JP6275025B2 - 光ファイバの実装部品、光モジュールおよび製造方法 - Google Patents

光ファイバの実装部品、光モジュールおよび製造方法 Download PDF

Info

Publication number
JP6275025B2
JP6275025B2 JP2014250203A JP2014250203A JP6275025B2 JP 6275025 B2 JP6275025 B2 JP 6275025B2 JP 2014250203 A JP2014250203 A JP 2014250203A JP 2014250203 A JP2014250203 A JP 2014250203A JP 6275025 B2 JP6275025 B2 JP 6275025B2
Authority
JP
Japan
Prior art keywords
optical fiber
laser element
mounting
substrate
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014250203A
Other languages
English (en)
Other versions
JP2015194689A (ja
Inventor
薫 依田
薫 依田
昌史 井出
昌史 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2014250203A priority Critical patent/JP6275025B2/ja
Priority to US15/128,057 priority patent/US9995889B2/en
Priority to CN201580016083.6A priority patent/CN106104344B/zh
Priority to PCT/JP2015/054312 priority patent/WO2015146377A1/ja
Publication of JP2015194689A publication Critical patent/JP2015194689A/ja
Application granted granted Critical
Publication of JP6275025B2 publication Critical patent/JP6275025B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は、光ファイバの実装部品、光モジュールおよび製造方法に関する。
レーザ素子からの光を直接光ファイバに入射させる(すなわち、光結合させる)光モジュールでは、光結合の効率を上げるために、レーザ素子と光ファイバとを調芯する必要がある。この調芯工程には、予め設けられた位置合わせ用のマークを基準としてレーザ素子と光ファイバの相対位置を調整するパッシブアライメントと、レーザ素子を発光させ光ファイバに結合される光出力をモニタしながら相対位置を調整するアクティブアライメントがある。一般に、アクティブアライメントでは、パッシブアライメントと比べて調芯の精度は高くなるが、調芯工程に時間を要するため製造コストが高くなる。
そこで、簡易な構造で従来のアクティブアライメントと同等の高い光結合効率を実現できるようにした光モジュールが提案されている(例えば、特許文献1を参照)。特許文献1の光モジュールでは、光ファイバを内部に保持するガイド溝とガイド溝の終端部分につながる凹溝とを設けたガイド基板上に、表面にLD(レーザダイオード)を取り付けたLD実装基板が、LDを凹溝内に収容するように取り付けられる。この光モジュールでは、光ファイバとLDとの垂直方向の位置決めをパッシブアライメントにより行い、横方向の位置決めをアクティブアライメントにより行う。
特開平10−311936号公報
しかしながら、特許文献1の光モジュールでは、x,y,zの3方向にサブミクロンのオーダでLDと光ファイバとを調芯することは難しい。調芯の精度を上げるためには、パッシブアライメントによりなるべく正確にミクロンオーダの位置決めをした上で、アクティブアライメントにより効率よくサブミクロンオーダの微調整をすることが望ましい。また、レーザ素子を含む光モジュールでは、レーザ素子にカバーを設けて素子の保護や防塵などの対策をとることが、実用上重要である。
そこで、本発明は、基板に実装されるレーザ素子を保護しつつ、レーザ素子と光ファイバとの調芯をより高精度に行うことが可能な光ファイバの実装部品を提供することを目的とする。また、本発明は、本構成を有しない場合と比べてより小型化かつ薄型化し、より低コストで製造可能な光モジュールを提供することを目的とする。
本発明の実装部品は、レーザ素子が実装された実装基板と接合されてレーザ素子を光ファイバに光結合させるためのシリコン製の実装部品であって、実装基板との接合面に対して予め定められた深さに光ファイバのコアが位置するように光ファイバを固定するための溝部と、溝部に連接しレーザ素子を内部に収容するための凹部とを有し、接合面に垂直な方向の厚さが、レーザ素子を凹部に収容するように接合面を実装基板に接触させたときに赤外線の透過像によりレーザ素子の位置を検知可能な厚さに設定されることを特徴とする。
上記の実装部品では、絶縁体上シリコンによるストッパ層を内部に含み、溝部は、接合面からストッパ層までのシリコンを除去して形成され、凹部は、接合面からストッパ層を越える深さまでのシリコンを除去して形成されることが好ましい。
上記の実装部品では、接合面に垂直な方向の厚さが200μm以上1000μm以下であることが好ましい。
上記の実装部品では、接合面は、実装基板上に設けられた金属製のマイクロバンプとの間で表面活性化接合されるための金属膜を有することが好ましい。
また、本発明の光モジュールは、レーザ素子からの光を光ファイバに光結合させる光モジュールであって、実装基板と、実装基板上に実装されたレーザ素子と、実装基板との接合面に対して予め定められた深さに光ファイバのコアが位置するように光ファイバを固定するための溝部、および溝部に連接しレーザ素子を内部に収容するための凹部を有するシリコン製の実装部品と、実装部品の溝部に固定された光ファイバとを有し、接合面に垂直な方向の実装部品の厚さが、レーザ素子を凹部に収容するように実装部品の接合面を実装基板に接触させたときに赤外線の透過像によりレーザ素子の位置を検知可能な厚さに設定されることを特徴とする。
上記の光モジュールでは、レーザ素子はジャンクションアップで実装基板上に実装され、実装基板は光ファイバを収容するための溝部が形成されていない平坦な基板であることが好ましい。
上記の光モジュールでは、実装基板にはレーザ素子を駆動するための集積回路が内蔵されていることが好ましい。
また、本発明の製造方法は、レーザ素子からの光を光ファイバに光結合させる光モジュールの製造方法であって、レーザ素子を実装基板上に実装する工程と、実装基板との接合面に対して予め定められた深さに光ファイバのコアが位置するように光ファイバを固定するための溝部、および溝部に連接しレーザ素子を内部に収容するための凹部を有するシリコン製の実装部品の溝部に光ファイバを固定する工程と、レーザ素子を凹部に収容するように実装部品の接合面を実装基板に接触させる工程と、赤外線の透過像によりレーザ素子の位置を検知しながら、レーザ素子から光ファイバに結合される光出力が最大となるように実装基板と実装部品とを位置決めする工程と、位置決めされた実装部品と実装基板とを接合する工程とを有することを特徴とする。
上記の製造方法の位置決めする工程は、赤外線の透過像によりレーザ素子の位置を検知しながら、実装基板上に設けられたアライメントマークを基準に、レーザ素子に対する光ファイバの水平位置を調整し、レーザ素子から光ファイバに結合される光を光検出器で検出しながら、光検出器の出力が最大となるように、レーザ素子に対する光ファイバの水平位置および垂直位置を決定することを含むことが好ましい。
上記の光ファイバの実装部品によれば、基板に実装されるレーザ素子を保護しつつ、レーザ素子と光ファイバとの調芯をより高精度に行うことが可能である。また、上記の光モジュールは、本構成を有しない場合と比べてより小型化かつ薄型化し、より低コストで製造可能である。
光モジュール1の概略構成を示す斜視図である。 サブ基板50の斜視図である。 サブ基板50の平面図および断面図である。 Siプラットフォーム10とサブ基板50およびLD素子20との接合部15,16を説明するための図である。 サブ基板50’の斜視図である。 サブ基板50の製造工程の例を説明するための図である。 サブ基板50の製造工程の例を説明するための図である。 光モジュール1の製造工程の例を示すフローチャートである。 調芯装置100の概略構成図である。 LD素子20と光ファイバ40のパッシブアライメントに用いられるアライメントマークの例を示す図である。 LD素子20と光ファイバ40のパッシブアライメントに用いられるアライメントマークの別の例を示す図である。 調芯実装装置200の概略構成図である。 光モジュール2の概略構成を示す斜視図である。 光モジュール3の概略構成を示す斜視図である。 光モジュール4の概略構成を示す斜視図である。 光モジュール4,1を比較する断面図である。 光モジュール5の概略構成を示す断面図である。
以下、図面を参照しつつ、光ファイバの実装部品、光モジュールおよび製造方法について説明する。ただし、本発明が図面または以下に記載される実施形態に限定されるものではないことを理解されたい。
この実装部品は、例えば、シリコン(Si)製のファイバサブマウント基板(以下、単に「サブ基板」という)かつ実装基板上のレーザ素子の保護部品(カバー)として機能する。シリコンは近赤外線を透過するため、この実装部品がレーザ素子を覆うように接合面を実装基板に接触させた状態で、内部のレーザ素子の位置を赤外線カメラで観察することができる。したがって、近赤外光の透過像により、カバー越しにレーザ素子と光ファイバとの調芯を行うことができる。この実装部品は、レーザ素子が基板上に実装された状態で、レーザ素子をより高い完成度でパッケージ化できるようにする。
図1は、光モジュール1の概略構成を示す斜視図である。光モジュール1は、主要な構成要素として、Siプラットフォーム10、LD素子20、PD素子25、ドライバIC30、光ファイバ40、サブ基板50などを有する。光モジュール1は、シリコン製の基板であるSiプラットフォーム10の上面にLD素子20、ドライバIC30、光ファイバ40、サブ基板50などが実装された集積化レーザモジュールである。
Siプラットフォーム10は、実装基板の一例であり、例えば十数mm角程度の大きさを有する。また、Siプラットフォーム10には、上面から底面に貫通するシリコン貫通電極(through-silicon via:TSV)が設けられている。このTSVにより、LD素子20、PD素子25などの配線は、Siプラットフォーム10の内部の配線層または裏面に引き回されている。Siプラットフォーム10は、LD素子20、ドライバIC30などに電気信号を供給するための回路基板(図示せず)の上に搭載される。その回路基板から、貫通電極を通してLD素子20、ドライバIC30などの各素子に電気信号が供給される。
LD素子(レーザ素子)20は、赤色、緑色または青色のレーザ光を出射するレーザダイオードである。アイトラッキングやデプスセンシングに応用する場合、LD素子20には、例えば780nm〜1300nmの近赤外のレーザ光を出射するレーザダイオードを用いることもできる。LD素子20は、半田実装などでドライバIC30が実装された後に、表面活性化接合でSiプラットフォーム10の上面に実装される。また、LD素子20は、放熱特性を改善しSiプラットフォーム10の表面を基準面として高精度に位置決めするために、活性層がSiプラットフォーム10側に位置するように、ジャンクションダウン(フェイスダウン)で実装される。これにより、Siプラットフォーム10に対する実装面側とそれと対向する面側には、それぞれLD素子20のp電極とn電極が配置される。
PD素子25は、LD素子20の後方光を受光し、その光量をモニタするためのフォトダイオードである。PD素子25は、LD素子20によるレーザ光の出射方向に対してLD素子20の背面側に設けられる。PD素子25はSiプラットフォーム10上に半田で実装される。
ドライバIC30は、LD素子20を駆動する機構であり、少なくとも、LD素子20への電流供給を制御する機構を有する。ドライバIC30は、デジタルインタフェースを実装していることが好ましく、また制御部としてCPUやメモリなどのコア部分を含んでいればなおよい。ドライバIC30は、例えば数mm角程度の大きさを有し、Siプラットフォーム10上に半田で実装される。
光ファイバ40は、LD素子20から出射されたレーザ光を導波する、例えばシングルモードのファイバ(SMF)である。光ファイバ40は、サブ基板50に固定され、サブ基板50を介してSiプラットフォーム10に固定される。LD素子20に面した光ファイバ40の端部には、結合部材としてGI(Graded Index)レンズを一体的に設けてもよい。また、光ファイバ40を設ける代わりに、例えばSiプラットフォーム10上に平板状の光導波路を実装して、その光導波路内でLD素子20からのレーザ光を導波させてもよい。
図2(A)および図2(B)は、サブ基板50の斜視図である。また、図3(A)および図3(B)は、それぞれサブ基板50の平面図およびIIIB−IIIB線断面図である。図2(A)と図3(A)では、図1におけるSiプラットフォーム10との接合面を上に向けて、サブ基板50を示している。
サブ基板50は、LD素子20が実装されたSiプラットフォーム10と接合されてLD素子20を光ファイバ40に光結合させるためのシリコン製の実装部品の一例である。サブ基板50は、光ファイバ40を固定する部品であると同時に、LD素子20およびPD素子25といった光学部品をパッケージするカバーとして機能する。
図2(A)に示すように、サブ基板50には、溝部51と、凹部52と、金属膜53が設けられている。溝部51は、Siプラットフォーム10との接合面に対して予め定められた深さに光ファイバ40のコアが位置するように光ファイバ40を固定するための溝であり、Siプラットフォーム10との接合面上に形成されている。凹部52は、LD素子20とPD素子25を内部に収容するための凹みであり、溝部51に連接して形成されている。なお、凹部52の形状は、図示した四角い箱型には限定されない。金属膜53は、Siプラットフォーム10上にサブ基板50を表面活性化接合させるための、例えばAu(金)で構成された膜であり、Siプラットフォーム10との接合面上に形成されている。
図2(B)に示すように、サブ基板50は、Siプラットフォーム10に実装されるときには、金属膜53が設けられている接合面を下側に向けて配置される。
なお、図2(B)には、LD素子20、PD素子25およびドライバIC30の各電極を互いに接続するための電極パッドの一部も示している。LD素子20のn電極は、ワイヤボンド61を介してLD電極パッド11Aに接続され、p電極はLD電極パッド11Bに接続される。また、PD素子25のn電極は、ワイヤボンド62を介してPD電極パッド12Aに接続され、p電極はPD電極パッド12Bに接続される。これらの電極パッドは、図示しないSiプラットフォーム10の貫通電極およびSiプラットフォーム10の裏面に設けられた電極パッドを介して、接続パッド13に接続される。そして、接続パッド13は、さらにワイヤボンド63およびドライバ電極パッド14を介して、ドライバIC30に接続される。
図2(B)のSiプラットフォーム10の上面における符号15は、サブ基板50との接合部である。また、Siプラットフォーム10の上面には、サブ基板50が接合されたときにサブ基板50の溝部51と重なる位置に、光ファイバ40を収容するための溝部17(ファイバ逃がし溝)が形成されている。
図3(A)および図3(B)に示すように、溝部51より凹部52の方がSiプラットフォーム10との接合面からの深さは大きく、サブ基板50では2段構造の凹みが形成されている。
溝部51については、サブ基板50がSiプラットフォーム10に接合されたときに、Siプラットフォーム10とサブ基板50の接合面から光ファイバ40のコアの中心までの距離が予め定められた大きさになるように、深さが厳密に制御されている。この深さの制御は、後述するように、サブ基板50に溝部51を形成するときに絶縁体上シリコン(SOI:Silicon on Insulator)をストッパ層として使用することにより実現される。これにより、サブ基板50自体に、光ファイバ40の垂直方向(z方向)の調芯を行うための機構が設けられている。
一方、凹部52については、単にLD素子20とPD素子25を収容するための凹みであるため、その深さは必ずしも厳密に制御する必要はない。
サブ基板50の厚さは、LD素子20を凹部52に収容するようにサブ基板50の接合面をSiプラットフォーム10に接触させたときに、LD素子20を保護できる程度の大きさであり、かつ赤外線の透過像によりLD素子20の位置を検知可能なように大きすぎないことが必要である。一般に、光ファイバ40の太さが125μm程度あるため、サブ基板50をそれより薄くすることは難しい。したがって、サブ基板50の厚さは、最低でも200μm以上は必要であり、実装時に加えられる荷重に対する強度も考慮すると、300μm以上であることが好ましい。
また、シリコンは赤外線の透過性が高いため、サブ基板50が1mm程度の厚さであっても、透過像により内部を観察することは可能である。しかしながら、1mm以上とすると、サブ基板50の製造時にインゴットから得られるウェハの枚数が少なくなり、製造コストが高くなる。また、一般的なシリコンを検出器に用いたCMOSやCCDセンサからなる赤外線カメラでは、850nmより長い波長域では感度が急激に低下する。850nm以下の照明光を用いて透過像を観察することができるサブ基板50の厚さは850μm程度までであり、それ以上の厚さでは、より長波長側に感度のあるInGaAsセンサなどを用いた高価な赤外線カメラを長波長の近赤外照明と組み合わせて使用する必要が生じる。したがって、サブ基板50の厚さは、200〜1000μm程度であればよいが、強度や製造コストなどを考えると、300〜800μm程度であることが好ましい。
図4(A)および図4(B)は、Siプラットフォーム10とサブ基板50およびLD素子20との接合部15,16を説明するための図である。図4(A)は光モジュール1の一部を示す縦断面図であり、図4(B)は接合部15の部分拡大図である。
図4(A)に示すように、Siプラットフォーム10の表面には、LD素子20とサブ基板50の接合部15,16が形成されている。接合部15,16には、例えば金(Au)などの金属材料で構成された、数μm程度の大きさの小突起であるマイクロバンプ(以下、単に「バンプ」という)が所定のピッチで設けられている。なお、図4(A)と図4(B)では、これらのバンプ(バンプ150)を誇張して大きく示している。
また、図4(A)に示すように、サブ基板50とLD素子20の下面には、それぞれ、例えばAu(金)で構成された金属膜53,21が形成されている。接合部15,16のバンプと金属膜53,21は、接合前にArプラズマによって洗浄される。これにより、それぞれの表面を活性化させる。そして接合時に、サブ基板50とLD素子20は、それぞれSiプラットフォーム10の接合部15,16の上に載せられ、常温で荷重が加えられる。すると、接合部15,16のバンプの上面と金属膜53,21がそれぞれ接触し、各バンプがつぶれることにより、バンプの金属原子と金属膜53,21の金属原子が相互に相手方に拡散する。これにより、原子間の凝着力を利用することで、サブ基板50とLD素子20は、それぞれSiプラットフォーム10の接合部15,16の上に表面活性化接合される。
表面活性化接合は特別な加熱を要しないことから、熱膨張係数差の残留応力による各素子の位置ずれが発生しにくく、サブ基板50などの接合物を高精度に位置決めして実装することができる。光モジュール1では、上記のようにサブ基板50の溝部51の形成時にその深さを制御し、さらにサブ基板50の接合時に加えられる荷重の大きさを制御することで、光ファイバ40の垂直方向の位置をより厳密に調芯することが可能になる。
図5は、サブ基板50’の斜視図である。光モジュール1ではPD素子25はSiプラットフォーム10上に実装されているが、図5に示すように、PD素子25をサブ基板50’の凹部52の表面上に実装してもよい。この場合には、表面活性化接合用の金属膜53は、PD素子25の導通パターンとしても使用される。
図6(A)〜図7(D)は、サブ基板50の製造工程の例を説明するための図である。これらの各図では、図3(A)および図3(B)と同様に、製造工程の各段階におけるサブ基板50の平面図と縦断面図を示している。
図6(A)に示すように、まず、絶縁体上シリコン(SOI:silicon-on-insulator)によるSOIストッパ層54を内部に含むシリコン基板70を用意し、その表面上に金属膜53のパターニングを行う。そして、シリコン基板70を酸化性雰囲気中で加熱して、図6(B)に示すように、シリコン基板70の上面にSiO(二酸化ケイ素)膜71を形成する。また、図6(C)に示すように、シリコン基板70の上面のうち、溝部51となる部分以外にレジスト72を形成する。次に、ウエットエッチングまたはドライエッチングにより、図6(D)に示すように、レジスト72が形成されていない溝部51のSiO膜71を除去する。
続いて、図7(A)に示すように、シリコン基板70の上面のうち、凹部52となる部分以外にレジスト73を形成する。次に、ウエットエッチングまたはドライエッチングにより凹部52のSiO膜71を除去し、さらにD−RIE加工により、図7(B)に示すように、SOIストッパ層54を越えて凹部52のシリコンを削り取る。レジスト73を除去すると、凹部52と溝部51以外の部分では、SiO膜71が露出する。さらに、D−RIE加工により、図7(C)に示すように、溝部51をSOIストッパ層54まで削り取る。なお、このとき、マスクされていない凹部52もD−RIE加工により削られる。最後に、ウエットエッチングまたはドライエッチングにより、図7(D)に示すように、溝部51のSOIストッパ層54および他の部分のSiO膜71を除去する。
以上の工程により、サブ基板50が得られる。完成したサブ基板50の溝部51では、Siプラットフォーム10との接合面からSOIストッパ層54までのシリコンが除去されており、凹部52では、その接合面からSOIストッパ層54を越える深さまでのシリコンが除去されている。
図8は、光モジュール1の製造工程の例を示すフローチャートである。
まず、Siプラットフォーム10上に、ドライバIC30とPD素子25を半田で実装する(S1)。その後で、パッシブアライメントにより、LD素子20をフェイスダウンでSiプラットフォーム10の上面に表面活性化接合する(S2)。その際は、例えば、Siプラットフォーム10とLD素子20に設けられた図示しないアライメントマークの位置を合わせることにより、Siプラットフォーム10に対するLD素子20の位置を決定する。このように、先に半田接合し、その後で表面活性化接合することにより、LD素子20に熱影響を及ぼさないようにLD素子20を実装する。
次に、例えば端部に結合効率を上げるGIレンズを取り付けたシングルモードファイバ(SMF)を、光ファイバ40としてサブ基板50の溝部51に固定する(S3)。そして、Siプラットフォーム10上のLD素子20が凹部52に収容されるように接合面をSiプラットフォーム10に接触させて、このサブ基板50をSiプラットフォーム10上に配置する(S4)。
次に、LD素子20と光ファイバ40のパッシブアライメントを行う(S5)。S5のパッシブアライメントは、図9に示す調芯装置100を用いて行う。
図9は、調芯装置100の概略構成図である。調芯装置100は、制御部101と、赤外線カメラ102と、移動機構103とを有する。制御部101は、例えばCPU、メモリなどを含むPCで構成される。赤外線カメラ102は、LD素子20を凹部52に収容したサブ基板50を撮像し、得られた赤外線画像のデータを制御部101に出力する。移動機構103は、制御部101による制御の下で、Siプラットフォーム10上に配置されたサブ基板50を、水平面内および垂直方向に移動させる。
パッシブアライメントの際は、LD素子20を発光させずに、制御部101が、赤外線カメラ102によりサブ基板50の赤外線画像を取得する。そして、制御部101は、赤外線の透過像からLD素子20の位置、およびSiプラットフォーム10とサブ基板50に予め設けられたアライメントマークの位置などを検知し、必要なサブ基板50の移動量を決定する。決定された移動量に応じて制御部101が移動機構103を制御することで、Siプラットフォーム10とサブ基板50に予め設けられたアライメントマークの位置を合わせる。
図10(A)〜図10(C)は、LD素子20と光ファイバ40のパッシブアライメントに用いられるアライメントマークの例を示す図である。図10(A)および図10(B)は、それぞれ、Siプラットフォーム10とサブ基板50の平面図である。図10(B)では、Siプラットフォーム10との接合面の反対側から(上から)見たサブ基板50を示している。また、図10(C)は、図10(A)のSiプラットフォーム10の上に図10(B)のサブ基板50を載せた状態を示す図である。
アライメントマークは、例えば、Siプラットフォーム10とサブ基板50の対角に、それぞれ2つずつ設けられる。図10(A)および図10(B)に示すように、Siプラットフォーム10の上面に2つのSiプラットフォーム側マーク81が設けられ、サブ基板50の下面に2つのサブ基板側マーク82が設けられる。サブ基板側マーク82は、Siプラットフォーム10との接合面上に設けられる。なお、アライメントマークの形状は、図示した丸形状に限らず、例えば四角形状でもよい。パッシブアライメントの際は、赤外線カメラ102による赤外透過画像に基づいて、図10(C)に示すように2つのSiプラットフォーム側マーク81とサブ基板側マーク82がそれぞれ重なるように、調芯装置100よりSiプラットフォーム10とサブ基板50の相対位置が決定される。
図11(A)〜図11(C)は、LD素子20と光ファイバ40のパッシブアライメントに用いられるアライメントマークの別の例を示す図である。これらの図は、図10(A)〜図10(C)にそれぞれ対応する平面図である。図11(A)〜図11(C)に示すように、パッシブアライメントに用いられるアライメントマークは、Siプラットフォーム10とサブ基板50ではなく、LD素子20とサブ基板50に設けてもよい。
この場合も、アライメントマークは、例えば、LD素子20とサブ基板50の対角に、それぞれ2つずつ設けられる。図11(A)および図11(B)に示すように、LD素子20の上面に2つのLD側マーク83が設けられ、サブ基板50の凹部52の底面に2つのサブ基板側マーク84が設けられる。パッシブアライメントの際は、赤外線カメラ102による赤外透過画像に基づいて、図11(C)に示すように2つのLD側マーク83とサブ基板側マーク84がそれぞれ重なるように、調芯装置100よりSiプラットフォーム10とサブ基板50の相対位置が決定される。
以上のようなパッシブアライメントにより、接合面上の水平方向(x,y方向)におけるSiプラットフォーム10とサブ基板50の大まかな相対位置は、ミクロンオーダで粗調整される。このとき、サブ基板50の溝部51に固定された光ファイバ40とSiプラットフォーム10上のLD素子20との相対位置は、数μmの精度で調整される。
次に、水平方向(x,y方向)について、LD素子20と光ファイバ40のアクティブアライメントを行う(S6)。S6および後述するS7のアクティブアライメントは、図12に示す調芯実装装置200を用いて行う。
図12は、調芯実装装置200の概略構成図である。調芯実装装置200は、制御部201と、光検出器202と、調芯実装器203とを有する。制御部201は、例えばCPU、メモリなどを含むPCで構成される。光検出器202は、光ファイバ40に結合されるレーザ光の強度を検出し、強度に応じた検出出力電圧を制御部201に出力する。調芯実装器203は、制御部201による制御の下で、実装部品に荷重を加えることにより、その実装部品をSiプラットフォーム10上に接合する。
アクティブアライメントの際は、まず、ドライバIC30によりLD素子20を駆動して、レーザ光を出射させる。同時に、制御部201が、光検出器202を用いて、LD素子20から光ファイバ40に結合されるレーザ光の強度に応じた出力電圧をモニタする。そして、制御部201は、図示しない移動機構を用いてサブ基板50の位置を水平方向にサブミクロンオーダで微調整しながら、光検出器202の出力電圧が最大となるときのサブ基板50の位置を決定する。
次に、垂直方向(z方向)について、LD素子20と光ファイバ40のアクティブアライメントを行う(S7)。その際、制御部201は、LD素子20から光ファイバ40に結合されるレーザ光の強度を光検出器202で検出し、その出力電圧をモニタしながら調芯実装器203を制御して、サブ基板50に印加する荷重を制御する。接合部15に設けられたバンプは、荷重がかかると変形して(潰れて)縮むが、荷重が開放されると弾性反発によって元の状態の戻ろうとする力が働き、弾性戻り量分だけ戻るという特性を有する。そこで、垂直方向のアクティブアライメントでは、制御部201は、サブ基板50に印加する荷重を増加させていき、光検出器202からの出力電圧が最大値となった後、さらに一定量だけ増加させてから荷重を開放するように、調芯実装器203を制御する。調芯実装器203が印加する荷重により、サブ基板50は、Siプラットフォーム10上に表面活性化接合され、固定される。
これにより、光ファイバ40の端部位置は、荷重が印加されているときはLD素子20の発光中心よりも一定量だけ垂直方向にさらに深く押し込まれた位置となり、荷重が開放されるとLD素子20の発光中心と最も効率よく光結合する位置に戻る。なお、上述した荷重の増加量は、調芯実装器203、荷重を印加するサブ基板50の形状、接合部15のバンプの材質および形状などに依存し、実験的に算出することが可能である。
そして最後に、Siプラットフォーム10全体を、樹脂またはガラスなどにより封止する(S8)。以上の工程により、光モジュール1が得られる。
以上説明したように、光モジュール1では、光ファイバ40を固定するための溝部51、およびLD素子20を内部に収容するための凹部52を有するシリコン製のサブ基板50を用いて、LD素子20を保護するとともに光ファイバ40を固定する。このサブ基板50の厚さは凹部52に収容されたLD素子20の位置を近赤外光の透過像により検知可能な厚さであるため、光モジュール1では、サブ基板50のカバー越しにLD素子20と光ファイバ40の調芯を行うことができる。したがって、光モジュール1では、基板に実装されるLD素子20を保護しつつ、LD素子20と光ファイバ40との調芯をより高精度に行うことが可能になる。
なお、サブ基板50をLD素子20の放熱に使用してもよく、サブ基板50に穴を形成してその上にPD素子25を接合してもよい。また、Siプラットフォーム10上にPD素子25を集積化し、サブ基板50の空間内に光を閉じ込めて、光モニタする構造も応用として考えられる。
図13は、光モジュール2の概略構成を示す斜視図である。光モジュール2は、主要な構成要素として、Siプラットフォーム10(実装基板の一例)、LD素子20R,20G,20B、PD素子25R,25G,25B、ドライバIC30、光ファイバ40R,40G,40B、サブ基板50R,50G,50Bなどを有する。光モジュール1は単色のレーザ光を出射するレーザ光源であるのに対し、光モジュール2は、赤色(R)、緑色(G)および青色(B)のレーザ光を出射するレーザ光源である。
LD素子20R,20G,20Bは、それぞれ、赤色、緑色および青色のレーザ光を出射するレーザダイオードである。PD素子25R,25G,25Bは、対応するLD素子20R,20G,20Bの後方光を受光し、その光量をモニタするためのフォトダイオードである。光ファイバ40R,40G,40Bは、対応するLD素子20R,20G,20Bから出射されたレーザ光を導波する、例えばシングルモードのファイバ(SMF)である。
また、サブ基板50R,50G,50Bのそれぞれは、図2(A)〜図3(B)を用いて説明したものと同様のファイバサブマウント基板であり、実装部品の一例である。サブ基板50R,50G,50Bは、それぞれ、対応する光ファイバ40R,40G,40Bを固定し、LD素子20RおよびPD素子25R、LD素子20GおよびPD素子25G、LD素子20BおよびPD素子25Bを凹部に収容するように、Siプラットフォーム10上に配置される。
上記以外の点では、光モジュール2の構成は、光モジュール1の構成と同様である。このように、RGB各色に対応する複数のLD素子を1つの実装基板上に設けて、それらの各素子からのレーザ光をそれぞれ導波する複数の光ファイバを光モジュール1と同様の複数のサブ基板により固定し、同時に各LD素子を保護してもよい。
なお、光モジュール2ではSiプラットフォーム上に1組のRGBに対応するLD素子、PD素子および光ファイバを設けているが、1つのSiプラットフォーム上に複数組のRGBに対応するLD素子、PD素子および光ファイバを設けてもよい。この場合も、光モジュール2と同様に、LD素子、PD素子および光ファイバの各組を、光モジュール1と同様のサブ基板により固定または保護すればよい。
図14は、光モジュール3の概略構成を示す斜視図である。光モジュール3は、主要な構成要素として、Siプラットフォーム10(実装基板の一例)、LDアレイ20A、PD素子25、ドライバIC30、光ファイバアレイ40A、サブ基板50Aなどを有する。光モジュール1は1個のLD素子からのレーザ光を1本の光ファイバに光結合しているが、光モジュール3は、LDアレイからのレーザ光を複数本の光ファイバに光結合する。
サブ基板50Aは、図2(A)〜図3(B)を用いて説明したものと同様のファイバサブマウント基板であり、実装部品の一例である。ただし、サブ基板50Aは、光モジュール1のサブ基板50とは異なり、光ファイバアレイ40Aに含まれる光ファイバの本数に対応する複数の溝部を有する。サブ基板50Aは、光ファイバアレイ40Aの各光ファイバを固定し、LDアレイ20AおよびPD素子25を凹部に収容するように、Siプラットフォーム10上に配置される。
上記以外の点では、光モジュール3の構成は、光モジュール1の構成と同様である。このように、複数のLD素子(LDアレイ)を1つの実装基板上に設けて、それらの各LD素子からのレーザ光をそれぞれ導波する複数の光ファイバを1つのサブ基板により固定し、同時に各LD素子を保護してもよい。
図15(A)および図15(B)は、光モジュール4の概略構成を示す斜視図である。図15(A)は、完成された光モジュール4の斜視図であり、図15(B)は、光モジュール4の分解斜視図である。また、図16(A)および図16(B)は、光モジュール4,1を比較する断面図である。図16(A)は、図15(A)に示すXVIA−XVIA線に沿った光モジュール4の断面を示し、図16(B)は、図16(A)に対応する光モジュール1の断面を示す。
光モジュール4は、主要な構成要素として、Siプラットフォーム10D、LD素子20’、ドライバIC30’、光ファイバ40、サブ基板50Dなどを有する。光モジュール4は、LD素子20’がジャンクションアップ実装されている点が光モジュール1〜3と異なる。
Siプラットフォーム10Dは、実装基板の一例であり、光モジュール1のSiプラットフォーム10と同様に、LD素子20’およびサブ基板50Dを表面活性化接合するための接合部15’,16’、LD素子20’とドライバIC30’とを接続するための図示しない電極構造などを有する。ただし、Siプラットフォーム10Dは平坦な基板であり、図15(A)および図15(B)に符号18で示すように、光モジュール1のSiプラットフォーム10における溝部17(ファイバ逃がし溝)に対応するものは形成されていない。
また、光モジュール4では、図16(A)に示すように、LD素子20’を駆動する集積回路であるドライバIC30’は、Siプラットフォーム10Dに内蔵されている。
LD素子20’は、光モジュール1のLD素子20と同様のレーザダイオードである。ただし、図16(A)および図16(B)に示すように、光モジュール1ではLD素子20が活性層22をSiプラットフォーム10側に向けてジャンクションダウンで実装されていたのに対し、光モジュール4では、LD素子20’が活性層22をSiプラットフォーム10Dとは反対側に向けてジャンクションアップで実装されている。図16(A)および図16(B)における符号Lは、LD素子20,20’から出射されるレーザ光を示す。
サブ基板50Dは、実装部品の一例であり、図15(B)に示すように、光モジュール1のサブ基板50のものと同様の溝部51’、凹部52’および金属膜53’を有する。サブ基板50Dの厚さは、LD素子20’を凹部52’に収容した状態で赤外線の透過像によりLD素子20’の位置を検知可能な厚さに設定される。溝部51’は、光ファイバ40を固定するための溝であり、LD素子20’がジャンクションダウン実装されることに対応して、固定部分で光ファイバ40がサブ基板50D内に完全に埋め込まれるように、サブ基板50の溝部51より深く形成される。凹部52’は、LD素子20’を内部に収容するための凹みである。金属膜53’は、Siプラットフォーム10Dとの表面活性化接合用の接合部であり、溝部51’と凹部52’の周囲において、Siプラットフォーム10Dの接合部15’に対応する位置に、略コの字型に形成されている。このように、表面活性化接合用の接合部は、サブ基板の全面に形成されていなくてもよい。
通常、LD素子は、放熱性をよくするため、発光点となる活性層を実装面側(下側)とするジャンクションダウンにて実装される。ジャンクションダウン実装には、基準面となる実装基板の実装面にLD素子の発光点が近いので、その基準面に対してアライメントし易いという利点もある。しかしながら、ジャンクションダウン実装されたLD素子の活性層は実装面とほぼ同じ高さになるため、そのLD素子に対して光ファイバを調芯するためには、光ファイバが実装面に接触しないように、実装基板に光ファイバの逃がし溝を設ける必要がある。例えば、光モジュール1では、図16(B)に示すように、サブ基板50に光ファイバ40の固定用の溝部51が設けられるだけでなく、Siプラットフォーム10にも光ファイバ40の逃がし溝となる溝部17が設けられる。したがって、LD素子の実装基板とそれに対して接合される実装部品の両方に、機械加工により溝部を設ける必要があり、その分、製造工程が増えるとともに、2つの溝部があることによりLD素子の密閉性が低下することになる。
一方、例えば網膜走査型スキャンなどに光モジュールを使用する場合には、LD光源は数百nW〜数mW程度のローパワーのものでよいため、放熱性を考慮したジャンクションダウン実装は不要である。このため、発光部を実装面に対する反対側に向けたジャンクションアップ実装で、LD素子を実装基板に接合することが可能になる。そこで、光モジュール4では、Siプラットフォーム10Dに対して、LD素子20’をジャンクションアップ実装する。
例えば、LD素子20’の厚さは100μm程度であるのに対し、光ファイバ40の直径は80〜125μm程度、半径は40〜62.5μm程度である。このため、光モジュール4では、図16(A)に示すように、活性層22の位置は、LD素子20’の厚み分だけSiプラットフォーム10Dの上面より高くなり、これに対応して、光ファイバ40の位置も、サブ基板50Dの内部に埋め込まれる高さとなる。したがって、光モジュール4では、LD素子20’の発光点の高さに合わせて配置された光ファイバ40の下端がSiプラットフォーム10Dの上面に接触しないため、Siプラットフォーム10Dに光ファイバ40の逃がし溝を形成する必要がない。
これにより、光モジュール4では、Siプラットフォーム10Dを溝のない平坦な基板とすることが可能であり、Siプラットフォーム10Dを機械加工する分の製造工程が簡略化される。また、光モジュール4では、ドライバIC30’(集積回路)をSiプラットフォーム10Dに内蔵させ、溝部51’および凹部52’があるサブ基板50Dにより光ファイバ40の高さを調節するというように、2枚の基板で機能を分離させることが可能になる。光モジュール1ではSiプラットフォーム10にも溝部17があることから集積回路を内蔵させるためには有効エリアが狭くなるが、光モジュール4では、平坦なSiプラットフォーム10D内に集積回路や配線を高密度で形成することが可能である。また、光モジュール4には、Siプラットフォーム10Dに溝部がない分、LD素子20’の密閉性も向上するという利点もある。
LD素子は製造時に活性層の反対側が機械研磨されるため、全体の厚みには誤差があり、ジャンクションアップ実装の場合にはその誤差が大きく影響し得る。そこで、光モジュール4では、使用するLD素子20’の厚みを予め測っておき、LD素子20’の発光点に光ファイバ40の位置を合わせられるように溝部51’の深さを設定した上で、その深さの溝部51’を有するサブ基板50Dを製造し、使用する。これにより、ジャンクションアップ実装することによるLD素子の厚みの誤差の影響を排除することが可能になる。
図17は、光モジュール5の概略構成を示す断面図である。光モジュール5は、主要な構成要素として、Siプラットフォーム10E、LD素子20’、ドライバIC30’、光ファイバ40、サブ基板50Eなどを有する。光モジュール5は、平坦なサブ基板50EにLD素子20’が実装されている点が光モジュール1〜4と異なる。
Siプラットフォーム10Eは、実装部品の一例であり、LD素子20’を収容する凹部19Aと、光ファイバ40を収容する溝部19Bとを有する。溝部19Bは、Siプラットフォーム10Eによる固定部分では光ファイバ40がSiプラットフォーム10E内に完全に埋め込まれる深さに形成される。Siプラットフォーム10Eの厚さは、LD素子20’を凹部19Aに収容した状態で赤外線の透過像によりLD素子20’の位置を検知可能な厚さに設定される。
LD素子20’は、光モジュール4のものと同じレーザダイオードであり、活性層22をサブ基板50Eとは反対側に向けて、サブ基板50Eに対しジャンクションアップで実装されている。図17における符号Lは、LD素子20’から出射されるレーザ光を示す。
サブ基板50Eは、実装基板の一例であり、今まで説明してきたサブ基板とは異なり凹部などが設けられていない平坦な基板である。光モジュール5では、図17に示すように、LD素子20’を駆動する集積回路であるドライバIC30’は、サブ基板50Eに内蔵されている。なお、Siプラットフォーム10Eとサブ基板50Eは、互いに表面活性化接合するための図示しない接合部を有する。
光モジュール5では、LD素子20’を収容するための凹部19AをSiプラットフォーム10Eに設けてサブ基板50Eをフラット型にすることにより、サブ基板50Eに集積回路や配線を高密度で形成することが可能になる。このため、光モジュール5では、ドライバIC30’をサブ基板に内蔵することが容易になり、例えば、サブ基板単体でLD素子20’の合否判定を行うことが可能になる。サブ基板50’については、ウェハ上の段階で集積回路を形成して多数のLD素子を実装することにより、それらの素子のエージング(通電試験)を一括で実施し、素子の良品と不良品を選別することが可能である。このため、そのウェハを分断してサブ基板50’として使用すれば、初めから良品のみが選別された状態で光モジュールを製造することができ、大幅に工数を削減することが可能になる。また、凹部や溝部が形成されるのはSiプラットフォーム10Eだけであるため、一方の基板のみを機械加工すればよく、この点でも、製造工程が簡略化される。
なお、上記では、LD素子20のp電極とn電極はSiプラットフォーム10に対する実装面側とその反対側にそれぞれ配置されると説明したが、LD素子20,20’として、p電極とn電極が両方とも実装面側に設けられたものを使用してもよい。この場合、LD素子20,20’の接続にワイヤボンド(図2(B)のワイヤボンド61)が必要なくなるため、その分、LD素子20,20’を収容する凹部の深さを小さくすることができる。したがって、サブ基板と、さらには光モジュール全体をさらに薄くすることが可能になる。
1,2,3,4,5 光モジュール
10,10D,10E Siプラットフォーム
15,15’,16,16’ 接合部
17 溝部
20,20’,20R,20G,20B,20A LD素子
22 活性層
25,25R,25G,25B PD素子
30,30’ ドライバIC
40,40R,40G,40B,40A 光ファイバ
50,50’,50R,50G,50B,50A,50D,50E サブ基板
51,51’ 溝部
52,52’ 凹部
53,53’ 金属膜

Claims (9)

  1. レーザ素子が実装された実装基板と接合されて当該レーザ素子を光ファイバに光結合させるためのシリコン製の実装部品であって、
    前記実装基板との接合面に対して予め定められた深さに光ファイバのコアが位置するように当該光ファイバを固定するための溝部と、
    前記溝部に連接し前記レーザ素子を内部に収容するための凹部と、を有し、
    前記接合面に垂直な方向の厚さが、前記レーザ素子を前記凹部に収容するように前記接合面を前記実装基板に接触させたときに赤外線の透過像により当該レーザ素子の位置を検知可能な厚さに設定される、
    ことを特徴とする実装部品。
  2. 絶縁体上シリコンによるストッパ層を内部に含み、
    前記溝部は、前記接合面から前記ストッパ層までのシリコンを除去して形成され、
    前記凹部は、前記接合面から前記ストッパ層を越える深さまでのシリコンを除去して形成される、請求項1に記載の実装部品。
  3. 前記接合面に垂直な方向の厚さが200μm以上1000μm以下である、請求項1または2に記載の実装部品。
  4. 前記接合面は、実装基板上に設けられた金属製のマイクロバンプとの間で表面活性化接合されるための金属膜を有する、請求項1〜3のいずれか一項に記載の実装部品。
  5. レーザ素子からの光を光ファイバに光結合させる光モジュールであって、
    実装基板と、
    前記実装基板上に実装されたレーザ素子と、
    前記実装基板との接合面に対して予め定められた深さに光ファイバのコアが位置するように当該光ファイバを固定するための溝部、および当該溝部に連接し前記レーザ素子を内部に収容するための凹部を有するシリコン製の実装部品と、
    前記実装部品の前記溝部に固定された光ファイバと、を有し、
    前記接合面に垂直な方向の前記実装部品の厚さが、前記レーザ素子を前記凹部に収容するように前記実装部品の前記接合面を前記実装基板に接触させたときに赤外線の透過像により当該レーザ素子の位置を検知可能な厚さに設定される、
    ことを特徴とする光モジュール。
  6. 前記レーザ素子はジャンクションアップで前記実装基板上に実装され、
    前記実装基板は前記光ファイバを収容するための溝部が形成されていない平坦な基板である、請求項5に記載の光モジュール。
  7. 前記実装基板には前記レーザ素子を駆動するための集積回路が内蔵されている、請求項6に記載の光モジュール。
  8. レーザ素子からの光を光ファイバに光結合させる光モジュールの製造方法であって、
    レーザ素子を実装基板上に実装する工程と、
    前記実装基板との接合面に対して予め定められた深さに光ファイバのコアが位置するように当該光ファイバを固定するための溝部、および当該溝部に連接し前記レーザ素子を内部に収容するための凹部を有するシリコン製の実装部品の当該溝部に光ファイバを固定する工程と、
    前記レーザ素子を前記凹部に収容するように前記実装部品の前記接合面を前記実装基板に接触させる工程と、
    赤外線の透過像により前記レーザ素子の位置を検知しながら、当該レーザ素子から前記光ファイバに結合される光出力が最大となるように前記実装基板と前記実装部品とを位置決めする工程と、
    位置決めされた前記実装部品と前記実装基板とを接合する工程と、
    を有することを特徴とする製造方法。
  9. 前記位置決めする工程は、
    赤外線の透過像により前記レーザ素子の位置を検知しながら、前記実装基板上に設けられたアライメントマークを基準に、当該レーザ素子に対する前記光ファイバの水平位置を調整し、
    前記レーザ素子から前記光ファイバに結合される光を光検出器で検出しながら、当該光検出器の出力が最大となるように、当該レーザ素子に対する当該光ファイバの水平位置および垂直位置を決定する、
    ことを含む、請求項8に記載の製造方法。
JP2014250203A 2014-03-24 2014-12-10 光ファイバの実装部品、光モジュールおよび製造方法 Active JP6275025B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014250203A JP6275025B2 (ja) 2014-03-24 2014-12-10 光ファイバの実装部品、光モジュールおよび製造方法
US15/128,057 US9995889B2 (en) 2014-03-24 2015-02-17 Mounting component for optical fiber, optical module, and optical module manufacturing method
CN201580016083.6A CN106104344B (zh) 2014-03-24 2015-02-17 光纤的安装零件、光模块以及制造方法
PCT/JP2015/054312 WO2015146377A1 (ja) 2014-03-24 2015-02-17 光ファイバの実装部品、光モジュールおよび製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014060751 2014-03-24
JP2014060751 2014-03-24
JP2014250203A JP6275025B2 (ja) 2014-03-24 2014-12-10 光ファイバの実装部品、光モジュールおよび製造方法

Publications (2)

Publication Number Publication Date
JP2015194689A JP2015194689A (ja) 2015-11-05
JP6275025B2 true JP6275025B2 (ja) 2018-02-07

Family

ID=54433731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014250203A Active JP6275025B2 (ja) 2014-03-24 2014-12-10 光ファイバの実装部品、光モジュールおよび製造方法

Country Status (1)

Country Link
JP (1) JP6275025B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019113596A (ja) * 2017-12-21 2019-07-11 日本電信電話株式会社 光接続構造
JP7117133B2 (ja) * 2018-04-16 2022-08-12 日本ルメンタム株式会社 光サブアセンブリ及びその製造方法並びに光モジュール
KR102594414B1 (ko) * 2018-10-24 2023-10-30 삼성전자주식회사 프로브 장치 및 이를 포함하는 테스트 장치
CN114175424A (zh) * 2019-07-30 2022-03-11 索尼半导体解决方案公司 半导体激光驱动装置、电子设备和制造半导体激光驱动装置的方法
KR102284869B1 (ko) * 2020-02-22 2021-08-02 레이저닉스 주식회사 레이저 다이오드 드라이버

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2546506B2 (ja) * 1993-07-27 1996-10-23 日本電気株式会社 光半導体素子と光導波路の結合構造およびその結合方法
JPH09307122A (ja) * 1996-05-17 1997-11-28 Shinko Electric Ind Co Ltd 光素子モジュール
JP2000047055A (ja) * 1998-07-28 2000-02-18 Japan Aviation Electronics Industry Ltd 光導波路デバイスおよびその製造方法
JP2000231041A (ja) * 1999-02-10 2000-08-22 Nec Corp 光半導体素子と光伝送路の結合構造及びその結合方法

Also Published As

Publication number Publication date
JP2015194689A (ja) 2015-11-05

Similar Documents

Publication Publication Date Title
JP6275025B2 (ja) 光ファイバの実装部品、光モジュールおよび製造方法
US10466433B2 (en) Optical module including silicon photonics chip and coupler chip
US9995889B2 (en) Mounting component for optical fiber, optical module, and optical module manufacturing method
JP5086521B2 (ja) 光受信機パッケージ
US8290008B2 (en) Silicon carrier optoelectronic packaging
US6838689B1 (en) Backside alignment and packaging of opto-electronic devices
US20110170831A1 (en) Optical module and manufacturing method of the module
US7257297B2 (en) Optical communication module with particular fiber guide hole, optical-communication-module production method, and electronic device
JP2009169116A (ja) 光モジュールおよびその作製方法
TWI647501B (zh) 主動光纜之製造方法
US7577323B2 (en) Photoelectric circuit board
JP4643891B2 (ja) パラレル光学系接続装置用の位置決め方法
JP5636319B2 (ja) 光モジュールの製造方法
US9297967B2 (en) Device for converting signal
WO2015146377A1 (ja) 光ファイバの実装部品、光モジュールおよび製造方法
US20140029890A1 (en) Optical system with integrated photodetectors
JP2010078806A (ja) 光モジュール、光伝送装置及び面型光素子
KR100810779B1 (ko) 광학 소자 및 그 제조 방법
JP2014240958A (ja) 光モジュール
US20160011386A1 (en) Optoelectronic device and method of assembling an optoelectronic device
JP6335765B2 (ja) 光モジュールおよびその製造方法
TW201610504A (zh) 光傳輸次組件及其製造方法
TWM562984U (zh) 光通訊模組
US20060153505A1 (en) Transceiver assembly for use in fiber optics communications
JP2017173600A (ja) 並列光モジュールおよびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180109

R150 Certificate of patent or registration of utility model

Ref document number: 6275025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250