JP4097947B2 - Transparent water vapor barrier film - Google Patents

Transparent water vapor barrier film Download PDF

Info

Publication number
JP4097947B2
JP4097947B2 JP2002015258A JP2002015258A JP4097947B2 JP 4097947 B2 JP4097947 B2 JP 4097947B2 JP 2002015258 A JP2002015258 A JP 2002015258A JP 2002015258 A JP2002015258 A JP 2002015258A JP 4097947 B2 JP4097947 B2 JP 4097947B2
Authority
JP
Japan
Prior art keywords
layer
water vapor
vapor barrier
barrier film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002015258A
Other languages
Japanese (ja)
Other versions
JP2003211579A (en
Inventor
孝行 松元
宏典 丸山
寿 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002015258A priority Critical patent/JP4097947B2/en
Publication of JP2003211579A publication Critical patent/JP2003211579A/en
Application granted granted Critical
Publication of JP4097947B2 publication Critical patent/JP4097947B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、光学部材、エレクトロニクス部材、一般包装部材、薬品包装部材などの幅広い用途に応用が可能な透明で水蒸気バリア性の高いフィルムに関する。
【0002】
【従来の技術】
従来より、プラスチック基板やフィルムの表面に酸化アルミニウム、酸化マグネシウム、酸化珪素等の金属酸化物の薄膜を形成した水蒸気バリア性フィルムは、水蒸気の遮断を必要とする物品の包装、食品や工業用品及び医薬品等の変質を防止するための包装用途に広く用いられている。また、包装用途以外にも液晶表示素子、太陽電池、エレクトロルミネッセンス(EL)基板等で使用されている。特に液晶表示素子EL素子などへの応用が進んでいる透明基材には、近年、軽量化、大型化という要求に加え、長期信頼性や形状の自由度が高いこと、曲面表示が可能であること等の高度な要求が加わり、重くて割れやすく大面積化が困難なガラス基板に代わって透明プラスチック等のフィルム基材が採用され始めている。また、プラスチックフィルムは上記要求に応えるだけでなく、ロールトゥロール方式が可能であることからガラスよりも生産性が良くコストダウンの点でも有利である。
【0003】
しかしながら、透明プラスチック等のフィルム基材はガラスに対し水蒸気バリア性が劣るという問題がある。水蒸気バリア性が劣る基材を用いると、水蒸気が浸透し、例えば液晶セル内の液晶を劣化させ、表示欠陥となって表示品位を劣化させてしまう。この様な問題を解決するためにフィルム基板上に金属酸化物薄膜を形成してガスバリア性フィルム基材とすることが知られている。包装材や液晶表示素子に使用される水蒸気バリア性フィルムとしてはプラスチックフィルム上に酸化珪素を蒸着したもの(特公昭53-12953号公報)や酸化アルミニウムを蒸着したもの(特開昭58-217344号公報)が知られており、いずれも1g/m/day程度の水蒸気バリア性を有する。近年では、液晶ディスプレイの大型化、高精細ディスプレイ等の開発によりフィルム基板への水蒸気バリア性能について0.1g/m/day程度まで要求が上がってきている。これに応えるためにより高い水蒸気バリア性能が期待できる手段としてスパッタリング法やCVD法による成膜検討が行われている。
【0004】
ところが、ごく近年においてさらなる水蒸気バリア性を要求される有機ELディスプレイや高精彩カラー液晶ディスプレイなどの開発が進み、これに使用可能な透明性を維持しつつもさらなる高水蒸気バリア性特に0.1g/m/day未満の性能をもつ基材が要求されるようになってきた。
【0005】
【発明が解決しようとする課題】
本発明の目的は、従来よりも高い水蒸気バリア性能を持つ透明フィルムを提供することにある。
【0006】
【課題を解決するための手段】
すなわち本発明は、
(1)樹脂基材上にSiOxNy(1<x<2、0≦y≦1.3)層1、前記層1とは異なる無機物質層2、SiOxNy(1<x<2、0≦y≦1.3)層3を順次積層した透明水蒸気バリアフィルムにおいて、無機物質層2、層1および層3の厚みの比が、0.002≦(無機物質2)/(層1)≦0.5、かつ0.002≦(無機物質2)/(層3)≦0.5であり、無機物質層2、層1、および層3がスパッタリング法で形成され、無機物質層2が Si Al In Sn Zn Ti Cu Ce 、及び Cr から選ばれる1種以上を含む金属の酸化物もしくは窒化物もしくは酸化窒化物である透明水蒸気バリアフィルム。
(2)前記層1と層3が同一の組成である(1)の透明水蒸気バリアフィルム。
(3)前記層1と層2を複数層順次積層した後に前記層3を積層した(1)、(2)の透明水蒸気バリアフィルム。
(4)前記層2がその厚みにおいて透明な無機物質である(1)〜(3)の透明水蒸気バリアフィルム。
(5)前記層2が層1及び層3と元素濃度比O/(O+N)が異なるSiOxNy層である(1)〜(4)の透明水蒸気バリアフィルム。
(6)前記層2の元素濃度比O/(O+N)が層1及び層3の元素濃度比O/(O+N) よりも大である(5)の透明水蒸気バリアフィルム。
(7)樹脂基材と前記層1との間に有機物層を持つことを特徴とする(1)〜(6)の透明水蒸気バリアフィルム。
(8)樹脂基材のガラス転移温度が200℃以上である(1)〜(7)の透明水蒸気バリアフィルム。
(9)樹脂基材がノルボルネン系樹脂またはポリエーテルスルホンを主成分とする(1)〜(8)の透明水蒸気バリアフィルム。
である。
【0007】
【発明の実施の形態】
本発明は、樹脂基材上にSiOxNy(1<x<2、0≦y≦1.3)層1をバリアとして備える透明水蒸気バリアフィルムにおいて、SiOxNy層1を2層以上に分断して積層時の構造欠陥位置を異ならせることにより、水蒸気バリア性を高めるものである。層1を分断する方法として、上記層1とは異なる無機物質層2を間に挟み、さらに層1と同様のバリア層3を積層する。このとき、層3は層1と同一組成のバリア層でも良い。また、無機物質層2の組成については、その厚みにおいて透明な無機物質であれば特に制限はなく、例えばSi、Al、In、Sn、Zn、Ti、Cu、Ce、Cr等の1種以上を含む金属、その酸化物もしくは窒化物もしくは酸化窒化物などを用いることができる。特に、層1および層3と元素比率が異なれば、SiOxNyでも良く、その元素濃度比O/(O+N)は、特に限定はしないが、層1または層3よりも大であることが、良好な光線透過率と水蒸気バリア性および曲げによるクラック耐性が得られるので、好ましい。SiOxNy層1と無機物質層2を異なる組成とすることにより、SiOxNy層1が持つ層構造の欠陥部分の成長が無機物質層2によって断ち切られ、たとえ新たにSiOxNy層1と同じ組成のバリア層3を積層しても、層1と層3とは構造欠陥部位が異なるものと考えられる。無機物質層2が無い場合には、層1の積層を一旦中止しても、層3が層1と同じ組成であると構造欠陥部位に変化はなく、これを埋める事はできない。
【0008】
無機物質層2は上記のように層1と層3とを分断するためのものであるため、特にバリア性は必要なく、層1および/または層3との厚さの比は0.002≦(無機物質2)/(層1)≦0.5、かつ0.002≦(無機物質2)/(層3)≦0.5であり、好ましくは0.01≦(無機物質2)/(層1)≦0.3、かつ0.01≦(無機物質2)/(層3)≦0.3であり、さらに好ましくは0.02≦(無機物質2)/(層1)≦0.2、かつ0.02≦(無機物質2)/(層3)≦0.2である。下限値未満では、分断の効果が十分ではなく、また無機物質層2が充分に薄ければ、厚いと光線透過率が低くなるような無機物質でも透明性を損なわずに使用することができる。
【0009】
また、層1〜3全体の厚さは10〜500nmであるとより良好な光線透過率と水蒸気バリア性、および曲げによるクラック耐性が得られるので好ましい。
基材フィルムにSiOxNy(1<x<2、0≦y≦1.3)1およびそれとは異なる組成の無機物質2は複数積層してもよく、積層数にはとくに制限はない。積層数を増加することにより、各層の厚さを薄くしても上記理由によりバリア性を十分発現させることができる。また、クラック耐性も向上する。
無機物質層の形成方法については真空蒸着、イオンプレーティング、CVD、スパッタリングなどの手段で実現される。特に、組成のコントロール性がよく、緻密な膜を形成できるスパッタリング、真空工程が不要で成膜コストの安価な大気圧の近傍下で放電プラズマ処理を利用することにより無機膜を成膜する常圧CVDが好ましい。スパッタリング方式は特に制限されるものではなく、例えば、DCスパッタリング方式、RFスパッタリング方式、RFとDCを混合する方式等を選択できる。
【0010】
また、樹脂基材と無機物質層との間に有機物層を設けると無機物質層の曲げに対する耐性や密着性の向上を見込める。この場合、有機物層の材質については特に制限はないが、アクリル系樹脂やウレタン系樹脂、ポリエステル系樹脂等を使用することができる。中でも、エポキシアクリレート、ウレタンアクリレート、イソシアヌル酸アクリレート、ペンタエリスリトールアクリレート、トリメチロールプロパンアクリレート、エチレングリコールアクリレート、ポリエステルアクリレートなどのうち、2官能以上のアクリロイル基を有するモノマーを塗工後、架橋させて得られる高分子を主成分とすることが塗工性も良く好ましい。特に架橋度が高く、ガラス転移温度が200℃以上である、イソシアヌル酸アクリレート、エポキシアクリレート、ウレタンアクリレートを主成分とすることが好ましい。これらの2官能以上のアクリロイル基を有するモノマーは2種類以上を混合して用いても、また1官能のアクリレートを混合して用いても良い。また、それ自体で比較的バリア性のあるPVA系やEVA系、ポリ塩化ビニリデン、もしくはこれらの樹脂の複数を混用することもできる。樹脂基材直上の有機物層1については、その厚みの制限は特に無いが、0.01〜10μmが好ましい。
【0011】
本発明の樹脂基材としては何ら制限はないが、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリアクリレート樹脂、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、ポリイミド樹脂、ポリオレフィン樹脂、ポリ塩化ビニリデン樹脂、ノルボルネン系樹脂等を使用することができる。特に、ガラス転移温度が200℃以上のノルボルネン系樹脂やポリエーテルスルホンは光学特性が良好で耐熱性が高く、有機物層無機物層形成プロセスにおいて高温処理による変形や劣化が無いので好ましい。また、異なる樹脂を組み合わせてもかまわない。
【0012】
【実施例】
以下本発明の実施例について詳細に説明するが、本発明は、何ら下記実施例に限定されるものではない。
(実施例1)
ポリエーテルスルホンフィルムに2官能のエポキシアクリレート(昭和高分子:VR−60−LAV)25wt%、ジエチレングリコール50wt%、酢酸エチル24wt%、シランカップリング剤1wt%からなる均一な混合溶液をスピンコーターで塗布し、80℃10分加熱乾燥後さらにUV照射で硬化させて2μmの有機物層を形成した。つぎに、スパッタ装置の真空槽内に前記有機物層を形成したフィルムをセットし10−4Pa台まで真空引きし、反応ガスとして酸素を分圧で0.015Pa導入、さらに系全体の圧力が0.13Paになるように放電ガスとしてアルゴンを導入した。雰囲気圧力が安定したところで放電を開始しSiターゲット上にプラズマを発生させ、スパッタリングプロセスを開始した。プロセスが安定したところでシャッターを開きフィルムへの酸化珪素層(層1)の形成を開始した。80nmの膜が堆積したところでシャッターを閉じて層1の成膜を終了した。続いて、酸素分圧を0.009Pa、系全体の圧力を0.13Paとした。雰囲気圧力が安定したところで放電を開始し、クロムターゲット上にプラズマを発生させ、スパッタリングプロセスを開始した。プロセスが安定したところでシャッターを開きフィルムへの酸化クロム層(層2)の形成を開始した。10nmの膜が堆積したところでシャッターを閉じて成膜を終了した。さらに、層1と同様の条件で層3を50 nm堆積させた。真空槽内に大気を導入し、フィルムを取り出した。このフィルムの水蒸気透過度をJISK7129B(40℃、湿度90%)に準拠して測定したところ、0.1g/m/day(信頼限界)未満で、透明性にも問題がなかった。
【0013】
(実施例2)
実施例1と同様のフィルムを用い、酸化珪素80nm、酸化クロム5nm、酸化珪素25nm、酸化クロム5nm、酸化珪素25nmの順に成膜した。酸化珪素、酸化クロムの成膜条件は膜厚以外、実施例1と同じとした。このフィルムの水蒸気透過度も実施例1同様、信頼限界未満であり、透明性にも問題がなかった。
【0014】
(実施例3)
ポリエーテルスルホンフィルムに2官能のエポキシアクリレート(昭和高分子:VR-60-LAV)25wt%、ジエチレングリコール50wt%、酢酸エチル24wt%、シランカップリング剤1wt%からなる均一な混合溶液をスピンコーターで塗布し、80℃10分加熱乾燥後さらにUV照射で硬化させて2μmの樹脂層を形成した。つぎに、スパッタ装置の真空槽内に前記有機物層を形成したフィルムをセットし10−4Pa台まで真空引きし、放電ガスとしてアルゴンを分圧で0.5Pa導入、反応ガスとして酸素を分圧で0.005Pa導入した。雰囲気圧力が安定したところで放電を開始し、Siターゲット上にプラズマを発生させ、スパッタリングプロセスを開始した。プロセスが安定したところでシャッターを開き、フィルムへの層1の形成を開始した。80nmの膜が堆積したところでシャッターを閉じて層1の成膜を終了した。この条件で成膜した窒化酸化珪素層1の元素濃度比O/(O+N)をX線光電子分光分析(ESCA)で測定したところ、0.65であった。再び10−4Pa台まで真空引きし、続いて、放電ガスとしてアルゴンを分圧で0.5Pa導入、反応ガスとして酸素を分圧で0.01Pa導入した。雰囲気圧力が安定したところで放電を開始しSiターゲット上にプラズマを発生させ、スパッタリングプロセスを開始した。プロセスが安定したところでシャッターを開き、層2の形成を開始した。10nmの膜が堆積したところでシャッターを閉じて層2の成膜を終了した。この条件で成膜した層2の元素濃度比O/(O+N)をESCAで測定したところ、0.80であった。さらに、層1と同様の条件で層3を50 nm堆積させた。真空槽内に大気を導入し、フィルムを取り出した。このフィルムの水蒸気透過度も実施例1同様、信頼限界未満であり、透明性にも問題がなかった。
【0015】
(実施例4)
実施例1で使用したポリエーテルスルホンフィルムの代わりに、ポリカーボネートフィルムを用いた他は実施例1と同様に、ポリカーボネートフィルム上に層1〜3の形成を行った。このフィルムの水蒸気透過度も実施例1同様、信頼限界未満であり、透明性にも問題がなかった。
【0016】
(比較例1)
実施例1と同様の条件で、ポリエーテルスルホンフィルム上に酸化珪素層の形成を行い、その厚みを140nm単層とした。このフィルムの水蒸気透過度は、0.14g/m/dayであった。
【0017】
(比較例2)
実施例1と同様の条件で、ポリエーテルスルホンフィルム上に酸化珪素を80nm堆積させ、一度真空引きした後、再度同じ条件で酸化珪素10nm、再度真空引き後、さらに同じ条件で酸化珪素50nmを成膜した。このフィルムの水蒸気透過度は、0.13g/m/dayであった。
【0018】
(比較例3)
実施例1と同じ有機物層付きポリエーテルスルホンフィルムに、酸化クロム80nm、酸化珪素10nm、酸化クロム50nmの順に成膜した。酸化クロム、酸化珪素の成膜条件は膜厚以外、実施例1と同じとした。このフィルムの水蒸気透過度は信頼限界未満であったが、透明性に問題があった。
実施例1〜4においては、水蒸気透過度、透明性共に表示素子用としての要求特性を十分に満たしていたが、酸化珪素層単層である比較例1や同じ組成の酸化珪素を3層に分けて積層した比較例2では、光線透過率は良好であったものの、水蒸気バリア性が低く要求特性を満たさなかった。また、層1および層3と層2の組成を逆にした比較例3では、光線透過率が要求性能を満たさなかった。
【0019】
【発明の効果】
本発明は、高い水蒸気バリア性と高い透明性をあわせもつことを特徴とする透明水蒸気バリアフィルムである。本発明の透明水蒸気バリアフィルムをたとえば表示用素子として適用すれば、軽くて割れないディスプレイが実現できる。また、薬品などの保存に適用すれば中身が見えて、落としても割れないような保存容器を実現することも可能であり、その工業的価値は極めて高い。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transparent film having a high water vapor barrier property that can be applied to a wide range of uses such as optical members, electronics members, general packaging members, and medicine packaging members.
[0002]
[Prior art]
Conventionally, a water vapor barrier film in which a thin film of a metal oxide such as aluminum oxide, magnesium oxide, silicon oxide or the like is formed on the surface of a plastic substrate or film is used for packaging articles, foods, industrial products and the like that need to block water vapor. Widely used in packaging applications to prevent alteration of pharmaceuticals. Moreover, it is used with a liquid crystal display element, a solar cell, an electroluminescence (EL) substrate, etc. besides the packaging use. In particular, transparent substrates that have been applied to liquid crystal display elements EL elements and the like have recently been required to be lighter and larger, and have long-term reliability and a high degree of freedom in shape, and can display curved surfaces. As a result of such high demands, film base materials such as transparent plastics have begun to be used in place of glass substrates that are heavy, fragile and difficult to increase in area. In addition, the plastic film not only satisfies the above requirements, but also has a roll-to-roll method, and is therefore more advantageous than glass because of higher productivity and cost reduction.
[0003]
However, film substrates such as transparent plastics have a problem that the water vapor barrier property is inferior to glass. If a base material with inferior water vapor barrier properties is used, water vapor will permeate, for example, the liquid crystal in the liquid crystal cell will deteriorate, resulting in display defects and display quality deterioration. In order to solve such problems, it is known to form a metal oxide thin film on a film substrate to form a gas barrier film substrate. As a water vapor barrier film used for a packaging material or a liquid crystal display element, a film obtained by depositing silicon oxide on a plastic film (Japanese Patent Publication No. 53-12953) or a film obtained by depositing aluminum oxide (Japanese Patent Laid-Open No. 58-217344). Publications) are known, and all have a water vapor barrier property of about 1 g / m 2 / day. In recent years, the demand for a water vapor barrier performance on a film substrate has increased to about 0.1 g / m 2 / day due to the development of large-sized liquid crystal displays and high-definition displays. In order to meet this demand, film formation by sputtering or CVD has been studied as a means for expecting higher water vapor barrier performance.
[0004]
However, in recent years, developments such as organic EL displays and high-definition color liquid crystal displays that require further water vapor barrier properties have progressed, and even higher water vapor barrier properties, particularly 0.1 g / Substrates having a performance of less than m 2 / day have been required.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a transparent film having higher water vapor barrier performance than before.
[0006]
[Means for Solving the Problems]
That is, the present invention
(1) SiOxNy (1 <x <2, 0 ≦ y ≦ 1.3) layer 1 on the resin substrate, inorganic material layer 2 different from the layer 1, SiOxNy (1 <x <2, 0 ≦ y ≦ 1) 1.3) In the transparent water vapor barrier film in which the layers 3 are sequentially laminated, the ratio of the thicknesses of the inorganic material layers 2, 1 and 3 is 0.002 ≦ (inorganic material 2) / (layer 1) ≦ 0.5. And 0.002 ≦ (inorganic material 2) / (layer 3) ≦ 0.5, the inorganic material layer 2, the layer 1, and the layer 3 are formed by sputtering, and the inorganic material layer 2 is formed of Si 2 , Al 2 , A transparent water vapor barrier film which is an oxide or nitride or oxynitride of a metal containing at least one selected from In , Sn , Zn , Ti , Cu , Ce , and Cr .
(2) The transparent water vapor barrier film according to (1), wherein the layer 1 and the layer 3 have the same composition.
(3) The transparent water vapor barrier film according to (1) or (2), wherein the layer 3 is laminated after the layers 1 and 2 are sequentially laminated.
(4) The transparent water vapor barrier film according to (1) to (3), wherein the layer 2 is an inorganic substance that is transparent in its thickness.
(5) The transparent water vapor barrier film according to (1) to (4), wherein the layer 2 is a SiOxNy layer having an element concentration ratio O / (O + N) different from those of the layers 1 and 3.
(6) The transparent water vapor barrier film according to (5), wherein the element concentration ratio O / (O + N) of the layer 2 is larger than the element concentration ratio O / (O + N) of the layers 1 and 3.
(7) The transparent water vapor barrier film according to any one of (1) to (6), wherein an organic layer is provided between the resin substrate and the layer 1.
(8) The transparent water vapor barrier film according to (1) to (7), wherein the glass transition temperature of the resin substrate is 200 ° C. or higher.
(9) The transparent water vapor barrier film according to any one of (1) to (8), wherein the resin base material is mainly a norbornene resin or polyethersulfone.
It is.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a transparent water vapor barrier film comprising a SiOxNy (1 <x <2, 0 ≦ y ≦ 1.3) layer 1 as a barrier on a resin substrate, and the SiOxNy layer 1 is divided into two or more layers when laminated. By changing the position of the structural defect, the water vapor barrier property is enhanced. As a method of dividing the layer 1, an inorganic material layer 2 different from the layer 1 is sandwiched therebetween, and a barrier layer 3 similar to the layer 1 is further laminated. At this time, the layer 3 may be a barrier layer having the same composition as the layer 1. The composition of the inorganic material layer 2 is not particularly limited as long as it is a transparent inorganic material in its thickness. For example, one or more of Si, Al, In, Sn, Zn, Ti, Cu, Ce, Cr, etc. It is possible to use a metal, an oxide, a nitride, or an oxynitride thereof. In particular, if the element ratio is different from that of layer 1 and layer 3, SiOxNy may be used, and the element concentration ratio O / (O + N) is not particularly limited, but is larger than layer 1 or layer 3. Good light transmittance, water vapor barrier properties and resistance to cracking due to bending are obtained, which is preferable. By making the SiOxNy layer 1 and the inorganic material layer 2 have different compositions, the growth of the defective portion of the layer structure of the SiOxNy layer 1 is cut off by the inorganic material layer 2, and a new barrier layer 3 having the same composition as the SiOxNy layer 1 is newly formed. Even if the layers are stacked, it is considered that the layer 1 and the layer 3 have different structural defect portions. In the case where the inorganic material layer 2 is not present, even if the lamination of the layer 1 is once stopped, if the layer 3 has the same composition as that of the layer 1, there is no change in the structural defect portion, which cannot be filled.
[0008]
Since the inorganic material layer 2 is used to divide the layer 1 and the layer 3 as described above, the barrier property is not particularly required, and the thickness ratio between the layer 1 and / or the layer 3 is 0.002 ≦ (Inorganic substance 2) / (Layer 1) ≦ 0.5 and 0.002 ≦ (Inorganic substance 2) / (Layer 3) ≦ 0.5, preferably 0.01 ≦ (Inorganic substance 2) / ( Layer 1) ≦ 0.3 and 0.01 ≦ (Inorganic substance 2) / (Layer 3) ≦ 0.3, more preferably 0.02 ≦ (Inorganic substance 2) / (Layer 1) ≦ 0. 2 and 0.02 ≦ (inorganic substance 2) / (layer 3) ≦ 0.2 . If it is less than the lower limit value, the effect of dividing is not sufficient, and if the inorganic material layer 2 is sufficiently thin, an inorganic material whose light transmittance is low if it is thick can be used without impairing transparency.
[0009]
The thickness of the entire layers 1 to 3 is preferably 10 to 500 nm because better light transmittance, water vapor barrier properties, and crack resistance due to bending can be obtained.
A plurality of inorganic substances 2 having a composition different from that of SiOxNy (1 <x <2, 0 ≦ y ≦ 1.3) 1 may be laminated on the base film, and the number of laminated layers is not particularly limited. By increasing the number of layers, the barrier property can be sufficiently developed for the above reason even if the thickness of each layer is reduced. Also, crack resistance is improved.
The method for forming the inorganic material layer is realized by means such as vacuum deposition, ion plating, CVD, sputtering. In particular, sputtering that can form a dense film with good controllability of the composition, normal pressure for depositing an inorganic film by using discharge plasma treatment near atmospheric pressure, which does not require a vacuum process and is inexpensive to form. CVD is preferred. The sputtering method is not particularly limited, and for example, a DC sputtering method, an RF sputtering method, a method of mixing RF and DC, or the like can be selected.
[0010]
In addition, when an organic material layer is provided between the resin base material and the inorganic material layer, the bending resistance and adhesion of the inorganic material layer can be expected to be improved. In this case, although there is no restriction | limiting in particular about the material of an organic substance layer, Acrylic resin, urethane type resin, polyester-type resin, etc. can be used. Among them, it is obtained by coating a monomer having a bifunctional or higher acryloyl group among epoxy acrylate, urethane acrylate, isocyanuric acid acrylate, pentaerythritol acrylate, trimethylolpropane acrylate, ethylene glycol acrylate, polyester acrylate, and the like, followed by crosslinking. It is preferable that the main component is a polymer because of good coating properties. In particular, it is preferable that isocyanuric acid acrylate, epoxy acrylate, and urethane acrylate having a high degree of crosslinking and a glass transition temperature of 200 ° C. or higher as a main component. These monomers having a bifunctional or higher acryloyl group may be used as a mixture of two or more, or may be used as a mixture of a monofunctional acrylate. In addition, PVA-based, EVA-based, polyvinylidene chloride, or a plurality of these resins, which are relatively barrier by themselves, can also be used. Although there is no restriction | limiting in particular in the thickness about the organic substance layer 1 immediately above a resin base material, 0.01-10 micrometers is preferable.
[0011]
The resin substrate of the present invention is not limited at all, but polysulfone resin, polyethersulfone resin, polycarbonate resin, polyarylate resin, polyacrylate resin, polyester resin, polyamide resin, epoxy resin, polyimide resin, polyolefin resin, polychlorinated resin Vinylidene resin, norbornene resin, etc. can be used. In particular, norbornene resins and polyether sulfones having a glass transition temperature of 200 ° C. or higher are preferable because they have good optical properties and high heat resistance, and are not deformed or deteriorated by high-temperature treatment in the organic layer / inorganic layer forming process. Different resins may be combined.
[0012]
【Example】
Examples of the present invention will be described in detail below, but the present invention is not limited to the following examples.
Example 1
A uniform mixed solution consisting of 25 wt% of bifunctional epoxy acrylate (Showa Polymer: VR-60-LAV), 50 wt% of diethylene glycol, 24 wt% of ethyl acetate and 1 wt% of silane coupling agent is applied to the polyethersulfone film with a spin coater. Then, after heating and drying at 80 ° C. for 10 minutes, it was further cured by UV irradiation to form a 2 μm organic layer. Next, the film on which the organic layer is formed is set in a vacuum chamber of a sputtering apparatus, and vacuum is drawn up to 10 −4 Pa. Oxygen is introduced as a reaction gas at a partial pressure of 0.015 Pa, and the pressure of the entire system is zero. Argon was introduced as a discharge gas so as to be .13 Pa. When the atmospheric pressure was stabilized, discharge was started, plasma was generated on the Si target, and a sputtering process was started. When the process was stabilized, the shutter was opened and formation of a silicon oxide layer (layer 1) on the film was started. When the 80 nm film was deposited, the shutter was closed and the film formation of layer 1 was completed. Subsequently, the oxygen partial pressure was set to 0.009 Pa, and the pressure of the entire system was set to 0.13 Pa. When the atmospheric pressure was stabilized, discharge was started, plasma was generated on the chromium target, and a sputtering process was started. When the process was stabilized, the shutter was opened and formation of a chromium oxide layer (layer 2) on the film was started. When the 10 nm film was deposited, the shutter was closed to complete the film formation. Further, 50 nm of layer 3 was deposited under the same conditions as layer 1. Air was introduced into the vacuum chamber and the film was taken out. When the water vapor transmission rate of this film was measured according to JISK7129B (40 ° C., humidity 90%), it was less than 0.1 g / m 2 / day (reliability limit), and there was no problem in transparency.
[0013]
(Example 2)
Using the same film as in Example 1, silicon oxide 80 nm, chromium oxide 5 nm, silicon oxide 25 nm, chromium oxide 5 nm, and silicon oxide 25 nm were formed in this order. The film forming conditions for silicon oxide and chromium oxide were the same as in Example 1 except for the film thickness. The water vapor permeability of this film was also less than the reliability limit as in Example 1, and there was no problem with transparency.
[0014]
(Example 3)
Apply a uniform mixed solution of 25 wt% of bifunctional epoxy acrylate (Showa polymer: VR-60-LAV), diethylene glycol 50 wt%, ethyl acetate 24 wt%, and silane coupling agent 1 wt% to the polyethersulfone film with a spin coater. Then, it was heated and dried at 80 ° C. for 10 minutes and further cured by UV irradiation to form a 2 μm resin layer. Next, the film on which the organic layer is formed is set in the vacuum chamber of the sputtering apparatus, and vacuum is drawn up to 10 −4 Pa, argon is introduced as a discharge gas at 0.5 Pa in partial pressure, and oxygen is used as a reaction gas in partial pressure. 0.005 Pa was introduced. When the atmospheric pressure was stabilized, discharge was started, plasma was generated on the Si 3 N 4 target, and a sputtering process was started. When the process was stable, the shutter was opened and formation of layer 1 on the film was started. When the 80 nm film was deposited, the shutter was closed to finish the layer 1 film formation. When the element concentration ratio O / (O + N) of the silicon nitride oxide layer 1 formed under these conditions was measured by X-ray photoelectron spectroscopy (ESCA), it was 0.65. The vacuum was again reduced to the 10 −4 Pa level, and subsequently, 0.5 Pa was introduced as a discharge gas at a partial pressure of 0.5 Pa, and oxygen was introduced as a reaction gas at a partial pressure of 0.01 Pa. When the atmospheric pressure was stabilized, discharge was started, plasma was generated on the Si 3 N 4 target, and a sputtering process was started. When the process was stable, the shutter was opened and formation of layer 2 was started. When the 10 nm film was deposited, the shutter was closed to finish the layer 2 film formation. When the element concentration ratio O / (O + N) of the layer 2 formed under these conditions was measured by ESCA, it was 0.80. Further, 50 nm of layer 3 was deposited under the same conditions as layer 1. Air was introduced into the vacuum chamber and the film was taken out. The water vapor permeability of this film was also less than the reliability limit as in Example 1, and there was no problem with transparency.
[0015]
Example 4
Layers 1 to 3 were formed on the polycarbonate film in the same manner as in Example 1 except that a polycarbonate film was used instead of the polyethersulfone film used in Example 1. The water vapor permeability of this film was also less than the reliability limit as in Example 1, and there was no problem with transparency.
[0016]
(Comparative Example 1)
Under the same conditions as in Example 1, a silicon oxide layer was formed on the polyethersulfone film, and the thickness thereof was a 140 nm single layer. The water vapor permeability of this film was 0.14 g / m 2 / day.
[0017]
(Comparative Example 2)
Under the same conditions as in Example 1, 80 nm of silicon oxide was deposited on the polyethersulfone film, vacuumed once, 10 nm of silicon oxide again under the same conditions, vacuuming again, and 50 nm of silicon oxide were further formed under the same conditions. Filmed. The water vapor permeability of this film was 0.13 g / m 2 / day.
[0018]
(Comparative Example 3)
On the same polyethersulfone film with an organic material layer as in Example 1, chromium oxide 80 nm, silicon oxide 10 nm, and chromium oxide 50 nm were formed in this order. The film forming conditions for chromium oxide and silicon oxide were the same as in Example 1 except for the film thickness. Although the water vapor permeability of this film was less than the reliability limit, there was a problem with transparency.
In Examples 1 to 4, the water vapor permeability and transparency sufficiently satisfied the required characteristics for a display element, but Comparative Example 1 which is a single silicon oxide layer and three layers of silicon oxide having the same composition were used. In Comparative Example 2 laminated separately, the light transmittance was good, but the water vapor barrier property was low and the required characteristics were not satisfied. Moreover, in the comparative example 3 which reversed the composition of the layer 1, the layer 3, and the layer 2, the light transmittance did not satisfy | fill required performance.
[0019]
【The invention's effect】
The present invention is a transparent water vapor barrier film characterized by having both high water vapor barrier properties and high transparency. When the transparent water vapor barrier film of the present invention is applied as a display element, for example, a light and unbreakable display can be realized. Moreover, if it is applied to the storage of chemicals, it is possible to realize a storage container whose contents can be seen and will not break even if dropped, and its industrial value is extremely high.

Claims (9)

樹脂基材上にSiOxNy(1<x<2、0≦y≦1.3)層1、前記層1とは異なる無機物質層2、SiOxNy(1<x<2、0≦y≦1.3)層3を順次積層した透明水蒸気バリアフィルムにおいて、無機物質層2、層1および層3の厚みの比が、0.002≦(無機物質2)/(層1)≦0.5、かつ0.002≦(無機物質2)/(層3)≦0.5であり、無機物質層2、層1、および層3がスパッタリング法で形成され、無機物質層2が Si Al In Sn Zn Ti Cu Ce 、及び Cr から選ばれる1種以上を含む金属の酸化物もしくは窒化物もしくは酸化窒化物である透明水蒸気バリアフィルム。 SiOxNy (1 <x <2, 0 ≦ y ≦ 1.3) layer 1 on the resin substrate, inorganic material layer 2 different from the layer 1, SiOxNy (1 <x <2, 0 ≦ y ≦ 1.3) ) In the transparent water vapor barrier film in which the layers 3 are sequentially laminated, the ratio of the thicknesses of the inorganic material layer 2, the layer 1 and the layer 3 is 0.002 ≦ (inorganic material 2) / (layer 1) ≦ 0.5 and 0 .002 ≦ (inorganic material 2) / (layer 3) ≦ 0.5, the inorganic material layer 2, the layer 1, and the layer 3 are formed by sputtering, and the inorganic material layer 2 is formed of Si , Al , In , Sn A transparent water vapor barrier film which is an oxide or nitride or oxynitride of a metal containing one or more selected from Zn , Ti , Cu , Ce and Cr . 前記層1と層3が同一の組成である請求項1記載の透明水蒸気バリアフィルム。The transparent water vapor barrier film according to claim 1, wherein the layer 1 and the layer 3 have the same composition. 前記層1と層2を複数層順次積層した後に前記層3を積層した請求項1または2記載の透明水蒸気バリアフィルムThe transparent water vapor barrier film according to claim 1 or 2, wherein the layer 3 is laminated after the layers 1 and 2 are sequentially laminated. 前記層2がその厚みにおいて透明な無機物質である請求項1〜3何れか一項記載の透明水蒸気バリアフィルム。The transparent water vapor barrier film according to claim 1, wherein the layer 2 is an inorganic substance that is transparent in its thickness. 前記層2が層1及び層3と元素濃度比O/(O+N)が異なるSiOxNy層である請求項1〜4何れか一項記載の透明水蒸気バリアフィルム。5. The transparent water vapor barrier film according to claim 1, wherein the layer 2 is a SiOxNy layer having an element concentration ratio O / (O + N) different from that of the layers 1 and 3. 前記層2の元素濃度比O/(O+N)が層1及び層3の元素濃度比O/(O+N) よりも大である請求項5記載の透明水蒸気バリアフィルム。6. The transparent water vapor barrier film according to claim 5, wherein the element concentration ratio O / (O + N) of the layer 2 is larger than the element concentration ratio O / (O + N) of the layers 1 and 3. 樹脂基材と前記層1との間に有機物層を持つことを特徴とする請求項1〜6何れか一項記載の透明水蒸気バリアフィルム。The transparent water vapor barrier film according to claim 1, further comprising an organic material layer between the resin substrate and the layer 1. 樹脂基材のガラス転移温度が200℃以上である請求項1〜7何れか一項記載の透明水蒸気バリアフィルム。The transparent water vapor barrier film according to any one of claims 1 to 7, wherein the resin substrate has a glass transition temperature of 200 ° C or higher. 樹脂基材がノルボルネン系樹脂またはポリエーテルスルホンを主成分とする請求項1〜8何れか一項記載の透明水蒸気バリアフィルム。The transparent water vapor | steam barrier film as described in any one of Claims 1-8 in which a resin base material has a norbornene-type resin or polyethersulfone as a main component.
JP2002015258A 2002-01-24 2002-01-24 Transparent water vapor barrier film Expired - Lifetime JP4097947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002015258A JP4097947B2 (en) 2002-01-24 2002-01-24 Transparent water vapor barrier film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002015258A JP4097947B2 (en) 2002-01-24 2002-01-24 Transparent water vapor barrier film

Publications (2)

Publication Number Publication Date
JP2003211579A JP2003211579A (en) 2003-07-29
JP4097947B2 true JP4097947B2 (en) 2008-06-11

Family

ID=27651708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002015258A Expired - Lifetime JP4097947B2 (en) 2002-01-24 2002-01-24 Transparent water vapor barrier film

Country Status (1)

Country Link
JP (1) JP4097947B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4698310B2 (en) 2005-07-11 2011-06-08 富士フイルム株式会社 Gas barrier film, substrate film and organic electroluminescence device
JP4583277B2 (en) * 2005-09-21 2010-11-17 富士フイルム株式会社 Gas barrier film and organic device using the same
JP4717669B2 (en) * 2006-03-13 2011-07-06 富士フイルム株式会社 Gas barrier film and organic device using the same
US7707963B2 (en) 2006-03-31 2010-05-04 3M Innovative Properties Company System for forming multi-layer films using corona treatments
EP2167315B1 (en) * 2007-07-12 2013-01-23 LG Chem, Ltd. Multiple-layer, multiple film having the same and electronic device having the same
JP5445179B2 (en) * 2010-02-01 2014-03-19 コニカミノルタ株式会社 Gas barrier film, method for producing gas barrier film, and organic electronic device
FR2980394B1 (en) 2011-09-26 2013-10-18 Commissariat Energie Atomique MULTILAYER STRUCTURE PROVIDING IMPROVED GAS SEALING
JP6287858B2 (en) * 2012-12-14 2018-03-07 コニカミノルタ株式会社 Gas barrier film, method for producing the same, and electronic device using the same
KR102089409B1 (en) * 2016-03-31 2020-03-16 주식회사 엘지화학 Barrier film

Also Published As

Publication number Publication date
JP2003211579A (en) 2003-07-29

Similar Documents

Publication Publication Date Title
JP3859518B2 (en) Transparent water vapor barrier film
TWI606928B (en) Articles including a (co) polymer reaction product of a urethane (multi)-(meth)acrylate (multi)-silane
JP4677692B2 (en) Transparent gas barrier material and method for producing the same
JP4104383B2 (en) Transparent water vapor barrier film and method for producing the same
US20080305350A1 (en) Barrier laminate, barrier film substrate, methods for producing them, and device
CN102985255A (en) Moisture resistant coating for barrier films
CN101228217A (en) Moisture barrier coatings
CN101391498A (en) Gas-barrier film and organic device comprising same
US20100003480A1 (en) Barrier laminate, gas barrier film, device and optical member
JP4097947B2 (en) Transparent water vapor barrier film
EP2138532B1 (en) Barrier laminate, gas barrier film and device
JP4148794B2 (en) Deposition film resin and gas barrier plastic film using the same
JP3933894B2 (en) Transparent water vapor barrier film
JP2003191370A (en) Water vapor barrier plastic film and display substrate for electroluminescence using the same
JP2003340971A (en) Gas barrier plastic film
US20090169897A1 (en) Barrier laminate, barrier film substrate, device and optical component
JP4701570B2 (en) Transparent gas barrier material and method for producing the same
JP4106931B2 (en) Transparent gas barrier thin film coating film
JP4180414B2 (en) Transparent barrier film
JP6578765B2 (en) Gas barrier laminate and method for producing the same
JP4004813B2 (en) Transparent gas / water vapor barrier film
JP2004042412A (en) Film coated with transparent gas-barrier membrane
WO2022255179A1 (en) Composite film manufacturing method and organic/inorganic hybrid film manufacturing method
JP2004292783A (en) Transparent barrier film and substrates for display element using this
JP2017113897A (en) Gas barrier laminate and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5