressure was stabilized, discharge was started, plasma was generated on the Si target, and a sputtering process was started. When the process was stabilized, the shutter was opened and the formation of a silicon oxide layer on the film was started. When the 100 nm film was deposited, the shutter was closed and the film formation was completed.
[ガスバリア性フィルム16の作製]
ガスバリア性フィルム1の形成において、CVD層の形成を以下のように変更し、かつALD層形成を除いてガスバリア性フィルム16を作製した。[Production of Gas Barrier Film 16]
In the formation of the gas barrier film 1, the formation of the CVD layer was changed as follows, and the gas barrier film 16 was produced except for the formation of the ALD layer.
(CVD層の形成)
市販の電子ビーム加熱方式の真空蒸着装置を用いて形成した。尚、蒸着材料は、金属ケイ素には50μm以下の径を有する粉末が95%以上の粉末を、二酸化ケイ素には結晶構造を95%含み、50μm以下の径を有する粉末が95%以上の粉末を用意し、酸素の原子数とケイ素の原子数の比(O/Si)を1.50となるように混合した金属ケイ素と二酸化ケイ素からなる混合蒸着用材料を作製した。この混合蒸着用材料を坩堝に投入し、嵩密度が1.0g/cm3となるようにプレス成型した。(Formation of CVD layer)
The film was formed using a commercially available electron beam heating vacuum deposition apparatus. The vapor deposition material is a metal silicon powder containing 95% or more of powder having a diameter of 50 μm or less, and silicon dioxide containing 95% or more of a crystal structure containing a crystal structure and having a diameter of 50 μm or less. A mixed vapor deposition material composed of metal silicon and silicon dioxide prepared so that the ratio of the number of oxygen atoms to the number of silicon atoms (O / Si) was 1.50 was prepared. This mixed vapor deposition material was put into a crucible and press-molded so that the bulk density was 1.0 g / cm 3 .
この材料を電子ビーム加熱方式の真空蒸着装置で、電子銃から放出する電子ビームを混合蒸着用材料に照射し蒸発させ、SiO2膜が100nmとなるように形成した。This material was formed by an electron beam heating type vacuum vapor deposition apparatus so that the mixed vapor deposition material was irradiated with an electron beam emitted from an electron gun to evaporate to form a SiO 2 film having a thickness of 100 nm.
[評価方法]
ガスバリア性フィルムの各特性値は、下記の方法に従って測定される。[Evaluation method]
Each characteristic value of the gas barrier film is measured according to the following method.
〔中心線平均表面粗さ(Ra)〕
原子間力顕微鏡(AFM)として、セイコーインスツルメンツ株式会社製、走査型プローブ顕微鏡SPI3700を使用し、ダイナミックフォースモードで試料の表面を、測定面積10×10μm角、走査速度1Hz、x−y方向512×256分割、カンチレバーSI−DF−20(Si、f=126kHz、c=16N/m)の条件で測定したAFMトポグラフィー像につき傾斜自動補正処理を行い、次いで3次元粗さ解析にて中心線平均表面粗さRa(nm)を求めた。この際、測定に用いたカンチレバーは摩耗や汚れのない状態のものを用いた。[Center line average surface roughness (Ra)]
A scanning probe microscope SPI3700 manufactured by Seiko Instruments Inc. is used as an atomic force microscope (AFM), and the surface of the sample is measured in a dynamic force mode, measuring area 10 × 10 μm square, scanning speed 1 Hz, xy direction 512 ×. The AFM topography image measured under the conditions of 256 divisions, cantilever SI-DF-20 (Si, f = 126 kHz, c = 16 N / m) was subjected to an automatic tilt correction process, and then centerline averaged in a three-dimensional roughness analysis The surface roughness Ra (nm) was determined. At this time, the cantilever used for the measurement was one that was not worn or soiled.
〔水蒸気バリア性(WVTR)の評価〕
以下の測定方法に従って、各ガスバリア性フィルムの透過水分量を測定し、下記の基準に従って、水蒸気バリア性を評価した。[Evaluation of water vapor barrier properties (WVTR)]
In accordance with the following measurement method, the permeated moisture amount of each gas barrier film was measured, and the water vapor barrier property was evaluated according to the following criteria.
(装置)
蒸着装置:日本電子株式会社製、真空蒸着装置JEE−400
恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
水分と反応して腐食する金属:カルシウム(粒状)
水蒸気不透過性の金属:アルミニウム(φ3〜5mm、粒状)
(水蒸気バリア性評価用セルの作製)
試料のバリア層面に、真空蒸着装置(日本電子株式会社製、真空蒸着装置 JEE−400)を用い、透明導電膜を付ける前のガスバリア性フィルム試料の蒸着させたい部分(12mm×12mmを9箇所)以外をマスクし、金属カルシウムを蒸着させた。その後、真空状態のままマスクを取り去り、シート片側全面にアルミニウムをもう一つの金属蒸着源から蒸着させた。アルミニウム封止後、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂(ナガセケムテックス製)を介してアルミニウム封止側と対面させ、紫外線を照射することで、評価用セルを作製した。(apparatus)
Vapor deposition apparatus: JEOL Ltd., vacuum vapor deposition apparatus JEE-400
Constant temperature and humidity oven: Yamato Humidic Chamber IG47M
Metal that reacts with water and corrodes: Calcium (granular)
Water vapor-impermeable metal: Aluminum (φ3-5mm, granular)
(Preparation of water vapor barrier property evaluation cell)
Using a vacuum vapor deposition device (manufactured by JEOL Ltd., vacuum vapor deposition device JEE-400) on the surface of the barrier layer of the sample, the portion to be vapor-deposited of the gas barrier film sample before attaching the transparent conductive film (9 locations of 12 mm x 12 mm) Other than that, metallic calcium was vapor-deposited. Thereafter, the mask was removed in a vacuum state, and aluminum was deposited from another metal deposition source on the entire surface of one side of the sheet. After aluminum sealing, the vacuum state is released, and immediately facing the aluminum sealing side through a UV-curable resin for sealing (made by Nagase ChemteX) on quartz glass with a thickness of 0.2 mm in a dry nitrogen gas atmosphere The cell for evaluation was produced by irradiating with ultraviolet rays.
得られた両面を封止した試料を、特開2005−283561号公報に記載の方法に基づき、金属カルシウムの腐食量からセル内に透過した水分量を計算した。 Based on the method described in Japanese Patent Application Laid-Open No. 2005-283561, the amount of moisture permeated into the cell was calculated from the corrosion amount of metallic calcium.
なお、ガスバリア性フィルム面以外からの水蒸気の透過がないことを確認するために、比較試料としてガスバリア性フィルム試料の代わりに、厚さ0.2mmの石英ガラス板を用いて金属カルシウムを蒸着した試料を、60℃、90%RHの高温高湿下保存を行い、1000時間経過後でも金属カルシウム腐食が発生しないことを確認した。 In addition, in order to confirm that there is no permeation of water vapor from other than the gas barrier film surface, a sample obtained by depositing metallic calcium using a quartz glass plate having a thickness of 0.2 mm instead of the gas barrier film sample as a comparative sample Was stored under high temperature and high humidity at 60 ° C. and 90% RH, and it was confirmed that no corrosion of metallic calcium occurred even after 1000 hours.
以上により測定された各ガスバリア性フィルムの透過水分量(g/m2・day;表中の「WVTR」)をCa法によって評価した。The permeated water amount (g / m 2 · day; “WVTR” in the table) of each gas barrier film measured as described above was evaluated by the Ca method.
(ランク評価)
5:1×10−5g/m2/day未満
4:1×10−5g/m2/day以上、5×10−5g/m2/day未満
3:5×10−5g/m2/day以上、1×10−4g/m2/day未満
2:1×10−4g/m2/day以上、1×10−3g/m2/day未満
1:1×10−3g/m2/day以上
〔折り曲げ耐性(屈曲性)の評価〕
ガスバリア性フィルムについて、屈曲前後のガスバリア性の変化を確認するために、あらかじめ、半径10mmの曲率になるように、180度の角度で100回屈曲を繰り返し処理したガスバリア性フィルムについて、水蒸気透過率(WVTR)を測定し、同様のランク評価を行った。(Rank evaluation)
Less than 5: 1 × 10 −5 g / m 2 / day 4: 1 × 10 −5 g / m 2 / day or more and less than 5 × 10 −5 g / m 2 / day 3: 5 × 10 −5 g / m 2 / day or more, 1 × 10 −4 g / m 2 / day or less 2: 1 × 10 −4 g / m 2 / day or more, 1 × 10 −3 g / m 2 / day or less 1: 1 × 10 -3 g / m 2 / day or more [Evaluation of bending resistance (flexibility)]
For the gas barrier film, in order to confirm the change in the gas barrier property before and after bending, the water vapor transmission rate (for the gas barrier film that has been repeatedly bent 100 times at an angle of 180 degrees in advance so as to have a radius of curvature of 10 mm. WVTR) was measured and the same rank evaluation was performed.
〔高温高湿耐性の評価〕
得られたガスバリア性フィルムについて、屈曲させず、60℃、90%RHに調整した高温高湿槽(恒温恒湿度オーブン:Yamato Humidic ChamberIG47M)内に、100時間連続で保管し、その後、上記折り曲げ耐性評価を実施し、同様にして水蒸気透過率を測定し、同様のランク評価を行った。[Evaluation of resistance to high temperature and high humidity]
The obtained gas barrier film was stored for 100 hours continuously in a high-temperature and high-humidity tank (constant temperature and humidity oven: Yamato Humidic Chamber IG47M) adjusted to 60 ° C. and 90% RH without bending, and then the above bending resistance Evaluation was performed, water vapor permeability was measured in the same manner, and the same rank evaluation was performed.
結果を下記表2に示す。なお、下記表2中、PHPS層とはパーヒドロポリシラザン(PHPS)を改質して得られた層を指す。 The results are shown in Table 2 below. In Table 2 below, the PHPS layer refers to a layer obtained by modifying perhydropolysilazane (PHPS).
上記表2の結果に記載のように、フィルムNo.1〜12のフィルムは、屈曲耐性が高く、特に高温高湿条件下であっても屈曲耐性が高く、ガスバリア性能が維持されていることがわかる。 As described in the results of Table 2 above, film No. It can be seen that the films 1 to 12 have high bending resistance, particularly high bending resistance even under high temperature and high humidity conditions, and the gas barrier performance is maintained.
実施例2:有機EL素子の作製
作製した試料1〜16のガスバリア層上に、以下の方法により透明導電膜を作製した。Example 2 Production of Organic EL Element A transparent conductive film was produced on the produced gas barrier layers of Samples 1 to 16 by the following method.
・透明導電膜の形成
プラズマ放電装置としては電極が平行平板型のものを用い、この電極間に上記各試料のガスバリアフィルムを載置し、且つ混合ガスを導入して薄膜形成を行った。なお、アース(接地)電極としては、200mm×200mm×2mmのステンレス板に高密度、高密着性のアルミナ溶射膜を被覆し、その後、テトラメトキシシランを酢酸エチルで希釈した溶液を塗布乾燥後、紫外線照射により硬化させ封孔処理を行い、このようにして被覆した誘電体表面を研磨し、平滑にしてRmaxが5μmとなるように加工した電極を用いた。また、印加電極としては、中空の角型の純チタンパイプに対し、アース電極と同様の条件にて誘電体を被覆した電極を用いた。印加電極は複数作製し、アース電極に対向して設け放電空間を形成した。また、プラズマ発生に用いる電源としては、パール工業(株)製高周波電源CF−5000−13Mを用い、周波数13.56MHzで、5W/cm2の電力を供給した。そして、電極間に以下の組成の混合ガスを流し、プラズマ状態とし、上記のガスバリアフィルムを大気圧プラズマ処理し、ガスバリア層(セラミック膜)上に錫ドープ酸化インジウム(ITO)膜を100nmの厚さで成膜し、透明導電膜付の試料1〜16を得た。-Formation of transparent conductive film As the plasma discharge apparatus, an electrode having a parallel plate type was used. The gas barrier film of each sample was placed between the electrodes, and a mixed gas was introduced to form a thin film. In addition, as a ground (ground) electrode, a 200 mm × 200 mm × 2 mm stainless steel plate is coated with a high-density, high-adhesion alumina sprayed film, and then a solution obtained by diluting tetramethoxysilane with ethyl acetate is applied and dried. An electrode was used which was cured by ultraviolet irradiation and sealed, and the dielectric surface thus coated was polished, smoothed and processed to have an Rmax of 5 μm. Further, as the application electrode, an electrode obtained by coating a dielectric on a hollow square pure titanium pipe under the same conditions as the ground electrode was used. A plurality of application electrodes were prepared and provided to face the ground electrode to form a discharge space. Moreover, as a power source used for plasma generation, a high frequency power source CF-5000-13M manufactured by Pearl Industry Co., Ltd. was used, and 5 W / cm 2 of power was supplied at a frequency of 13.56 MHz. Then, a mixed gas having the following composition is caused to flow between the electrodes to form a plasma state, the gas barrier film is subjected to atmospheric pressure plasma treatment, and a tin-doped indium oxide (ITO) film having a thickness of 100 nm is formed on the gas barrier layer (ceramic film). The samples 1-16 with a transparent conductive film were obtained.
放電ガス:ヘリウム 98.5体積%
反応性ガス1:酸素 0.25体積%
反応性ガス2:インジウムアセチルアセトナート 1.2体積%
反応性ガス3:ジブチル錫ジアセテート 0.05体積%
・有機EL素子の作製
得られた透明導電膜付の試料1〜16の100mm×100mmを基板とし、これにパターニングを行った後、このITO透明電極を設けたガスバリアフィルム基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥した。この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートにα−NPD(下記の式(2))を200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物としてCBP(下記の式(3))を200mg入れ、別のモリブデン製抵抗加熱ボートにバソキュプロイン(BCP(下記の式(4)))を200mg入れ、別のモリブデン製抵抗加熱ボートにIr−1(下記の式(5))を100mg入れ、更に別のモリブデン製抵抗加熱ボートにAlq3(下記の式(6))を200mg入れ、真空蒸着装置に取付けた。Discharge gas: Helium 98.5% by volume
Reactive gas 1: 0.25% by volume of oxygen
Reactive gas 2: Indium acetylacetonate 1.2% by volume
Reactive gas 3: Dibutyltin diacetate 0.05% by volume
-Preparation of organic EL element The obtained sample with transparent conductive film 1 to 16 was used as a substrate of 100 mm x 100 mm, patterned, and then the gas barrier film substrate provided with the ITO transparent electrode was ultrasonicated with isopropyl alcohol. Washed and dried with dry nitrogen gas. This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while 200 mg of α-NPD (the following formula (2)) is put in a molybdenum resistance heating boat, and the host compound is put in another molybdenum resistance heating boat. 200 mg of CBP (the following formula (3)), 200 mg of bathocuproine (BCP (the following formula (4))) in another molybdenum resistance heating boat, and Ir-1 ( 100 mg of the following formula (5) was put, and 200 mg of Alq 3 (the following formula (6)) was put in another resistance heating boat made of molybdenum, and attached to a vacuum deposition apparatus.
次いで、真空槽を4×10−4Paまで減圧した後、α−NPDの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で透明支持基板に蒸着し、正孔輸送層を設けた。更にCBPとIr−1の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.2nm/秒、0.012nm/秒で前記正孔輸送層上に共蒸着して発光層を設けた。なお、蒸着時の基板温度は室温であった。更にBCPの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記発光層の上に蒸着して膜厚10nmの正孔阻止層を設けた。その上に、更にAlq3の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記正孔阻止層の上に蒸着して、更に膜厚40nmの電子輸送層を設けた。なお、蒸着時の基板温度は室温であった。引き続き、フッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を形成し、それぞれ透明導電膜付の試料1〜16を用いた有機EL素子試料1〜16を作製した。Next, after reducing the vacuum tank to 4 × 10 −4 Pa, the heating boat containing α-NPD is heated by heating, vapor-deposited on a transparent support substrate at a vapor deposition rate of 0.1 nm / second, and hole transport A layer was provided. Further, the heating boat containing CBP and Ir-1 was energized and heated, and co-evaporated on the hole transport layer at a deposition rate of 0.2 nm / second and 0.012 nm / second, respectively, to provide a light emitting layer. . In addition, the substrate temperature at the time of vapor deposition was room temperature. Further, the heating boat containing BCP was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide a hole blocking layer having a thickness of 10 nm. Further, the heating boat containing Alq 3 is further heated by energization, and is deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to further provide an electron transport layer having a thickness of 40 nm. It was. In addition, the substrate temperature at the time of vapor deposition was room temperature. Then, 0.5 nm of lithium fluoride and 110 nm of aluminum were vapor-deposited, the cathode was formed, and the organic EL element samples 1-16 using the samples 1-16 with a transparent conductive film were produced, respectively.
・有機EL素子試料の封止
窒素ガス(不活性ガス)によりパージされた環境下で、有機EL素子試料1〜16のアルミニウム蒸着面と、厚さ100μmのアルミ箔を対面させる様にして、ナガセケムテックス社製エポキシ系接着剤を用いて接着させて封止を行った。-Sealing of organic EL element sample In an environment purged with nitrogen gas (inert gas), an aluminum vapor deposition surface of organic EL element samples 1 to 16 and an aluminum foil with a thickness of 100 μm face each other. Sealing was performed by using an epoxy adhesive manufactured by Chemtex Corporation.
[有機EL素子試料の評価(ダークスポット)]
封止された有機EL素子試料1〜16を60℃、90%RHの環境下で通電を行い、ダークスポットの発生等の発光ムラの状況を、0日から120日までの変化を観察した。[Evaluation of organic EL element sample (dark spot)]
The encapsulated organic EL element samples 1 to 16 were energized in an environment of 60 ° C. and 90% RH, and the change in light emission unevenness such as generation of dark spots was observed from the 0th to the 120th.
こうして観測された各試料の発光ムラを下記の5段階に分類し、評価した。 The emission unevenness of each sample observed in this way was classified into the following five stages and evaluated.
5:0日目でダークスポット、輝度ムラは観察されず、120日経過後に非発光領域が全発光面積の0.1%以下で、発生したダークスポットは全て目視では容易に観察できない大きさ(0.1mm径以下)であった。 On day 5: 0, dark spots and luminance unevenness were not observed, and after 120 days, the non-light emitting area was 0.1% or less of the total light emitting area, and all the generated dark spots were not easily observable visually ( 0.1 mm or less).
4:0日目で発生したダークスポットは、全て目視では容易に観察できない大きさ(0.1mm以下)であり、輝度ムラは観察されず、120日経過後に非発光領域が全発光面積の0.1%超0.2%以下で、発生したダークスポットは目視では容易に観察できない大きさ(0.1mm以下)を維持した。 4: All dark spots generated on the 0th day have a size (0.1 mm or less) that cannot be easily observed by visual observation, luminance unevenness is not observed, and the non-light-emitting region is 0% of the total light-emitting area after 120 days. More than 1% and 0.2% or less, the generated dark spots maintained a size (0.1 mm or less) that could not be easily observed with the naked eye.
3:0日目で発生したダークスポットは、全て目視では容易に観察できない大きさ(0.1mm以下)であり、120日経過後に非発光領域が全発光面積の2%を超えた。 The dark spots that occurred on the 3rd day were all in a size (0.1 mm or less) that could not be easily observed visually, and after 120 days, the non-light emitting area exceeded 2% of the total light emitting area.
2:0日目に目視で判別可能なダークスポット、輝度ムラが観察され、120日経過後に非発光領域が全発光面積の2%を超え10%以下であった。 2: Dark spots and luminance unevenness that could be visually discerned were observed on the 0th day, and after 120 days, the non-light-emitting area was more than 2% of the total light-emitting area and 10% or less.
1:0日目に目視で判別可能なダークスポット、輝度ムラの非発光領域が全発光面積の1%を超えて観察され、120日以内に非発光領域が全発光面積の10%を超えた。 Dark spots that can be visually discerned on day 1 and non-luminous areas with uneven brightness were observed exceeding 1% of the total light-emitting area, and non-light-emitting areas exceeded 10% of the total light-emitting area within 120 days .
以上の評価結果(5段階評価)を表3に示す。 The above evaluation results (five-step evaluation) are shown in Table 3.
[有機EL素子試料の評価(折り曲げ後のダークスポット)]
封止された有機EL素子試料1〜16のダークスポットについて、屈曲前後のダークスポットの変化を確認するために、あらかじめ、半径10mmの曲率になるように、180度の角度で100回屈曲を繰り返し処理した後に前記のダークスポット評価条件で同様のランク評価を行った。以上の評価結果を表3に示す。[Evaluation of organic EL element sample (dark spot after bending)]
For the dark spots of the sealed organic EL element samples 1 to 16, bending was repeated 100 times at an angle of 180 degrees so as to obtain a curvature with a radius of 10 mm in advance in order to confirm changes in the dark spots before and after bending. After the treatment, the same rank evaluation was performed under the dark spot evaluation conditions. The above evaluation results are shown in Table 3.
本発明の有機EL素子試料1〜12は、高温高湿環境および折り曲げ耐性に対するダークスポット評価において良好な結果を示した。一方、有機EL素子試料13〜16は、高温高湿環境および折り曲げ耐性において顕著なダークスポットの発生がみられた。 The organic EL element samples 1 to 12 of the present invention showed good results in dark spot evaluation with respect to a high temperature and high humidity environment and bending resistance. On the other hand, in the organic EL element samples 13 to 16, remarkable dark spots were observed in a high temperature and high humidity environment and bending resistance.
本出願は、2012年12月14日に出願された日本特許出願番号2012−273806号および2013年2月8日に出願された日本特許出願番号2013−023840号に基づいており、その開示内容は、参照され、全体として、組み入れられている。 This application is based on Japanese Patent Application No. 2012-273806 filed on December 14, 2012 and Japanese Patent Application No. 2013-023840 filed on February 8, 2013. , Referenced and incorporated in its entirety.
1、10 ガスバリア性フィルム、
2 基材、
3 第1の層、
4 透明電極、
5 有機EL素子、
6 接着剤層、
7 対向フィルム、
9 有機ELパネル、
31 製造装置、
32 送り出しローラー、
33、34、35、36 搬送ローラー、
39、40 成膜ローラー、
41 ガス供給管、
42 プラズマ発生用電源、
43、44 磁場発生装置、
45 巻取りローラー、
101 プラズマCVD装置、
102 真空槽、
103 カソード電極、
105 サセプタ、
106 熱媒体循環系、
107 真空排気系、
108 ガス導入系、
109 高周波電源、
110 基板、
160 加熱冷却装置。1, 10 gas barrier film,
2 base material,
3 First layer,
4 Transparent electrodes,
5 organic EL elements,
6 Adhesive layer,
7 Opposite film,
9 Organic EL panel,
31 manufacturing equipment,
32 Feeding roller,
33, 34, 35, 36 transport rollers,
39, 40 Deposition roller,
41 gas supply pipe,
42 Power supply for plasma generation,
43, 44 Magnetic field generator,
45 take-up roller,
101 plasma CVD apparatus,
102 vacuum chamber,
103 cathode electrode,
105 susceptors,
106 heat medium circulation system,
107 vacuum exhaust system,
108 gas introduction system,
109 high frequency power supply,
110 substrates,
160 Heating and cooling device.
Claims (9)
前記第1の層は、ケイ素、アルミニウムおよびチタンからなる群より選択される少なくとも1種の酸化物、窒化物、酸窒化物または酸炭化物の少なくとも1種を含む、化学蒸着層であり、
前記第2の層は、無機酸化物を含む、原子層堆積法層であり、
前記第3の層は、ケイ素化合物真空紫外線照射処理層またはケイ素化合物プラズマ処理層である、ガスバリア性フィルム。 Including a substrate, a first layer, a second layer, and a third layer in this order,
The first layer of silicon, at least one oxide selected from the group consisting of aluminum and titanium, nitrides are including, chemical vapor deposition layer at least one oxynitride or oxycarbide,
The second layer including an inorganic oxide, an atomic layer deposition layer,
The third layer is a gas barrier film , which is a silicon compound vacuum ultraviolet irradiation treatment layer or a silicon compound plasma treatment layer .
原子層堆積法により無機酸化物を含む第2の層を形成する段階と、
ケイ素化合物を含有する液を塗布し、得られる塗膜を改質処理して得られる第3の層を形成する段階と、を含み、
前記改質処理が真空紫外線照射処理またはプラズマ処理である、ガスバリア性フィルムの製造方法。 Forming a first layer containing at least one selected from the group consisting of oxides, nitrides, oxynitrides and oxycarbides containing at least one of silicon, aluminum and titanium by chemical vapor deposition;
Forming a second layer containing an inorganic oxide by atomic layer deposition;
A liquid containing a silicon compound is applied, seen including forming a third layer obtained by reforming processes resulting coating film, and
A method for producing a gas barrier film, wherein the modification treatment is a vacuum ultraviolet irradiation treatment or a plasma treatment .
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012273806 | 2012-12-14 | ||
JP2012273806 | 2012-12-14 | ||
JP2013023840 | 2013-02-08 | ||
JP2013023840 | 2013-02-08 | ||
PCT/JP2013/083102 WO2014092085A1 (en) | 2012-12-14 | 2013-12-10 | Gas barrier film, method for manufacturing same, and electronic device using same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018020194A Division JP6504284B2 (en) | 2012-12-14 | 2018-02-07 | Gas barrier film, method for producing the same, and electronic device using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2014092085A1 JPWO2014092085A1 (en) | 2017-01-12 |
JP6287858B2 true JP6287858B2 (en) | 2018-03-07 |
Family
ID=50934373
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014552051A Expired - Fee Related JP6287858B2 (en) | 2012-12-14 | 2013-12-10 | Gas barrier film, method for producing the same, and electronic device using the same |
JP2018020194A Expired - Fee Related JP6504284B2 (en) | 2012-12-14 | 2018-02-07 | Gas barrier film, method for producing the same, and electronic device using the same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018020194A Expired - Fee Related JP6504284B2 (en) | 2012-12-14 | 2018-02-07 | Gas barrier film, method for producing the same, and electronic device using the same |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP6287858B2 (en) |
WO (1) | WO2014092085A1 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9388494B2 (en) | 2012-06-25 | 2016-07-12 | Novellus Systems, Inc. | Suppression of parasitic deposition in a substrate processing system by suppressing precursor flow and plasma outside of substrate region |
WO2014175029A1 (en) * | 2013-04-23 | 2014-10-30 | コニカミノルタ株式会社 | Process for manufacturing gas barrier film and surface modification method |
WO2014203892A1 (en) * | 2013-06-20 | 2014-12-24 | コニカミノルタ株式会社 | Gas barrier film and method for producing same |
JP6520932B2 (en) * | 2014-05-20 | 2019-05-29 | コニカミノルタ株式会社 | Gas barrier film |
US9617638B2 (en) | 2014-07-30 | 2017-04-11 | Lam Research Corporation | Methods and apparatuses for showerhead backside parasitic plasma suppression in a secondary purge enabled ALD system |
JP6507523B2 (en) | 2014-08-22 | 2019-05-08 | コニカミノルタ株式会社 | Organic electroluminescent device |
JP6424513B2 (en) * | 2014-08-22 | 2018-11-21 | コニカミノルタ株式会社 | Organic electroluminescent device |
JP6720979B2 (en) * | 2015-11-18 | 2020-07-08 | コニカミノルタ株式会社 | Gas barrier film, lighting device and display device |
CN108290376B (en) * | 2015-11-18 | 2020-04-07 | 柯尼卡美能达株式会社 | Gas barrier film |
JP2017094585A (en) * | 2015-11-24 | 2017-06-01 | コニカミノルタ株式会社 | Gas barrier film, method for producing the same and electronic device |
JP6645137B2 (en) * | 2015-11-24 | 2020-02-12 | コニカミノルタ株式会社 | Gas barrier pressure-sensitive adhesive sheet and electronic device having the same |
WO2017115783A1 (en) | 2015-12-28 | 2017-07-06 | 凸版印刷株式会社 | Laminate and method for manufacturing same, gas barrier film and method for manufacturing same, and organic light-emitting element |
EP3239197B1 (en) * | 2016-04-28 | 2019-01-23 | Samsung Electronics Co., Ltd | Layered structures and quantum dot sheets and electronic devices including the same |
WO2020020972A1 (en) * | 2018-07-24 | 2020-01-30 | Cic Nanogune - Asociación Centro De Investigación Cooperativa En Nanociencias | Method for producing organic-inorganic hybrid materials |
EP3963122A4 (en) * | 2019-05-21 | 2023-01-25 | Versum Materials US, LLC | Compositions and methods using same for thermal deposition silicon-containing films |
US12087573B2 (en) | 2019-07-17 | 2024-09-10 | Lam Research Corporation | Modulation of oxidation profile for substrate processing |
CN114141600B (en) * | 2021-11-29 | 2024-06-21 | 北京北方华创微电子装备有限公司 | Semiconductor process equipment and temperature control method of lower electrode chamber |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3511325B2 (en) * | 1995-04-19 | 2004-03-29 | 三井化学株式会社 | Gas barrier film |
JP4097947B2 (en) * | 2002-01-24 | 2008-06-11 | 住友ベークライト株式会社 | Transparent water vapor barrier film |
JP4857522B2 (en) * | 2004-02-17 | 2012-01-18 | 大日本印刷株式会社 | Barrier film and laminated material using the same |
JP2007090803A (en) * | 2005-09-30 | 2007-04-12 | Fujifilm Corp | Gas barrier film, and picture display element and organic electroluminescent element using the film |
FR2958795B1 (en) * | 2010-04-12 | 2012-06-15 | Commissariat Energie Atomique | ORGANIC OPTOELECTRONIC DEVICE AND METHOD OF ENCAPSULATION |
JP5912228B2 (en) * | 2010-05-17 | 2016-04-27 | 凸版印刷株式会社 | Method for producing gas barrier laminate |
JP5533585B2 (en) * | 2010-11-18 | 2014-06-25 | コニカミノルタ株式会社 | Gas barrier film manufacturing method, gas barrier film, and electronic device |
JP2012116151A (en) * | 2010-12-03 | 2012-06-21 | Sony Corp | Barrier film, and method for manufacturing the same |
WO2012081555A1 (en) * | 2010-12-13 | 2012-06-21 | コニカミノルタホールディングス株式会社 | Gas barrier laminate and method for producing gas barrier laminate |
US20150132587A1 (en) * | 2012-04-26 | 2015-05-14 | Konica Minolta, Inc. | Gas barrier film and electronic device using the same |
-
2013
- 2013-12-10 JP JP2014552051A patent/JP6287858B2/en not_active Expired - Fee Related
- 2013-12-10 WO PCT/JP2013/083102 patent/WO2014092085A1/en active Application Filing
-
2018
- 2018-02-07 JP JP2018020194A patent/JP6504284B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPWO2014092085A1 (en) | 2017-01-12 |
WO2014092085A1 (en) | 2014-06-19 |
JP2018089976A (en) | 2018-06-14 |
JP6504284B2 (en) | 2019-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6287858B2 (en) | Gas barrier film, method for producing the same, and electronic device using the same | |
JP5929775B2 (en) | Gas barrier film, method for producing the same, and electronic device including the gas barrier film | |
JP2015003464A (en) | Gas barrier film, method for producing the same, and electronic device using the same | |
JP6107819B2 (en) | Gas barrier film and electronic device using the same | |
JP5862707B2 (en) | Gas barrier film, element device and method for producing gas barrier film | |
WO2013172359A1 (en) | Gas barrier film, manufacturing method for gas barrier film, and electronic device | |
WO2014119750A1 (en) | Gas barrier film | |
WO2015020011A1 (en) | Gas barrier film | |
WO2015002156A1 (en) | Gas-barrier film and method for producing same, and electronic device using same | |
WO2014123201A1 (en) | Gas barrier film and method for manufacturing same | |
JP6319316B2 (en) | Method for producing gas barrier film | |
WO2014109356A1 (en) | Gas-barrier film | |
JP6398986B2 (en) | Gas barrier film | |
JP6229506B2 (en) | Gas barrier film and electronic device using the same | |
JP2014201032A (en) | Gas barrier film and method for producing the same | |
WO2016043141A1 (en) | Gas barrier film | |
JP5884531B2 (en) | Water vapor barrier film manufacturing method, water vapor barrier film and electronic device | |
KR101881244B1 (en) | Gas barrier film and electronic device using same | |
JP2014201033A (en) | Gas barrier film and method for producing the same | |
WO2014119754A1 (en) | Gas barrier film, method for producing same, and electronic device using same | |
WO2015119260A1 (en) | Modified polysilazane, coating solution containing said modified polysilazane, and gas barrier film produced using said coating solution | |
WO2014189060A1 (en) | Gas barrier film and electronic device using same | |
JP2013052569A (en) | Method for manufacturing moisture vapor barrier film, moisture vapor barrier film, and electric equipment | |
WO2015029732A1 (en) | Gas barrier film and process for manufacturing gas barrier film | |
JP6287634B2 (en) | Gas barrier film, method for producing the same, and electronic device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170627 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170808 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180122 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6287858 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |