JP6276718B2 - 精密鋳造用鋳型の製造方法 - Google Patents

精密鋳造用鋳型の製造方法 Download PDF

Info

Publication number
JP6276718B2
JP6276718B2 JP2015017816A JP2015017816A JP6276718B2 JP 6276718 B2 JP6276718 B2 JP 6276718B2 JP 2015017816 A JP2015017816 A JP 2015017816A JP 2015017816 A JP2015017816 A JP 2015017816A JP 6276718 B2 JP6276718 B2 JP 6276718B2
Authority
JP
Japan
Prior art keywords
slurry
precision casting
casting mold
base layer
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015017816A
Other languages
English (en)
Other versions
JP2016140876A (ja
Inventor
英隆 小熊
英隆 小熊
宏介 藤原
宏介 藤原
幸郎 下畠
幸郎 下畠
良太 沖本
良太 沖本
峰明 松本
峰明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Aero Engines Ltd
Original Assignee
Mitsubishi Heavy Industries Aero Engines Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Aero Engines Ltd filed Critical Mitsubishi Heavy Industries Aero Engines Ltd
Priority to JP2015017816A priority Critical patent/JP6276718B2/ja
Publication of JP2016140876A publication Critical patent/JP2016140876A/ja
Application granted granted Critical
Publication of JP6276718B2 publication Critical patent/JP6276718B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

本発明は、精密鋳造に用いる精密鋳造用鋳型の製造方法に関する。
一般に、ロストワックス法等の精密鋳造法は、機械加工の困難な材質及び複雑な形状の部品を高い寸法精度で製造することが可能である。チタンアルミニウム基合金(TiAl基合金とも称する)は、比強度、耐熱性及び耐食性に優れ、航空機エンジンの各種部品やタービン翼等の材質として好適であるが、一般の金属や合金に比べて硬くて脆いために機械加工が困難である。このため、TiAl基合金の加工方法として上述した精密鋳造法が広く用いられている。通常、精密鋳造法では、鋳型をアルミナ(酸化アルミニウム:Al)、シリカ(二酸化ケイ素:SiO)、ジルコン(ケイ酸塩鉱物:ZrSiO)等のセラミックスで形成するが、TiAl基合金は、活性が非常に高く、酸素に対する親和性が高いために、セラミックスに含まれる酸素とTiAl基合金とが反応(酸化)し、TiAl基合金中の酸素濃度が高くなる。このため、TiAl基合金の鋳造品表面および内部が酸化物へ変質してしまう問題があった。
この問題を解決するために、TiAl基合金と反応性の低い材料、換言するとセラミックスよりも酸素との結合が強い材料(例えば、イットリア(酸化イットリウム:Y)やジルコニア(二酸化ジルコニウム:ZrO)等の金属酸化物)で鋳型を製造することが想定される。しかし、イットリアやジルコニアは、通常、鋳型に使用されるアルミナ等と比べて格段に高価であるため、これらの使用量の低減が要望されている。
このため、従来、セラミックスで形成された基層の内表面に、セラミックスよりも酸素との結合が強い金属酸化物の粉体と溶媒とを混合して生成したスラリを噴霧し、該基層の内表面を被膜する被膜層を形成する工程を有する鋳型の製造方法が提案されている(例えば、特許文献1参照)。この製造方法によれば、イットリア等の金属酸化物の使用量を抑えつつ、被覆層がセラミックスに含まれる酸素とTiAl基合金との接触を防止するため、鋳造時にTiAl基合金中の酸素濃度が高くなることを防止できる。
特開2011−255398号公報
ところで、精密鋳造法では、航空機エンジンの各種部品やタービン翼などの複雑な形状を高い寸法精度で鋳造するため、これらの形状を画定する基層(鋳型)の内表面も複雑な形状を呈する。このため、基層の内表面に金属酸化物のスラリを噴霧して、この内表面に被膜層を形成する手法では、複雑な形状の内表面を均一に被膜することは困難であった。さらに、例えば、基層の内表面のうち、スラリを噴霧するエアスプレーガンのノズルが進入できないような狭隘部では、ノズルが十分に届かないため被膜層を設けることが困難な場合もあった。
このため、本発明は、このような事情を考慮してなされたものであり、基層の内表面の全域に亘って被膜する被膜層を簡単に形成することができる精密鋳造用鋳型の製造方法を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、チタンアルミニウム基合金の精密鋳造に用いられる精密鋳造用鋳型の製造方法であって、鋳造用のろう型を、セラミックスの粉体と溶媒とを混合して生成した基層スラリに浸漬し、引き上げて乾燥した後に、ろう型のワックスを融解・除去してチタンアルミニウム基合金の溶湯を貯留可能な内側空間を画定する基層を形成する基層形成工程と、セラミックスよりも酸素との結合が強い金属酸化物の粉体と溶媒とを混合した被膜スラリを、基層の内側空間内に貯留する被膜スラリ貯留工程と、該被膜スラリを排出した後に、基層の内側空間側の内表面に付着したスラリ膜を乾燥して該内表面に被膜層を形成する被膜層形成工程と、を備えたことを特徴とする。
この構成によれば、被膜スラリを基層の内側空間内に貯留すると共に、該被膜スラリを排出した後に、基層の内側空間側の内表面に付着したスラリ膜を乾燥して該内表面に被膜層を形成する工程を備えるため、基層の内表面の形状によらず、該内表面の全域に亘って被膜する被膜層を簡単に形成することができる。
この構成において、金属酸化物は、希土類元素酸化物であっても良い。この構成によれば、希土類元素酸化物で被膜層を形成することにより、希土類元素酸化物、ジルコニア、高純度アルミナの中で最も良好な反応抑制効果を期待することができる。
また、金属酸化物は、ジルコニアであっても良い。この構成によれば、ジルコニアで表層を形成することにより、鋳込み後の降温時に結晶構造が変化して体積膨張し、崩壊しやすくなるため、鋳造品を鋳型から取り出す事が容易になる。
また、金属酸化物は、高純度アルミナであっても良い。この構成によれば、高純度アルミナで被膜層を形成することにより、希土類元素酸化物、ジルコニア、高純度アルミナの中で最も強度の高い鋳型が作製できる。
また、金属酸化物の体は、平均粒径が0.5μm以上80μm以下であることを特徴とする。
また、被膜層は、厚さが0.2mm以上2.0mm以下であることを特徴とする。また、被膜スラリは、金属酸化物の体を、溶媒としての水に分散させて形成されてもよい。この構成によれば、水は有機溶媒に比べて蒸発しにくくスラリ管理が容易となる。また、被膜スラリは、分散剤としてポリカルボン酸塩を用いて形成されても良い。この構成によれば、ポリカルボン酸塩を分散剤として加えることでスラリの凝集を防ぐことができ、スラリ寿命を長くすることができる。
本発明によれば、被膜スラリを基層の内側空間内に貯留すると共に、該被膜スラリを排出した後に、基層の内側空間側の内表面に付着したスラリ膜を乾燥して該内表面に被膜層を形成する工程を備えるため、基層の内表面の形状によらず、該内表面の全域に亘って被膜する被膜層を簡単に形成することができる。
図1は、本実施形態に係る精密鋳造用鋳型の構成を模式的に示す概略断面図である。 図2は、精密鋳造用鋳型の隔壁の構成を示す部分断面図である。 図3は、精密鋳造用鋳型の製造手順を示すフローチャートである。 図4は、精密鋳造用鋳型の製造手順の工程説明図である。
以下、本発明につき図面を参照しつつ詳細に説明する。なお、以下の説明により本発明が限定されるものではない。また、以下の説明における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。
図1は、本実施形態に係る精密鋳造用鋳型の構成を模式的に示す概略断面図である。図2は、精密鋳造用鋳型の隔壁の構成を示す部分断面図である。図1に示すように、精密鋳造用鋳型10は、チタンアルミニウム基合金(TiAl基合金)による鋳造を実現する鋳型であり、TiAl基合金の溶湯を貯留可能な内側空間11を画定する隔壁12を備える。この隔壁12は、基層23と、この基層23の内側空間11側の面23Bを被膜する被膜層21とが積層されて一体に形成されている。なお、図1は、鋳型の構成を模式的に表したものであるため、被膜層21または基層23の厚み、及び、内側空間11の大きさについて、それぞれ相対的な関係を示すものではない。また、図1では、説明の便宜上、内側空間11及び隔壁12を簡素な形状として描いているが、例えば、タービン翼を鋳造する場合には、隔壁12は、タービン翼の形状に対応した内側空間11を画定すると共に、隔壁12の内側の表面(被膜層21の表面)には複雑な凹凸部が形成される。
基層23は、精密鋳造用鋳型10の本体部を構成するものであり、セラミックスCで構成されている。本実施形態では、セラミックスCとして、例えば、ジルコン(ケイ酸塩鉱物:ZrSiO)が使用される。また、ジルコンの他に、アルミナ(酸化アルミニウム:Al)やシリカ(二酸化ケイ素:SiO)等を使用することができる。
基層23は、図2に示すように、複数の単位基層23Aが積層される。単位基層23Aは、スラリ層33とスタッコ層34とが積層される。スラリ層33は、セラミックスC(例えば、ジルコン)の体(例えば、平均粒径:5μm以上50μm以下)により形成される。スタッコ層34は、スラリ層33を形成する体よりも大きいセラミックスC(例えば、ジルコン)のスタッコ材(例えば、平均粒径:300μm以上700μm以下)によって形成される。ここで、平均粒径は、レーザー回折・散乱式粒度分布計(Microtrac社製MT3000 IIシリーズ等)によって計測する。また、セラミックスCとして、アルミナやシリカを使用した場合においても、スラリ層33は、セラミックスCの体(例えば、平均粒径:5μm以上50μm以下)により形成され、スタッコ層34は、セラミックスCのスタッコ材(例えば、平均粒径:300μm以上700μm以下)によって形成されることが好ましい。
基層23は、上記したスラリ層33とスタッコ層34とからなる単位基層23Aを複数回(例えば10回)形成することにより複層化して構成される。スラリ層33に重ねてスタッコ層34を設けることにより、単位基層23Aの肉厚を少ない工程で確保することができ、また、基層スラリを早く乾燥させることができると共に、スラリ層33の乾燥割れを防止できる。上記した基層スラリは、セラミックスCの体を、バインダとしてシリカゾルを用いて作成される。基層23は、単位基層23Aを複層化して形成されることにより、所望の厚み(例えば10mm)の精密鋳造用鋳型10を容易に形成することができる。
被膜層21は、基層23の内側空間11側の面23Bを被膜し、内側空間11を画定する隔壁12の内表面を形成する層であり、金属酸化物Oで形成されている。本実施形態では、金属酸化物Oとして、例えば、イットリア(酸化イットリウム(Y))が使用される。また、イットリアの他に、酸化イッテルビウム(Yb)、酸化エルビウム(Er)及び酸化セリウム(Ce)等の希土類元素酸化物を使用してもよい。また、金属酸化物Oとしては、イットリア安定化ジルコニア(YSZ)を用いることもできる。また、金属酸化物Oとしては、高純度アルミナ(Al)を用いることもできる。また、金属酸化物Oとしては、これらを混合して使用することもできる。これらの金属酸化物Oは、該金属酸化物Oを単一で使用する場合、または、複数種を混合して使用する場合であっても、金属酸化物Oの純度が99%以上となることが好ましい。また、高純度アルミナとはアルミナの純度が高いものをいう。具体的には、一般的なアルミナの生成過程において、不純物として含まれるナトリウム酸化物(NaO)の含有量が0.2%未満のものをいう。
被膜層21は、金属酸化物Oの体が分散された被膜スラリにより形成され、被膜スラリを基層23の内側空間11側の面23Bに付着させると共に、該被膜スラリを乾燥させて構成される。上記した被膜スラリは、金属酸化物Oの体を、バインダとして水、分散剤としてポリカルボン酸塩を用いて作成される。被膜層21は、該被膜層21の下層に位置する基層23が露出しない程度の厚み(例えば0.5mm)を備える。被膜層21は、少なくとも、0.5mm以上(例えば、0.5mm〜2.0mm)に形成することが好ましい。また、被膜層21の金属酸化物Oの体は、平均粒径が0.5μm以上80μm以下であることが好ましい。平均粒径が0.5μmよりも小さいと、水和反応が生じ、被膜スラリが固まってしまう。一方、平均粒径が80μmを超えると被膜スラリ中で金属酸化物Oの沈殿が生じ、被膜スラリの濃度分布にムラが生じてしまう。金属酸化物Oの体の平均粒径を、0.5μm以上80μm以下とすることにより、金属酸化物Oの体が均一に分散した被膜スラリを作成することができる。
被膜層21は、上述のように、内側空間11を画定する隔壁12の内表面を形成する層であるため、鋳造時に内側空間11に貯留されるTiAl基合金の溶湯に直接接触する。このため、被膜層21を構成する金属酸化物Oは、TiAl基合金との反応性が低い材料、換言すると、基層23を形成するセラミックスCよりも酸素との結合が強い材料である。次に、セラミックスCと酸素との結合の強さ及び金属酸化物Oと酸素との結合の強さについて説明する。
TiAl基合金の溶湯の酸化メカニズムは、TiAl基合金の溶湯に含有されるTiが鋳型のセラミックスCの酸素を奪い取る、以下の反応による。なお、以下の反応におけるMは、任意の元素を示している。
3M+Ti→TiO+2/3M
表1は、セラミックスC及び金属酸化物Oの上記反応での各平衡定数Kpを示したものである。表1における各平衡定数Kpは、生成自由エネルギーによる平衡計算によって求めたものであり、対数表記している。
Figure 0006276718
表1に示すように、セラミックスCのアルミナ(酸化アルミニウム:Al)、シリカ(二酸化ケイ素:SiO)、ジルコン(ケイ酸塩鉱物:ZrSiO)に比べて、金属酸化物Oの酸化イットリウム(Y)、酸化イッテルビウム(Yb)、酸化エルビウム(Er)、酸化セリウム(Ce)等の希土類元素酸化物、イットリア安定化ジルコニア(YSZ)、もしくは、高純度アルミナ(酸化アルミニウム:Al)は平衡定数Kpが小さい。このため、上記した希土類元素酸化物、イットリア安定化ジルコニア、もしくは、高純度アルミナに対して、TiAl基合金の溶湯が反応し難いことがわかる。
すなわち、上述した精密鋳造用鋳型10によれば、鋳造時に内側空間11に貯留されるTiAl基合金の溶湯に接触する被膜層21は、セラミックスCよりも酸素との結合が強い金属酸化物Oで形成され、この被膜層21が基層23を被膜するため、セラミックスCで形成された基層23に比べて、TiAl基合金の溶湯が反応し難くなり、該TiAl基合金の酸素濃度が高くなることを防止できる。
さらに、TiAl基合金は、溶湯の温度を上昇させると更に活性となるが、被膜層21が基層23を被膜することでTiAl基合金の溶湯が反応し難くなるため、溶湯を高温に設定することができ、湯回り性の向上を図ることができる。
次に、精密鋳造用鋳型の製造方法を説明する。図3は、精密鋳造用鋳型の製造手順を示すフローチャートであり、図4は、製造手順の工程説明図である。
(基層形成工程)
まず、ワックス模型(ろう型)を基層スラリに浸漬(ディッピング)する(ステップS11)。ワックス模型は、鋳造目的の製品(鋳物)とほぼ同形状を呈するものである。ワックス模型は、事前に形成した金型に、液化したワックス(ろう)を注入し、冷却して固化したものを金型から取り出して形成される。本構成では、精密鋳造用鋳型10は、基層23における内側空間11側の面23Bに被膜層21を設けているため、この被膜層21の厚みを考慮し、鋳造目的の製品(鋳物)よりも被膜層21の厚み分だけ大きなワックス模型を形成することが好ましい。
基層スラリは、セラミックスCの粉体を溶媒に分散させて生成される。本実施形態では、セラミックスCとしてジルコン(平均粒径5μm以上〜50μm以下)を用いて、このジルコンの粉体をバインダとしてのシリカゾルに分散させて作成される。
次に、ワックス模型を基層スラリから引き上げ、余分な基層スラリを落下させた後、ワックス模型に塗布された基層スラリの外周面にスタッコ材(例えば、平均粒径:300μm以上700μm以下のジルコン粒)を振り掛けるスタッコイングを行う(ステップS12)。次に、上記したステップS11及びステップS12の処理を所定回数(例えば10回)繰り返したかを判定する(ステップS13)。繰り返していなければ(ステップS13;No)、処理をステップS11に戻し、繰り返していれば(ステップS13;Yes)、処理をステップS14に移行する。これにより、図4の状態(A)に示すように、ワックス模型40の外周面40Aに基層スラリとスタッコ材からなる単位基層23Aが複層化された乾燥成形体46が形成される。
次に、乾燥成形体からワックス模型を除去(脱ワックス)する(ステップS14)。具体的には、乾燥成形体をオートクレーブの内部に入れ、例えば約150℃に加熱する。オートクレーブは、内部を加圧蒸気で満たすことで、乾燥成形体内のワックス模型を融解し、排出させる。これにより、図4の状態(B)に示すように、ワックス模型が除去されて、鋳造時にTiAl基合金の溶湯を貯留可能な内側空間11が形成される。
次に、ワックス模型を除去した乾燥成形体を焼成する(ステップS15)。具体的には、乾燥成形体を焼成炉の内部に入れ、例えば950℃で加熱する。これにより、図4の状態(C)に示すように、乾燥成形体に含まれる水成分や不要な成分が除去され、さらに、焼成されることで硬化され、セラミックスC製の基層23が形成される。
(被膜スラリ貯留工程)
次に、図4の状態(D)に示すように、形成された基層23の内側空間11に被膜スラリ50を注入する(ステップS16)。被膜スラリ50は、金属酸化物Oの体を溶媒に分散させて作成される。本実施形態では、金属酸化物Oとしてイットリア(中国稀土社製;平均粒径5μm、粒径分布3μ以上10μm以下)、分散剤としてポリカルボン酸(ポイズ532A)が用いられ、イットリア体5000(g)とポリカルボン酸50(g)を水2500(g)に分散させることで被膜スラリ50が作成される。被膜スラリ50を作成するに際し、金属酸化物Oの体の粒径(大きさ)は重要である。粒径が小さすぎると水和反応が生じ、被膜スラリ50が固まってしまう。一方、粒径が大きすぎると被膜スラリ50中で金属酸化物Oの沈殿が生じ、被膜スラリ50の濃度分布にムラが生じてしまう。このため、本実施形態では、金属酸化物Oとしてのイットリアの体を、平均粒径0.5μm〜80μmの大きさに調整することにより、該イットリアの体が均一に分散された被膜スラリ50を作成可能としている。さらに、より好ましくは、イットリアの体を、平均粒径5μm、粒径分布3μm以上10μm以下に調整することにより、より均一に分散された被膜スラリ50を生成することができる。
基層23の内側空間11に注入された被膜スラリ50は、基層23の内側空間11側の面(内表面)23Bに付着してスラリ膜51(図4の状態(E)参照)を形成する。基層23を構成するセラミックスCは多孔質を有するため、被膜スラリ50が上記した面23Bに付着すると、被膜スラリ50が有する水分がセラミックスCに吸収される。このため、面23Bでは、被膜スラリ50の濃度が高まり固まった状態のスラリ膜51となる。本実施形態では、被膜スラリ50は、イットリアの体が均一に分散されて形成されているので、形成されたスラリ膜51の膜厚にムラが生じることもない。
次に、基層の内側空間に被膜スラリを注入した状態で所定時間(例えば30秒)待機する(ステップS17)。発明者の研究・実験によれば、上記したスラリ膜51の膜厚は、待機する時間の長さと関連することが分かっている。本実施形態では、30秒待機することにより膜厚は0.5mmとなり、60秒待機すると膜厚は0.7mm、120秒待機すると膜厚は1mmとなる。このように、待機する時間を調整することにより、所望の膜厚に調整することができるため、鋳型の精度の向上を実現できる。
(被膜層形成工程)
次に、基層の内側空間に貯留された被膜スラリを排出する(ステップS18)。これにより、図4の状態(E)に示すように、基層23の内側空間11側の面23Bに均一な膜厚に形成されたスラリ膜51が露出する。このスラリ膜51は、固まった状態となっているため、自重により膜厚が変化することはない。そして、最後に、このスラリ膜51を乾燥させる(ステップS19)ことにより、図4の状態(F)に示すように、基層23の内側空間11側の面23Bを被膜する被膜層21を備えた精密鋳造用鋳型10が得られる。
この得られた精密鋳造用鋳型10は、TiAl基合金の溶湯が貯留される内側空間11に面する被膜層21が、希土類元素酸化物、ジルコニア、高純度アルミナのいずれか(例えばイットリア)で形成されるため、精密鋳造用鋳型10の内側空間11にTiAl基合金の溶湯が貯留した際に、このTiAl基合金の溶湯が鋳型と反応し難くなり、該TiAl基合金の酸化を抑制できる。
本構成による製造方法では、基層23の内側空間11に被膜スラリ50を注入することで、被膜層21(スラリ膜51)を形成しているため、基層23の内側空間11側の面23Bの全域を簡単に被膜することができる。特に、精密鋳造用鋳型10では、内側空間11が複雑に形成されることが多いためより有用となる。
次に、精密鋳造用鋳型10の製造方法において、スラリ膜51の膜厚と待機する時間との関係について実施例を参照して説明する。
(実施例1)
上述したように、基層23を構成するセラミックスCとしてジルコンを用いた。所定形状のワックス模型40に対し、ジルコンの粉体をシリカゾルに分散させた基層スラリのディッピングと、ジルコン粒からなるスタッコ材のスタッコイングとを10回繰り返し行うことで、単位基層23Aが複層化され、厚みが10mmとなった乾燥成形体46を形成した。この乾燥成形体46からワックス模型40を除去した後、950℃で焼成することにより、セラミックスC製の基層23を形成した。
被膜スラリ50は、金属酸化物Oとしてイットリア(中国稀土社製;平均粒径5μm;粒径分布3μm以上10μm以下)、分散剤としてポリカルボン酸(ポイズ532A)が用いられ、イットリア体5000(g)とポリカルボン酸50(g)を水2500(g)に分散させて作成した。この被膜スラリ50を基層23の内側空間11に注入した後、30秒間待機(放置)し、被膜スラリ50を排出した後、乾燥した。これにより、基層23の内側空間11側の面(内表面)23Bに、0.5mmの厚みの被膜層21が形成された。また、待機した時間を60秒とした場合には、被膜層21の厚みは0.7mmであった。
このように、被膜スラリ50を注入した状態で待機する時間を調整することにより、被膜層21を所望の厚みに調整することができるため、精密鋳造用鋳型10の精度の向上を実現できる。また、イットリアを含む希土類元素酸化物を用いた構成では、希土類元素酸化物、YSZ、高純度アルミナの中で最も良好な反応抑制効果が期待できる。
(実施例2)
実施例2は、基層23を構成するセラミックスCとしてアルミナを用いた。所定形状のワックス模型40に対し、アルミナの粉体をシリカゾルに分散させた基層スラリのディッピングと、アルミナ粒からなるスタッコ材のスタッコイングとを10回繰り返し行うことで、単位基層23Aが複層化され、厚みが10mmとなった乾燥成形体46を形成した。この乾燥成形体46からワックス模型40を除去した後、950℃で焼成することにより、セラミックスC製の基層23を形成した。
被膜スラリ50は、金属酸化物OとしてYSZ(イットリア安定化ジルコニア)を用いた。YSZの体(サンゴバン社製;平均粒径5μm、粒径分布1μm以上15μm以下)、分散剤としてポリカルボン酸(ポイズ532A)が用いられ、YSZ体6000(g)とポリカルボン酸50(g)を水2500(g)に分散させて作成した。この被膜スラリ50を基層23の内側空間11に注入した後、30秒間待機(放置)し、被膜スラリ50を排出した後、乾燥した。これにより、基層23の内側空間11側の面(内表面)23Bに、0.5mmの厚みの被膜層21が形成された。また、待機した時間を60秒とした場合には、被膜層21の厚みは0.7mmであった。
このように、セラミックスCをアルミナ、金属酸化物OをYSZに変更した場合であっても、被膜スラリ50を注入した状態で待機する時間を調整することにより、被膜層21を所望の厚みに調整することができた。また、YSZを用いた構成では、鋳込み後の降温時に結晶構造が変化して体積膨張し、崩壊しやすくなるため、鋳造品を鋳型から取り出すことが容易になる。
(実施例3)
基層23の構成、及び、製造手順は実施例2と同一である。実施例3では、被膜スラリ50は、金属酸化物Oとして超高純度アルミナ(純度99.99%)を用いた。超高純度アルミナの体(Doral Fused Materials Pty社製;平均粒径30μm、粒径分布1μm以上100μm以下)、分散剤としてポリカルボン酸(ポイズ532A)が用いられ、超高純度アルミナ体3000(g)とポリカルボン酸30(g)を水2000(g)に分散させて作成した。この被膜スラリ50を基層23の内側空間11に注入した後、30秒間待機(放置)し、被膜スラリ50を排出した後、乾燥した。これにより、基層23の内側空間11側の面(内表面)23Bに、0.4mmの厚みの被膜層21が形成された。また、待機した時間を60秒とした場合には、被膜層21の厚みは0.7mmであった。
このように、セラミックスCをアルミナ、金属酸化物Oを超高純度アルミナに変更した場合であっても、被膜スラリ50を注入した状態で待機する時間を調整することにより、被膜層21を所望の厚みに調整することができた。また、超高純度アルミナ(高純度アルミナ)を用いた構成では、希土類元素酸化物、YSZ、高純度アルミナの中で最も強度の高い鋳型を作製できる。
以上、説明したように、本実施形態の精密鋳造用鋳型10の製造方法によれば、チタンアルミニウム基合金の溶湯を貯留可能な内側空間11を画定する基層23をセラミックスCで形成する基層形成工程と、セラミックスCよりも酸素との結合が強い金属酸化物Oの粉体と溶媒とを混合した被膜スラリ50を、基層23の内側空間11内に貯留する被膜スラリ貯留工程と、被膜スラリ50を排出した後に、基層23の内側空間11側の面23Bに付着したスラリ膜51を乾燥して被膜層21を形成する被膜層形成工程と、を備えたため、基層23の内側空間11側の面23Bの形状によらず、該面23Bの全域に亘って被膜する被膜層21を簡単に形成することができる。
以上、本発明の一実施形態について説明したが、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。例えば、本実施形態では、金属酸化物Oの一例として、イットリア(酸化イットリウム(Y))、イットリア安定化ジルコニア(YSZ)、もしくは高純度アルミナ(Al)を例示したが、酸化イッテルビウム(Yb)、酸化エルビウム(Er)及び酸化セリウム(Ce)等の希土類元素酸化物を用いても同様の効果を得ることができる。
また、本実施形態では、精密鋳造用鋳型10は、一例としてタービン翼を鋳造するものとして説明したが他の部品を鋳造するものであってもよい。
10 精密鋳造用鋳型
11 内側空間
12 隔壁
21 被膜層
23 基層
23A 単位基層
23B 基層の内側空間側の面(内表面)
40 ワックス模型
40A 外周面
46 乾燥成形体
50 被膜スラリ
51 スラリ膜
C セラミックス
O 金属酸化物

Claims (8)

  1. チタンアルミニウム基合金の精密鋳造に用いられる精密鋳造用鋳型の製造方法であって、
    鋳造用のろう型を、セラミックスの粉体と溶媒とを混合して生成した基層スラリに浸漬し、引き上げて乾燥した後に、前記ろう型のワックスを融解・除去して前記チタンアルミニウム基合金の溶湯を貯留可能な内側空間を画定する基層を形成する基層形成工程と、
    前記セラミックスよりも酸素との結合が強い金属酸化物の粉体と溶媒とを混合した被膜スラリを、前記基層の内側空間内に貯留する被膜スラリ貯留工程と、
    該被膜スラリを排出した後に、前記基層の前記内側空間側の内表面に付着したスラリ膜を乾燥して該内表面に被膜層を形成する被膜層形成工程と、を備えたことを特徴とする精密鋳造用鋳型の製造方法。
  2. 前記金属酸化物は、希土類元素酸化物であることを特徴とする請求項1に記載の精密鋳造用鋳型の製造方法。
  3. 前記金属酸化物は、ジルコニアであることを特徴とする請求項1に記載の精密鋳造用鋳型の製造方法。
  4. 前記金属酸化物は、高純度アルミナであることを特徴とする請求項1に記載の精密鋳造用鋳型の製造方法。
  5. 前記金属酸化物の体は、平均粒径が0.5μm以上80μm以下であることを特徴とする請求項1〜4のいずれか一項に記載の精密鋳造用鋳型の製造方法。
  6. 前記被膜層は、厚さが0.2mm以上2.0mm以下であることを特徴とする請求項1〜5のいずれか一項に記載の精密鋳造用鋳型の製造方法。
  7. 前記被膜スラリは、前記金属酸化物の体を、溶媒としての水に分散させて形成されたことを特徴とする請求項1〜6のいずれか一項に記載の精密鋳造用鋳型の製造方法。
  8. 前記被膜スラリは、分散剤としてポリカルボン酸塩を用いて形成されることを特徴とする請求項1〜7のいずれか一項に記載の精密鋳造用鋳型の製造方法。
JP2015017816A 2015-01-30 2015-01-30 精密鋳造用鋳型の製造方法 Active JP6276718B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015017816A JP6276718B2 (ja) 2015-01-30 2015-01-30 精密鋳造用鋳型の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015017816A JP6276718B2 (ja) 2015-01-30 2015-01-30 精密鋳造用鋳型の製造方法

Publications (2)

Publication Number Publication Date
JP2016140876A JP2016140876A (ja) 2016-08-08
JP6276718B2 true JP6276718B2 (ja) 2018-02-07

Family

ID=56569222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015017816A Active JP6276718B2 (ja) 2015-01-30 2015-01-30 精密鋳造用鋳型の製造方法

Country Status (1)

Country Link
JP (1) JP6276718B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111673053B (zh) * 2020-06-20 2021-12-31 东风精密铸造有限公司 一种精密铸造集成式浮砂设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5187420A (ja) * 1975-01-30 1976-07-31 Furukawa Electric Co Ltd Seimitsuchuzoyoigatanoseizohoho
JPS5832020B2 (ja) * 1980-08-08 1983-07-09 石川県 鋳型間隙をシ−ルする塗型法
JPS63140740A (ja) * 1986-12-01 1988-06-13 Kawasaki Steel Corp 高融点活性金属鋳造用鋳型
JPS63215335A (ja) * 1987-03-02 1988-09-07 Kao Corp 塗型剤の塗布方法
US4862947A (en) * 1988-08-02 1989-09-05 Pcc Airfoils, Inc. Method of casting an article
JPH05208241A (ja) * 1992-01-31 1993-08-20 Hitachi Metals Ltd チタンまたはチタン合金の精密鋳造用鋳型
JP5590975B2 (ja) * 2010-06-09 2014-09-17 三菱重工業株式会社 鋳造用具、鋳造用具の生産方法及び精密鋳造方法
JP2014231081A (ja) * 2013-05-29 2014-12-11 三菱重工業株式会社 精密鋳造用中子及びその製造方法、精密鋳造用鋳型

Also Published As

Publication number Publication date
JP2016140876A (ja) 2016-08-08

Similar Documents

Publication Publication Date Title
US12042854B2 (en) Castings and manufacture methods
JP5074065B2 (ja) 耐熱性金属金属間複合材の製造方法、並びに関連する物品及び組成物
US4703806A (en) Ceramic shell mold facecoat and core coating systems for investment casting of reactive metals
US11014143B2 (en) Casting mold, method of manufacturing same, TiAl alloy cast product, and method of casting same
US9174271B2 (en) Casting system for investment casting process
JP5654195B2 (ja) チタン合金溶融用強化耐火物るつぼ
JP2007230856A (ja) コーティング組成および保護コーティング堆積方法
JP2016113360A (ja) 高温使用のための物品および製造方法
JP2007253237A (ja) 取り付け方法およびインベストメント鋳造方法
JPH06583A (ja) チタン及びその合金の鋳造用中子
CN110280717B (zh) 一种喷墨粘接三维打印砂型钛合金铸造工艺
JP5590975B2 (ja) 鋳造用具、鋳造用具の生産方法及び精密鋳造方法
JP6276718B2 (ja) 精密鋳造用鋳型の製造方法
JP6276717B2 (ja) 精密鋳造用鋳型、及び、精密鋳造用鋳型の製造方法
US20190264980A1 (en) Crucible for melting reactive alloys
US11542586B2 (en) Coating for refractory alloy part
JP6344034B2 (ja) TiAl合金の鋳造方法
JP2022512205A (ja) シェルモールド製造用の改良された鋳造用スラリー
RU2625859C2 (ru) Способ изготовления литейных высокоогнеупорных керамических форм
JP7557409B2 (ja) セラミックコア
JP2007069247A (ja) チタンアルミ合金用鋳型
JP6967884B2 (ja) 積層造形物コーティング用スラリーおよび立体形状物
EP2370376B1 (en) Method of impregnating crucibles and refractory articles
KR101328099B1 (ko) 주조품 제조 방법
JPH038716A (ja) 希土類酸化物の粒状物

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20161021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180112

R150 Certificate of patent or registration of utility model

Ref document number: 6276718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150