JP6265574B2 - 音響波プローブ用組成物、これを用いた音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブ、ならびに、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡 - Google Patents

音響波プローブ用組成物、これを用いた音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブ、ならびに、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡 Download PDF

Info

Publication number
JP6265574B2
JP6265574B2 JP2016562435A JP2016562435A JP6265574B2 JP 6265574 B2 JP6265574 B2 JP 6265574B2 JP 2016562435 A JP2016562435 A JP 2016562435A JP 2016562435 A JP2016562435 A JP 2016562435A JP 6265574 B2 JP6265574 B2 JP 6265574B2
Authority
JP
Japan
Prior art keywords
acoustic wave
ultrasonic
probe
mass
acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016562435A
Other languages
English (en)
Other versions
JPWO2016088699A1 (ja
Inventor
貴康 永井
貴康 永井
中井 義博
義博 中井
大澤 敦
敦 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JPWO2016088699A1 publication Critical patent/JPWO2016088699A1/ja
Application granted granted Critical
Publication of JP6265574B2 publication Critical patent/JP6265574B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2206Oxides; Hydroxides of metals of calcium, strontium or barium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2231Oxides; Hydroxides of metals of tin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Epidemiology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

本発明は、音響波プローブ用組成物ならびにこれを用いた音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブに関する。さらに、本発明は、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡に関する。
音響波測定装置においては、音響波を対象物若しくは部位(以下、単に対象物という)に照射し、その反射波(エコー)を受信して信号を出力する音響波プローブが用いられる。この音響波プローブで受信した反射波から変換された電気信号を画像として表示する。これにより、対象物内部が映像化して観察される。
音響波としては、超音波や光音響波など、被検対象や測定条件などに応じて適切な周波数が選択される。
例えば、超音波診断装置は、被検体内部に向けて超音波を送信し、被検体内部の組織で反射された超音波を受信し、画像として表示する。光音響波測定装置は、光音響効果によって被検体内部から放射される音響波を受信し、画像として表示する。光音響効果とは、可視光、近赤外光、マイクロ波等の電磁波パルスを被検体に照射した際に、被検体が電磁波を吸収して発熱し熱膨張することにより、音響波(典型的には超音波)が発生する現象である。
音響波測定装置は、被検対象である生体との間で音響波の送受信を行うため、生体との音響インピーダンスの整合性や、音響波減衰量の低減といった要件を満たすことが求められる。
例えば、音響波プローブの一種である超音波診断装置用探触子(超音波プローブとも称される)は、超音波を送受信する圧電素子と生体に接触する部分である音響レンズを備える。圧電素子から発振される超音波は音響レンズを透過して生体に入射される。音響レンズの音響インピーダンス(密度×音速)と生体の音響インピーダンスとの差が大きいと、超音波が生体表面で反射されるため、超音波が効率良く生体内に入射されず、高い分解能を得ることが困難である。また、超音波を高感度で送受信するためには、音響レンズの超音波減衰量は小さいことが望まれる。
このため、音響レンズの材料の1つとして、生体の音響インピーダンス(1.4〜1.7×10kg/m/sec)に近く、超音波減衰量の小さいシリコーン樹脂が主に用いられている。
例えば、特許文献1においては、音響レンズ用組成物として、シリコーンゴムに無機充填剤およびナイロンパウダーのような熱可塑性樹脂粉末を添加することが提案されている。
また、音響レンズは、被検体に当接して使用するものであるため、音響レンズには長期使用に耐え得る機械強度が求められる。そのため、特許文献2においては、音響レンズ特性(音響インピーダンス、超音波減衰量、機械強度等)を満たす音響レンズ用組成物として、シリコーンゴム、酸化イッテルビウム等の粉末およびシリカ粒子を含む組成物が提案されている。
特開昭62−011897号公報 特開2005−125071号公報
シリコーン樹脂は、単独では柔らかく機械強度が低い。そのため、硬度および機械強度の向上を目的として、両末端ビニルシリコーン樹脂の分子量を大きくしつつ、無機フィラー(無機充填剤とも称される)やビニル基含有レジン(補強剤とも称される)を配合することが行われている。しかしながら、必要とされる機械強度を達成しようとすると、シリコーン樹脂に対する無機フィラーやビニル基含有レジンの添加量は必然的に多くなり、逆に音響波減衰量の大きいシリコーン樹脂になってしまうという問題があった。
そのため、これまでのシリコーン樹脂は、高い樹脂硬度および機械強度ならびに音響波減衰量の低減の全てを高いレベルで満足することは困難であった。
従って、本発明では、上記事情に鑑みて、音響波減衰量を低く維持したまま、シリコーン樹脂の硬度および機械強度(引張破断強度、引張破断伸び、引裂強度および耐摩耗性)を大幅に向上させることができる音響波プローブ用組成物、これを用いた音響波プローブ用シリコーン樹脂、音響波プローブ、音響波測定装置および超音波診断装置を提供することを課題とする。
また、感度が不十分である容量性マイクロマシン超音波振動子(cMUT:Capacitive Micromachined Ultrasonic Transducers)を超音波診断用トランスデューサアレイとして用いることができる超音波プローブを提供することを課題とする。また、光音響波によって発生する超音波量が僅かであるため感度が低く、人体深部の観察が困難である光音響波測定装置において、感度を向上させることが可能な、音響波プローブ用組成物および音響波プローブ用シリコーン樹脂を提供することを課題とする。またこれに加えて、信号線ケーブルが体表用と比べて長いために感度が低く、構造、物理特性およびプロセス適性上感度向上が困難である超音波内視鏡において、感度を向上させることが可能な、音響波プローブ用組成物および音響波プローブ用シリコーン樹脂を提供することを課題とする。
本発明者らは、音響波プローブ用組成物用のシリコーン樹脂組成物に添加する無機化合物についての検討を行った結果、特定の範囲の粒子径を有する特定の無機化合物粒子を含有させることにより、上記課題を解決できることを見出し、この知見に基づき本発明をなすに至った。
上記の課題は以下の手段により解決された。
<1>ビニル基を有するポリシロキサン、分子鎖中に2個以上のSi−H基を有するポリシロキサンおよび一種以上の無機化合物粒子を含むポリシロキサン混合物を含有する音響波プローブ用組成物であって、
無機化合物粒子が、平均一次粒子径が25nm未満であって、酸化マグネシウム、酸化チタン、酸化鉄、酸化亜鉛、酸化ジルコニウム、酸化バリウム、酸化スズおよび酸化イッテルビウムからなる群から選択される音響波プローブ用組成物。
<2>ポリシロキサン混合物の合計100質量部中に、平均一次粒子径が25nm未満の無機化合物粒子を10〜60質量部含有する<1>に記載の音響波プローブ用組成物。
<3>ポリシロキサン混合物の合計100質量部中に、ビニル基を有するポリシロキサンを10〜99.4質量部、分子鎖中に2個以上のSi−H基を有するポリシロキサンを0.5〜90質量部含有する<1>または<2>に記載の音響波プローブ用組成物。
<4>平均一次粒子径が25nm未満の無機化合物粒子がシラン化合物で表面処理されたものである<1>〜<3>のいずれか1つに記載の音響波プローブ用組成物。
<5>ビニル基を有するポリシロキサンの質量平均分子量が20,000〜200,000である<1>〜<4>のいずれか1つに記載の音響波プローブ用組成物。
<6>ビニル基を有するポリシロキサンの質量平均分子量が40,000〜150,000である<1>〜<5>のいずれか1つに記載の音響波プローブ用組成物。
<7>ポリシロキサン混合物100質量部に対し、白金または白金化合物を0.00001〜0.05質量部含有する<1>〜<6>のいずれか1つに記載の音響波プローブ用組成物。
<8> <1>〜<7>のいずれか1つに記載の音響波プローブ用組成物を硬化した音響波プローブ用シリコーン樹脂。
<9> <8>に記載の音響波プローブ用シリコーン樹脂からなる音響レンズおよび/または<8>に記載の音響波プローブ用シリコーン樹脂からなる音響整合層を有する音響波プローブ。
<10> 超音波トランスデューサアレイとしての容量性マイクロマシン超音波振動子、および、<8>に記載の音響波プローブ用シリコーン樹脂を含んでなる音響レンズを備える超音波プローブ。
<11> <9>に記載の音響波プローブを備える音響波測定装置。
<12> <9>に記載の音響波プローブを備える超音波診断装置。
<13> <8>に記載の音響波プローブ用シリコーン樹脂を含んでなる音響レンズを備える光音響波測定装置。
<14> <8>に記載の音響波プローブ用シリコーン樹脂を含んでなる音響レンズを備える超音波内視鏡。
本明細書の説明において、特に断りがない限り、化合物を示す一般式に複数の同一符号の基が存在する場合、これらは互いに同一であっても異なってもよく、また、各基で特定する基(例えば、アルキル基)はさらに置換基を有していてもよい。また、「Si−H基」はケイ素原子上に3つの結合手を有する基を意味するが、この結合手の記載を省き、表記を簡略化している。
また、本明細書において「〜」とは、その前後に記載される数値を下限値および上限値として含む意味で使用される。
なお、本明細書における質量平均分子量は、特に断りがない限り、ゲル透過クロマトグラフィー(Gel Permeation Chromatography:GPC)による測定値(ポリスチレン換算)である。
本発明により、音響波(特に好ましくは超音波)減衰量を低く維持したまま、シリコーン樹脂の硬度および機械強度(引張破断強度、引張破断伸び、引裂強度および耐摩耗性)を大幅に向上することが可能な音響波プローブ用組成物、これを用いた音響波プローブ用シリコーン樹脂、音響波プローブ、音響波測定装置および超音波診断装置を提供することができる。
また、cMUTを超音波診断用トランスデューサアレイとして用いる超音波プローブ、光音響波測定装置および超音波内視鏡における感度を向上させることが可能な音響波プローブ用シリコーン樹脂を提供することができる。
このような効果は、平均一次粒子径の小さい無機化合物粒子が、音響波プローブ用シリコーン樹脂に機械的応力が加わった際にストッパーとして機能するためと考えられる。特に、平均一次粒子径が小さいことで粒子間距離が小さくなるため、ストッパーとしての機能をより発揮し、シリコーン樹脂の引裂強度が大幅に向上するものである。
この結果、音響波減衰量の上昇が抑制され、かつ音響波プローブ用シリコーン樹脂の硬度および機械強度(引張破断強度、引張破断伸び、引裂強度および耐摩耗性)が向上するものと思われる。
本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は、音響波プローブの一態様であるコンベックス型超音波プローブの一例についての斜視透過図である。
<<音響波プローブ用組成物>>
本発明の音響波プローブ用組成物(以下、単に組成物とも称す。)は、ビニル基を有するポリシロキサン、分子鎖中に2個以上のSi−H基を有するポリシロキサンおよび一種以上の無機化合物粒子を少なくとも含むポリシロキサン混合物を含有する音響波プローブ用組成物であって、無機化合物粒子は、平均一次粒子径が25nm未満であって、酸化マグネシウム、酸化チタン、酸化鉄、酸化亜鉛、酸化ジルコニウム、酸化バリウム、酸化スズおよび酸化イッテルビウムからなる群から選択される。
ポリシロキサン混合物の合計100質量部中の、無機化合物粒子の含有量は、10〜60質量部が好ましく、15〜50質量部がより好ましく、20〜40質量部がさらに好ましい。
また、ポリシロキサン混合物の合計100質量部中の、ビニル基を有するポリシロキサンの含有量は10〜99.4質量部が好ましく、分子鎖中に2個以上のSi−H基を有するポリシロキサンの含有量は0.5〜90質量部が好ましい。なお、ビニル基を有するポリシロキサンの含有量は、50〜90質量部がより好ましく、分子鎖中に2個以上のSi−H基を有するポリシロキサンの含有量は、1〜50質量部がより好ましい。
なお、ポリシロキサン混合物とは、ビニル基を有するポリシロキサンと分子鎖中に2個以上のSi−H基を有するポリシロキサンとを架橋重合(硬化)させる触媒を含まない混合物である。従って、ポリシロキサン混合物中には、無機化合物粒子が含まれるが、触媒は含まれない。
また、ポリシロキサン混合物の合計100質量部とは、ポリシロキサン混合物に含まれる個々の成分の合計が100質量部であることを意味する。
ポリシロキサン混合物中に含有する上記の各ポリシロキサンは、ビニル基や分子鎖中に2個以上のSi−H基を有するものであれば、どのようなポリシロキサンでも構わない。ただし、本発明では、ビニル基を有するポリオルガノシロキサン(A)および分子鎖中に2個以上のSi−H基を有するポリオルガノシロキサン(B)が好ましい。
従って、本発明では、ポリオルガノシロキサン混合物中に、ビニル基を有するポリオルガノシロキサン(A)、分子鎖中に2個以上のSi−H基を有するポリオルガノシロキサン(B)および無機化合物粒子(C)を成分として少なくとも含有する組成物が好ましい。
以下の詳細な説明においては、好ましい態様である、ポリシロキサン混合物がビニル基を有するポリオルガノシロキサン(A)および分子鎖中に2個以上のSi−H基を有するポリオルガノシロキサン(B)を含有するものについて記載する。ただし、ポリシロキサン混合物中に含有する各ポリシロキサンは、このポリシロキサン(A)、(B)に限定されるものではない。
<ビニル基を有するポリオルガノシロキサン(A)>
本発明に用いられるビニル基を有するポリオルガノシロキサン(A)(以下、単にポリオルガノシロキサン(A)とも称す。)は、分子鎖中に2個以上のビニル基を有する。
ビニル基を有するポリオルガノシロキサン(A)としては、例えば、少なくとも分子鎖両末端にビニル基を有するポリオルガノシロキサン(a)(以下、単にポリオルガノシロキサン(a)とも称す。)、または分子鎖中に−O−Si(CH(CH=CH)を少なくとも2つ有するポリオルガノシロキサン(b)(以下、単にポリオルガノシロキサン(b)とも称す。)が挙げられる。なかでも、少なくとも分子鎖両末端にビニル基を有するポリオルガノシロキサン(a)が好ましい。
ポリオルガノシロキサン(a)は直鎖状が好ましく、ポリオルガノシロキサン(b)は、−O−Si(CH(CH=CH)が主鎖を構成するSi原子に結合しているポリオルガノシロキサン(b)が好ましい。
ビニル基を有するポリオルガノシロキサン(A)は、例えば白金触媒の存在下、2個以上のSi−H基を有するポリオルガノシロキサン(B)との反応によりヒドロシリル化される。このヒドロシリル化反応(付加反応)により、架橋構造(硬化)が形成される。
ポリオルガノシロキサン(A)のビニル基の含有量は、特に限定されない。なお、音響波プローブ用組成物に含まれる各成分との間に十分なネットワークを形成する観点から、例えば、ビニル基の含有量は0.01〜5モル%が好ましく、0.05〜2モル%がより好ましい。
ここで、ビニル基の含有量とは、ポリオルガノシロキサン(A)を構成する全ユニットを100モル%としたときのビニル基含有シロキサンユニットのモル%である。1つのビニル基含有シロキサンユニットは、1〜3個のビニル基を有する。なかでも、ビニル基含有シロキサンユニット1つに対して、ビニル基1つであることが好ましい。例えば、主鎖を構成するSi−O単位および末端のSiの全てのSi原子がビニル基を少なくとも1つずつ有する場合、100モル%となる。
また、ポリオルガノシロキサン(A)は、フェニル基を有することも好ましく、ポリオルガノシロキサン(A)のフェニル基の含有量は、特に限定されない。音響波プローブ用シリコーン樹脂としたときの機械的強度の観点から、例えば、好ましくは1〜80モル%であり、より好ましくは2〜40モル%である。
ここで、フェニル基の含有量とは、ポリオルガノシロキサン(A)を構成する全ユニットを100モル%としたときのフェニル基含有シロキサンユニットのモル%である。1つのフェニル基含有シロキサンユニットは、1〜3個のフェニル基を有する。なかでも、フェニル基含有シロキサンユニット1つに対して、フェニル基2つであることが好ましい。例えば、主鎖を構成するSi−O単位および末端のSiの全てのSi原子がフェニル基を少なくとも1つずつ有する場合、100モル%となる。
なお、ユニットとは、主鎖を構成するSi−O単位および末端のSiを言う。
重合度および比重は、特に限定されるものではない。なお、得られる音響波プローブ用シリコーン樹脂(以下、単にシリコーン樹脂とも称す。)の機械強度、硬度、化学的安定性等の向上の点から、重合度は200〜3000が好ましく、400〜2000がより好ましく、比重は0.9〜1.1が好ましい。
ビニル基を有するポリオルガノシロキサンの質量平均分子量は、機械強度、硬度、加工のしやすさの点から、20,000〜200,000が好ましく、40,000〜150,000がより好ましく、45,000〜120,000がさらに好ましい。
質量平均分子量は、例えば、GPC装置HLC−8220(東ソー株式会社製)を用意し、溶離液としてトルエン(湘南和光純薬株式会社製)を用い、カラムとしてTSKgel(登録商標)G3000HXL+TSKgel(登録商標)G2000HXLを用い、温度23℃、流量1mL/minの条件下、RI検出器を用いて測定することができる。
25℃における動粘度は、1×10−5〜10m/sが好ましく、1×10−4〜1m/sがより好ましく、1×10−3〜0.5m/sがさらに好ましい。
なお、動粘度は、JIS Z8803に従い、ウベローデ型粘度計(例えば、柴田化学社製、商品名SU)を用い、温度25℃にて測定して求めることができる。
少なくとも分子鎖両末端にビニル基を有するポリオルガノシロキサン(a)は、下記一般式(A)で表されるポリオルガノシロキサンが好ましい。
Figure 0006265574
一般式(A)において、Ra1はビニル基を表し、Ra2およびRa3は各々独立に、アルキル基、シクロアルキル基、アルケニル基またはアリール基を表す。x1およびx2は各々独立に1以上の整数を表す。ここで、複数のRa2、複数のRa3は各々において、互いに同一でも異なってもよい。また、Ra2およびRa3の各基はさらに置換基を有していてもよい。
a2およびRa3におけるアルキル基の炭素数は1〜10が好ましく、1〜4がより好ましく、1または2がさらに好ましく、1が特に好ましい。アルキル基は、例えば、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、n−ヘキシル、n−オクチル、2−エチルへキシル、n−デシルが挙げられる。
a2およびRa3におけるシクロアルキル基の炭素数は3〜10が好ましく、5〜10がより好ましく、5または6がさらに好ましい。また、シクロアルキル基は、3員環、5員環または6員環が好ましく、5員環または6員環がより好ましい。シクロアルキル基は、例えば、シクロプロピル、シクロペンチル、シクロへキシルが挙げられる。
a2およびRa3におけるアルケニル基の炭素数は2〜10が好ましく、2〜4がより好ましく、2がさらに好ましい。アルケニル基は、例えば、ビニル、アリル、ブテニルが挙げられる。
a2およびRa3におけるアリール基の炭素数は6〜12が好ましく、6〜10がより好ましく、6〜8がさらに好ましい。アリール基は、例えば、フェニル、トリル、ナフチルが挙げられる。
これらのアルキル基、シクロアルキル基、アルケニル基およびアリール基は置換基を有していてもよい。このような置換基は、例えば、ハロゲン原子、アルキル基、シクロアルキル基、アルケニル基、アリール基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、シリル基、シアノ基が挙げられる。
置換基を有する基としては、例えば、ハロゲン化アルキル基が挙げられる。
a2およびRa3は、アルキル基、アルケニル基またはアリール基が好ましく、炭素数1〜4のアルキル基、ビニル基またはフェニル基がより好ましく、メチル基、ビニル基またはフェニル基がさらに好ましい。
a2はなかでもメチル基が好ましく、Ra3はなかでもメチル基、ビニル基またはフェニル基が好ましく、メチル基またはフェニル基がより好ましく、メチル基が特に好ましい。また、x1の繰り返し中のRa2が両方ともフェニル基であることも好ましい。
x1は200〜3000の整数が好ましく、400〜2000の整数がより好ましい。
x2は、1〜3000の整数が好ましく、1〜1000の整数がより好ましく、40〜1000の整数がさらに好ましく、40〜700の整数が特に好ましい。
また、別の態様としては、x1は1〜3000の整数が好ましく、5〜1000の整数がより好ましい。
少なくとも分子鎖両末端にビニル基を有するポリオルガノシロキサンは、例えば、いずれもGelest社製の商品名で、DMSシリーズ(例えば、DMS−V31、DMS−V31S15、DMS−V33、DMS−V35、DMS−V35R、DMS−V41、DMS−V42、DMS−V46、DMS−V51、DMS−V52)、PDVシリーズ(例えば、PDV−0341、PDV−0346、PDV−0535、PDV−0541、PDV−1631、PDV−1635、PDV−1641、PDV−2335)、PMV−9925、PVV−3522、FMV−4031、EDV−2022が挙げられる。
なお、DMS−V31S15は、予めフュームドシリカが配合されているため、特別な装置での混練は不要である。
本発明におけるビニル基を有するポリオルガノシロキサン(A)は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
<分子鎖中に2個以上のSi−H基を有するポリオルガノシロキサン(B)>
本発明に用いられる分子鎖中に2個以上のSi−H基を有するポリオルガノシロキサン(B)(以下、単にポリオルガノシロキサン(B)とも称す。)は、分子鎖中に2個以上のSi−H基を有する。
分子鎖中にSi−H基を2つ以上有することで、重合性不飽和基を少なくとも2つ有するポリオルガノシロキサンを架橋することができる。
ポリオルガノシロキサン(B)は、直鎖状構造と分岐状構造が存在し、直鎖状構造が好ましい。
直鎖状構造の質量平均分子量は、機械強度および硬度の点から、500〜100,000が好ましく、1,500〜50,000がより好ましい。
分子鎖中に2個以上のSi−H基を有する、直鎖状構造のポリオルガノシロキサン(B)は、下記一般式(B)で表されるポリオルガノシロキサンが好ましい。
Figure 0006265574
一般式(B)において、Rb1〜Rb3は各々独立に、水素原子、アルキル基、シクロアルキル基、アルケニル基、アリール基または−O−Si(Rb5(Rb4)を表す。Rb4およびRb5は各々独立に、水素原子、アルキル基、シクロアルキル基、アルケニル基またはアリール基を表す。y1およびy2は各々独立に1以上の整数を表す。ここで、複数のRb1、複数のRb2、複数のRb3、複数のRb4および複数のRb5は各々において、互いに同一でも異なってもよく、また、Rb1〜Rb5の各基はさらに置換基で置換されていてもよい。ただし、分子鎖中に2個以上のSi−H基を有する。
b1〜Rb3におけるアルキル基、シクロアルキル基、アルケニル基およびアリール基は、Ra2およびRa3におけるアルキル基、シクロアルキル基、アルケニル基およびアリール基と同義であり、好ましい範囲も同じである。
−O−Si(Rb5(Rb4)のRb4およびRb5におけるアルキル基、シクロアルキル基、アルケニル基およびアリール基は、Rb1〜Rb3におけるアルキル基、シクロアルキル基、アルケニル基およびアリール基と同義であり、好ましい範囲も同じである。
b1〜Rb3は水素原子、アルキル基、アルケニル基、アリール基または−O−Si(Rb5(Rb4)が好ましく、水素原子、炭素数1〜4のアルキル基、ビニル基、フェニル基または−O−Si(CHHがより好ましい。
このうち、Rb1およびRb2は、水素原子、アルキル基、アルケニル基またはアリール基が好ましく、水素原子またはアルキル基がより好ましく、水素原子またはメチル基がさらに好ましい。
b3は、水素原子、アルキル基、アルケニル基、アリール基または−O−Si(R (Rb4)が好ましく、水素原子または−O−Si(CHHがより好ましい。
y1およびy2は、1〜2000の整数が好ましく、1〜50の整数がより好ましく、1〜30の整数がさらに好ましい。
y1+y2は5〜2000の整数が好ましく、7〜1000の整数がより好ましく、10〜50がさらに好ましく、15〜30の整数がなかでも好ましい。
b1〜Rb3の組み合わせとしては、Rb1が水素原子または炭素数1〜4のアルキル基、Rb2が炭素数1〜4のアルキル基、Rb3が水素原子の組み合わせが好ましく、Rb1が炭素数1〜4のアルキル基、Rb2が炭素数1〜4のアルキル基、Rb3が水素原子の組み合わせがより好ましい。
この好ましい組み合わせにおいては、y2/(y1+y2)で表されるヒドロシリル基の含有量は、0.1を超え0.6未満が好ましく、0.1を超え0.4未満がより好ましい。
直鎖状構造のポリオルガノシロキサン(B)は、例えば、いずれもGelest社製のメチルヒドロシロキサン−ジメチルシロキサンコポリマー(トリメチルシロキサン末端)である、HMS−064(MeHSiO:5−7mol%)、HMS−082(MeHSiO:7−8mol%)、HMS−301(MeHSiO:25−30mol%)、HMS−501(MeHSiO:50−55mol%)が挙げられる。
ここで、MeHSiOのmol%は、上記Rb1〜Rb3の好ましい組み合わせにおけるy2/(y1+y2)に100を乗じたものと同義である。
なお、直鎖状構造、分岐状構造ともに、分子内における架橋反応の進行を防止する点から、ビニル基を有さないことが好ましく、なかでも分岐状構造のものは、ビニル基を有さないことが好ましい。
分子鎖中に2個以上のSi−H基を有する、分岐状構造のポリオルガノシロキサン(B)は、分岐構造と2個以上のヒドロシリル基(Si−H基)を有する。
比重は、0.9〜0.95が好ましい。
分岐状構造のポリオルガノシロキサン(B)は、下記平均組成式(b)で表されるものが好ましい。
平均組成式(b):[H(Rb63‐aSiO1/2y3[SiO4/2y4
ここで、Rb6は、アルキル基、シクロアルキル基、アルケニル基またはアリール基を表し、aは0.1〜3を表し、y3およびy4は各々独立に1以上の整数を表す。
b6におけるアルキル基、シクロアルキル基、アルケニル基およびアリール基は、R a2およびRa3におけるアルキル基、シクロアルキル基、アルケニル基およびアリール基と同義であり、好ましい範囲も同じである。
aは、好ましくは1である。
a/3で表されるヒドロシリル基の含有量は、0.1を超え0.6未満が好ましく、0.1を超え0.4未満がより好ましい。
一方、分岐状構造のポリオルガノシロキサン(B)を化学構造式で表すと、−O−Si(CH(H)が主鎖を構成するSi原子に結合しているポリオルガノシロキサンが好ましく、下記一般式(Bb)で表される構造を有するものがより好ましい。
Figure 0006265574
一般式(Bb)において、*は少なくともシロキサンのSi原子と結合することを意味する。
分岐状構造のポリオルガノシロキサン(B)は、例えば、HQM−107(商品名、Gelest社製、水素化Qレジン)、HDP−111(商品名、Gelest社製、ポリフェニル−(ジメチルヒドロキシ)シロキサン(水素末端)、[(HMeSiO)(C Si)O]:99−100mol%)が挙げられる。
本発明に用いられる分子鎖中に2個以上のSi−H基を有するポリオルガノシロキサン(B)は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、直鎖状構造のポリオルガノシロキサン(B)と分岐状構造のポリオルガノシロキサン(B)を組み合わせて用いてもよい。
<無機化合物粒子(C)>
本発明に用いられる無機化合物粒子(C)は、平均一次粒子径が25nm未満であって、酸化マグネシウム、酸化チタン、酸化鉄、酸化亜鉛、酸化ジルコニウム、酸化バリウム、酸化スズおよび酸化イッテルビウムからなる群から選択される。
シリコーン樹脂に無機化合物粒子を添加することにより、シリコーン樹脂の音響インピーダンス、硬度および機械強度の向上効果が得られる反面、無機化合物粒子の添加量の増加に伴い音響波減衰量は上昇する。
しかし、本発明においては、無機化合物粒子(C)の平均一次粒子径を25nm未満と小さくすることにより、音響波減衰量の上昇が抑制され、かつシリコーン樹脂の引裂強度を向上させることが可能となったものと思われる。
すなわち、機械的応力によるシリコーン樹脂のクラックが、無機化合物粒子(C)がストッパーとして機能することで抑制されていると考えられる。特に、平均一次粒子径が小さいことで粒子間距離が小さくなるため、ストッパーとしての機能をより発揮し、シリコーン樹脂の引裂強度が大幅に向上するものと推定される。
本発明に用いられる無機化合物粒子(C)の平均一次粒子径は、シリコーン樹脂の音響波減衰量の上昇を抑制し、かつ引裂強度を向上させる観点から25nm未満であり、3nmを超え25nm未満が好ましく、3nmを超え20nm以下がより好ましく、3nmを超え15nm以下がさらに好ましい。なお、平均一次粒子径が上記範囲内にあって、かつ小さいほど、引裂強度が高く、かつ音響波感度に優れるため好ましい。
なお、平均一次粒子径は、無機化合物粒子の製造メーカーのカタログに記載されている。ただし、カタログに平均一次粒子径が記載されていないもの、または、新たに製造したものは、透過型電子顕微鏡(Transmission Electron Microscopy:TEM)により測定した粒子径を平均することで求めることができる。すなわち、TEMにより撮影した電子顕微鏡写真の1つの粒子について、短径と長径を測定し、その平均値を1つの粒子の粒子径として求める。本明細書においては、300個以上の粒子の粒子径を平均し、平均一次粒子径として求める。
また、無機化合物粒子(C)に後述する表面処理が施されている場合は、表面処理された状態での平均一次粒子径を意味する。
また、本発明に用いられる無機化合物粒子(C)の比重は、2.5以上10.0以下が好ましく、下限値は4.0以上が好ましく、5.0以上がより好ましい。
具体的には、酸化チタン、酸化鉄、酸化亜鉛、酸化ジルコニウム、酸化バリウム、酸化スズおよび酸化イッテルビウムからなる群から選択される無機化合物粒子が好ましく、酸化鉄、酸化亜鉛、酸化ジルコニウム、酸化バリウム、酸化スズおよび酸化イッテルビウムからなる群から選択される無機化合物粒子がより好ましい。
無機化合物粒子(C)は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
本発明に用いられる無機化合物粒子(C)は、得られるシリコーン樹脂の硬度や機械強度の向上の点から、比表面積は50〜400m/gが好ましく、100〜400m/gがより好ましい。
本発明に用いられる無機化合物粒子(C)は、粒子の表面が表面処理された無機化合物粒子が好ましく、シラン化合物で表面処理された無機化合物粒子がより好ましい。
無機化合物粒子をシラン化合物で表面処理することでシリコーン樹脂との相互作用が強くなり、また、シリコーン樹脂との親和性が高くなるため、平均一次粒子径の小さい無機化合物粒子の微分散が可能になると考えられる。このため、無機化合物粒子(C)は、機械的応力が加わった際のストッパーとしての機能をより発揮し、シリコーン樹脂の硬度および機械強度が向上するものと考えられる。
表面処理の手法は通常の手法であればよい。シラン化合物での表面処理の手法としては、例えば、シランカップリング剤で表面処理する手法およびシリコーン化合物で被覆する手法が挙げられる。
(i)シランカップリング剤
シランカップリング剤は、シリコーン樹脂の硬度や機械強度の向上の点から、加水分解性基を有するシランカップリング剤が好ましい。シランカップリング剤における加水分解性基は、水により加水分解されて水酸基となり、この水酸基が無機化合物粒子表面の水酸基と脱水縮合反応することで、無機化合物粒子の表面改質が行われ、得られるシリコーン樹脂の硬度や機械強度が向上される。加水分解性基は、例えば、アルコキシ基、アシルオキシ基、ハロゲン原子が挙げられる。
なお、無機化合物粒子の表面が疎水性に表面改質されていると、無機化合物粒子(C)とポリオルガノシロキサン(A)および(B)との親和性が良好となり、得られるシリコーン樹脂の硬度および機械強度が向上するため好ましい。
官能基として疎水性基を有するシランカップリング剤としては、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシランのようなアルコキシシラン;メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシランのようなクロロシラン;ヘキサメチルジシラザン(HMDS)が挙げられる。
また、官能基としてビニル基を有するシランカップリング剤としては、例えば、メタクリロキシプロピルトリエトキシシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルメチルジエトキシシラン、メタクリロキシプロピルメチルジメトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシランのようなアルコキシシラン;ビニルトリクロロシラン、ビニルメチルジクロロシランのようなクロロシラン;ジビニルテトラメチルジシラザンが挙げられる。
シランカップリング剤で表面処理された無機化合物粒子(C)は、トリアルキルシリル化剤で処理された無機化合物粒子が好ましく、トリメチルシリル化剤で処理された無機化合物粒子がより好ましい。
シラン化合物としては、例えば、上記シランカップリング剤や、シランカップリング剤における官能基がアルキル基で置換されたシランカップリング剤が挙げられる。
また、トリメチルシリル化剤としては、例えば、上記シランカップリング剤に記載のトリメチルクロロシラン、ヘキサメチルジシラザン(HMDS)や、官能基がアルキル基で置換されたシランカップリング剤であるトリメチルメトキシシランが挙げられる。
市販のシランカップリング剤としては、例えば、ヘキサメチルジシラザン(HMDS)(商品名:HEXAMETHYLDISILAZANE(SIH6110.1)、Gelest社製)が挙げられる。
無機化合物粒子表面に存在する水酸基は、ヘキサメチルジシラザン(HMDS)との反応によりトリメチルシリル基で覆われ、無機化合物粒子表面が疎水性に改質される。
(ii)シリコーン化合物
無機化合物粒子(C)を被覆するシリコーン化合物は、シロキサン結合で構成されたポリマーであればよい。
シリコーン化合物としては、例えば、ポリシロキサンの側鎖や末端の全部または一部がメチル基になっているシリコーン化合物、側鎖の一部が水素原子であるシリコーン化合物、側鎖や末端の全部または一部にアミノ基、エポキシ基等の有機基を導入した変性シリコーン化合物、分岐構造を有するシリコーンレジンが挙げられる。なお、シリコーン化合物は直鎖状、環状のいずれの構造でもよい。
ポリシロキサンの側鎖や末端の全部または一部がメチル基になっているシリコーン化合物としては、例えば、ポリメチルヒドロシロキサン(水素末端)、ポリメチルヒドロシロキサン(トリメチルシロキシ末端)、ポリメチルフェニルシロキサン(水素末端)、ポリメチルフェニルシロキサン(トリメチルシロキシ末端)のようなモノメチルポリシロキサン、例えば、ジメチルポリシロキサン(水素末端)、ジメチルポリシロキサン(トリメチルシロキシ末端)、環状ジメチルポリシロキサンのようなジメチルポリシロキサンが挙げられる。
側鎖の一部が水素原子であるシリコーン化合物としては、例えば、メチルヒドロシロキサン−ジメチルシロキサンコポリマー(トリメチルシロキシ末端)、メチルヒドロシロキサン−ジメチルシロキサンコポリマー(水素末端)、ポリメチルヒドロシロキサン(水素末端)、ポリメチルヒドロシロキサン(トリメチルシロキシ末端)、ポリエチルヒドロシロキサン(トリエチルシロキシ末端)、ポリフェニル−(ジメチルヒドロシロキシ)シロキサン(水素末端)、メチルヒドロシロキサン−フェニルメチルシロキサンコポリマー(水素末端)、メチルヒドロシロキサン−オクチルメチルシロキサンコポリマー・ターポリマーが挙げられる。
また、有機基を導入した変性シリコーンとしては、例えば、アミノ基、エポキシ基、メトキシ基、(メタ)アクリロイル基、フェノール基、カルボン酸無水物基、、ヒドロキシ基、メルカプト基、カルボキシ基、水素原子の有機基を導入した反応性シリコーンや、例えば、ポリエーテル、アラルキル、フルオロアルキル、長鎖アルキル、長鎖アラルキル、高級脂肪酸エステル、高級脂肪酸アミド、ポリエーテルメトキシで変性された非反応性シリコーンが挙げられる。
シリコーン化合物で被覆された無機化合物粒子は、常法により得ることができる。例えば、無機化合物粒子をジメチルポリシロキサン中で一定時間混合撹拌し、濾過することにより得られる。
また、シリコーン化合物として反応性の変性シリコーンを用いる場合には、有機基が無機化合物粒子表面の水酸基と反応することで、無機化合物粒子の表面改質が行われ、得られるシリコーン樹脂の硬度や機械強度が向上される。
市販のシリコーン化合物としては、例えば、ポリメチルヒドロシロキサン(トリメチルシロキシ末端)であるメチルハイドロジェンシリコーンオイル(MHS)(商品名:KF−99、信越化学工業株式会社製)が挙げられる。
ポリオルガノシロキサン(A)の有するビニル基とポリオルガノシロキサン(B)の有するSi−H基は、通常、化学量論的には1:1で反応するものである。
しかしながら、本発明においては、無機化合物粒子(C)の平均一次粒子径が小さく、ポリオルガノシロキサン(A)および(B)の隙間に密に充填されているため、ポリオルガノシロキサン(A)および(B)の分子鎖の運動は制限されている。
従って、全てのビニル基がSi−H基と反応するためには、ポリオルガノシロキサン(A)の有するビニル基に対するポリオルガノシロキサン(B)の有するSi−H基の当量は、ビニル基:Si−H基=1:1.1〜1:8が好ましく、1:1.2〜1:5がより好ましい。
<その他の成分>
本発明の音響波プローブ用組成物は、ビニル基を有するポリオルガノシロキサン(A)、分子鎖中に2個以上のSi−H基を有するポリオルガノシロキサン(B)および無機化合物粒子(C)以外に、付加重合反応のための白金触媒、硬化遅延剤、溶媒、分散剤、顔料、染料、帯電防止剤、酸化防止剤、難燃剤、熱伝導性向上剤等を適宜配合することができる。
− 触媒 −
触媒としては、例えば、白金または白金含有化合物(以下、白金化合物ともいう。)が挙げられる。白金または白金化合物としては、任意のものを使用することができる。
具体的には、白金黒、白金を無機化合物やカーボンブラック等に担持させたもの、塩化白金酸または塩化白金酸のアルコール溶液、塩化白金酸とオレフィンの錯塩、塩化白金酸とビニルシロキサンとの錯塩等が挙げられる。触媒は1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
触媒の含有量は、触媒量の範囲で適宜設定することができる。
触媒は、ポリオルガノシロキサン(B)のSi−H基が、ポリオルガノシロキサン(A)のビニル基に対して付加するヒドロシリル化反応において必要である。ヒドロシリル化による付加硬化反応によって、ポリオルガノシロキサン(A)がポリオルガノシロキサン(B)により架橋され、シリコーン樹脂が形成される。
ここで、触媒は本発明の音響波プローブ用組成物中に含有させてもよく、また、音響波プローブ用組成物に含有させずに、音響波プローブ用組成物と接触させてもよい。なお、後者の方が好ましい。
市販の白金触媒としては、例えば、白金化合物(商品名:PLATINUM CYCLOVINYLMETHYLSILOXANE COMPLEX IN CYCLIC METHYLVINYLSILOXANES(SIP6832.2)、Pt濃度2質量%、Gelest社製)が挙げられる。
触媒を本発明の音響波プローブ用組成物に含有させる場合には、触媒の含有量は、反応性の観点から、ポリシロキサン混合物100質量部に対し、0.00001〜0.05質量部が好ましく、0.00001〜0.01質量部がより好ましく、0.00002〜0.01質量部がさらに好ましく、0.00005〜0.005質量部が特に好ましい。
また、適切な白金触媒を選択することにより硬化温度を調節することができる。例えば、白金−ビニルジシロキサンは50℃以下での室温硬化(RTV)に、白金−環状ビニルシロキサンは130℃以上での高温硬化(HTV)に使用される。
− 硬化遅延剤 −
本発明において、硬化反応に対する硬化遅延剤を適宜に用いることができる。硬化遅延剤は、白金触媒による付加硬化反応を遅らせる用途で使用され、例えば、低分子量のビニルメチルシロキサンホモポリマー(商品名:VMS−005、Gelest社製)が挙げられる。
硬化遅延剤の含有量により、硬化速度、すなわち作業時間を調整することができる。
<音響波プローブ用組成物および音響波プローブ用シリコーン樹脂の製造方法>
本発明の音響波プローブ用組成物は、任意の方法で作製することが可能である。
例えば、音響波プローブ用組成物を構成する成分を、ニーダー、加圧ニーダー、バンバリーミキサー(連続ニーダー)、2本ロールの混練装置で混練りすることにより得ることができる。各成分の混合順序は特に限定されない。
なお、均一な組成物を得る観点からは、まず、ビニル基を有するポリオルガノシロキサン(A)および分子鎖中に2個以上のSi−H基を有するポリオルガノシロキサン(B)に、無機化合物粒子(C)を分散させたポリオルガノシロキサン混合物とすることが好ましい。その後、無機化合物粒子(C)を分散させたポリオルガノシロキサン混合物に触媒を添加し、減圧脱泡することで、音響波プローブ用組成物を作製することができる。
このようにして得られた本発明の音響波プローブ用組成物を硬化させることにより、本発明の音響波プローブ用シリコーン樹脂を得ることができる。具体的には、例えば、20〜200℃で5分〜500分加熱硬化させることにより、音響波プローブ用シリコーン樹脂を得ることができる。
<シリコーン樹脂の機械強度および音響波特性>
本発明の音響波プローブ用シリコーン樹脂は、本発明の音響波プローブ用組成物を硬化したものである。
以下に、シリコーン樹脂の機械強度および音響波特性について詳細に記載する。
ここで、音響波特性は、超音波特性について記載する。ただし、音響波特性は超音波特性に限定されるものではなく、被検対象や測定条件等に応じて選択される、適切な周波数の音響波特性に関するものである。
[硬度]
厚み2mmのシリコーン樹脂シートについて、JIS K6253−3(2012)に従い、タイプAデュロメータ硬さを、ゴム硬度計(例えば、エクセル社製、商品名「RH−201A」)を用いて測定する。
音響波プローブの一部として組み込み使用する際の変形を防止する観点から、硬度は15以上が好ましく、25以上がより好ましい。なお、現実的な上限値は80以下である。
[引張試験]
厚み1mmのシリコーン樹脂シートについて、JIS K6251(2010)に従い、ダンベル状試験片を作製し、引張破断強度および引張破断伸度(伸び)を測定する。
引張破断強度は1.2MPa以上が好ましく、引張破断伸びは500%以上が好ましい。なお、現実的な上限値は、引張破断強度は10MPa以下であり、引張破断伸びは1500%以下である。
[引裂強度試験]
厚み2mmのシリコーン樹脂シートについて、JIS K6252(2007)に従い、トラウザー型試験片を作製し、引裂強度を測定する。
引裂強度は15N/cm以上が好ましく、20N/cm以上がより好ましく、30N/cm以上がさらに好ましい。なお、現実的な上限値は100N/cm以下である。
[耐摩耗試験]
厚み2mmのシリコーン樹脂シートについて、JIS K6264−2(2005)に従い、テーバー摩耗試験を行い、質量減少量を測定する。なお、研磨輪はH22、荷重は9.8N、試験回転数は1000回転の条件で測定する。質量減少量が30mg未満を「A」、30mg以上50mg未満を「B」、50mg以上70mg未満を「C」、70mgを超えるものを「D」とする。
ここで、評価「A」および「B」は耐摩耗性にかなり優れることを示し、「C」は使用可能、「D」は使用不可を示す。
[音響インピーダンス]
厚み2mmのシリコーン樹脂シートについて、25℃における密度をJIS K7112(1999)に記載のA法(水中置換法)の密度測定方法に準じて、電子比重計(例えば、アルファミラージュ社製、「SD−200L」)を用いて測定する。音響波の音速は、JIS Z2353(2003)に従い、シングアラウンド式音速測定装置(例えば、超音波工業株式会社製、「UVM−2型」)を用いて25℃において測定し、測定した密度と音速の積から音響インピーダンスを求める。
[音響波(超音波)減衰量、感度]
超音波発振器(例えば、岩通計測株式会社製、ファンクション・ジェネレータ、商品名「FG−350」)から出力された5MHzの正弦波信号(1波)を超音波プローブ(例えば、ジャパンプローブ株式会社製)に入力し、超音波プローブから中心周波数が5MHzの超音波パルス波を水中に発生させる。発生させた超音波が、厚み2mmのシリコーン樹脂シートを通過する前と後の振幅の大きさを超音波受信機(例えば、松下電器産業株式会社製、オシロスコープ、商品名「VP−5204A」)により、水温25℃の環境で測定し、音響波(超音波)感度を比較することで、各シートの音響波(超音波)減衰量を比較する。
なお、音響波(超音波)感度とは、下記計算式で与えられる数値とする。
下記計算式において、Vinは、超音波発振器による、半値幅50nsec以下の入力波の電圧ピーク値を表す。Vsは、発生させた音響波(超音波)がシートを通過し、シートの対面から反射してきた音響波(超音波)を超音波発振器が受信したときに得られる電圧値を表す。
音響波(超音波)感度=20×Log(Vs/Vin)
本発明における評価系においては、音響波(超音波)感度は−72dB以上が好ましく、−71dB以上がより好ましい。
本発明の音響波プローブ用組成物は、医療用部材に有用であり、例えば、音響波プローブや音響波測定装置に好ましく用いることができる。なお、本発明の音響波測定装置とは、超音波診断装置や光音響波測定装置に限らず、対象物で反射または発生した音響波を受信し、画像または信号強度として表示する装置を称する。
特に、本発明の音響波プローブ用組成物は、超音波診断装置の音響レンズ、あるいは圧電素子と音響レンズの間に設けられて圧電素子と音響レンズとの間の音響インピーダンスを整合させる役割を有する音響整合層の材料、光音響波測定装置や超音波内視鏡における音響レンズの材料ならびに超音波トランスデューサアレイとして容量性マイクロマシン超音波振動子(cMUT:Capacitive Micromachined Ultrasonic Transducers)を備える超音波プローブにおける音響レンズの材料等に好適に用いることができる。
本発明の音響波プローブ用シリコーン樹脂は、具体的には、例えば、特開2005−253751号公報、特開2003−169802号公報などに記載の超音波診断装置や、特開2013−202050号公報、特開2013−188465号公報、特開2013−180330号公報、特開2013−158435号公報、特開2013−154139号公報などに記載の光音響波測定装置などの音響波測定装置に好ましく適用される。
<<音響波探触子(プローブ)>>
本発明の音響波プローブの構成を、図1に記載する、超音波診断装置における超音波プローブの構成に基づき、以下により詳細に説明する。なお、超音波プローブとは、音響波プローブにおける音響波として、特に超音波を使用するプローブである。そのため、超音波プローブの基本的な構造は音響波プローブにそのまま適用することができる。
− 超音波プローブ −
超音波プローブ10は、超音波診断装置の主要構成部品であって、超音波を発生するとともに、超音波ビームを送受信する機能を有するものである。超音波プローブ10の構成は、図1に示すように、先端(被検体である生体に接する面)部分から音響レンズ1、音響整合層2、圧電素子層3、バッキング材4の順に設けられている。なお、近年、高次高調波を受信することを目的に、送信用超音波振動子(圧電素子)と、受信用超音波振動子(圧電素子)を異なる材料で構成し、積層構造としたものも提案されている。
<圧電素子層>
圧電素子層3は、超音波を発生する部分であって、圧電素子の両側に電極が貼り付けられており、電圧を加えると圧電素子が伸縮と膨張を繰り返し振動することにより、超音波が発生する。
圧電素子を構成する材料としては、水晶、LiNbO、LiTaO、KNbOなどの単結晶、ZnO、AlNなどの薄膜、Pb(Zr,Ti)O系などの焼結体を分極処理した、いわゆるセラミックスの無機圧電体が広く利用されている。一般的には、変換効率のよいPZT:チタン酸ジルコン酸鉛等の圧電セラミックスが使用されている。
また、高周波側の受信波を検知する圧電素子には、より広い帯域幅の感度が必要である。このため、高周波、広帯域に適した圧電素子として、ポリフッ化ビニリデン(PVDF)などの有機系高分子物質を利用した有機圧電体が使用されている。
さらに、特開2011−071842号公報等には、優れた短パルス特性、広帯域特性を示し、量産性に優れ、特性ばらつきの少ないアレイ構造が得られる、MEMS(Micro Electro Mechanical Systems)技術を利用したcMUTが記載されている。
本発明においては、いずれの圧電素子材料も好ましく用いることができる。
<バッキング材>
バッキング材4は、圧電素子層3の背面に設けられており、余分な振動を抑制することにより超音波のパルス幅を短くし、超音波診断画像における距離分解能の向上に寄与する。
<音響整合層>
音響整合層2は、圧電素子層3と被検体間での音響インピーダンスの差を小さくし、超音波を効率よく送受信するために設けられる。
本発明の超音波プローブ用組成物は、生体の音響インピーダンス(1.4〜1.7×10kg/m/sec)との差が小さいことから、音響整合層の材料として好ましく用いることができる。本発明の音響整合層は、本発明の音響波プローブ用組成物を硬化反応させてなる音響波プローブ用シリコーン樹脂を10質量%以上含むことが好ましい。
<音響レンズ>
音響レンズ1は、屈折を利用して超音波をスライス方向に集束し、分解能を向上させるために設けられる。また、被検体である生体と密着し、超音波を生体の音響インピーダンス(人体では、1.4〜1.7×10kg/m/sec)と整合させること、および、音響レンズ1自体の超音波減衰量が小さいことが求められている。
すなわち、音響レンズ1の材料としては、音速が人体の音速よりも十分小さく、超音波の減衰が少なく、また、音響インピーダンスが人体の皮膚の値に近い材料を使用することで、超音波の送受信感度がよくなる。
本発明の超音波プローブ用組成物である音響波プローブ用組成物は、音響レンズ材としても、好ましく用いることができる。
このような構成の超音波プローブ10の動作を説明する。圧電素子の両側に設けられた電極に電圧を印加して圧電素子層3を共振させ、超音波信号を音響レンズから被検体に送信する。受信時には、被検体からの反射信号(エコー信号)によって圧電素子層3を振動させ、この振動を電気的に変換して信号とし、画像を得る。
特に、本発明の超音波プローブ用組成物から得られる音響レンズは、一般的な医療用超音波トランスデューサとしては、およそ5MHz以上の超音波の送信周波数で、顕著な感度改善効果を確認できる。特に10MHz以上の超音波の送信周波数で、特に顕著な感度改善効果が期待できる。
以下、本発明の超音波プローブ用組成物から得られる音響レンズが、従来の課題に対し特に機能を発揮する装置について、詳細に記載する。
なお、下記に記載する以外の装置に対しても、本発明の超音波プローブ用組成物は優れた効果を示す。
− cMUT(容量性マイクロマシン超音波振動子)を備える超音波プローブ −
特開2006−157320号公報、特開2011−71842号公報などに記載のcMUTデバイスを超音波診断用トランスデューサアレイに用いる場合、一般的な圧電セラミックス(PZT)を用いたトランスデューサと比較して、一般的には、その感度が低くなる。
しかし、本発明の音響波プローブ用組成物から得られる音響レンズを用いることで、cMUTの感度不足を補うことが可能である。これにより、cMUTの感度を、従来のトランスデューサの性能に近づけることができる。
なお、cMUTデバイスはMEMS技術により作製されるため、圧電セラミックスプローブよりも量産性が高く、低コストな超音波プローブを市場に提供することができる。
− 光超音波イメージングによる光音響波測定装置 −
特開2013−158435号公報などに記載の光超音波イメージング(PAI:Photo Acoustic Imaging)は、人体内部へ光(電磁波)を照射し、照射した光によって人体組織が断熱膨張する際に発生する超音波を画像化したもの、または超音波の信号強度を表示する。
ここで、光照射によって発生する超音波の音圧は微量であるため、人体深部の観察が困難であるという課題がある。
しかし、本発明の音響波プローブ用組成物から得られる音響レンズを用いることで、この課題に対して有効な効果を発揮することができる。
− 超音波内視鏡 −
特開2008−311700号公報などに記載の超音波内視鏡における超音波は、その構造上、信号線ケーブルが体表用トランスデューサと比較して長いため、ケーブル損失によるトランスデューサの感度向上が課題である。また、この課題に対しては、下記の理由により、効果的な感度向上手段がないと言われている。
第一に、体表用の超音波診断装置であれば、トランスデューサ先端にアンプ回路、AD変換IC等の設置が可能である。これに対して、超音波内視鏡は体内に挿入して使用するため、トランスデューサの設置スペースが狭く、トランスデューサ先端へのアンプ回路、AD変換IC等の設置は困難である。
第二に、体表用の超音波診断装置におけるトランスデューサで採用されている圧電単結晶は、その物理特性およびプロセス適性上、超音波の送信周波数7〜8MHz以上のトランスデューサへの適用は困難である。しかしながら、内視鏡用超音波は概して超音波の送信周波数7〜8MHz以上のプローブであるため、圧電単結晶材による感度向上も困難である。
しかし、本発明の音響波プローブ用組成物から得られる音響レンズを用いることで、内視鏡超音波トランスデューサの感度を向上させることが可能である。
また、同一の超音波の送信周波数(例えば10MHz)を使用する場合でも、内視鏡用超音波トランスデューサにおいて本発明の音響波プローブ用組成物から得られる音響レンズ用いる場合には、特に有効性が発揮される。
以下に本発明を、音響波として超音波を用いた実施例に基づいてさらに詳細に説明する。なお、本発明は超音波に限定されるものではなく、被検対象や測定条件等に応じて適切な周波数を選択してさえいれば、可聴周波数の音響波を用いてもよい。
[実施例1]
ビニル末端ポリジメチルシロキサン(Gelest社製、商品名「DMS−V42」、質量平均分子量72,000)68質量部、メチルヒドロシロキサン−ジメチルシロキサンコポリマー(Gelest社製、商品名「HMS−301」、質量平均分子量2,000、メチルヒドロシロキサン比率27mol%)2質量部、酸化マグネシウム(比重3.6、平均一次粒子径19nm、ヘキサメチルジシラザン(HMDS)表面処理)30質量部をニーダーで2時間混練りし、均一なペーストとした。これに白金触媒溶液(Gelest社製、商品名「SIP6832.2」、Pt濃度2質量%)を0.05質量部添加して混合した後、減圧脱泡し、150mm×150mmの金属型に入れ、60℃で3時間熱処理をして、厚みが1mmおよび2mmのシリコーン樹脂シートを各々得た。
[実施例2]
無機化合物粒子として酸化チタン(比重4.2、平均一次粒子径14nm、ヘキサメチルジシラザン(HMDS)表面処理)30質量部を使用した以外は、実施例1と同様に処理し、所定のシリコーン樹脂シートを得た。
[実施例3]
無機化合物粒子として酸化鉄(比重5.2、平均一次粒子径21nm、ヘキサメチルジシラザン(HMDS)表面処理)30質量部を使用した以外は、実施例1と同様に処理し、所定のシリコーン樹脂シートを得た。
[実施例4]
ビニル末端ポリジメチルシロキサン(Gelest社製、商品名「DMS−V42」、質量平均分子量72,000)68質量部、メチルヒドロシロキサン−ジメチルシロキサンコポリマー(Gelest社製、商品名「HMS−301」、質量平均分子量2,000、メチルヒドロシロキサン比率27mol%)2質量部、酸化亜鉛(比重5.6、平均一次粒子径11nm、ヘキサメチルジシラザン(HMDS)表面処理)30質量部を実施例1と同様にして混合し、同じく実施例1と同様にして、白金触媒で熱硬化して所定のシリコーン樹脂シートを得た。
[実施例5]
無機化合物粒子として酸化ジルコニウム(比重5.9、平均一次粒子径11nm、ヘキサメチルジシラザン(HMDS)表面処理)30質量部を使用した以外は、実施例1と同様に処理し、所定のシリコーン樹脂シートを得た。
[実施例6]
無機化合物粒子として酸化バリウム(比重6.7、平均一次粒子径24nm、ヘキサメチルジシラザン(HMDS)表面処理)30質量部を使用した以外は、実施例1と同様に処理し、所定のシリコーン樹脂シートを得た。
[実施例7]
無機化合物粒子として酸化スズ(比重7.0、平均一次粒子径22nm、ヘキサメチルジシラザン(HMDS)表面処理)30質量部を使用した以外は、実施例1と同様に処理し、所定のシリコーン樹脂シートを得た。
[実施例8]
無機化合物粒子として酸化イッテルビウム(比重9.2、平均一次粒子径20nm、ヘキサメチルジシラザン(HMDS)表面処理)30質量部を使用した以外は、実施例1と同様に処理し、所定のシリコーン樹脂シートを得た。
[実施例9]
無機化合物粒子として酸化亜鉛(比重5.6、平均一次粒子径11nm、表面処理なし)30質量部を使用した以外は、実施例4と同様に処理し、所定のシリコーン樹脂シートを得た。
[実施例10]
ビニル基を有するポリオルガノシロキサンとしてビニル末端ポリジメチルシロキサン(Gelest社製、商品名「DMS−V31」、質量平均分子量28,000)65質量部、Si−H基を有するポリオルガノシロキサンとしてメチルヒドロシロキサン−ジメチルシロキサンコポリマー(Gelest社製、商品名「HMS−301」、質量平均分子量2,000、メチルヒドロシロキサン比率27mol%)5質量部を使用した以外は、実施例4と同様に処理し、所定のシリコーン樹脂シートを得た。
[実施例11]
ビニル基を有するポリオルガノシロキサンとしてビニル末端ポリジメチルシロキサン(Gelest社製、商品名「DMS−V35」、質量平均分子量49,500)67質量部、Si−H基を有するポリオルガノシロキサンとしてメチルヒドロシロキサン−ジメチルシロキサンコポリマー(Gelest社製、商品名「HMS−301」、質量平均分子量2,000、メチルヒドロシロキサン比率27mol%)3質量部を使用した以外は、実施例4と同様に処理し、所定のシリコーン樹脂シートを得た。
[実施例12]
ビニル基を有するポリオルガノシロキサンとしてビニル末端ポリジメチルシロキサン(Gelest社製、商品名「DMS−V46」、質量平均分子量117,000)69質量部、Si−H基を有するポリオルガノシロキサンとしてメチルヒドロシロキサン−ジメチルシロキサンコポリマー(Gelest社製、商品名「HMS−301」、質量平均分子量2,000、メチルヒドロシロキサン比率27mol%)1質量部を使用した以外は、実施例4と同様に処理し、所定のシリコーン樹脂シートを得た。
[実施例13]
ビニル基を有するポリオルガノシロキサンとしてビニル末端ポリジメチルシロキサン(Gelest社製、商品名「DMS−V52」、質量平均分子量155,000)69質量部、Si−H基を有するポリオルガノシロキサンとしてメチルヒドロシロキサン−ジメチルシロキサンコポリマー(Gelest社製、商品名「HMS−301」、質量平均分子量2,000、メチルヒドロシロキサン比率27mol%)1質量部を使用した以外は、実施例4と同様に処理し、所定のシリコーン樹脂シートを得た。
[実施例14]
ビニル基を有するポリオルガノシロキサンとしてビニル末端ポリジメチルシロキサン(Gelest社製、商品名「DMS−V42」、質量平均分子量72,000)78質量部、Si−H基を有するポリオルガノシロキサンとしてメチルヒドロシロキサン−ジメチルシロキサンコポリマー(Gelest社製、商品名「HMS−301」、質量平均分子量2,000、メチルヒドロシロキサン比率27mol%)2質量部、無機化合物粒子として酸化亜鉛(比重5.6、平均一次粒子径11nm、ヘキサメチルジシラザン(HMDS)表面処理)20質量部を使用した以外は、実施例4と同様に処理し、所定のシリコーン樹脂シートを得た。
[実施例15]
ビニル基を有するポリオルガノシロキサンとしてビニル末端ポリジメチルシロキサン(Gelest社製、商品名「DMS−V42」、質量平均分子量72,000)59質量部、Si−H基を有するポリオルガノシロキサンとしてメチルヒドロシロキサン−ジメチルシロキサンコポリマー(Gelest社製、商品名「HMS−301」、質量平均分子量2,000、メチルヒドロシロキサン比率27mol%)1質量部、無機化合物粒子として酸化亜鉛(比重5.6、平均一次粒子径11nm、ヘキサメチルジシラザン(HMDS)表面処理)40質量部を使用した以外は、実施例4と同様に処理し、所定のシリコーン樹脂シートを得た。。
[実施例16]
ビニル基を有するポリオルガノシロキサンとしてビニル末端ジフェニルシロキサン‐ジメチルシロキサンコポリマー(Gelest社製、商品名「PDV−0535」、質量平均分子量47,500、ジフェニルシロキサン量5mol%)68質量部を使用した以外は、実施例8と同様に処理し、所定のシリコーン樹脂シートを得た。
[実施例17]
ビニル基を有するポリオルガノシロキサンとしてビニル末端ジフェニルシロキサン‐ジメチルシロキサンコポリマー(Gelest社製、商品名「PDV−1635」、質量平均分子量35,300、ジフェニルシロキサン量16mol%)68質量部を使用した以外は、実施例8同様に処理し、所定のシリコーン樹脂シートを得た。
[比較例1]
無機化合物粒子として酸化マグネシウム(比重3.6、平均一次粒子径60nm、ヘキサメチルジシラザン(HMDS)表面処理)30質量部を使用した以外は、実施例1と同様に処理し、所定のシリコーン樹脂シートを得た。
[比較例2]
無機化合物粒子として酸化チタン(比重4.2、平均一次粒子径28nm、ヘキサメチルジシラザン(HMDS)表面処理)30質量部を使用した以外は、実施例1と同様に処理し、所定のシリコーン樹脂シートを得た。
[比較例3]
無機化合物粒子として酸化鉄(比重5.2、平均一次粒子径42nm、ヘキサメチルジシラザン(HMDS)表面処理)30質量部を使用した以外は、実施例1と同様に処理し、所定のシリコーン樹脂シートを得た。
[比較例4]
無機化合物粒子として酸化亜鉛(比重5.6、平均一次粒子径30nm、ヘキサメチルジシラザン(HMDS)表面処理)30質量部を使用した以外は、実施例1と同様に処理し、所定のシリコーン樹脂シートを得た。
[比較例5]
無機化合物粒子として酸化ジルコニウム(比重5.9、平均一次粒子径31nm、ヘキサメチルジシラザン(HMDS)表面処理)30質量部を使用した以外は、実施例1と同様に処理し、所定のシリコーン樹脂シートを得た。
[比較例6]
無機化合物粒子として酸化バリウム(比重6.7、平均一次粒子径52nm、ヘキサメチルジシラザン(HMDS)表面処理)30質量部を使用した以外は、実施例1と同様に処理し、所定のシリコーン樹脂シートを得た。
[比較例7]
無機化合物粒子として酸化スズ(比重7.0、平均一次粒子径75nm、ヘキサメチルジシラザン(HMDS)表面処理)30質量部を使用した以外は、実施例1と同様に処理し、所定のシリコーン樹脂シートを得た。
[比較例8]
無機化合物粒子として酸化イッテルビウム(比重9.2、平均一次粒子径25nm、ヘキサメチルジシラザン(HMDS)表面処理)30質量部を使用した以外は、実施例1と同様に処理し、所定のシリコーン樹脂シートを得た。
[比較例9]
ビニル末端ポリジメチルシロキサン(Gelest社製、商品名「DMS−V42」、質量平均分子量72,000)98質量部、メチルヒドロシロキサン−ジメチルシロキサンコポリマー(Gelest社製、商品名「HMS−301」、質量平均分子量2,000、メチルヒドロシロキサン比率27mol%)2質量部を実施例1と同様にして混合し、同じく実施例1と同様にして、白金触媒で熱硬化して所定のシリコーン樹脂シートを得た。
<機械強度および超音波特性の評価>
実施例1〜17および比較例1〜9のシリコーン樹脂シートについて、以下の評価を行った。
[硬度]
得られた厚み2mmのシリコーン樹脂シートについて、JIS K6253−3(2012)に従い、タイプAデュロメータ硬さを、ゴム硬度計(エクセル社製、商品名「RH−201A」)を用いて測定した。
[引張試験]
得られた厚み1mmのシリコーン樹脂シートについて、JIS K6251(2010)に従い、ダンベル状試験片を作製し、引張破断強度および引張破断伸びを測定した。
[引裂強度試験]
得られた厚み2mmのシリコーン樹脂シートについて、JIS K6252(2007)に従い、トラウザー型試験片を作製し、引裂強度を測定した。
[耐摩耗試験]
得られた厚み2mmのシリコーン樹脂シートについて、JIS K6264−2(2005)に従い、テーバー摩耗試験を行い、質量減少量を測定した。なお、研磨輪はH22、荷重は9.8N、試験回転数は1000回転の条件で測定した。質量減少量が30mg未満を「A」、30mg以上50mg未満を「B」、50mg以上70mg未満を「C」、70mgを超えるものを「D」とした。
ここで、評価「A」および「B」は耐摩耗性にかなり優れることを示し、「C」は使用可能、「D」は使用不可を示す。
[音響インピーダンス]
得られた厚み2mmのシリコーン樹脂シートについて、25℃における密度をJIS K7112(1999)に記載のA法(水中置換法)の密度測定方法に準じて、電子比重計(アルファミラージュ社製、商品名「SD−200L」)を用いて測定した。超音波音速は、JIS Z2353(2003)に従い、シングアラウンド式音速測定装置(超音波工業株式会社製、商品名「UVM−2型」)を用いて25℃において測定し、測定した密度と音速の積から音響インピーダンスを求めた。
[音響波(超音波)感度]
超音波発振器(岩通計測株式会社製、ファンクション・ジェネレータ、商品名「FG−350」)から出力された5MHzの正弦波信号(1波)を超音波プローブ(ジャパンプローブ株式会社製)に入力し、超音波プローブから中心周波数が5MHzの超音波パルス波を水中に発生させた。発生させた超音波が、得られた厚み2mmのシリコーン樹脂シートを通過する前と後の振幅の大きさを超音波受信機(松下電器産業株式会社製、オシロスコープ、商品名「VP−5204A」)により、水温25℃の環境で測定し、音響波(超音波)感度を比較することで、各素材の音響波(超音波)減衰量を比較した。
なお、音響波(超音波)感度とは、下記計算式で与えられる数値とする。
下記計算式において、Vinは、超音波発振器による、半値幅50nsec以下の入力波の電圧ピーク値を表す。Vsは、発生させた音響波(超音波)がシートを通過し、シートの対面から反射してきた音響波(超音波)を超音波発振器が受信したときに得られる電圧値を表す。
音響波(超音波)感度=20×Log(Vs/Vin)
得られた結果をまとめて、下記表1〜3に示す。
なお、下記表1〜3では、ポリオルガノシロキサン(A)および(B)の質量平均分子量を単に分子量として記載し、各成分の種類は商品名を記載した。
Figure 0006265574
Figure 0006265574
Figure 0006265574
表1〜3に示すように、実施例1〜17の音響波プローブ用シリコーン樹脂は、いずれも音響波(超音波)感度が−72dB以上を維持しつつ、高い樹脂硬度、引張破断強度、引張破断伸びおよび引裂強度ならびに優れた耐摩耗性を得ることができた。これに対して、比較例1〜9の音響波プローブ用シリコーン樹脂は、いずれも十分な引張破断伸びおよび引裂強度が得られなかった。
この結果から、本発明の音響波プローブ用組成物は、医療用部材に有用であることがわかる。また、本発明のシリコーン樹脂は、音響波プローブの音響レンズおよび/または音響整合層、ならびに、音響波測定装置および超音波診断装置にも好適に用いることができる。特に、音響波プローブ用組成物および音響波プローブ用シリコーン樹脂は、cMUTを超音波診断用トランスデューサアレイとして用いる超音波プローブ、光音響波測定装置および超音波内視鏡において、感度向上を目的として、好適に用いることができる。
本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
本願は、2014年12月1日に日本国で特許出願された特願2014−243074、及び2015年11月6日に日本国で特許出願された特願2015−218499に基づく優先権を主張するものであり、これらはいずれもここに参照してその内容を本明細書の記載の一部として取り込む。
1 音響レンズ
2 音響整合層
3 圧電素子層
4 バッキング材
7 筐体
9 コード
10 超音波探触子(プローブ)

Claims (14)

  1. ビニル基を有するポリシロキサン、分子鎖中に2個以上のSi−H基を有するポリシロキサンおよび一種以上の無機化合物粒子を含むポリシロキサン混合物を含有する音響波プローブ用組成物であって、
    該無機化合物粒子が、平均一次粒子径が25nm未満であって、酸化マグネシウム、酸化チタン、酸化鉄、酸化亜鉛、酸化ジルコニウム、酸化バリウム、酸化スズおよび酸化イッテルビウムからなる群から選択される音響波プローブ用組成物。
  2. 前記ポリシロキサン混合物の合計100質量部中に、前記平均一次粒子径が25nm未満の無機化合物粒子を10〜60質量部含有する請求項1に記載の音響波プローブ用組成物。
  3. 前記ポリシロキサン混合物の合計100質量部中に、前記ビニル基を有するポリシロキサンを10〜99.4質量部、分子鎖中に2個以上のSi−H基を有するポリシロキサンを0.5〜90質量部含有する請求項1または2に記載の音響波プローブ用組成物。
  4. 前記平均一次粒子径が25nm未満の無機化合物粒子がシラン化合物で表面処理されたものである請求項1〜3のいずれか1項に記載の音響波プローブ用組成物。
  5. 前記ビニル基を有するポリシロキサンの質量平均分子量が20,000〜200,000である請求項1〜4のいずれか1項に記載の音響波プローブ用組成物。
  6. 前記ビニル基を有するポリシロキサンの質量平均分子量が40,000〜150,000である請求項1〜5のいずれか1項に記載の音響波プローブ用組成物。
  7. 前記ポリシロキサン混合物100質量部に対し、白金または白金化合物を0.00001〜0.05質量部含有する請求項1〜6のいずれか1項に記載の音響波プローブ用組成物。
  8. 請求項1〜7のいずれか1項に記載の音響波プローブ用組成物を硬化した音響波プローブ用シリコーン樹脂。
  9. 請求項8に記載の音響波プローブ用シリコーン樹脂からなる音響レンズおよび/または請求項8に記載の音響波プローブ用シリコーン樹脂からなる音響整合層を有する音響波プローブ。
  10. 超音波トランスデューサアレイとしての容量性マイクロマシン超音波振動子、および、請求項8に記載の音響波プローブ用シリコーン樹脂を含んでなる音響レンズを備える超音波プローブ。
  11. 請求項9に記載の音響波プローブを備える音響波測定装置。
  12. 請求項9に記載の音響波プローブを備える超音波診断装置。
  13. 請求項8に記載の音響波プローブ用シリコーン樹脂を含んでなる音響レンズを備える光音響波測定装置。
  14. 請求項8に記載の音響波プローブ用シリコーン樹脂を含んでなる音響レンズを備える超音波内視鏡。
JP2016562435A 2014-12-01 2015-11-30 音響波プローブ用組成物、これを用いた音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブ、ならびに、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡 Active JP6265574B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2014243074 2014-12-01
JP2014243074 2014-12-01
JP2015218499 2015-11-06
JP2015218499 2015-11-06
PCT/JP2015/083536 WO2016088699A1 (ja) 2014-12-01 2015-11-30 音響波プローブ用組成物、これを用いた音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブ、ならびに、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡

Publications (2)

Publication Number Publication Date
JPWO2016088699A1 JPWO2016088699A1 (ja) 2017-07-27
JP6265574B2 true JP6265574B2 (ja) 2018-01-24

Family

ID=56091641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016562435A Active JP6265574B2 (ja) 2014-12-01 2015-11-30 音響波プローブ用組成物、これを用いた音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブ、ならびに、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡

Country Status (5)

Country Link
US (1) US20170252465A1 (ja)
EP (1) EP3229491A4 (ja)
JP (1) JP6265574B2 (ja)
CN (1) CN107005770B (ja)
WO (1) WO2016088699A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6740708B2 (ja) * 2016-05-20 2020-08-19 コニカミノルタ株式会社 音響レンズの製造方法
JP6655194B2 (ja) * 2016-09-20 2020-02-26 富士フイルム株式会社 音響波プローブ用組成物、これを用いた音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブ、ならびに、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡
EP3522565B1 (en) * 2016-09-27 2021-03-17 FUJIFILM Corporation Resin material for acoustic wave probe, acoustic lens, acoustic wave probe, acoustic wave measurement apparatus, ultrasound diagnostic apparatus, photoacoustic wave measurement apparatus, and ultrasound endoscope
JP6672134B2 (ja) * 2016-12-22 2020-03-25 オリンパス株式会社 超音波内視鏡用音響レンズおよび超音波内視鏡装置
JP2019083859A (ja) * 2017-11-01 2019-06-06 オリンパス株式会社 音響レンズ、超音波プローブ、および超音波診断装置
EP3706436B1 (en) * 2017-11-01 2023-09-27 FUJIFILM Corporation Resin composition for acoustic matching layer, hardened product, acoustic matching sheet, acoustic wave probe, acoustic wave measurement device, acoustic wave probe production method
CN107952647A (zh) * 2017-11-22 2018-04-24 苏州佳世达电通有限公司 医疗用的超音波探头结构以及超音波探头结构的制造方法
JP6944885B2 (ja) 2018-02-02 2021-10-06 オリンパス株式会社 超音波振動子及び超音波内視鏡
JP2020048794A (ja) * 2018-09-26 2020-04-02 富士フイルム株式会社 音響波プローブ用組成物、この組成物を用いた音響レンズ、音響波プローブ、音響波測定装置、超音波診断装置、光音響波測定装置及び超音波内視鏡
WO2020075574A1 (ja) 2018-10-11 2020-04-16 富士フイルム株式会社 超音波プローブ
CN109486200A (zh) * 2018-12-28 2019-03-19 无锡祥生医疗科技股份有限公司 含钨氧化物的有机硅树脂组合物及其制备方法
EP3949865B1 (en) * 2019-03-29 2024-02-21 FUJIFILM Corporation Acoustic matching sheet, composition for acoustic matching layer, acoustic wave probe, acoustic wave measurement device, and method for manufacturing acoustic wave probe
CN114269860B (zh) * 2019-09-06 2023-04-11 富士胶片株式会社 声透镜及组合物、声波和超声波探头及装置、光声波装置、超声波内窥镜、及声波探头的制造方法
JP7381407B2 (ja) * 2020-06-08 2023-11-15 富士フイルム株式会社 被膜付き消化器用留置デバイス、被膜付き消化器用留置デバイスの製造方法
CN117089203A (zh) * 2022-05-13 2023-11-21 武汉联影医疗科技有限公司 改性硅橡胶及其制备方法、声透元件及超声诊断设备
CN117777731A (zh) * 2022-09-21 2024-03-29 武汉联影医疗科技有限公司 改性硅橡胶、原料组合物及其制备方法和应用、含其的声透镜

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5786414A (en) * 1995-12-22 1998-07-28 Toto Ltd. Building rubber members and method for imparting hydrophilic surface thereto
US7767754B2 (en) * 2005-11-08 2010-08-03 Momentive Performance Materials Inc. Silicone composition and process of making same
US7902294B2 (en) * 2008-03-28 2011-03-08 General Electric Company Silicone rubber compositions comprising bismuth oxide and articles made therefrom
JP5812837B2 (ja) * 2011-12-09 2015-11-17 キヤノン株式会社 導電性部材、プロセスカートリッジ、および電子写真装置
US20150274929A1 (en) * 2012-07-25 2015-10-01 Sumitomo Bakelite Co., Ltd. Silicone rubber-based curable composition
US20150299543A1 (en) * 2012-12-07 2015-10-22 Dow Corning Toray Co., Ltd. Curable Silicone Composition And Optical Semiconductor Device
JP6492176B2 (ja) * 2015-06-30 2019-03-27 富士フイルム株式会社 音響波プローブ用組成物、これを用いた音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブならびに音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡

Also Published As

Publication number Publication date
JPWO2016088699A1 (ja) 2017-07-27
EP3229491A4 (en) 2017-12-13
CN107005770B (zh) 2020-04-17
EP3229491A1 (en) 2017-10-11
CN107005770A (zh) 2017-08-01
WO2016088699A1 (ja) 2016-06-09
US20170252465A1 (en) 2017-09-07

Similar Documents

Publication Publication Date Title
JP6265574B2 (ja) 音響波プローブ用組成物、これを用いた音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブ、ならびに、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡
JP6110907B2 (ja) 音響波プローブ用組成物、これを用いた音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブ、ならびに、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡
JP6573994B2 (ja) 音響波プローブ用組成物、これを用いた音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブ、ならびに、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡
JP6697536B2 (ja) 音響波プローブ用組成物、これを用いた音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブならびに音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡
JP6669885B2 (ja) 音響波プローブ用樹脂材料、音響レンズ、音響波プローブ、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡
JP6442373B2 (ja) 音響波プローブ用組成物、音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブならびに音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡
JP6368631B2 (ja) 音響波プローブ用組成物、これを用いた音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブ、ならびに、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡
JP6366560B2 (ja) 音響波プローブ用組成物、これを用いた音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブ、ならびに、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡
JP6496656B2 (ja) 音響波プローブ用組成物、これを用いた音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブ、ならびに、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡
JP6697631B2 (ja) 音響レンズ用樹脂材料、音響レンズ、音響波プローブ、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡
JP6782366B2 (ja) 音響波プローブ用組成物、音響波プローブ用シリコーン樹脂、音響波プローブ、超音波プローブ、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡
JP6442372B2 (ja) 音響波プローブ用組成物、これを用いた音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブならびに音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡
JP6383651B2 (ja) 音響波プローブ用組成物、これを用いた音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブ、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡ならびに音響波プローブ用シリコーン樹脂の製造方法
JP6738295B2 (ja) 音響波プローブ用樹脂材料、音響波プローブ用樹脂混合物、音響レンズ、音響波プローブ、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡
JP6655194B2 (ja) 音響波プローブ用組成物、これを用いた音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブ、ならびに、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡
JP6649219B2 (ja) 音響波プローブ用樹脂材料、音響レンズ、音響波プローブ、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171218

R150 Certificate of patent or registration of utility model

Ref document number: 6265574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250