JP6261748B2 - 放送信号送信装置、放送信号受信装置、放送信号送信方法及び放送信号受信方法 - Google Patents

放送信号送信装置、放送信号受信装置、放送信号送信方法及び放送信号受信方法 Download PDF

Info

Publication number
JP6261748B2
JP6261748B2 JP2016544297A JP2016544297A JP6261748B2 JP 6261748 B2 JP6261748 B2 JP 6261748B2 JP 2016544297 A JP2016544297 A JP 2016544297A JP 2016544297 A JP2016544297 A JP 2016544297A JP 6261748 B2 JP6261748 B2 JP 6261748B2
Authority
JP
Japan
Prior art keywords
data
bit
parity
signal
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016544297A
Other languages
English (en)
Other versions
JP2016536938A (ja
Inventor
シン,ジョンウーン
キム,ジンウー
コ,ウースク
フワン,ジェホ
ホン,スンリョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of JP2016536938A publication Critical patent/JP2016536938A/ja
Application granted granted Critical
Publication of JP6261748B2 publication Critical patent/JP6261748B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • H04L1/0068Rate matching by puncturing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/236Assembling of a multiplex stream, e.g. transport stream, by combining a video stream with other content or additional data, e.g. inserting a URL [Uniform Resource Locator] into a video stream, multiplexing software data into a video stream; Remultiplexing of multiplex streams; Insertion of stuffing bits into the multiplex stream, e.g. to obtain a constant bit-rate; Assembling of a packetised elementary stream
    • H04N21/23611Insertion of stuffing data into a multiplex stream, e.g. to obtain a constant bitrate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/238Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
    • H04N21/2383Channel coding or modulation of digital bit-stream, e.g. QPSK modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/426Internal components of the client ; Characteristics thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/434Disassembling of a multiplex stream, e.g. demultiplexing audio and video streams, extraction of additional data from a video stream; Remultiplexing of multiplex streams; Extraction or processing of SI; Disassembling of packetised elementary stream
    • H04N21/4348Demultiplexing of additional data and video streams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/438Interfacing the downstream path of the transmission network originating from a server, e.g. retrieving MPEG packets from an IP network
    • H04N21/4382Demodulation or channel decoding, e.g. QPSK demodulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/04Synchronising
    • H04N5/06Generation of synchronising signals
    • H04N5/067Arrangements or circuits at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Description

本発明は、放送信号送信装置、放送信号受信装置、放送信号を送受信する方法に関する。
アナログ放送信号の送信が終了すると共に、デジタル放送信号を送受信する多様な技術が開発されている。デジタル放送信号は、アナログ放送信号より多量のビデオ/オーディオデータを含むことができ、ビデオ/オーディオデータに加えて、多様なタイプの追加データをさらに含むことができる。
すなわち、デジタル放送システムは、高画質(HD;high definition)映像、マルチチャネルオーディオ及び多様な追加サービスを提供することができる。しかし、デジタル放送のためには、多量のデータを送信するためのデータ送信効率、送受信ネットワークのロバスト性(robustness)及びモバイル受信装備を考慮したネットワーク柔軟性が改善される必要がある。
本発明の目的は、放送信号を送信し、時間領域で2個以上の異なる放送サービスを提供する放送送受信システムのデータをマルチプレクスし、同一のRF信号帯域幅を通じてマルチプレクスされたデータを送信する装置及び方法、及びそれに対応する放送信号を受信する装置及び方法を提供することにある。
本発明の他の目的は、放送信号を送信する装置、放送信号を受信する装置、及び放送信号を送受信し、コンポーネントによってサービスに対応するデータを分類し、各コンポーネントに対応するデータをデータパイプとして送信し、データを受信及び処理する方法を提供することにある。
本発明の他の目的は、放送信号を送信する装置、放送信号を受信する装置、及び放送信号を送受信し、放送信号を提供するのに必要な信号通知情報を信号通知する方法を提供することにある。
本発明の目的及び他の利点を達成するために、本発明は、放送信号を送信する方法を提供する。放送信号を送信する方法は、少なくとも一つのサービスデータ又はサービスコンポーネントデータを搬送する各データ伝送チャネルに対応するデータをエンコードする段階;前記エンコードされたデータを含む少なくとも一つの信号フレームをビルド(build)する段階;及び前記少なくとも一つの信号フレームをOFDM(orthogonal frequency division multiplexing)方法によって変調し、前記変調された信号フレームを搬送する放送信号を送信する段階;を含む。
本発明は、各サービス又はサービスコンポーネントに対するQoS(Quality of Services)を制御するサービス特性に応じてデータを処理し、多様な放送サービスを提供することができる。
本発明は、同一のRF信号帯域幅を通じて多様な放送サービスを送信することによって、送信柔軟性を達成することができる。
本発明は、データ送信効率を改善し、MIMOシステムを用いて放送信号の送受信のロバスト性を増加させることができる。
本発明によると、モバイル受信装備で又は室内環境でも、誤りなしでデジタル放送信号を受信可能な放送信号送信及び受信方法、及びその装置を提供することができる。
本発明の追加の理解を提供するために含まれ、本出願の一部に含まれたり、その一部を構成する添付の図面は、本発明の実施例を示し、説明と共に本発明の原理を説明する。
本発明の実施例によって未来の放送サービスのための放送信号を送信する装置の構造を示す図である。 本発明の一実施例に係る入力フォーマッティングブロックを示す図である。 本発明の他の実施例に係る入力フォーマッティングブロックを示す図である。 本発明の他の実施例に係る入力フォーマッティングブロックを示す図である。 本発明の実施例に係るBICMブロックを示す図である。 本発明の他の実施例に係るBICMブロックを示す図である。 本発明の一実施例に係るフレームビルディングブロックを示す図である。 本発明の実施例に係るOFMD生成ブロックを示す図である。 本発明の実施例によって未来の放送サービスのための放送信号を受信する装置の構造を示す図である。 本発明の実施例に係るフレーム構造を示す図である。 本発明の実施例に係るフレームの信号通知階層構造を示す図である。 本発明の実施例に係るプリアンブル信号通知データを示す図である。 本発明の実施例に係るPLS1データを示す図である。 本発明の実施例に係るPLS2データを示す図である。 本発明の他の実施例に係るPLS2データを示す図である。 本発明の実施例に係るフレームの論理構造を示す図である。 本発明の実施例に係るPLSマッピングを示す図である。 本発明の実施例に係るEACマッピングを示す図である。 本発明の実施例に係るFICマッピングを示す図である。 本発明の実施例に係るDPのタイプを示す図である。 本発明の実施例に係るDPマッピングを示す図である。 本発明の実施例に係るFEC構造を示す図である。 本発明の実施例に係るビットインタリービングを示す図である。 本発明の実施例に係るセル―ワードデマルチプレキシングを示す図である。 本発明の実施例に係る時間インタリービングを示す図である。 本発明の実施例に係るPLSデータに対するエンコーディングを示す図である。 本発明の実施例に係るPLSデータエンコーディングスキームを示す図である。 本発明の実施例に係るエンコーディングオペレーションに対応するデータ構造を示す図である。 本発明の実施例に係る放送信号伝送装置の構造を示す図である。 本発明の実施例に係る放送信号伝送方法を示す図である。 本発明の実施例に係る放送信号受信方法を示す図である。
発明を実施するための最善の形態
以下、添付の図面を参照して本発明の好ましい実施例を説明する。添付の図面を参照して以下で説明する詳細な説明は、本発明によって具現可能な実施例のみを示すよりは、本発明の例示的な実施例を説明するためのものである。次の詳細な説明は、本発明の完璧な理解を提供するために特定の細部事項を含む。しかし、本発明が、このような特定の細部事項なしでも実行可能であることは当業者にとって自明である。
本発明で使用されるほとんどの用語は、本技術で広く使用されるものから選択されたが、一部の用語は、出願人によって任意に選択されたものであって、その意味は、必要に応じて次の説明で詳細に説明する。よって、本発明は、単純な名前又は意味よりは、用語の意図された意味に基づいて理解しなければならない。
本発明は、未来の放送サービスのための放送信号を送受信する装置及び方法を提供する。本発明の実施例に係る未来の放送サービスは、地上波放送サービス、モバイル放送サービス、UHDTVサービスなどを含む。本発明は、一実施例によって、非―MIMO(multiple input multiple output)又はMIMOを通じて未来の放送サービスのための放送信号を処理することができる。本発明の実施例に係る非―MIMO方式は、MISO(multiple input single output)方式、SISO(single input single output)方式などを含むことができる。
MISO又はMIMOは、説明の便宜上、以下で2個のアンテナを使用するが、本発明は、2個以上のアンテナを用いるシステムに適用することができる。
本発明は、特定の使用ケースのために要求される性能を獲得しながら、受信機の複雑度を最小化するのにそれぞれ最適化された3個の物理層(PL)プロファイル(ベース、ハンドヘルド及びアドバンスドプロファイル)を定義することができる。物理層(PHY)プロファイルは、該当受信機が具現しなければならないすべての構成のサブセットである。
3個のPHYプロファイルは、機能ブロックのほとんどを共有するが、特定のブロック及び/又はパラメータにおいて少し異なる。追加のPHYプロファイルを未来に定義することができる。また、システム進化のために、未来のプロファイルは、FEF(future extension frame)を通じて単一RFチャネル内の既存のプロファイルとマルチプレクスされ得る。以下では、それぞれのPHYプロファイルの細部事項について説明する。
1.ベースプロファイル
ベースプロファイルは、通常、ルーフトップ(roof―top)アンテナに接続する固定受信装置に対する主要な使用ケースを示す。また、ベースプロファイルは、いずれかの場所に搬送可能であるが、比較的停止した受信カテゴリーに属するポータブル装置を含む。ベースプロファイルの使用は、任意の改善された具現例によってハンドヘルド装置又は車両装置に拡張可能であるが、これら使用ケースは、ベースプロファイル受信機の動作に対しては期待されない。
受信のターゲットSNR範囲は約10dB〜20dBであって、これは、既存の放送システム(例えば、ATSC A/53)の15dB SNR受信能力を含む。受信機の複雑度及び消費電力は、ハンドヘルドプロファイルを使用するバッテリ動作ハンドヘルド装置の場合のように重要ではない。以下では、ベースプロファイルに対する重要なシステムパラメータを表1に列挙する。
2.ハンドヘルドプロファイル
ハンドヘルドプロファイルは、バッテリ電力で動作するハンドヘルド及び車両装置に使用されるように設計された。装置は、歩行者又は車両速度で移動することができる。受信機の複雑度のみならず、消費電力はハンドヘルドプロファイルの装置の具現において非常に重要である。ハンドヘルドプロファイルのターゲットSNR範囲は約0dB〜10dBであるが、より深い室内受信を対象にすると、0dB未満に到逹するように構成することができる。
低いSNR能力に加えて、受信機の移動度によって誘発されたドップラー効果に対する弾力性は、ハンドヘルドプロファイルの最も重要な性能属性である。以下では、ハンドヘルドプロファイルに対する重要なパラメータを表2に列挙する。
3.アドバンスドプロファイル
アドバンスドプロファイルは、より多くの具現複雑度を犠牲し、最も高いチャネル容量を提供する。このプロファイルは、MIMO送信及び受信の利用を要求し、UHDTVサービスは、このプロファイルが特別に設計されたターゲット使用ケースである。また、増加した容量は、与えられた帯域幅内で増加した数のサービス、例えば、SDTV又はHDTVサービスを許容するように使用することができる。
アドバンスドプロファイルのターゲットSNR範囲は、約20dB〜30dBである。MIMO送信は、初期に既存の楕円偏波(elliptically―polarized)送信装置を利用できるが、未来にフル電力交差偏波送信(full―power cross―polarized transmission)に拡張される。以下では、アドバンスドプロファイルに対する重要なシステムパラメータを表3に列挙する。
この場合、ベースプロファイルは、地上波放送サービス及びモバイル放送サービスのすべてのためのプロファイルとして使用することができる。すなわち、ベースプロファイルは、モバイルプロファイルを含むプロファイルの概念を定義するのに使用することができる。また、アドバンスドプロファイルは、MIMOを有するベースプロファイルのためのアドバンスドプロファイル、及びMIMOを有するハンドヘルドプロファイルのためのアドバンスドプロファイルに分離することができる。また、3個のプロファイルは、設計者の意図によって変更可能である。
次の用語及び定義を本発明に適用することができる。次の用語及び定義は、設計によって変更可能である。
補助ストリーム:未だに定義されていない変調及びコーディングのデータを伝達するセルのシーケンスであって、未来拡張のために、又は、ブロードキャスタ又はネットワークオペレータによる要求通りに使用することができる。
ベースデータパイプ:サービス信号通知データを伝達するデータパイプ
ベースバンドフレーム(又はBBFRAME):一つのFECエンコーディングプロセス(BCH及びLDPCエンコーディング)への入力を形成するKbchビットのセット
セル:OFDM送信の一つのキャリアによって伝達される変調値
コーディングブロック:PLS1データのLDPCエンコーディングブロック及びPLS2データのLDPCエンコーディングブロックのうち一つ
データパイプ:サービスデータ又は関連メタデータを伝達する物理層内の論理チャネルであって、一つ又は多数のサービス又はサービスコンポーネントを伝達することができる。
データパイプ単位:フレーム内のDPにデータセルを割り当てる基本単位
データシンボル:プリアンブルシンボルでないフレーム内のOFDMシンボル(フレーム信号通知シンボル及びフレームエッジシンボルはデータシンボルに含まれる。)
DP_ID:この8ビットフィールドは、SYSTEM_IDによって識別されたシステム内のDPを固有に識別する。
ダミーセル:PLS信号通知、DP又は補助ストリームに使用されない残りの容量を充填するのに使用される擬似ランダム値を伝達するセル
非常境界チャネル(emergency alert channel;EAS):EAS情報データを伝達するフレームの一部
フレーム:プリアンブルから開始し、フレームエッジシンボルで終了する物理層時間スロット
フレーム受信単位:FETを含む同一又は異なる物理層プロファイルに属するフレームセットであって、スーパーフレーム内で8回繰り返される。
高速情報チャネル:サービスと対応ベースDPとの間のマッピング情報を伝達するフレーム内の論理チャネル
FECBLOCK:DPデータのLDPCエンコーディングビットのセット
FFTサイズ:特定のモードに使用される公称FFTサイズであって、基本期間(elementary period)Tの周期で表現されるアクティブシンボル期間Tsと同一である。
フレーム信号通知シンボル:FFTサイズ、保護区間(guard interval)及び分散型パイロットパターンの所定の組み合わせでフレームの開始時に使用されるより高いパイロット密度を有するOFDMシンボルであって、PLSデータの一部を伝達する。
フレームエッジシンボル:FFTサイズ、保護区間(guard interval)及び分散型パイロットパターンの所定の組み合わせでフレームの終了時に使用されるより高いパイロット密度を有するOFDMシンボル
フレームグループ:スーパーフレーム内の同一のPHYプロファイルタイプを有するすべてのフレームのセット
未来拡張フレーム:未来拡張のために使用可能なスーパーフレーム内の物理層時間スロットであって、プリアンブルから開始する。
フューチャーキャスト(futurecast)UTBシステム:入力が一つ以上のMPEG2―TS又はIP又は一般ストリームであって、出力がRF信号である提案された物理層放送システム
入力ストリーム:システムによってエンドユーザに伝達されるサービスのアンサンブルのためのデータのストリーム
正常データシンボル:フレーム信号通知シンボル及びフレームエッジシンボルを除いたデータシンボル
PHYプロファイル:該当受信機が具現しなければならないすべての構成のサブセット
PLS:PLS1及びPLS2で構成された物理層信号通知データ
PLS1:固定サイズ、コーディング及び変調を有するFSSシンボルで伝達されるPLSデータの第1のセットであって、PLS2をデコードするのに必要なパラメータのみならず、システムに関する基本情報を伝達する。
注(note):フレームグループのデュレーションのために、PLS1データは一定に維持される。
PLS2:FSSシンボルで送信されるPLSデータの第2のセットであって、システム及びDPに対するより細部的なPLSデータを伝達する。
PLS2動的データ:フレーム別に動的に変化可能なPLS2データ
PLS2静的データ:フレームグループのデュレーションの間に静的に維持されるPLS2データ
プリアンブル信号通知データ:プリアンブルシンボルによって伝達され、システムの基本モードを識別するのに使用される信号通知データ
プリアンブルシンボル:基本PLSデータを伝達し、フレームの初期に位置する固定長さパイロットシンボル
注:プリアンブルシンボルは、主に高速初期バンドスキャンのために使用され、システム信号、そのタイミング、周波数オフセット及びFFTサイズを検出する。
未来の使用のために予約:現在の文書では定義されないが、未来に定義可能である。
スーパーフレーム:8個のフレーム反復単位のセット
時間インタリービングブロック(TIブロック):時間インタリーバメモリの一つの用途に対応する時間インタリービングが行われるセルのセット
TIグループ:特定のDPのための動的容量割り当てが行われる単位であって、整数、すなわち、動的に変わる数のXFECBLOCKで構成される。
注:TIグループは、一つのフレームに直接マップされたり、多数のフレームにマップされ得る。これは、一つ以上のTIブロックを含むことができる。
タイプ1 DP:すべてのDPがTDM方式でマップされるフレームのDP
タイプ2 DP:すべてのDPがFDM方式でマップされるフレームのDP
XFECBLOCK:一つのLDPC FECBLOCKのすべてのビットを伝達するNcellsセルのセット
図1は、本発明の実施例によって未来の放送サービスのための放送信号を送信する装置の構造を示す図である。
本発明の実施例によって未来の放送サービスのための放送信号を送信する装置は、入力フォーマッティングブロック1000、BICM(bit interleaved coding & modulation)ブロック1010、フレーム構造ブロック1020、OFDM(orthogonal frequency division multiplexing)生成ブロック1030、及び信号通知生成ブロック1040を含むことができる。以下では、放送信号を送信する装置の各モジュールの動作を説明する。
IPストリーム/パケット及びMPEG2―TSはメイン入力フォーマットで、他のストリームタイプは一般ストリームとして処理される。これらデータ入力に加えて、管理情報が入力され、各入力ストリームに対する該当帯域幅のスケジューリング及び割り当てを制御する。一つ又は多数のTSストリーム、IPストリーム及び/又は一般ストリームの入力が同時に許容される。
入力フォーマッティングブロック1000は、各入力ストリームを一つ又は多数のデータパイプにデマルチプレクスし、独立コーディング及び変調がデータパイプに適用される。データパイプ(DP)は、ロバスト性制御のための基本単位であって、QoSに影響を与える。一つ又は多数のサービス又はサービスコンポーネントは単一のDPによって伝達され得る。入力フォーマッティングブロック1000の動作の細部事項については後で説明する。
データパイプは、サービスデータ又は関連メタデータを伝達する物理層内の論理チャネルであって、一つ又は多数のサービス又はサービスコンポーネントを伝達することができる。
また、データパイプ単位は、フレーム内のDPにデータセルを割り当てる基本ユニットである。
BICMブロック1010において、パリティデータが誤り訂正のために追加され、エンコードされたビットストリームは複素数値の星状シンボルにマップされる。シンボルは、該当DPに使用される特定のインタリービング深さを横切ってインタリーブされる。アドバンスドプロファイルに対して、MIMOエンコーディングがBICMブロック1010で行われ、追加のデータ経路はMIMO送信のための出力で追加される。BICMブロック1010の細部事項については後で説明する。
フレームビルディングブロック1020は、入力DPのデータセルをフレーム内のOFDMシンボルにマップすることができる。マップした後、周波数インタリービングは、周波数領域ダイバシチに使用され、特に、周波数選択フェーディングチャネルを防止する。フレームビルディングブロック1020の動作の細部事項については後で説明する。
各フレームの初期にプリアンブルを挿入した後、OFDM生成ブロック1030は、保護区間として循環前置(cyclic prefix)を有する従来のOFDM変調を適用することができる。アンテナ空間ダイバシチのために、分散型MISO方式が送信機に適用される。また、PAPR(peak―to―average power reduction)方式が時間領域で行われる。柔軟なネットワーク計画のために、この提案は、多様なFFTサイズ、保護区間長さ及び該当パイロットパターンのセットを提供する。OFDM生成ブロック1030の動作の細部事項については後で説明する。
信号通知生成ブロック1040は、各機能ブロックの動作に使用される物理層信号通知情報を生成することができる。また、この信号通知情報は、関心のあるサービスが受信側で適切に回復されるように送信される。信号通知生成ブロック1040の動作の細部事項については後で説明する。
図2、図3及び図4は、本発明の実施例に係る入力フォーマッティングブロック1000を示す。以下では、各図面に対して説明する。
図2は、本発明の一実施例に係る入力フォーマッティングブロックを示す図である。図2は、入力信号が単一入力ストリームであるときの入力フォーマッティングブロックを示す。
図2に示した入力フォーマッティングブロックは、図1を参照して説明した入力フォーマッティングブロック1000の実施例に該当する。
物理層への入力は、一つ又は多数のデータストリームで構成することができる。各データストリームは一つのDPによって伝達される。モード適応モジュールは、入ってくるデータストリームをベースバンドフレーム(BBF)のデータフィールドにスライスする。システムは、3つのタイプの入力データストリーム、すなわち、MPEG2―TS、インターネットプロトコル(IP)及びGS(generic stream)をサポートする。MPEG2―TSは、固定長さ(188バイト)パケットで特性化され、第1のバイトはシンク(sync)バイト(0x47)である。IPストリームは、IPパケットヘッダ内で信号通知される可変長さIPデータグラムパケットで構成される。システムは、IPストリームのためのIPv4及びIPv6をサポートする。GSは、カプセル化パケットヘッダ内で信号通知される可変長さパケット又は固定長さパケットで構成することができる。
(a)は、信号DPのためのモード適応ブロック2000及びストリーム適応ブロック2010を示し、(b)は、PLS信号を生成して処理するPLS生成ブロック2020及びPLSスクランブラ2030を示す。以下では、各ブロックの動作を説明する。
入力ストリームスプリッタは、入力TS、IP、GSストリームを多数のサービス又はサービスコンポーネント(オーディオ、ビデオなど)ストリームに分離する。モード適応モジュール2010は、CRCエンコーダ、BB(baseband)フレームスライサ及びBBフレームヘッダ挿入ブロックで構成される。
CRCエンコーダは、ユーザパケット(UP)レベル、すなわち、CRC―8、CRC―16及びCRC―32で誤り訂正のための3つのタイプのCRCエンコーディングを提供する。計算されたCRCバイトはUPの後に添付される。CRC―8はTSストリームに使用され、CRC―32はIPストリームに使用される。GSストリームがCRCエンコーディングを提供しない場合、提案されたCRCエンコーディングが適用されなければならない。
BBフレームスライサは、入力を内部論理ビットフォーマットにマップする。最初に受信されたビットはMBSであると定義される。BBフレームスライサは、利用可能なデータフィールド容量と同一の多数の入力ビットを割り当てる。BBFペイロードと同一の多数の入力ビットを割り当てるために、UPパケットストリームはBBFのデータフィールドに合わせてスライスされる。
BBフレームヘッダ挿入ブロックは、2バイトの固定長さBBFヘッダをBBフレームの前に挿入することができる。BBFヘッダは、STUFFI(1ビット)、SYNCD(13ビット)及びRFU(2ビット)で構成される。固定2バイトBBFヘッダに加えて、BBFは、2バイトBBFヘッダの端に拡張フィールド(1又は3バイト)を有することができる。
ストリーム適応ブロック2010は、スタッフィング(stuffing)挿入ブロック及びBBスクランブラで構成される。
スタッフィング挿入ブロックは、スタッフィングフィールドをBBフレームのペイロードに挿入することができる。ストリーム適応への入力データがBBフレームを充填するのに十分である場合、STUFFIは「0」に設定され、BBFはスタッフィングフィールドを有さない。そうでない場合、STUFFIが「1」に設定され、スタッフィングフィールドがBBFヘッダの直後に挿入される。スタッフィングフィールドは、2バイトのスタッフィングフィールドヘッダ及び可変サイズのスタッフィングデータを含む。
BBスクランブラは、エネルギー分散(energy dispersal)のために完全なBBFをスクランブルする。スクランブリングシーケンスはBBFと同時に発生する。スクランブリングシーケンスは、フィードバックされたシフトレジスタによって生成される。
PLS生成ブロック2020は、物理層信号通知(PLS)データを生成することができる。PLSは、受信機に物理層DPにアクセスする手段を提供する。PLSデータは、PLS1データ及びPLS2データで構成される。
PLS1データは、固定サイズ、コーディング及び変調を有するフレーム内のFSSシンボルで伝達されるPLSデータの第1のセットであって、PLS2データをデコードするのに必要なパラメータのみならず、システムに関する基本情報を伝達する。PLS1データは、PLS2データの受信及びデコーディングを可能にするのに要求されるパラメータを含む基本送信パラメータを提供する。また、PLS1データは、フレームグループのデュレーションの間に一定に維持される。
PLS2データは、FSSシンボルで伝送されるPLSデータの第2のセットであって、システム及びDPに対するより詳細なPLSデータを伝達する。PLS2は、受信機に十分なデータを提供し、所望のDPをデコードするパラメータを含む。また、PLS2信号通知は、2つのタイプのパラメータ、すなわち、PLS2静的データ(PLS2―STATデータ)及びPLS2動的データ(PLS2―DYNデータ)で構成される。PLS2静的データは、フレームグループのデュレーションの間に静的に残っているPLS2データで、PLS2動的データは、フレーム別に動的に変わり得るPLS2データである。
PLSデータの細部事項については後で説明する。
PLSスクランブラ2030は、エネルギー分散のために生成されたPLSデータをスクランブルすることができる。
上述したブロックは、省略したり、類似又は同一の機能を有するブロックに取り替えることができる。
図3は、本発明の他の実施例に係る入力フォーマッティングブロックを示す図である。
図3に示した入力フォーマッティングブロックは、図1を参照して説明した入力フォーマッティングブロック1000の実施例に該当する。
図3は、入力信号が多数の入力ストリームに対応するときの入力フォーマッティングブロックのモード適応ブロックを示す。
多数の入力ストリームを処理する入力フォーマッティングブロックのモード適応ブロックは、独立的に多数の入力ストリームを処理することができる。
図3を参照すると、多数の入力ストリームをそれぞれ処理するモード適応ブロックは、入力ストリームスプリッタ3000、入力ストリーム同期化器3010、補償遅延ブロック3020、ヌル(null)パケット削除ブロック3030、ヘッド圧縮ブロック3040、CRCエンコーダ3050、BBフレームスライサ3060及びBBヘッダ挿入ブロック3070を含むことができる。以下では、モード適応ブロックの各ブロックを説明する。
CRCエンコーダ3050、BBフレームスライサ3060及びBBヘッダ挿入ブロック3070の動作は、図2を参照して説明したCRCエンコーダ、BBフレームスライサ及びBBヘッダ挿入ブロックに対応するので、それに対する説明は省略する。
入力ストリームスプリッタ3000は、入力TS、IP GSストリームを多数のサービス又はサービスコンポーネント(オーディオ、ビデオなど)ストリームに分離することができる。
入力ストリーム同期化器3010はISSYと称することができる。ISSYは、任意の入力データフォーマットに対する一定のエンド―ツー―エンド送信遅延及びCBR(constant bit rate)を保証する適切な手段を提供することができる。ISSYは、常にTSを伝達する多数のDPの場合に使用され、選択的に、GSストリームを伝達するDPに使用される。
補償遅延ブロック3020は、ISSY情報の挿入後に分離されたTSパケットストリームを遅延させ、受信機内の追加のメモリを要求せずにTSパケット再結合メカニズムを許容することができる。
ヌルパケット削除ブロック3030は、TS入力ストリームケースにのみ使用される。任意のTS入力ストリーム又は分離されたTSストリームは、CBR TSストリームにVBR(variable bit―rate)サービスを収容するために存在する多数のヌルパケットを有することができる。この場合、不要な送信オーバーヘッドを避けるために、ヌルパケットが識別され、送信されない。受信機において、除去されたヌルパケットは、送信時に挿入されたDNP(deleted null―packet)カウンタを参照し、本来にあった正確な場所に再挿入され、一定のビットレートを保証し、タイムスタンプ(PCR)アップデートに対する必要性を避けることができる。
ヘッド圧縮ブロック3040は、パケットヘッダ圧縮を提供し、TS又はIP入力ストリームに対する送信効率を増加させることができる。受信機がヘッダの所定部分に対する先験的情報(a priori information)を有し得るので、この既知の情報は送信機で削除され得る。
伝送ストリームに対して、受信機は、シンク―バイト構成(0x47)及びパケット長さ(188バイト)に関する先験的情報を有する。入力TSストリームが一つのPIDを有するコンテンツを伝達すると、すなわち、一つのサービスコンポーネント(ビデオ、オーディオなど)又はサービスサブコンポーネント(SVCベース層、SVCインヘンスメント層、MVCベースビュー又はMVC従属ビュー)に対してのみ、TSパケットヘッダ圧縮を(選択的に)伝送ストリームに適用することができる。入力ストリームがIPストリームであると、IPパケットヘッダ圧縮が選択的に使用される。
上述したブロックは、省略したり、類似又は同一の機能を有するブロックに取り替えることができる。
図4は、本発明の他の実施例に係る入力フォーマッティングブロックを示す図である。
図4に示した入力フォーマッティングブロックは、図1を参照して説明した入力フォーマッティングブロック1000の実施例に該当する。
図4は、入力信号が多数の入力ストリームに対応するときの入力フォーマッティングモジュールのストリーム適応ブロックを示す。
図4を参照すると、多数の入力ストリームをそれぞれ処理するモード適応ブロックは、スケジューラ4000、1フレーム遅延ブロック4010、スタッフィング挿入ブロック4020、帯域内(in―band)信号通知4030、BBフレームスクランブラ4040、PLS生成ブロック4050及びPLSスクランブラ4060を含むことができる。以下では、ストリーム適応ブロックのそれぞれのブロックを説明する。
スタッフィング挿入ブロック4020、BBフレームスクランブラ4040、PLS生成ブロック4050及びPLSスクランブラ4060の動作は、図2を参照して説明したスタッフィング挿入ブロック、BBスクランブラ、PLS生成ブロック及びPLSスクランブラに対応するので、それに対する説明は省略する。
スケジューラ4000は、それぞれのDPのFECBLOCKの量から全体のフレームにわたった全体のセル割り当てを決定することができる。PLS、EAC及びFICに対する割り当てを含めて、スケジューラはPLS2―DYNデータの値を生成し、これは、フレームのFSS内の帯域内信号通知又はPLSセルとして送信される。FECBLOCK、EAC及びFICの細部事項については後で説明する。
1フレーム遅延ブロック4010は、入力データを1送信フレームだけ遅延させ、次のフレームに関するスケジューリング情報を、DPに挿入される帯域内信号通知情報に対する現在のフレームを通じて送信させることができる。
帯域内信号通知4030は、PLS2データの遅延されていない部分をフレームのDPに挿入することができる。
上述したブロックは、省略したり、類似又は同一の機能を有するブロックに取り替えることができる。
図5は、本発明の実施例に係るBICMブロックを示す図である。
図5に示したBICMブロックは、図1を参照して説明したBICMブロック1010の実施例に該当する。
上述したように、本発明の実施例によって未来の放送サービスのための放送信号を送信する装置は、地上波放送サービス、モバイル放送サービス、UHDTVサービスなどを提供することができる。
QoSは、本発明の実施例によって未来の放送サービスのための放送信号を送信する装置によって提供されるサービスの特性に依存するので、各サービスに対応するデータは、異なる方式を通じて処理される必要がある。よって、本発明の実施例に係るBICMブロックは、SISO、MISO及びMIMO方式をデータ経路にそれぞれ対応するデータパイプに独立的に適用することによって、それに入力されたDPを独立的に処理することができる。結果的に、本発明の実施例によって未来の放送サービスのための放送信号を送信する装置は、それぞれのDPを通じて送信されるそれぞれのサービス又はサービスコンポーネントに対するQoSを制御することができる。
(a)は、ベースプロファイル及びハンドヘルドプロファイルによって共有されたBICMブロックを示し、(b)は、アドバンスドプロファイルのBICMブロックを示す。
ベースプロファイル及びハンドヘルドプロファイルによって共有されたBICMブロック及びアドバンスドプロファイルによって共有されたBICMブロックは、各DPを処理する複数の処理ブロックを含むことができる。
以下では、ベースプロファイル及びハンドヘルドプロファイルのためのBICMブロック、及びアドバンスドプロファイルのためのBICMブロックのそれぞれの処理ブロックを説明する。
ベースプロファイル及びハンドヘルドプロファイルのためのBICMブロックの処理ブロック5000は、データFECエンコーダ5010、ビットインタリーバ5020、星状マッパ5030、SSD(signal space diversity)エンコーディングブロック5040及び時間インタリーバ5050を含むことができる。
データFECエンコーダ5010は、入力BBFに対してFECエンコーディングを行い、アウターコーディング(BCH)及びインナーコーディング(LDPC)を用いてFECBLOCK手続を生成することができる。アウターコーディング(BCH)は選択的なコーディング方法である。データFECエンコーダ5010の動作の細部事項については後で説明する。
ビットインタリーバ5020は、データFECTエンコーダ5010の出力をインタリーブし、効率的に具現可能な構造を提供しながらLDPCコード及び変調方式の組み合わせで最適化された性能を達成することができる。ビットインタリーバ5020の動作の細部事項については後で説明する。
星状マッパ5030は、QPSK、QAM―16、不均一QAM(NUQ―64、NUQ―256、NUQ―1024)又は不均一星状(NUC―16、NUC―64、NUC―256、NUC―1024)を用いてベース及びハンドヘルドプロファイル内のビットインタリーバ5020からの各セルワード及びアドバンスドプロファイル内のセル―ワードデマルチプレクサ5010―1からのセルワードを変調し、電力正規化星状ポイントを提供することができる。この星状マッピングはDPに対してのみ適用される。QAM―16及びNUQが方形(square shaped)であるが、NUCは任意の形状を有する。それぞれの星状が90度の任意の倍数で回転すると、回転した星状は正確に本来の星状と重畳する。この「回転―感覚(rotation―sense)対称特性は、実数成分及び虚数成分の平均電力及び容量を互いに同一にする。NUQ及びNUCは、各コードレートに対して特別に定義され、使用される特定の一つがPLS2データで提出されたパラメータ(DP_MOD)によって信号通知される。
SSDエンコーディングブロック5040は、2(2D)、3(3D)及び4(4D)次元でセルをプリコードし、異なるフェーディング条件下で受信ロバスト性を増加させることができる。
時間インタリーバ5050はDPレベルで動作し得る。時間インタリービング(TI)のパラメータは、各DPに対して異なる形に設定することができる。時間インタリーバ5050の動作の細部事項については後で説明する。
アドバンスドプロファイルのためのBICMブロックの処理ブロック5000―1は、データFECエンコーダ、ビットインタリーバ、星状マッパ及び時間インタリーバを含むことができる。しかし、処理ブロック5000―1は処理ブロック5000と区別され、セル―ワードデマルチプレクサ5010―1及びMIMOエンコーディングブロック5020―1をさらに含む。
また、処理ブロック5000―1のデータFECエンコーダ、ビットインタリーバ、星状マッパ及び時間インタリーバの動作は、上述したデータFECエンコーダ5010、ビットインタリーバ5020、星状マッパ5030及び時間インタリーバ5050に対応するので、それに対する説明は省略する。
セル―ワードデマルチプレクサ5010―1は、アドバンスドプロファイルのDPに使用され、単一セル―ワードストリームをMIMO処理のためのデュアルセル―ワードストリームに分離する。セル―ワードデマルチプレクサ5010―1の動作の細部事項については後で説明する。
MIMOエンコーディングブロック5020―1は、MIMOエンコーディング方式を用いてセル―ワードデマルチプレクサ5010―1の出力を処理することができる。MIMOエンコーディング方式は、放送信号の送信のために最適化された。MIMO技術は、容量を増加させる優れた方式であるが、チャネル特性に依存する。特に、ブロードキャスティングに対して、異なる信号伝播特性によって誘発された2個のアンテナ間の受信された信号電力の差又はチャネルの強いLOS成分は、MIMOから容量利得を得ることを困難にし得る。提案されたMIMOエンコーディング方式は、MIMO出力信号のうち一つの回転基盤プリコーディング及び位相ランダム化を用いてこの問題を克服する。
MIMOエンコーディングは、送信機及び受信機で少なくとも2個のアンテナを必要とする2x2 MIMOシステムを目的とすることができる。この提案において、2個のMIMOエンコーディングモード、すなわち、FR―SM(full―rate spatial multiplexing)及びFRFD―SM(full―rate full―diversity spatial multiplexing)が定義される。FR―SMエンコーディングは、受信機側で比較的小さい複雑度の増加と共に容量の増加を提供するが、FRFD―SMエンコーディングは、受信機側で大きい複雑度の増加と共に、容量の増加及び追加のダイバシチ利得を提供する。提案されたMIMOエンコーディング方式は、アンテナ極性構成に対する制限を有さない。
MIMO処理は、アドバンスドプロファイルフレームのために要求することができ、これは、アドバンスドプロファイルフレーム内のすべてのDPがMIMOエンコーダによって処理されることを意味する。MIMO処理はDPレベルで適用することができる。星状マッパ出力(constellation mapper output)(NUQ)のペア(e1,i及びe2,i)は、MIMOエンコーダの入力に供給することができる。MIMOエンコーダ出力のペア(g1,i及びg2,i)は、それぞれのTXアンテナのOFDMシンボル(l)及び同一のキャリア(k)によって送信され得る。
上述したブロックは、省略したり、類似又は同一の機能を有するブロックに取り替えることができる。
図6は、本発明の他の実施例に係るBICMブロックを示す図である。
図6に示したBICMブロックは、図1を参照して説明したBICMブロック1010の実施例に該当する。
図6は、物理層信号通知(PLS)、非常境界チャネル(EAC)及び高速情報チャネル(FIC)の保護のためのBICMブロックを示す。EACは、EAS情報を伝達するフレームの一部であって、FICは、サービスと該当ベースDPとの間のマッピング情報を伝達するフレーム内の論理チャネルである。EAC及びFICの細部事項については後で説明する。
図6を参照すると、PLS、EAC及びFICの保護のためのBICMブロックは、PLS FECエンコーダ6000、ビットインタリーバ6010、星状マッパ6020及びタイムインタリーバ6030を含むことができる。
また、PLS FECエンコーダ6000は、スクランブラ、BCHエンコーディング/ゼロ挿入ブロック、LDPCエンコーディングブロック及びLDPCパリティパンクチャリングブロックを含むことができる。以下では、BICMブロックの各ブロックを説明する。
PLS FECエンコーダ6000は、スクランブルされたPLS 1/2データ、EAC及びFICセクションをエンコードすることができる。
スクランブラは、BCHエンコーディング及び短縮及びパンクチャされたLDPCエンコーディング前にPLS1データ及びPLS2データをスクランブルすることができる。
BCHエンコーディング/ゼロ挿入ブロックは、PLS保護のために短縮されたBCHコードを用いてスクランブルされたPLS 1/2データに対してアウターエンコーディングを行い、BCHエンコーディング後にゼロビットを挿入することができる。PLS1データに対してのみ、LDPCエンコーディング前にゼロ挿入の出力ビットがパーミュート(permute)され得る。
LDPCエンコーディングブロックは、LDPCコードを用いてBCHエンコーディング/ゼロ挿入ブロックの出力をエンコードすることができる。完全なコーディングブロック(Cldpc)を生成するために、パリティビット(Pldpc)がそれぞれのゼロ挿入PLS情報ブロック(Ildpc)から組織的にエンコードされ、その後に添付される。
PLS1及びPLS2に対するLDPCコードパラメータは、次の表4の通りである。
LDPCパリティパンクチャリングブロックは、PLS1データ及びPLS2データに対してパンクチャリングを行うことができる。
PLS1データ保護に短縮が適用されると、任意のLDPCパリティビットは、LDPCエンコーディング後にパンクチャされる。また、PLS2データの保護のために、PLS2のLDPCパリティビットはLDPCエンコーディング後にパンクチャされる。これらパンクチャされたビットは送信されない。
ビットインタリーバ6010は、それぞれ短縮及びパンクチャされたPLS1データ及びPLS2データをインタリーブする。
星状マッパ6020は、ビットインタリーブされたPLS1データ及びPLS2データを星状にマップすることができる。
時間インタリーバ6030は、マップされたPLS1データ及びPLS2データをインタリーブすることができる。
上述したブロックは、省略したり、類似又は同一の機能を有するブロックに取り替えることができる。
図7は、本発明の一実施例に係るフレームビルディングブロックを示す図である。
図7に示したフレームビルディングブロックは、図1を参照して説明したフレームビルディングブロック1020の実施例に該当する。
図7を参照すると、フレームビルディングブロックは、遅延補償ブロック7000、セルマッパ7010及び周波数インタリーバ7020を含むことができる。以下では、フレームビルディングブロックのそれぞれのブロックを説明する。
遅延補償ブロック7000は、データパイプと対応PLSデータとの間のタイミングを調節し、送信端で時間が共に合わせられるように保証することができる。PLSデータは、入力フォーマッティングブロック及びBICMブロックによって誘発されたデータパイプの遅延を処理することによって、データパイプと同一の量だけ遅延される。BICMブロックの遅延は、主に時間インタリーバ5050による。帯域内信号通知データは、次のTIグループの情報を伝達し、信号通知されるDPより一つのフレームだけ速く伝達される。よって、遅延補償ブロックは、帯域内信号通知データを遅延させる。
セルマッパ7010は、PLS、EAC、FIC、DP、補助ストリーム及びダミーセルをフレーム内のOFDMシンボルのアクティブキャリアにマップすることができる。セルマッパ7010の基本機能は、もしあれば、DP、PLSセル及びEAC/FICセルのそれぞれに対してTIによって生成されたデータセルをフレーム内のOFDMシンボルのそれぞれに対応するアクティブOFDMセルのアレイにマップすることである。サービス信号通知データ(PSI(program specific information)/SI))は、データパイプによって個別的に集めて伝送することができる。セルマッパは、スケジューラによって生成された動的情報及びフレーム構造の構成によって動作する。フレームの細部事項については後で説明する。
周波数インタリーバ7020は、セルマッパ7010から受信されたデータセルをランダムにインタリーブし、周波数ダイバシチを提供することができる。また、周波数インタリーバ7020は、異なるインタリービングシード(interleaving―seed)順序を用いて2個の順次的なOFDMシンボルで構成されるOFDMシンボルペアに対して動作し、単一フレーム内の最大のインタリービング利得を得ることができる。周波数インタリーバ7020の動作の細部事項については後で説明する。
上述したブロックは、省略したり、類似又は同一の機能を有するブロックに取り替えることができる。
図8は、本発明の実施例に係るOFDM生成ブロックを示す図である。
図8に示したOFDM生成ブロックは、図1を参照して説明したOFDM生成ブロック1030の実施例に該当する。
OFDM生成ブロックは、フレームビルディングブロックによって生成されたセルによってOFDMキャリアを変調し、パイロットを挿入し、送信される時間領域信号を生成する。また、このブロックは、保護区間を順次挿入し、PAPR(peak―to―average power ratio)減少処理を適用して最終RF信号を生成する。
図8を参照すると、フレームビルディングブロックは、パイロット及び予約トーン挿入ブロック8000、2D―eSFNエンコーディングブロック8010、IFFT(inverse fast Fourier transform)ブロック8020、PAPR減少ブロック8030、保護区間挿入ブロック8040、プリアンブル挿入ブロック8050、他のシステム挿入ブロック8060及びDACブロック8070を含むことができる。以下では、フレームビルディングブロックのそれぞれのブロックを説明する。
パイロット及び予約トーン挿入ブロック8000は、パイロット及び予約トーンを挿入することができる。
OFDMシンボル内の多様なセルは、パイロットとして知られた基準情報で変調され、パイロットは、受信機で先験的に知られた送信値を有する。パイロットセルの情報は、分散されたパイロット、反復パイロット(continual pilot)、エッジパイロット、FSS(frame signaling symbol)パイロット及びFES(frame edge symbol)パイロットで構成される。それぞれのパイロットは、パイロットタイプ及びパイロットパターンによって特定のブースティング電力レベルで送信される。パイロット情報の値は、任意の与えられたシンボル上のそれぞれの送信されたキャリアに対して一連の値である基準シーケンスから導出される。パイロットは、フレーム同期化、周波数同期化、時間同期化、チャネル推定及び送信モード識別に使用することができ、また、位相雑音をフォローする(following)のに使用することができる。
基準シーケンスから取得された基準情報は、フレームのプリアンブル、FSS及びFESを除いたすべてのシンボルで分散されたパイロットセルで送信される。反復パイロットは、フレームのすべてのシンボルに挿入される。反復パイロットの数と位置は、FFTサイズ及び分散されたパイロットパターンに依存する。エッジキャリアは、プリアンブルシンボルを除いたすべてのシンボル内のエッジパイロットである。これらは、スペクトルのエッジまで周波数補間を許容するために挿入される。FSSパイロットはFSSに挿入され、FESパイロットはFESに挿入される。これらは、フレームのエッジまで時間補間を許容するために挿入される。
本発明の実施例に係るシステムは、SFNネットワークをサポートし、分散型MISO方式は、選択的に非常にロバストな送信モードをサポートするのに使用される。2D―eSFNは、多数のTXアンテナを用いる分散型MISO方式であって、それぞれのTXアンテナはSFNネットワーク内の異なる送信側に配置される。
2D―eSFNエンコーディングブロック8010は、SFN構成で時間及び周波数ダイバシチを生成するために2D―eSFN処理を行い、多数の送信機から送信された信号の位相を歪曲することができる。そのため、長い時間の間の低いフラットフェーディング又は深いフェーディングによるバーストエラーを緩和することができる。
IFFTブロック8020は、OFDM変調方式を用いて2D―eSFNエンコーディングブロック8010からの出力を変調することができる。パイロットとして(又は予約トーンとして)指定されていないデータシンボル内の任意のセルは、周波数インタリーバからのデータセルのうち一つを伝達する。セルはOFDMキャリアにマップされる。
PAPR減少ブロック8030は、時間領域内の多様なPAPR減少アルゴリズムを用いて入力信号に対するPAPR減少を行うことができる。
保護区間挿入ブロック8040は保護区間を挿入することができ、プリアンブル挿入ブロック8050は信号の前にプリアンブルを挿入することができる。プリアンブルの構造の細部事項については後で説明する。他のシステム挿入ブロック8060は、時間領域で複数の放送送受信システムの信号をマルチプレクスし、放送サービスを提供する2個以上の異なる放送送信/受信システムのデータが同一のRF信号帯域幅で同時に送信され得る。この場合、2個以上の異なる放送送受信システムは、異なる放送サービスを提供するシステムを称する。異なる放送サービスは、地上波放送サービス、モバイル放送サービスなどを称する。それぞれの放送サービスと関連するデータは、異なるフレームを通じて送信され得る。
DACブロック8070は、入力デジタル信号をアナログシンホルに変換し、アナログ信号を出力することができる。DACブロック8070から出力された信号は、物理層プロファイルによって多数の出力アンテナを介して送信され得る。本発明の実施例に係るTXアンテナは、垂直又は水平極性(polarity)を有することができる。
上述したブロックは、省略したり、類似又は同一の機能を有するブロックに取り替えることができる。
図9は、本発明の実施例によって未来の放送サービスのための放送信号を受信する装置の構造を示す図である。
本発明の実施例によって未来の放送サービスのための放送信号を受信する装置は、図1を参照して説明した未来の放送サービスのために放送信号を送信する装置に対応し得る。
本発明の実施例によって未来の放送サービスのための放送信号を受信する装置は、同期化及び復調モジュール9000、フレームパーシングモジュール9010、デマッピング及びデコーディングモジュール9020、出力プロセッサ9030及び信号通知デコーディングモジュール9040を含むことができる。以下では、放送信号を受信する装置の各モジュールの動作を説明する。
同期化及び復調モジュール9000は、m個のRxアンテナを介して入力信号を受信し、放送信号を受信する装置に対応するシステムに対して信号検出及び同期化を行い、放送信号を送信する装置によって行われる手続の逆の手続に対応する復調を行うことができる。
フレームパーシングモジュール9100は、入力信号フレームをパースし、ユーザによって選択されたサービスが送信されるデータを抽出することができる。放送信号を送信する装置がインタリービングを行うと、フレームパーシングモジュール9100は、インタリービングの逆の手続に対応するデインタリービングを行うことができる。この場合、抽出される必要がある信号及びデータの位置は、信号通知デコーディングモジュール9400から出力されたデータをデコードし、放送信号を送信する装置によって生成された信号通知情報を回復することによって得ることができる。
デマッピング及びデコーディングモジュール9200は、入力信号をビット領域データに変換した後、必要に応じてデインタリービングを行うことができる。デマッピング及びデコーディングモジュール9200は、送信効率のために適用されたマッピングに対してデマッピングを行い、デコーディングを通じて送信チャネルに対して生成された誤りを訂正することができる。この場合、デマッピング及びデコーディングモジュール9200は、信号通知デコーディングモジュール9400から出力されたデータをデコードすることによって、デマッピング及びデコーディングに必要な送信パラメータを得ることができる。
出力プロセッサ9300は、放送信号を送信し、送信効率を改善する装置によって適用される多様な圧縮/信号処理手続の逆の手続を行うことができる。この場合、出力プロセッサ9300は、信号通知デコーディングモジュール9400から出力されたデータから必要な制御情報を得ることができる。出力プロセッサ8300の出力は、放送信号を送信する装置に入力される信号に対応し、MPEG―TS、IPストリーム(v4又はv6)及び一般ストリームであり得る。
信号通知デコーディングモジュール9400は、同期化及び復調モジュール9000によって復調された信号からPLS情報を得ることができる。上述したように、フレームパーシングモジュール9100、デマッピング及びデコーディングモジュール9200及び出力プロセッサ9300は、信号通知デコーディングモジュール9400から出力されたデータを用いてその機能を実行することができる。
図10は、本発明の実施例に係るフレーム構造を示す図である。
図10は、スーパーフレーム内のフレームタイプ及びFRUの例示的な構成を示す。(a)は、本発明の実施例に係るスーパーフレームを示し、(b)は、本発明の実施例に係るFRU(frame repetition unit)を示し、(c)は、FRU内の可変PHYプロファイルのフレームを示し、(d)はフレームの構造を示す。
スーパーフレームは8個のFRUで構成することができる。FRUは、フレームのTDMのための基本マルチプレキシング単位であって、スーパーフレーム内で8回繰り返される。
FRU内の各フレームは、PHYプロファイル(ベース、ハンドヘルド、アドバンスド)及びFETのうち一つに属する。FRU内のフレームの最大許容数は4であり、与えられたPHYプロファイルは、FRU(例えば、ベース、ハンドヘルド、アドバンスド)で0倍から4倍までの任意の回数だけ表れ得る。PHYプロファイルの定義は、必要であれば、プリアンブル内のPHY_PROFILEの予約値を用いて拡張することができる。
FET部分は、含まれるならば、FRUの端に挿入される。FETがFRUに含まれると、スーパーフレームでFETの最小数は8である。FET部分が互いに隣接することは推薦されない。
また、一つのフレームは、多数のOFDMシンボル及びプリアンブルに分離される。(d)に示したように、フレームは、プリアンブル、一つ以上のフレーム信号通知シンボル(FSS)、正常データシンボル及びフレームエッジシンボル(FES)を含む。
プリアンブルは、高速フューチャーキャストUTBシステム信号の検出が可能であり、信号の効率的な送受信のための基本送信パラメータのセットを提供する特殊シンボルである。プリアンブルの細部説明については後で説明する。
FSSの主要目的はPLSデータを伝達することにある。高速同期化及びチャネル推定、及びPLSデータの高速デコーディングのために、FSSは、正常データシンボルより密集したパイロットパターンを有する。FESは、正確にFSSと同一のパイロットを有し、これは、FESの直前のシンボルに対して外挿せず、FES内の周波数専用補間及び時間補間を可能にする。
図11は、本発明の実施例に係るフレームの信号通知階層構造を示す図である。
図11は、3個の主要部分、すなわち、プリアンブル信号通知データ11000、PLS1データ11010及びPLS2データ11020に分離された信号通知階層構造を示す。すべてのフレームでプリアンブルシンボルによって伝達されるプリアンブルの目的は、そのフレームの送信タイプ及び基本送信パラメータを指示することにある。PLS1は、受信機がPLS2データをアクセス及びデコードするようにし、これは、関心のあるDPにアクセスするパラメータを含む。PLS2は、すべてのフレームで伝達され、2個の主要部分、すなわち、PLS2―STATデータ及びPLS2―DYNデータに分離される。PLS2データの静的及び動的部分には、必要であればフェーディングが後に来る。
図12は、本発明の実施例に係るプリアンブル信号通知データを示す図である。
プリアンブル信号通知データは、フレーム構造内で受信機がPLSデータにアクセスし、DPをトレースさせるのに必要な情報の21ビットを伝達する。プリアンブル信号通知の細部事項は次の通りである。
PHY_PROFILE:この3ビットフィールドは、現在のフレームのPHYプロファイルタイプを示す。異なるPHYプロファイルタイプのマッピングは、以下の表5に与えられる。
FFT_SIZE:この2ビットフィールドは、以下の表6に記載したように、フレームグループ内の現在のフレームのFFTサイズを示す。
GI_FRACTION:この3ビットフィールドは、以下の表7に記載したように、現在のスーパーフレーム内の保護区間分数(fraction)値を示す。
EAC_FLAG:この1ビットフィールドは、EACが現在のフレームに提供されるか否かを示す。このフィールドが「1」に設定されると、EAS(emergency alert service)が現在のフレームで提供される。このフィールドが「0」に設定されると、EASが現在のフレームで伝達されない。このフィールドは、スーパーフレーム内で動的にスイッチされ得る。
PILOT_MODE:この1ビットフィールドは、プロファイルモードが現在のフレームグループ内の現在のフレームに対してモバイルモードであるのか、それとも固定モードであるのかを指示する。このフィールドが「0」に設定されると、モバイルパイロットモードが使用される。フィールドが「1」に設定されると、固定パイロットモードが使用される。
PAPR_FLAG:この1ビットフィールドは、PAPR減少が現在のフレームグループ内の現在のフレームに使用されるか否かを指示する。このフィールドが「1」に設定されると、PAPR減少にトーン予約(tone reservation)が使用される。このフィールドが「0」に設定されると、PAPR減少が使用されない。
FRU_CONFIGURE:この3ビットフィールドは、現在のスーパーフレーム内に存在するFRU(frame repetition unit)のPHYプロファイルタイプ構成を示す。現在のスーパーフレームで伝達されるすべてのプロファイルタイプは、現在のスーパーフレーム内のすべてのフレーム内のこのフィールドで識別される。3ビットフィールドは、以下の表8に示したように、各プロファイルに対する異なる定義を有する。
RESERVED:この7ビットフィールドが未来の使用のために予約される。
図13は、本発明の実施例に係るPLS1データを示す図である。
PLS1データは、PLS2の受信及びデコーディングを可能にするのに必要なパラメータを含む基本送信パラメータを提供する。上述したように、PLS1データは、一つのフレームグループの全体のデュレーションの間に変更されない。PLS1データの信号通知フィールドの詳細な定義は次の通りである。
PREAMBLE_DATA:この20ビットフィールドは、EAC_FLAGを除いたプリアンブル信号通知データの写本である。
NUM_FRAME_FRU:この2ビットフィールドは、FRU当たりのフレームの数を示す。
PAYLOAD_TYPE:この3ビットフィールドは、フレームグループで伝達されるペイロードデータのフォーマットを指示する。PAYLOAD_TYPEは、表9に示したように信号通知される。
NUM_FSS:この2ビットフィールドは、現在のフレーム内のFSSシンボルの数を示す。
SYSTEM_VERSION:この8ビットフィールドは、送信された信号フォーマットのバージョンを示す。SYSTEM_VERSIONは、2個の4ビットフィールド、すなわち、メジャーバージョン及びマイナーバージョンに分離される。
メジャーバージョン:SYSTEM_VERSIONフィールドのMSB4ビットは、メジャーバージョン情報を示す。メジャーバージョンフィールドの変化は、非―下位―互換(non―backward―compatible)変化を示す。デフォルト値は「0000」である。この標準に記載したバージョンにおいて、値は「0000」に設定される。
マイナーバージョン:SYSTEM_VERSIONのLSB4ビットは、マイナーバージョン情報を示す。マイナーバージョンフィールドの変化は下位互換性である。
CELL_ID:これは、ATSCネットワークで地理的なセルを固有に識別する16ビットフィールドである。ATSCセルカバレッジ領域は、フューチャーキャストUTBシステムに使用される周波数の数に依存し、一つ以上の周波数で構成することができる。CELL_IDの値が知られていないか、特定されていない場合、このフィールドは「0」に設定される。
NETWORK_ID:これは、現在のATSCネットワークを固有に識別する16ビットフィールドである。
SYSTEM_ID:この16ビットフィールドは、ATSCネットワーク内のフューチャーキャストUTBシステムを固有に識別する。フューチャーキャストUTBシステムは、入力が一つ以上の入力ストリーム(TS、IP、GS)であって、出力がRF信号である地上波放送システムである。フューチャーキャストUTBシステムは、もしあれば、一つ以上のPHYプロファイル及びFETを伝達する。同一のフューチャーキャストUTBシステムは、異なる入力ストリームを伝達することができ、異なる地理的領域で異なるRF周波数を使用してローカルサービス挿入を許容する。フレーム構造及びスケジューリングは、一つの場所で制御され、フューチャーキャストUTBシステム内ですべての送信に対して同一である。一つ以上のフューチャーキャストUTBシステムは、すべて同一の物理層構造及び構成を有することを意味する同一のSYSTEM_IDを有することができる。
次のループは、各フレームタイプのFRU構成及び長さを指示するのに使用されるFRU_PHY_PROFILE、FRU_FRAME_LENGTH、FRU_GI_FRACTION及びRESERVEDで構成される。ループサイズは固定され、4個のPHYプロファイル(FETを含む)がFRU内で信号通知される。NUM_FRAME_FRUが4より小さいと、使用されないフィールドはゼロで充填される。
FRU_PHY_PROFILE:この3ビットフィールドは、連関したFRUの(i+1)番目(iは、ループインデクスである)フレームのPHYプロファイルタイプを示す。このフィールドは、表8に示したように、同一の信号通知フォーマットを使用する。
FRU_FRAME_LENGTH:この2ビットフィールドは、連関したFRUの(i+1)番目のフレームの長さを示す。FRU_GI_FRACTIONと共にFRU_FRAME_LENGTHを用いて、フレームデュレーションの正確な値を得ることができる。
FRU_GI_FRACTION:この3ビットフィールドは、連関したFRUの(i+1)番目のフレームの保護区間分数値を示す。FRU_GI_FRACTIONは、表7によって信号通知される。
RESERVED:この4ビットフィールドが未来の使用のために予約される。
次のフィールドは、PLS2データをデコードするパラメータを提供する。
PLS2_FEC_TYPE:この2ビットフィールドは、PLS2保護によって使用されるFECタイプを示す。FECタイプは、表10によって信号通知される。LDPCコードの細部事項については後で説明する。
PLS2_MOD:この3ビットフィールドは、PLS2によって使用される変調タイプを示す。変調タイプは、表11によって信号通知される。
PLS2_SIZE_CELL:この15ビットフィールドは、現在のフレームグループで伝達されるPLS2に対するフルコーディングブロック(full coded blocks)の集合(collection)のサイズ(QAMセルの数として特定される)(Ctotal_partial_block)を示す。この値は、現在のフレームグループの全体のデュレーションの間に一定である。
PLS2_STAT_SIZE_BIT:この14ビットフィールドは、現在のフレームグループに対するPLS2―STATのビットサイズを示す。この値は、現在のフレームグループの全体のデュレーションの間に一定である。
PLS2_DYN_SIZE_BIT:この14ビットフィールドは、現在のフレームグループに対するPLS2―DYNのビットサイズを示す。この値は、現在のフレームグループの全体のデュレーションの間に一定である。
PLS2_REP_FLAG:この1ビットフラグは、現在のフレームグループでPLS2反復モードが使用されるか否かを示す。このフィールドが値「1」に設定されると、PLS2反復モードが活性化される。このフィールドが値「0」に設定されると、PLS2反復モードが非活性化される。
PLS2_REP_SIZE_CELL:この15ビットフィールドは、PLS2反復が使用されるとき、現在のフレームグループのすべてのフレームで伝達されるPLS2に対する部分コーディングブロック(partial coded blocks)の集合(collection)のサイズ(QAMセルの数として特定される)(Ctotal_partial_block)を示す。反復が使用されない場合、このフィールドの値は0と同一である。この値は、現在のフレームグループの全体のデュレーションの間に一定である。
PLS2_NEXT_FEC_TYPE:この2ビットフィールドは、次のフレームグループのすべてのフレームで伝達されるPLS2に使用されるFECタイプを示す。FECタイプは、表10によって信号通知される。
PLS2_NEXT_MOD:この3ビットフィールドは、次のフレームグループのすべてのフレームで伝達されるPLS2に使用される変調タイプを示す。変調タイプは、表11によって信号通知される。
PLS2_NEXT_REP_FLAG:この1ビットフィールドは、次のフレームグループでPLS2反復モードが使用されるか否かを示す。このフィールドが値「1」に設定されると、PLS2反復モードが活性化される。このフィールドが値「0」に設定されると、PLS2反復モードが非活性化される。
PLS2_NEXT_REP_SIZE_CELL:この15ビットフィールドは、PLS2反復が使用されるとき、次のフレームグループのすべてのフレームで伝達されるPLS2に対するフルコーディングブロック(full coded blocks)の集合(collection)のサイズ(QAMセルの数として特定される)(Ctotal_partial_block)を示す。次のフレームグループで反復が使用されない場合、このフィールドの値は0と同一である。この値は、現在のフレームグループで一定である。
PLS2_NEXT_REP_STAT_SIZE_BIT:この14ビットフィールドは、次のフレームグループに対するPLS2―STATのビットサイズを示す。この値は、現在のフレームグループで一定である。
PLS2_NEXT_REP_DYN_SIZE_BIT:この14ビットフィールドは、次のフレームグループに対するPLS2―DYNのビットサイズを示す。この値は、現在のフレームグループの全体のデュレーションの間に一定である。
PLS2_AP_MODE:この2ビットフィールドは、現在のフレームグループ内のPLS2に追加のパリティが提供されるか否かを示す。この値は、現在のフレームグループの全体のデュレーションの間に一定である。下記の表12は、このフィールドの値を示す。このフィールドが「00」に設定されると、現在のフレームでPLS2に対して追加のパリティが使用されない。
PLS2_AP_SIZE_CELL:この15ビットフィールドは、PLS2の追加のパリティビットのサイズ(QAMセルの数として特定される)を示す。この値は、現在のフレームグループの全体のデュレーションの間に一定である。
PLS2_NEXT_AP_MODE:この2ビットフィールドは、次のフレームグループでPLS2に追加のパリティが提供されるか否かを示す。この値は、現在のフレームグループの全体のデュレーションの間に一定である。表12は、このフィールドの値を定義する。
PLS2_NEXT_AP_SIZE_CELL:この15ビットフィールドは、次のフレームグループのすべてのフレームでのPLS2の追加のパリティビットのサイズ(QAMセルの数として特定される)を示す。この値は、現在のフレームグループの全体のデュレーションの間に一定である。
RESERVED:この32ビットフィールドが未来の使用のために予約される。
CRC_32:全体のPLS1信号通知に適用される32ビットエラー検出コード
図14は、本発明の実施例に係るPLS2データを示す図である。
図14は、PLS2データのPLS2―STATデータを示す。PLS2―STATデータは、フレームグループ内で同一であるが、PLS2―DYNデータは現在のフレームに特定された情報を提供する。
PLS2―STATデータのフィールドの細部事項は次の通りである。
FIC_FLAG:この1ビットフィールドは、FICが現在のフレームグループに使用されるか否かを示す。このフィールドが「1」に設定されると、FICが現在のフレームで提供される。このフィールドが「0」に設定されると、FICが現在のフレームで伝達されない。この値は、現在のフレームグループの全体のデュレーションの間に一定である。
AUX_FLAG:この1ビットフィールドは、現在のフレームグループで補助ストリームが使用されるか否かを示す。このフィールドが「1」に設定されると、補助ストリームが現在のフレームで提供される。このフィールドが「0」に設定されると、補助ストリームが現在のフレームで伝達されない。この値は、現在のフレームグループの全体のデュレーションの間に一定である。
NUM_DP:この6ビットフィールドは、現在のフレームで伝達されるDPの数を示す。このフィールドの値は、1〜64の範囲内にあり、DPの数はNUM_DP+1である。
DP_ID:この6ビットフィールドは、PHYプロファイル内でDPを固有に識別する。
DP_TYPE:この3ビットフィールドはDPのタイプを示す。これは、以下の表13によって信号通知される。
DP_GROUP_ID:この8ビットフィールドは、現在のDPが連関したDPグループを識別する。これは、受信機が特定のサービスと連関したサービスコンポーネントのDPにアクセスするのに使用することができ、これらDPは同一のDP_GROUP_IDを有する。
BASE_DP_ID:この6ビットフィールドは、管理層で使用されるサービス信号通知データ(PSI/SI)を伝達するDPを示す。BASE_DP_IDで指示されたDPは、サービス信号通知データのみを伝達する専用DP又はサービスデータと共にサービス信号通知データを伝達する正常DPであり得る。
DP_FEC_TYPE:この2ビットフィールドは、連関したDPによって使用されるFECタイプを示す。FECタイプは、以下の表14によって信号通知される。
DP_COD:この4ビットフィールドは、連関したDPによって使用されるコードレートを示す。コードレートは、以下の表15によって信号通知される。
DP_MOD:この4ビットフィールドは、連関したDPによって使用される変調を示す。変調は、以下の表16によって信号通知される。
DP_SSD_FLAG:この1ビットフィールドは、SSDモードが連関したDPで使用されるか否かを示す。このフィールドが値「1」に設定されると、SSDが使用される。このフィールドが値「0」に設定されると、SSDが使用されない。
PHY_PROFILEがアドバンスドプロファイルを示す「010」と同一である場合のみに次のフィールドが表れる。
DP_MIMO:この3ビットフィールドは、連関したDPにいずれのタイプのMIMOエンコーディングプロセスが適用されるのかを示す。MIMOエンコーディングプロセスのタイプは、表17によって信号通知される。
DP_TI_TYPE:この1ビットフィールドは、時間インタリービングのタイプを示す。「0」の値は、一つのTIグループが一つのフレームに対応し、一つ以上のTIブロックを含むことを示す。「1」の値は、一つのTIグループが1より多いフレームで伝達され、一つのTIブロックのみを含むことを示す。
DP_TI_LENGTH:2ビットフィールドの使用(許容される値が1、2、4、8である)は、次のようにDP_TI_TYPEフィールド内に設定された値によって決定される。
DP_TI_LENGTHが値「1」に設定されると、このフィールドは、PI、すなわち、各TIグループがマップされるフレームの数を示し、TIグループ当たりに一つのTIブロックがある(NTI=1)。2ビットフィールドを有する許容されたPI値は、以下の表18で定義される。
DP_TI_TYPEが「0」に設定されると、このフィールドは、TIグループ当たりのTIブロックの数(NTI)を示し、フレーム当たりに一つのTIグループがある(PI=1)。2ビットフィールドを有する許容されたPI値は、以下の表18で定義される。
DP_FRAME_INTERVAL:この2ビットフィールドは、連関したDPに対するフレームグループ内のフレーム区間(IJUMP)を示し、許容される値は1、2、4、8である(対応する2ビットフィールドは、それぞれ「00」、「01」、「10」、「11」である)。フレームグループのすべてのフレームで表れないDPに対して、このフィールドの値は連続的なフレーム間の間隔と同一である。例えば、DPがフレーム1、5、9、13などで表れると、このフィールドは「4」に設定される。すべてのフレームで表れるDPに対して、このフィールドは「1」に設定される。
DP_TI_BYPASS:この1ビットフィールドは、時間インタリーバ5050の利用可能性を決定する。DPに対して時間インタリービングが使用されない場合、これは「1」に設定される。時間インタリービングが使用される場合、これは「0」に設定される。
DP_FIRST_FRAME_IDX:この5ビットフィールドは、現在DPが発生するスーパーフレームの第1のフレームのインデクスを示す。DP_FIRST_FRAME_IDXの値は0〜31の範囲内にある。
DP_NUM_BLOCK_MAX:この10ビットフィールドは、このDPに対するDP_NUM_BLOCKSの最大値を示す。このフィールドの値は、DP_NUM_BLOCKSと同一の範囲を有する。
DP_PAYLOAD_TYPE:この2ビットフィールドは、与えられたDPによって伝達されるペイロードデータのタイプを示す。DP_PAYLOAD_TYPEは、以下の表19によって信号通知される。
DP_INBAND_MODE:この2ビットフィールドは、現在のDPが帯域内信号通知情報を伝達するか否かを示す。帯域内信号通知タイプは、以下の表20によって信号通知される。
DP_PROTOCOL_TYPE:この2ビットフィールドは、与えられたDPによって伝達されるペイロードのプロトコルタイプを示す。入力ペイロードタイプが選択されると、以下の表21によって信号通知される。
DP_CRC_MODE:この2ビットフィールドは、入力フォーマッティングブロックでCRCエンコーディングが使用されるか否かを示す。CRCモードは、以下の表22によって信号通知される。
DNP_MODE:この2ビットフィールドは、DP_PAYLOAD_TYPEがTS(「00」)に設定されるとき、連関したDPによって使用されるヌル―パケット削除モードを示す。DNP_MODEは、以下の表23によって信号通知される。DP_PAYLOAD_TYPEがTS(「00」)でない場合、DNP_MODEは値「00」に設定される。
ISSY_MODE:この2ビットフィールドは、DP_PAYLOAD_TYPEがTS(「00」)に設定されるとき、連関したDPによって使用されるISSYモードを示す。ISSY_MODEは、以下の表24によって信号通知される。DP_PAYLOAD_TYPEがTS(「00」)でない場合、ISSY_MODEは値「00」に設定される。
HC_MODE_TS:この2ビットフィールドは、DP_PAYLOAD_TYPEがTS(「00」)に設定されるとき、連関したDPによって使用されるTSヘッダ圧縮モードを示す。HC_MOD_TSは、以下の表25によって信号通知される。
HC_MODE_IP:この2ビットフィールドは、DP_PAYLOAD_TYPEがIP(「01」)に設定されるときのIPヘッダ圧縮モードを示す。HC_MOD_IPは、以下の表26によって信号通知される。
PID:この13ビットフィールドは、DP_PAYLOAD_TYPEがTS(「00」)に設定され、HC_MODE_TSが「01」又は「10」に設定されるときのTSヘッダ圧縮のためのPID番号を示す。
RESERVED:この8ビットフィールドは、未来の使用のために予約される。
FIC_FLAGが「1」と同一である場合のみに次のフィールドが表れる。
FIC_VERSION:この8ビットフィールドは、FICのバージョン番号を示す。
FIC_LENGTH_BYTE:この13ビットフィールドは、FICのバイト長さを示す。
RESERVED:この8ビットフィールドは、未来の使用のために予約される。
AUX_FLAGが「1」と同一である場合のみに次のフィールドが表れる。
NUM_AUX:この4ビットフィールドは、補助ストリームの数を示す。ゼロは、補助ストリームが使用されないことを意味する。
AUX_CONFIG_RFU:この8ビットフィールドは、未来の使用のために予約される。
AUX_STREAM_TYPE:この4ビットフィールドは、現在の補助ストリームのタイプを示すための未来の使用のために予約される。
UX_PRIVATE_CONFIG:この28ビットフィールドは、補助ストリームを信号通知するための未来の使用のために予約される。
図15は、本発明の他の実施例に係るPLS2データを示す図である。
図15は、PLS2データのPLS2―DYNデータを示す。PLS2―DYNデータの値は、一つのフレームグループのデュレーションの間に変わり、フィールドのサイズは一定に維持される。
PLS2―DYNデータのフィールドの細部事項は次の通りである。
FRAME_INDEX:この5ビットフィールドは、スーパーフレーム内の現在のフレームのフレームインデクスを示す。スーパーフレームの第1のフレームのインデクスは「0」に設定される。
PLS_CHANGE_COUNTER:この4ビットフィールドは、構成が変更される前のスーパーフレームの数を示す。構成において、変更された後のスーパーフレームは、このフィールド内で信号通知される値によって指示される。このフィールドが値「0000」に設定されると、スケジュールされた変化が予想されないことを意味し、値「1」は、次のスーパーフレームで変化があることを意味する。
FIC_CHANGE_COUNTER:この4ビットフィールドは、構成(すなわち、FICの内容)が変更される前のスーパーフレームの数を示す。構成において、変更された後のスーパーフレームは、このフィールド内で信号通知される値によって指示される。このフィールドが値「0000」に設定されると、スケジュールされた変化が予想されないことを意味し、値「0001」は、次のスーパーフレームで変化があることを意味する。
RESERVED:この16ビットフィールドは、未来の使用のために予約される。
NUM_DPを通じてループで次のフィールドが表れ、これは、現在のフレームで伝達されるDPと連関したパラメータを示す。
DP_ID:この6ビットフィールドは、PHYプロファイル内のDPを固有に指示する。
DP_START:この15ビット(又は13ビット)フィールドは、DPUアドレッシング方式を用いて第1のDPの開始位置を示す。DP_STARTフィールドは、以下の表27に示したように、PHYプロファイル及びFFTサイズによって異なる長さを有する。
DP_NUM_BLOCK:この10ビットフィールドは、現在のDPに対する現在のTIグループ内のFECブロックの数を示す。DP_NUM_BLOCKの値は0〜1023の範囲内にある。
RESERVED:この8ビットフィールドは、未来の使用のために予約される。
次のフィールドは、EACと連関したFICパラメータを示す。
EAC_FLAG:この1ビットフィールドは、現在のフレーム内のEACの存在を示す。このビットは、プリアンブル内のEAC_FLAGと同一の値である。
EAS_WAKE_UP_VERSION_NUM:この8ビットフィールドは、ウェイクアップ指示のバージョン番号を示す。
EAC_FLAGフィールドが「1」と同一である場合、次の12ビットは、EAC_LENGTH_BYTEフィールドに対して割り当てられる。EAC_FLAGフィールドが「0」と同一である場合、次の12ビットは、EAC_COUNTERに割り当てられる。
EAC_LENGTH_BYTE:この12ビットフィールドは、EACのバイト長さを示す。
EAC_COUNTER:この12ビットフィールドは、EACが到逹するフレームの前のフレームの数を示す。
AUX_FLAGフィールドが「1」と同一である場合にのみ次のフィールドが表れる。
AUX_PRIVATE_DYN:この48ビットフィールドは、補助ストリームを信号通知するための未来使用のために予約される。このフィールドの意味は、構成可能なPLS2―STAT内のAUX_STREAM_TYPEの値に依存する。
CRC_32:全体のPLS2に適用される32ビットエラー検出コード。
図16は、本発明の実施例に係るフレームの論理構造を示す図である。
上述したように、PLS、EAC、FIC、DP、補助ストリーム及びダミーセルは、フレーム内のOFDMシンボルのアクティブキャリアにマップされる。PLS1及びPLS2は、まず、一つ以上のFSSにマップされる。その後、もしあれば、EACセルがPLSフィールドの直後にマップされ、その後、もしあれば、FICセルがマップされる。もしあれば、DPは、PLS又はEAC、FICの後にマップされる。まず、タイプ1 DPが後に来た後、タイプ2 DPが後に来る。DPのタイプの細部事項については後で説明する。任意の場合、DPは、EASのための任意の特殊データ又はサービス信号通知データを伝達することができる。もしあれば、補助ストリーム又は各ストリームがDPの後に来た後、ダミーセルが後に来る。これらすべてを上述した順序、すなわち、PLS、EAC、FIC、DP、補助ストリーム及びダミーデータセルの順にマップすることは、フレーム内のセル容量を正確に充填する。
図17は、本発明の実施例に係るPLSマッピングを示す図である。
PLSセルは、FSSのアクティブキャリアにマップされる。PLSによって占有されたセルの数に依存して、一つ以上のシンボルがFSSとして指定され、FSSの数(NFSS)は、PLS1内のNUM_FSSによって信号通知される。FSSは、PLSセルを伝達する特殊シンボルである。ロバスト性及びレイテンシ(latency)はPLSの重要な問題であるので、FSSは、FSS内の周波数専用補間及び高速同期化を許容するより高い密度のパイロットを有する。
PLSセルは、図17の例に示したように、トップ―ダウン(top―down)方式でNFSS個のFSSのアクティブキャリアにマップされる。PLS1セルは、セルインデクスの増加順に第1のFSSの第1のセルから先にマップされる。PLS2セルは、PLS1の最後のセルの直後にマップされ、第1のFSSの最後のセルインデクスまでマッピングが下向きに継続される。要求されるPLSセルの総数が一つのFSSのアクティブキャリアの数を超えると、マッピングは、次のFSSに進行し、第1のFSSと正確に同一の方式で継続される。
PLSマッピングの完了後、DPが次に伝達される。EAC、FIC又はEAC及びFICが現在のフレームに存在すると、これらはPLSと「正常」DPとの間に配置される。
図18は、本発明の実施例に係るEACマッピングを示す図である。
EACは、EASメッセージを伝達する専用チャネルであって、EASに対するDPにリンクされる。EASサポートは提供されるが、EAC自体はすべてのフレームに存在することもあり、存在しないこともある。もしあれば、EACはPLS2セルの直後にマップされる。EACは、PLSセル以外に、FIC、DP、補助ストリーム及びダミーセルのうちいずれかの後に来ない。EACセルをマップする順序はPLSと正確に同一である。
EACセルは、図18に示したように、セルインデクスの増加順にPLS2の次のセルからマップされる。EASメッセージサイズによって、EACセルは、図18に示したようにいくつかのシンボルを占有する。
EACセルは、PLS2の最後のセルの直後にマップされ、マッピングは、最後のFSSの最後のセルインデクスまで下向きに継続される。要求されるEACの総数が最後のFSSの残りのアクティブキャリアの数を超えると、マッピングは次のシンボルに進行し、FSSと正確に同一の方式で継続される。この場合のマッピングのための次のシンボルは正常データシンボルであって、これは、FSSより多くのアクティブキャリアを有する。
EACマッピングの完了後、もし存在すれば、FICが次に伝達される。(PLS2フィールドで信号通知されることによって)FICが送信されないと、DPはEACの最後のセルの直後にマップされる。
図19は、本発明の実施例に係るFICマッピングを示す図である。
(a)は、EACがないFICの例示的なマッピングを示し、(b)は、EACがあるFICの例示的なマッピングを示す。
FICは、高速サービス獲得及びチャネルスキャニングを可能にする階層間(cross―layer)情報に対する専用チャネルである。この情報は、主に各ブロードキャスタのDPとサービスとの間の情報を結合するチャネルを含む。高速スキャンのために、受信機は、FICをデコードし、ブロードキャスタID、サービスの数及びBASE_DP_IDなどの情報を得ることができる。高速サービスの獲得のために、FICに加えて、ベースDPがBASE_DP_IDを用いてデコードされ得る。伝達される内容以外に、ベースDPは、正常DPと正確に同一の方式でエンコードされ、フレームにマップされる。そのため、ベースDPに対して追加の説明が要求されない。FICデータが生成されて管理層で消費される。FICデータの内容は、管理層の説明書に記載した通りである。
FICデータは選択的であり、FICの使用は、PLS2の静的部分内のFIC_FLAGパラメータによって信号通知される。FICが使用されると、FIC_FLAGが「1」に設定され、FICのための信号通知フィールドはPLS2の静的部分に定義される。このフィールドでは、FIC_VERSION及びFIC_LENGTH_BYTEが信号通知される。FICは、PLS2と同一の変調、コーディング及び時間インタリービングパラメータを用いる。FICは、PLS2_MODE及びPLS2_FECなどの同一の信号通知パラメータを共有する。もしあれば、FICデータは、PLS2又は、もしあれば、EACの直後にマップされる。FICは、任意の正常DP、補助ストリーム又はダミーセルの後にマップされない。FICセルをマップする方法はEACと正確に同一であり、これはPLSと同一である。
PLSの後にEACがない場合、FICセルは、(a)の例に示したように、セルインデクスの増加順にPLS2の次のセルからマップされる。FICデータサイズによって、FICセルは、(b)に示したように、いくつかのシンボルにわたってマップされ得る。
FICセルは、PLS2の最後のセルの直後にマップされ、マッピングは、最後のFSSの最後のセルインデクスまで下向きに継続される。要求されるFICセルの総数が最後のFSSの残りのアクティブキャリアの数を超えると、マッピングは次のシンボルに進行し、FSSと正確に同一の方式で継続される。この場合のマッピングのための次のシンボルは、FSSより多くのアクティブキャリアを有する正常データシンボルである。
EASメッセージが現在のフレームで送信されると、EACはFICに先行し、FICセルは、(b)に示したように、セルインデクスの増加順にEACの次のセルからマップされる。
FICマッピングの完了後、一つ以上のDPがマップされ、その後、もしあれば、補助ストリーム及びダミーセルがマップされる。
図20は、本発明の実施例に係るDPのタイプを示す図である。
図20の(a)はタイプ1 DPを示し、(b)はタイプ2 DPを示す。
先行チャネル、すなわち、PLS、EAC及びFICがマップされた後、DPのセルがマップされる。DPは、マッピング方法によって2個のタイプのうち一つに分類される。
タイプ1 DP:DPは、TDMによってマップされる。
タイプ2 DP:DPは、FDMによってマップされる。
DPのタイプは、PLS2の静的部分でDP_TYPEフィールドによって指示される。図20は、タイプ1 DP及びタイプ2 DPのマッピング順序を示す。タイプ1 DPは、まず、セルインデクスの増加順にマップされ、最後のセルインデクスに到逹した後、シンボルインデクスが1ずつ増加する。次のシルボル内で、DPは、p=0からセルインデクスの増加順に継続してマップされる。一つのフレームで共にマップされた多数のDPで、タイプ1 DPのそれぞれは、DPのTDMマルチプレキシングと類似する形に時間でグループ化される。
タイプ2 DPは、まず、シンボルインデクスの増加順にマップされ、フレームの最後のOFDMシンボルに到逹した後、セルインデクスは1ずつ増加し、シンボルインデクスは第1の利用可能なシンボルに後退し、そのシンボルインデクスから増加する。一つのフレームで多数のDPを共にマップした後、タイプ2 DPのそれぞれは、DPのFDMマルチプレキシングと類似する形に周波数でグループ化される。
一つの制限が必要であれば、すなわち、タイプ1 DPが常にタイプ2 DPに先行すると、タイプ1 DP及びタイプ2 DPはフレーム内で共存し得る。タイプ1及びタイプ2 DPを伝達するOFDMセルの総数は、DPの送信のために利用可能なOFDMセルの総数を超えることができない。
ここで、DDP1は、タイプ1 DPによって占有されるOFDMセルの数であり、DDP2は、タイプ2 DPによって占有されるOFDMセルの数である。PLS、EAC、FICは、いずれもタイプ1 DPと同一の方式でマップされるので、これらはすべて「タイプ1のマッピング規則」に従う。そのため、タイプ1のマッピングは、常にタイプ2のマッピングより先行する。
図21は、本発明の実施例に係るDPマッピングを示す図である。
(a)は、タイプ1 DPをマップするためのOFDMセルのアドレッシングを示し、(b)は、タイプ2 DPをマップするためのOFDMセルのアドレッシングを示す。
タイプ1 DP(0、DDP1―1)をマップするためのOFDMセルのアドレッシングは、タイプ1 DPのアクティブデータセルのために定義される。アドレッシング方式は、タイプ1 DPのそれぞれに対するTIからのセルがアクティブデータセルに割り当てられる順序を定義する。また、これは、PLS2の動的部分内のDPの位置を信号通知するのに使用される。
EAC及びFICなしで、アドレス0は、最後のFSS内のPLSを伝達する最後のセルの直後のセルを称する。EACが送信され、FICがその該当フレームでない場合、アドレス0は、EACを伝達する最後のセルの直後のセルを称する。FICが該当フレームで送信されると、アドレス0は、FICを伝達する最後のセルの直後のセルを称する。タイプ1 DPに対するアドレス0は、(a)に示したように、2個の異なるケースを考慮して算出することができる。(a)に示した例において、PLS、EAC及びFICはすべて送信されると仮定する。EAC及びFICのうち一つ又は二つとも省略される場合への拡張は容易である。(a)の左側に示したように、FICまでのすべてのセルをマップした後、FSS内に残りのセルが残っている。
タイプ2 DP(0、…、DDP2―1)をマップするOFDMセルのアドレッシングは、タイプ2 DPのアクティブデータセルのために定義される。アドレッシング方式は、タイプ2 DPのそれぞれに対するTIからのセルがアクティブデータセルに割り当てられる順序を定義する。また、これは、PLS2の動的部分内のDPの位置を信号通知するのに使用される。
(b)に示したように、3個の少し異なるケースが可能である。(b)の左側上に示した第1のケースでは、最後のFSS内のセルはタイプ2 DPマッピングに用いられる。中間に示した第2のケースでは、FICが正常シンボルのセルを占めるが、そのシンボル上のFICセルの数はCFSSより小さい。(b)の右側に示した第3のケースは、そのシンボル上にマップされたFICセルの数がCFSSを超えることを除いては第2のケースと同一である。
PLS、EAC及びFICは、タイプ1 DPと同一の「タイプ1のマッピング規則」に従うので、タイプ1 DPがタイプ2 DPに先行する場合への拡張は簡単である。
データパイプ単位(DPU)は、データセルをフレーム内のDPに割り当てる基本単位である。
DPUは、フレーム内にDPを位置させる信号通知単位として定義される。セルマッパ7010は、DPのそれぞれに対するTIによって生成されたセルをマップすることができる。時間インタリーバ5050は、一連のTIブロックを出力し、それぞれのTIブロックは、セルのセットで構成される可変数(variable number)のXFECBLOCKを含む。XFECBLOCK内のセルの数(Ncells)は、FECBLOCKサイズ(Nldpc)及び星状シンボル当たりの送信ビット数に依存する。DPUは、与えられたPHYプロファイルでサポートされるXFECBLOCK内のセルの数のすべての可能な値の最も大きい共通除数(divisor)(Ncells)として定義される。セル内のDPUの長さはLDPUとして定義される。各PHYプロファイルがFECBLOCKサイズ及び星状シンボル当たりに異なる数の異なる組み合わせをサポートするので、LDPUはPHYプロファイルに基づいて定義される。
図22は、本発明の実施例に係るFEC構造を示す図である。
図22は、ビットインタリービング前の本発明の実施例に係るFEC構造を示す。上述したように、データFECエンコーダは、入力BBFに対してFECエンコーディングを行い、アウターコーディング(BCH)及びインナーコーディング(LDPC)を用いてFECBLOCK手続を生成することができる。図示したFEC構造はFECBLOCKに対応する。また、FECBLOCK及びFEC構造は、LDPCコードワードの長さに対応する同一の値を有する。
図22に示したように、BCHエンコーディングはそれぞれのBBF(Kbchビット)に適用され、LDPCエンコーディングはBCHエンコーディングBBF(Kldpcビット=Nbchビット)に適用される。
ldpcの値は、64800ビット(長いFECBLOCK)又は16200ビット(短いFECBLOCK)である。
以下の表28及び表29は、それぞれ長いFECBLOCK及び短いFECBLOCKに対するFECエンコーディングパラメータを示す。
BCHエンコーディング及びLDPCエンコーディングの動作の細部事項は次の通りである。
12誤り訂正BCHコードは、BBFのアウターエンコーディングに使用される。短いFECBLOCK及び長いFECBLOCKに対するBCH生成器多項式は、すべての多項式を共に乗じることによって得られる。
LDPCコードは、アウターBCHエンコーディングの出力をエンコードするのに使用される。完成したBldpc(FECBLOCK)を生成するために、Pldpc(パリティビット)は各Ildpc(BCHエンコーディングBBF)から体系的にエンコードされ、Ildpcに添付される。完成したBldpc(FECBLOCK)は次の数式として表現される。
長いFECBLOCK及び短いFECBLOCKに対するパラメータは、それぞれ前記表28及び表29に与えられる。
長いFECBLOCKに対するNldpc―Kldpcを算出する細部手続は次の通りである。
1)パリティビット初期化
2)パリティチェックマトリックスのアドレスの第1の行に特定されたパリティビットアドレスで第1の情報ビット(i0)を累算する。パリティチェックマトリックスのアドレスの細部事項については後で説明する。例えば、レート13/15に対して、
3)次の359個の情報ビット(is)(s=1、2、…、359)が次の数式を用いてパリティビットで累算される。
ここで、xは、第1のビット(i0)に対応するパリティビット累算器のアドレスを示し、Qldpcは、パリティチェックマトリックスのアドレスで特定されたコードレート従属定数である。継続して、例えば、レート13/15に対してQldpc=24であって、よって、情報ビット(i1)に対して次の動作が行われる。
4)361番目の情報ビット(i360)に対して、パリティビット累算器のアドレスは、パリティチェックマトリックスのアドレスの第2の行に与えられる。類似する方式で、次の358個の情報ビット(is)(s=361、362、…、719)に対するパリティビット累算器のアドレスは数式6を用いて得られ、ここで、xは、情報ビット(i360)に対応するパリティビット累算器のアドレス、パリティチェックマトリックスのアドレスの第2の行内のエントリーを示す。
5)類似する方式で、360個の新たな情報ビットのすべてのグループに対して、パリティチェックマトリックスのアドレスからの新たな行がパリティビット累算器のアドレスを探すのに使用される。
情報ビットが全部消尽した後、最終パリティが次のように得られる。
6)i=1から開始する次の動作を順次行う。
ここで、pi(i=0、1、…、Ndpc―Kldpc―1)の最終内容は、パリティビット(pi)と同一である。
短いFECBLOCKに対するこのLDPCエンコーディング手続は、表30及び表31を取り替え、長いFECBLOCKに対するパリティチェックマトリックスのアドレスを短いFECBLOCKに対するパリティチェックマトリックスのアドレスに取り替えることを除いては、長いFECBLOCKに対するt LDPCエンコーディング手続に従う。
図23は、本発明の実施例に係るビットインタリービングを示す図である。
LDPCエンコーダの出力はビットインタリーブされ、これは、パリティインタリービング、その後のQCB(quasi―cyclic block)インタリービング及び内部グループインタリービングで構成される。
(a)は、QCBインタリービングを示し、(b)は、内部グループインタリービングを示す。
FECBLOCKはパリティインタリーブされ得る。パリティインタリービングの出力において、LDPCコードワードは、長いFECBLOCK内の180個の隣接したQCブロック及び短いFECBLOCK内の180個の隣接したQCブロックで構成される。長い又は短いFECBLOCK内のそれぞれのQCブロックは360ビットで構成される。パリティインタリーブされたLDPCコードワードは、QCBインタリービングによってインタリーブされる。QCBインタリービングの単位はQCブロックである。パリティインタリービングの出力におけるQCブロックは、図23に示したように、QCBインタリービングによってパーミュートされ、ここで、FECBLOCK長さによってNcells=6480/ηmod又は16200/ηmodである。QCBインタリービングパターンは、変調タイプ及びLDPCコードレートの各組み合わせに固有である。
QCBインタリービング後、内部グループインタリービングは、以下の表32に定義された変調タイプ及び順序(ηmod)に従って行われる。また、一つの内部グループに対するQCブロックの数(NQCB_IG)が定義される。
内部グループインタリービングプロセスは、QCBインタリービング出力のNQCBIG個のQCブロックで行われる。内部グループインタリービングは、360個の列とNQCB_IG個の行を用いて内部グループのビットを記入及び判読するプロセスを有する。記入動作において、QCBインタリービング出力からのビットが行方向に記入される。判読動作は列方向に行われ、各行からm個のビットを判読し、ここで、mは、NUCに対して1と同一であり、NCQに対して2と同一である。
図24は、本発明の実施例に係るセル―ワードデマルチプレキシングを示す図である。
(a)は、8及び12bpcu MIMOに対するセル―ワードデマルチプレキシングを示し、(b)は、10bpcu MIMOに対するセル―ワードデマルチプレキシングを示す。
(a)に示したように、ビットインタリービング出力の各セルワード
は、
及び
にデマルチプレクスされ、これは、一つのXFECBLOCKに対するセル―ワードデマルチプレキシングプロセスを示す。
MIMOエンコーディングのための異なるタイプのNUQを用いた10bpcu MIMOケースに対して、NUQ―1024に対するビットインタリーバが再使用される。(b)に示したように、ビットインタリーバ出力の各セルワード
は、
及び
にデマルチプレクスされる。
図25は、本発明の実施例に係る時間インタリービングを示す図である。
(a)〜(c)は、TIモードの例を示す。
時間インタリーバはDPレベルで動作する。時間インタリービング(TI)のパラメータは、各DPに対して異なる形に設定することができる。
PLS2―STATデータの一部で表れる次のパラメータはTIを構成する。
DP_TI_TYPE(許容値:0又は1):TIモードを示す。;「0」は、TIグループ当たりに多数のTIブロック(1より多いTIブロック)を有するモードを示す。この場合、一つのTIグループは一つのフレームに直接マップされる(インターフレームインタリービングではない)。「1」は、TIグループ当たり一つのみのTIブロックを有するモードを示す。この場合、TIブロックは、1より多いフレームに拡散され得る(インターフレームインタリービング)。
DP_TI_LENGTH:DI_TI_TYPE=「0」である場合、このパラメータは、TIグループ当たりのTIブロックの数(NTI)である。DP_TI_TYPE=「1」に対して、このパラメータは、一つのTIグループから拡散されたフレームの数(PI)である。
DP_NUM_BLOCK_MAX(許容値:0〜1023):TIグループ当たりのXFECBLOCKの最大数を示す。
DP_FRAME_INTERVAL(許容値:1、2、4、8):与えられたPHYプロファイルの同一のDPを伝達する2個の連続的なフレーム間のフレームの数(IJUMP)を示す。
DP_TI_BYPASS(許容値:0又は1):時間インタリービングがDPに使用されない場合、このパラメータは「1」に設定される。時間インタリービングが使用される場合、「0」に設定される。
さらに、PLS2―DYNデータからのパラメータ(DP_NUM_BLOCK)は、DPの一つのTIグループによって伝達されたXFECBLOCKの数を示すのに使用される。
時間インタリービングがDPに使用されない場合、次のTIグループ、時間インタリービング動作及びTIモードは考慮されない。しかし、スケジューラからの動的構成情報に対する補償ブロックは依然として必要である。各DPにおいて、SSD/MIMOエンコーディングから受信されたXFECBLOCKはTIグループにグループ化される。すなわち、それぞれのTIグループは、整数の(an integer number of)XFECBLOCKのセットであり、動的に可変する数のXFECBLOCKを含む。インデクスのTIグループ内のXFECBLOCKの数(n)はNxBLOCK_Group_(n)で表示され、PLS2―DYNデータのDP_NUM_BLOCKとして信号通知される。NxBLOCK_Group_(n)は、0の最小値から最も大きい値が1023である最大値(NxBLOCK_Group_MAX)(DP_NUM_BLOCK_MAXに対応)まで変わり得る。
各TIグループは、一つのフレームに直接マップされたり、PIフレームにわたって拡散される。また、それぞれのTIグループは、1より多いTIブロック(NTI)に分離され、それぞれのTIブロックは、時間インタリーバメモリの一つの用途に対応する。TIグループ内のTIブロックは、少し異なる数のXFECBLOCKを含むことができる。TIグループが多数のTIブロックに分離されると、一つのフレームのみに直接マップされる。以下の表33に示したように(時間インタリービングをスキップする追加のオプションを除いて)、時間インタリービングのための3個のオプションが存在する。
各DPにおいて、TIメモリは、入力XFECBLOCK(SSD/MIMOエンコーディングブロックからの出力XFECBLOCK)を格納する。入力XFECBLOCKは、
として定義され、
ここで、dn,s,r,qは、n番目のTIグループのs番目のTIブロック内のr番目のXFECBLOCKのq番目のセルであって、次のようにSSD及びMIMOエンコーディングの出力を示す。
また、時間インタリーバからの出力XFECBLOCKは、次のように定義されると仮定する。
ここで、hn,s,iは、n番目のTIグループのs番目のTIブロック内のi番目の出力セル(
)である。
一般に、時間インタリーバは、フレームビルディングプロセス前にDPデータのためのバッファとして動作する。これは、それぞれのDPに対する2個のメモリバンクによって達成される。第1のTIブロックは第1のバンクに記入される。第1のバンクが判読される間、第2のTIブロックが第2のバンクに記入される。
TIは、ツイスト行―列ブロックインタリーバである。n番目のTIグループのs番目のTIブロックに対して、TIメモリの行(Nr)の数はセルの数(Ncell)と同一である。すなわち、Nr=Ncellであるが、列の数(Nc)は数(NxBLOCK_TI(n,s))と同一である。
以下では、本発明の実施例に係るPLSデータのプロテクション方法を説明する。具体的に、本発明の一実施例に係る放送信号送信装置は、PLSデータをエンコードして保護することができる。図2を参照して説明したように、PLSデータは、PLS1データ及びPLS2データを含むことができる。PLS2データは、PLS2静的データ(static data)及びPLS2動的データ(dynamic data)を含むことができる。
本明細書において、PLS2データは、PLS―ポストデータ(post data)と称することができ、PLS2静的データはPLS―ポスト―STATデータと称し、PLS2動的データはPLS―ポスト―DYNデータと称することができる。
上述したように、フレームグループに含まれるそれぞれのフレームはPLSデータを含むことができる。
PLS2―STATの各パラメータは、フレームグループ内で同一の値を有することができる。その一方、PLS2―DYNの各パラメータは、一つのフレームグループの期間の間に変更可能である。但し、各フィールドのサイズは固定可能である。
本発明の一実施例に係る放送信号送信装置は、可変的長さを有するPLSデータを一定の長さ(又はサイズ)のコードでエンコードすることができる。この場合、放送信号受信装置のデコーディング過程で発生する時間遅延及び複雑度が既存のデコーディング方式に比べて減少し得るという長所がある。
以下、本発明の一実施例に係るPLSデータエンコーディング方法は、PLS1データ及びPLS2データのいずれにも適用することができ、PLS1データ及びPLS2データのうちいずれか一つのみに適用することもできる。これは、設計者の意図によって変更可能な事項である。
図26は、本発明の一実施例に係る放送信号送信装置がPLSデータをエンコードする動作を説明する図である。
本発明の一実施例に係る放送信号送信装置は、可変的なサイズのPLSデータを少なくとも一つ以上のブロックに分割し、それぞれのブロックを一定のサイズのコードワードでエンコードすることができる。上述したように、PLSデータのサイズは可変的であるので、本発明の一実施例に係る放送信号送信装置は、PLSデータにダミーデータ(dummy data)を付加し、エンコーディングを行うためのペイロードを生成することができる。
図26の(a)は、データの長さがLであるシングルPLS―ポストペイロード(post payload)を示す図である。上述したように、PLS―ポストペイロードは、PLS―ポスト―STATデータ及びPLS―ポスト―DYNデータを含み、さらにダミーデータを含むことができる。ダミーデータは、それぞれPLS―ポスト―STATデータ及びPLS―ポスト―DYNデータの後に挿入され得る。
図26の(b)は、シングルPLS―ポストペイロードをM個に分割したことを示す図である。本発明の一実施例に係る放送信号受信装置は、PLS―ポストペイロードを一定のサイズ(N)を有するコードワードでエンコードするために、PLS―ポストペイロードをM個のブロックに分割することができる。このとき、分離された各ブロックのサイズXはL/Mと同一であり、分割された各ブロックはPLS―ポスト―STATデータ及びPLS―ポスト―DYNデータを含むことができる。
このとき、PLS―ポスト―STATデータは、同一のサイズで各ブロックに分割することができる。したがって、同一のフレームグループ内で同一のサイズを有するPLS―ポスト―STATデータが繰り返して伝送されるので、放送信号受信装置の誤り訂正機能はすべてのブロックに対して一定に向上し得る。
また、(a)で追加された各ダミーデータは、分割された各ブロックのうち一番最後のブロックに含ませることができる。一番最後のブロックに含まれたダミーデータは、該当ブロックに含まれたPLS―ポスト―STATデータとPLS―ポスト―DYNデータとの間に位置したり、PLS―ポスト―DYNデータの後側に位置し得る。ダミーデータの位置は、設計者の意図によって変更可能である。
図26の(c)は、放送信号送信装置が各ブロックをエンコードする過程を示す。各図面の括弧内の文字は該当データの長さを示す。本発明の一実施例に係る放送信号送信装置は、分離されたブロックを、コードワード長さがNで、情報部分の長さがKであるコードでエンコードすることができる。コードレートは、情報部分の長さをコードワードの長さで割った値と定義することができる。したがって、本発明の一実施例に係るコードワードのコードレートはK/Nである。本発明の一実施例に係る放送信号送信装置は、各ブロックに対してゼロパディング(zero padding)を行い、ゼロパディングが行われたブロックの後に各パリティビット(parity bits)を付けてLDPCエンコーディングを行い、各パリティビットに対してパンクチャリング(puncturing)を行い、FECブロックを出力することができる。FECブロックは、図面に示したように、情報部分(K)及びパリティ部分(N−K)を含むことができる。コードレートK/Nを基盤にしてエンコードされたPLS―ポストデータは、情報部分(K)及びパリティ部分(N−K)を含むことができる。情報部分(K)は、PLS―ポスト―STATデータ、PLS―ポスト―DYNデータ及び各ゼロ―パディングビットを含むことができる。各ゼロ―パディングビットはゼロ―挿入されたビット(zero―inserted bit)と称することができる。パリティ部分(N−K)に含まれる各ビットのうち一部はパンクチャすることができ、これを各パンクチャリングビットと称することができる。
本発明の一実施例に係る放送信号送信装置は、分離されたブロックのサイズによって、一定の情報部分の長さを維持するためにゼロ―パディングされる各ビットを順次挿入することができる。この場合、本発明の実施例に係る放送信号送信装置は、情報部分の長さ(K)とPLSデータの長さ(L/M)との差、すなわち、K−L/Mだけ各ゼロ―パディングビットを挿入し、PLSデータをエンコードすることができる。各ゼロ―パディングビットを挿入してPLSデータをエンコードする方法は、一般的な短縮されたコード(shortened code)での処理方法と同一であり得る。
本発明の一実施例に係る放送信号送信装置は、多様な長さのPLS―ポストデータを特定のコードレート(例えば、K/N)を基盤にしてエンコードすることができる。この場合、本発明の一実施例に係る放送信号送信装置は、一定水準以上の誤り訂正能力を保証するために各パリティビットを挿入することができる。挿入される各パリティビットの長さは、保護しようとするPLS―ポストデータの長さ、L/Mの長さなどによって変更可能である。
上述した特定のコードレート(例えば、K/N)を基盤にしてPLS―ポストデータをエンコードする方法は、LDPCエンコーディング方法であり得る。上述した特定のコードレートは、設計者の意図によって変更可能である。
また、本発明の一実施例に係る放送信号送信装置は、一定水準以上の誤り訂正能力を保証するために、各ゼロ―パディングビットと各パンクチャリングパリティビットの位置を変更することができる。
図26の(d)は、本発明の一実施例に係るFECブロックを示した図である。本発明では、FECブロックを伝送ブロック(transmitting block)と称することができる。(d)は、挿入されていたゼロ―パディングビットが削除され、各パリティビットのうち一部がパンクチャされた後のFECブロックを示す。その後、本発明の一実施例に係るFECブロックは、ビットインタリービングブロックとして入力することができる。
本図面では、本発明の一実施例に係る放送信号送信装置がPLS―ポストデータをエンコードする動作を示しているが、これは実施例に過ぎなく、本発明の一実施例に係る放送信号送信装置は、PLS1データに対しても同一にエンコーディング動作を行うことができる。
以下では、本発明の一実施例に係るゼロ―パディングの位置を特定する方法に対する具体的な内容を説明する。
図27は、本発明の一実施例に係るPLSデータエンコーディング方法を示した図である。
具体的に、図27は、本発明の一実施例に係る放送信号送信装置がコードワードの情報部分(information portion)に各ゼロパディングビットを挿入し、情報部分の各ビットを再配置して出力するデータの構造を示した図である。
図27は、コードワードの情報部分(information portion又はinformation part)が10ビットで、PLS―ポストデータが8ビットである場合の実施例を示す。
上述したように、本発明の一実施例に係る放送信号送信装置は、情報部分の長さ(K)とPLSデータの長さ(L/M)との差、すなわち、K−L/Mだけ各ゼロ―パディングビットを挿入し、PLSデータをエンコードすることができる。この場合、各ゼロ―パディングビットは、ゼロ―パディング順次的順序(sequential order)によって情報部分に挿入され得る。その後、放送信号送信装置は、ゼロ―パディング順次的順序を基盤にするパーミュテーション(permutation)情報によって挿入された各ゼロ―パディングビットを置換することができる。
図27の(a)は、ゼロ―パディング順次的順序及びパーミュテーション情報を含むテーブルである。図27の(b)は、各ゼロ―パディングビットが挿入されたコードワードの情報部分を示す図である。図27の(c)は、パーミュテーション情報によって再配列(reordering)されたコードワードの情報部分を示す図で、図27の(d)は、情報部分のビットが再配置されたHマトリックスを示した図である。
以下、各図面を説明する。
図27の(a)に示したテーブルの右側列はゼロ―パディング順次的順序を示し、左側列は、パーミュテーション情報を示す。
上述したように、本発明の一実施例に係る放送信号送信装置は、PLSデータをエンコードするとき、一定水準以上の誤り訂正能力を保証するために、定められたゼロ―パディング順次的順序に従って各ゼロ―パディングビットを情報部分に順次挿入することができる。
図27の(a)に示したゼロ―パディング順次的順序は、情報部分にゼロビットが挿入される位置を指示する。すなわち、挿入されるべきゼロビットが2個である場合、ゼロビットは、ゼロ―パディング順次的順序に従って情報部分の4番目及び7番目の位置に順次挿入され得る。また、挿入されるべきゼロビットが3個である場合、ゼロビットは、ゼロ―パディング順次的順序に従って情報部分の4番目、7番目及び6番目の位置に順次挿入され得る。
図27の(a)に示したπs(n)において、nは、再配置(又はパーミュテーション)された情報部分の各ビット(bits of information portion)の順序を示す。したがって、πs(0)は、再配置(又はパーミュテーション)された1番目の情報部分のビットを意味し、πs(1)は、再配置(又はパーミュテーション)された2番目の情報部分のビットを意味する。すなわち、πs(n)に対応するゼロ―パディングの順次的順序に従って再配置(又はパーミュテーション)される。したがって、情報部分が再配置(パーミュテーション)されるとき、ゼロ―パディングビットは情報部分の前部に先に順次配置され得る。すなわち、4番目及び7番目の位置に順次挿入されたゼロビットは、パーミュテーション情報によって情報部分の一番前の部分、すなわち、1番目及び2番目の位置に再配置され得る。
図27の(b)は、図27の(a)に示したゼロ―パディング順次的順序に従って各ゼロ―パディングビットが情報部分に順次挿入されたコードワードの構造を示した図である。上述したように、本発明の一実施例に係る情報部分は10ビットで、PLS―ポストデータは8ビットである。本発明の一実施例に係る放送信号送信装置は、ゼロ―パディング順次的順序を基盤にして再配置することができる。再配置情報は、パーミュテーションパターン情報と称することができる。
情報部分の各ビットは、LDPCエンコーディング前に再配置され得る。ゼロが挿入された各ビットは、各ビットインタリービンググループに順次分けることができる。図27の(b)に記載した数字は、各情報部分のビットの順序を示す。各情報部分のビットの順序は、後述するHマトリックスの列の順序と同一である。
図27の(c)は、本発明の一実施例に係る情報部分の各ビットがゼロ―パディング順次的順序を基盤にして再配置(又はパーミュテーション)された情報部分の構造を示した図である。
図27の(d)は、本発明の一実施例によって情報部分のビットが再配置されたHマトリックスを示した図である。Hマトリックスは、パリティチェックマトリックスと称することができる。
本発明の一実施例に係るゼロ―パディング順次的順序は、図27の(a)に示したように、3、6、5、9、1、8、7、4、0、2である。πs(n)において、nは、再配置(又はパーミュテーション)された情報部分の各ビットの順序を示す。したがって、πs(0)は、再配置(又はパーミュテーション)された1番目の情報部分のビットを意味し、πs(1)は、再配置(又はパーミュテーション)された2番目の情報部分のビットを意味する。本発明の一実施例に係る放送信号送信装置は、ゼロ―パディングの順次的順序を基盤にして情報部分のビットの再配置を行うことができる。すなわち、πs(0)=3であるので、再配置された1番目の情報部分のビットにはパーミュテーションが行われる前の情報部分の4番目のビット値が配置される。また、πs(1)=6であるので、再配置された2番目の情報部分のビットには、パーミュテーションが行われる前の情報部分の7番目のビット値が配置される。
図27の(b)に示したように、本発明の一実施例に係る放送信号送信装置は、PLSデータをエンコードするとき、一定水準以上の誤り訂正能力を保証するために、定められたゼロ―パディングの順次的順序に従って各ゼロ―パディングビットを順次挿入することができる。
これは、LDPCエンコーダに入力される情報部分の長さを一定に維持するためである。本発明の一実施例に係るPLS FECエンコーダ6000は、PLS FECエンコーダ6000に入力されるPLSデータの分離されたブロックのサイズが減少する場合、一定の情報部分の長さを維持するためにゼロ―パディングされる各ビットを順次挿入することができる。この場合、各ゼロ―パディングビットは、定められたゼロ―パディング順次的順序に従って情報部分に挿入され得る。
図27の(c)に示したように、本発明の一実施例に係る放送信号送信装置は、各ゼロ―パディングビットを情報部分の前部分に順次配置することができる。上述したように、ゼロ―パディング順次的順序は、ゼロ―パディングビットの挿入順序と情報部分のパーミュテーション順序を示すことができる。すなわち、πs(n)に対応するゼロ―パディング順次的順序に従って再配置(又はパーミュテーション)される。したがって、情報部分が再配置(パーミュテーション)されるとき、ゼロ―パディングビットは、情報部分の前部に先に順次配置され得る。
本発明の一実施例に係るPLS FECエンコーダ6000は、図26〜図27を参照して説明した各ゼロ―パディングビットの挿入及び情報部分の各ビットの再配置を行うことができる。本発明の一実施例に係るPLS FECエンコーダ6000は、定められた図27の(d)のゼロ―パディング順次的順序に従って情報部分の各ビットの再配置を行うことができる。したがって、ゼロ―パディングビットが情報部分の前部に配置され、続いて、PLS―ポスト―STATデータ及びPLS―ポスト―DYNデータが順次配置され得る。
したがって、本発明の一実施例に係る放送信号受信装置が上述したゼロ―パディング順次的順序に従って再配置された情報部分を含むLDPCコードをデコードする場合、放送信号受信装置は、ゼロ―パディング順次的順序情報を基盤にして既知ビット(known bits)と指定可能なすべてのビットの位置又は順序情報を獲得することができる。
図27の(c)のHマトリックスは、ゼロ―パディング順次的順序に従って再配置された情報部分の各ビットを含む。この場合、Hマトリックスの列順序と再配置された情報部分の各ビットの順序は同一である。Hマトリックスの列は、その後、放送信号送信装置がLDPCコードに対してインタリービングを行う単位であり得る。また、Hマトリックスの各行は一つのLDPCコードを意味し得る。
本発明が提示するゼロ―パディング順次的順序は一実施例に過ぎなく、これは、設計者の意図によって変更可能である。
本発明の一実施例に係るゼロ―パディング順次的順序に従って再配置されたPLS―ポストデータの効果は、次の通りである。ゼロ―パディング順次的順序は、放送信号受信装置がLDPCデコーディングを行うとき、既知ビットとして指定可能なすべてのビットの位置と順序を意味し得る。したがって、放送信号受信装置が一定の周期の間に受信された信号フレームのうちいずれか一つの信号フレームのPLS―ポストデータのデコーディング過程のみを成功的に行い、誤りが訂正された場合、その後に受信するPLS―ポスト―STATデータは、いずれもLDPCデコーダで既知ビットとして用いることができる。本発明の一実施例に係るPLSデータエンコーディングは、放送信号送信装置のLDPCコード誤り訂正性能を向上させることができる。
図28は、本発明の一実施例に係るエンコーディング動作に対応するデータ構造を示した図である。
本発明の一実施例に係るPLS FECエンコーダ6000は、PLSデータエンコーディングを行うことができる。本発明の一実施例に係るPLS FECエンコーダ6000は、PLSデータに挿入された各ゼロ―パディングビットを除去することによって、放送信号送/受信装置のエンコーディング/デコーディング遅延時間を減少させることができる。
図28の(a)は、分離されたブロックのサイズに分割されたPLSデータを示す。本発明では、該当PLSデータをKsigと称することができる。
図28の(b)は、BCHエンコーディング及びゼロ挿入(insertion)が行われた後のデータ構造を示す。すなわち、本発明の一実施例に係る放送信号送信装置は、上述したKsigをBCHエンコードし、ゼロ―パディングビットを追加することができる。
図28の(c)は、本発明の一実施例に係るLDPCエンコーディングが行われた後のデータ構造を示す。図28の(d)は、LDPCパリティビットがパンクチャされ、挿入された各ゼロビットが削除された後のデータ構造を示す。
PLS FECエンコーダ6000は、上述したエンコーディング動作を行うことができる。
以下、PLS FECエンコーダ6000の具体的な動作を説明する。
図28の(b)は、BCHエンコーディングブロックの動作を示す。具体的に、BCHエンコーディング/ゼロ挿入ブロックは、PLSプロテクションのための短縮されたBCHコードを用いてスクランブルされたPLSデータに対してアウターエンコーディングを行い、BCHエンコーディング後に各ゼロビットを挿入することができる。この場合、各ゼロビットは、BCHエンコードされたKsig(図面では、KsigとBCHパリティ領域を意味)の前に挿入され得る。Kldpcは、LDPCエンコーディングブロックの前に入力される各入力ビットのサイズを称することができる。Kldpcは、上述したLDPCコードワードの情報部分のサイズ(K)と同一であり得る。
本発明の一実施例に係るBCHエンコーディング/ゼロ挿入ブロックは、KldpcとKsig+BCHパリティとのサイズの差だけ各ゼロ―パディングビットを挿入することができる。
その後、本発明の一実施例に係る放送信号送信装置は、BCHエンコーディング/ゼロ挿入されたPLSデータを再配置(パーミュテーション)することができる。本発明の一実施例に係る放送信号送信装置は、BCHエンコーディング/ゼロ挿入されたPLSデータをあらかじめ決定された順序に従って再配置することができる。
あらかじめ決定された再配置(パーミュテーション)順序は、上述したゼロ―パディング順次的順序であり、パーミュテーション順序は設計者の意図によって変更可能である。
図28の(c)は、本発明の一実施例に係るLDPCエンコーディングブロックがBCHエンコーディング/ゼロ挿入されたPLSデータをLDPCエンコードして出力するデータ構造を示した図である。
BCHエンコーディング/ゼロ挿入されたPLSデータは、上述したゼロ―パディング順次的順序に従って再配置(パーミュテーション)された後のPLSデータを意味し得る。
LDPCエンコーディングブロックは、サイズがNldpcであるLDPCエンコードされたPLSデータの各ビットのセットを出力することができる。Nldpcは、Ksigのサイズ、各ゼロ―パディングビットのサイズ、各BCHパリティビットのサイズ、LDPCパリティビットのサイズを合わせたものと同一であり得る。
その後、本発明の一実施例に係るPLS FECエンコーダ6000は、図28の(d)に示したビット構造に相応するエンコードされたPLSデータ(図面では伝送ビット(Transmitted bits)を出力することができる。具体的に、LDPCパリティパンクチャリングブロックは、(c)PLSデータのエンコードされた各ビットにおいて各LDPCパリティビットのうち一部をパンクチャ(図面ではNpuncと表示)し、ゼロビットを除去して符号化PLSデータを出力することができる。出力されたエンコードされたPLSデータは信号フレームに含まれて伝送され得る。
本発明の一実施例に係る放送信号受信装置は、図28を参照して説明したPLS FECエンコーダ6000の動作の逆順に動作することができる。本発明の一実施例に係る放送信号受信装置は、信号フレームが含む各PLS伝送ビットをLDPCデコードした後、BCHデコードすることができる。本発明の一実施例に係る放送信号受信装置が、上述したPLSエンコーディング方式が行われた信号通知(signaling)データをBCHデコードする場合、放送信号受信装置は、ゼロ―パディングビットを除いた信号通知データに対してのみBCHデコーディングを行うことができる。各ゼロビットが削除されたエンコードされたPLSデータをBCHデコードするとき、本発明の一実施例に係る放送信号受信装置のBCHデコーディング遅延時間は減少し得る。
その一方、放送信号送信装置が、ゼロ―パディングビットがパリティビットと信号通知データとの間に位置するコードワードをBCHデコードする場合、ゼロ―パディングビットまでBCHデコードしなければならないので、BCHデコーディング遅延時間が増加する。
これは、放送信号受信装置のBCHデコーディング遅延時間が、PLSデータのサイズ(Ksig)、各BCHパリティビットのサイズ、及び各ゼロ―パディングビットのサイズの和に依存的に増加するためである。
図29は、本発明の一実施例に係る放送信号送信装置の構造を示した図である。
具体的に、図29は、PLS FECエンコーダ6000の詳細ブロック図とビットインタリービングブロック(図6のビットインタリーバ6010と同一である。)、星状図マッピングブロック(図6の星状図マッパ6020と同一である。)を示した図である。上述したように、PLS FECエンコーダ6000は、スクランブラ、BCHエンコーディング/ゼロ挿入ブロック、LDPCエンコーディングブロック及びLDPCパリティパンクチャリングブロック(図面では、パリティパンクチャリング挿入された各ゼロ除去(Parity Puncturing Removal Inserted―Zeros)で表示する。)。以下、明細書は、BICMブロックの各ブロックに対して説明することができる。各ブロックは、設計者の意図によって省略及び変更可能である。
スクランブラ、BCHエンコーディング/ゼロ挿入ブロック、LDPCエンコーディングブロック、ビットインタリービングブロック及び星状図マッピングブロック(constellation mapping block)の動作は、上述した同名の各ブロックの動作と同一である。
以下、本発明の一実施例に係るLDPCパリティパンクチャリングブロック(図面では、パリティパンクチャリング挿入された各ゼロ除去(Parity Puncturing Removal Inserted―Zeros)で表示する。)の具体的な動作を説明する。LDPCパリティパンクチャリングブロックは、パリティインタリービングブロック、パリティパーミュテーションブロック、パリティパンクチャリング及び挿入された各ゼロに対する除去ブロックを含むことができる。
パリティインタリービングブロックは、上述したLDPCエンコーディングブロックの出力であるLDPCコードのパリティビットをインタリーブすることができる。
具体的に、パリティインタリービングブロックは、LDPCコードの各ビットをインタリーブしてQCB(Quasi―cyclic block)の形態に出力することができる。
その後、パリティパーミュテーションブロックは、定められたパンクチャリング順序に従って各QCBを再配置(パーミュテーション)することができる。その後、パリティパンクチャリング&挿入された各ゼロ除去ブロック(Removal inserted―zeros block)は、各LDPCパリティビットを順次パンクチャすることができる。
上述したパリティパーミュテーションブロックは、設計者の意図によって省略可能である。パリティパーミュテーションブロックが省略された場合、パリティパンクチャリング及び挿入された各ゼロに対する除去ブロックは、各LDPCパリティビットを定められたパンクチャリング順序に従ってパンクチャすることができる。
本発明の一実施例に係る放送信号受信装置は、パリティインタリービングが適用されたエンコードされたPLSデータをQC(Quasi―cyclic)デコードすることができる。この場合、放送信号受信装置の複雑度を低下させることができる。
図30は、本発明の一実施例に係る放送信号送信方法を示したフローチャートである。
本発明の実施例に係る放送信号送信装置は、少なくとも一つ以上の放送サービスコンポーネントを伝送するデータ(又はサービスデータ)をエンコードすることができる(S30000)。本発明の一実施例に係るデータは、上述したように、各データに該当するDP別に処理することができる。データエンコーディングは、BICMブロック(Bit Interleaved Coding & Modulaton block)1010によって行うことができる。
本発明の一実施例に係る放送信号送信装置は、信号通知データ(物理的信号通知データ又はPLSと称することができる。)をエンコードすることができる。上述したように、本発明の一実施例に係る信号通知データは、PLS1データ及びPLS2データを含んで構成することができる。PLS2データは、PLS2静的データ及びPLS2動的データを含むことができる。PLS2データはPLS―ポストデータと称することができ、PLS2静的データはPLS―ポスト―STATデータと称し、PLS2動的データはPLS―ポスト―DYNデータと称することができる。
上述したように、フレームグループに含まれるそれぞれのフレームはPLSデータを含むことができる。
PLS2―STATの各パラメータは、フレームグループ内で同一の値を有することができる。その一方、PLS2―DYNの各パラメータは、一つのフレームグループの期間の間に変更可能である。但し、各フィールドのサイズは固定可能である。
本発明の一実施例に係る放送信号受信装置は、PLS―ポストペイロードを一定のサイズ(N)を有するコードワードでエンコードするために、PLS―ポストペイロードをM個のブロックに分割することができる。その後、本発明の一実施例に係る放送信号送信装置は、各ブロックに対してBCHエンコーディングを行い、BCHエンコードされた各ブロックにゼロパディングを行い、ゼロパディングが行われたブロックの後に各パリティビットを付けてLDPCエンコーディングを行い、各パリティビットに対してパンクチャリングを行ってFECブロックを出力することができる。
具体的に、本発明の一実施例に係る放送信号送信装置は、ゼロパディング時に、定められたゼロ―パディングの順次的順序に従って各ゼロ―パディングビットを各ブロックに順次挿入することができる。その後、本発明の一実施例に係る放送信号送信装置は、ゼロ―パディングの順次的順序を基盤にしてゼロパッドされたブロック(zero padded block)を再配置(パーミュテーション)することができる。その後、本発明の一実施例に係る放送信号送信装置は、パーミュートされたブロックの後に各パリティビットを付けてLDPCエンコーディングを行い、各パリティビットをインタリーブすることができる。その後、本発明の一実施例に係る放送信号送信装置は、挿入されたゼロパディングビットを削除することができる。
上述したPLSデータエンコーディングは、本発明の一実施例に係る放送信号送信装置のPLS FECエンコーダ6000によって行うことができる。
その後、本発明の実施例に係る放送信号送信装置は、少なくとも一つの信号フレームを生成することができる(S30010)。本発明の実施例に係る信号フレームは、PLSデータ及びサービスデータを含むことができる。信号フレーム生成は、フレームビルディングブロック(Frame Building block)1020によって行うことができる。
その後、本発明の一実施例に係る放送信号送信装置は、生成された少なくとも一つ以上の信号フレームをOFDM方式で変調することができる(S30020)。信号フレームのOFDM変調は、波形生成モジュール(waveform generation module)1300によって行うことができる。
その後、本発明の一実施例に係る放送信号送信装置は、生成された少なくとも一つ以上の変調された信号フレームを含む少なくとも一つ以上の放送信号を伝送することができる(S30030)。
図31は、本発明の一実施例に係る放送信号受信方法を示したフローチャートである。
図31は、図30を参照して説明した放送信号送信方法の逆過程に該当する。
本発明の一実施例に係る放送信号受信装置は、少なくとも一つ以上の放送信号を受信することができる(S31000)。本発明の一実施例に係る放送信号は、少なくとも一つの信号フレームを含み、各信号フレームはPLSデータ及びサービスデータを含むことができる。
本発明の一実施例に係る放送信号受信装置は、受信された少なくとも一つ以上の放送信号をOFDM方式で復調することができる(S31010)。放送信号の復調は、同期及び復調モジュール(Synchronization & Demodulation module)9000によって行うことができる。
その後、本発明の一実施例に係る放送信号受信装置は、図28を参照して説明したPLS FECエンコーダ6000の動作の逆順に動作することができる。具体的に、本発明の一実施例に係る放送信号受信装置は、信号フレームが含む各PLS伝送ビットをLDPCデコードした後、BCHデコードすることができる。本発明の一実施例に係る放送信号受信装置が上述したPLSエンコーディング方式が行われた信号通知データをBCHデコードする場合、放送信号受信装置は、ゼロ―パディングビットを除いた信号通知データに対してのみBCHデコーディングを行うことができる。
PLSデコーディングは、信号通知デコーディングモジュール(Signaling Decoding module)9040によって行うことができる。
その後、本発明の一実施例に係る放送信号受信装置は、少なくとも一つの信号フレームを復調された放送信号から分離することができる(S31020)。信号フレームの分離は、フレームパーシングモジュール(Frame Parsing module)9010によって行うことができる。
その後、本発明の一実施例に係る放送信号受信装置は、少なくとも一つ以上の放送サービスコンポーネントを伝送するサービスデータをデコードすることができる(S31030)。データのデコーディングは、デマッピング及び復号モジュール(Demapping & Decoding module)9020によって行うことができる。
多様な実施例が本発明を行う最上のモードで記載された。
本発明は、放送信号提供フィールドで有用である。
本発明の思想又は範囲から逸脱することなく、本発明の多様な変形と変更が可能であることは当業者にとって自明である。よって、本発明は、添付の特許請求の範囲及びその同等物の範囲内で提供される本発明のすべての変形と変更をカバーするものと意図される。

Claims (6)

  1. 放送信号を送信する方法であって、
    物理階層パイプ(Physical Layer Pipe、PLP)に対応するサービスデータをエンコードする段階;
    信号通知データの第1のエンコーディングを行う段階;
    第1のエンコーディングが行われた信号通知データに対して各ゼロビットをパッドする段階;
    各パリティビットを付加し、前記ゼロパッドされた信号通知データの第2のエンコーディングを行う段階―前記パッドされた各ゼロビットのサイズは、第1のエンコーディングが行われた信号通知データの各情報ビットと各パリティビットのサイズ及び第2のエンコーディングの各情報ビットのサイズに基づいて算出される。―;
    前記第2のエンコーディングが行われた信号通知データの各パリティビットをパリティインタリーブする段階−前記パリティインタリーブされた信号通知データは、QC(Quasi−cyclic)構造を有する。−;
    前記パリティインタリーブされた信号通知データをパリティ再配置する段階;
    前記パリティ再配置された信号通知データにパリティパンクチャリングを行う段階;
    前記エンコードされたサービスデータ及び前記パリティパンクチャリングが行われた信号通知データを含む少なくとも一つの信号フレームをビルドする段階;
    前記ビルドされた少なくとも一つの信号フレームのデータをOFDM(orthogonal frequency division multiplexing)方法によって変調する段階;及び
    前記少なくとも一つの信号フレームの変調されたデータを有する放送信号を送信する段階;を含む放送信号送信方法。
  2. 前記パリティパンクチャリングが行われた信号通知データを各星状図シンボルにマップする段階;をさらに含む、請求項1に記載の放送信号送信方法。
  3. 再配置順序はコードレートと関連し、前記信号通知データに対する前記第2のエンコーディングは、前記挿入された各ゼロビットを除去する段階をさらに含む、請求項2に記載の放送信号送信方法。
  4. 放送信号を送信する装置であって、
    物理階層パイプ(Physical Layer Pipe、PLP)に対応するサービスデータをエンコードするデータエンコーダ;
    信号通知データの第1のエンコーディングを行う第1のエンコーダ;
    第1のエンコーディングが行われた信号通知データに対して各ゼロビットをパッドするインサータ;
    各パリティビットを付加し、前記ゼロパッドされた信号通知データの第2のエンコーディングを行う第2のエンコーダ―前記パッドされた各ゼロビットのサイズは、第1のエンコーディングが行われた信号通知データの各情報ビットと各パリティビットのサイズ及び第2のエンコーディングの各情報ビットのサイズに基づいて算出される。―;
    前記第2のエンコーディングが行われた信号通知データの各パリティビットをパリティインタリーブするパリティインタリーバ−前記パリティインタリーブされた信号通知データは、QC(Quasi−cyclic)構造を有する。−;
    前記パリティインタリーブされた信号通知データをパリティ再配置するパリティパーミュテータ;
    前記パリティ再配置された信号通知データにパリティパンクチャリングを行うパリティパンクチャ;
    前記エンコードされたサービスデータ及び前記パリティパンクチャリングが行われた信号通知データを含む少なくとも一つの信号フレームをビルドするフレームビルダ;
    前記ビルドされた少なくとも一つの信号フレームのデータをOFDM(orthogonal frequency division multiplexing)方法によって復調するモジュレータ;及び
    前記少なくとも一つの信号フレームの変調されたデータを有する放送信号を送信するトランスミッタ;を含む放送信号送信装置。
  5. 前記第2のエンコーダは、
    前記パリティパンクチャリングが行われた信号通知データを各星状図シンボルにマップする動作をさらに行う、請求項に記載の放送信号送信装置。
  6. 再配置順序はコードレートと関連し、前記信号通知データに対する前記第2のエンコーディングは、前記挿入された各ゼロビットを除去する動作をさらに含む、請求項に記載の放送信号送信装置。
JP2016544297A 2013-09-25 2014-09-24 放送信号送信装置、放送信号受信装置、放送信号送信方法及び放送信号受信方法 Active JP6261748B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201361882603P 2013-09-25 2013-09-25
US61/882,603 2013-09-25
US201361884120P 2013-09-29 2013-09-29
US61/884,120 2013-09-29
US201361896628P 2013-10-28 2013-10-28
US61/896,628 2013-10-28
PCT/KR2014/008910 WO2015046885A1 (en) 2013-09-25 2014-09-24 Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals

Publications (2)

Publication Number Publication Date
JP2016536938A JP2016536938A (ja) 2016-11-24
JP6261748B2 true JP6261748B2 (ja) 2018-01-17

Family

ID=52690926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016544297A Active JP6261748B2 (ja) 2013-09-25 2014-09-24 放送信号送信装置、放送信号受信装置、放送信号送信方法及び放送信号受信方法

Country Status (7)

Country Link
US (3) US9294325B2 (ja)
EP (1) EP3050305A4 (ja)
JP (1) JP6261748B2 (ja)
KR (1) KR101801588B1 (ja)
CN (1) CN105684451B (ja)
CA (1) CA2924985C (ja)
WO (1) WO2015046885A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3050305A4 (en) 2013-09-25 2017-05-10 LG Electronics Inc. Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
WO2015058005A2 (en) * 2013-10-16 2015-04-23 Interdigital Patent Holdings, Inc. METHOD AND SYSTEM FOR MILLIMETER WAVE HOTSPOT (mmH) BACKHAUL AND PHYSICAL (PHY) LAYER TRANSMISSIONS
CN106105237A (zh) 2014-03-10 2016-11-09 Lg电子株式会社 发送广播信号的设备、接收广播信号的设备、发送广播信号的方法以及接收广播信号的方法
US9780808B2 (en) 2014-05-21 2017-10-03 Samsung Electronics Co., Ltd. Transmitter apparatus and bit interleaving method thereof
KR101785692B1 (ko) * 2014-05-21 2017-10-16 삼성전자주식회사 송신 장치 및 그의 인터리빙 방법
EP3242484A4 (en) 2014-12-31 2018-08-01 LG Electronics Inc. Apparatus for transmitting broadcasting signal, apparatus for receiving broadcasting signal, method for transmitting broadcasting signal, and method for receiving broadcasting signal
WO2016140513A1 (en) * 2015-03-02 2016-09-09 Samsung Electronics Co., Ltd. Transmitter and parity permutation method thereof
KR102052379B1 (ko) 2015-04-06 2019-12-05 엘지전자 주식회사 방송 신호 송수신 장치 및 방법
US9748975B2 (en) * 2015-05-19 2017-08-29 Samsung Electronics Co., Ltd. Transmitting apparatus and interleaving method thereof
US10340953B2 (en) 2015-05-19 2019-07-02 Samsung Electronics Co., Ltd. Method and apparatus for encoding and decoding low density parity check codes
CN110380822B (zh) * 2015-06-17 2022-03-18 松下电器(美国)知识产权公司 发送方法、接收方法、发送装置及接收装置
WO2016203723A1 (ja) * 2015-06-17 2016-12-22 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法、受信方法、送信装置、及び受信装置
DE102015115754A1 (de) * 2015-09-18 2017-03-23 Intel IP Corporation Funkempfänger und Verfahren zum Verarbeiten eines Uplink-Transportblocks
CN108476189B (zh) * 2016-01-14 2020-12-25 松下知识产权经营株式会社 用于下行链路多用户发送的填充和分组扩展的发送装置和发送方法
WO2017126733A1 (ko) * 2016-01-19 2017-07-27 연세대학교 산학협력단 고신뢰도 및 저지연 통신에 적합한 ldpc 부호화를 위한 장치 및 방법
KR102529153B1 (ko) 2016-07-08 2023-05-08 소니그룹주식회사 수신 장치, 송신 장치 및 데이터 처리 방법
CN106487738B (zh) * 2016-09-27 2019-09-27 哈尔滨工程大学 一种基于正交导频序列的水声ofdm通信系统选择性映射峰均比抑制算法
KR102403066B1 (ko) * 2017-08-22 2022-05-27 삼성전자주식회사 제로 비트 패딩을 이용한 채널 부호화/복호화 방법 및 장치
CN109474836B (zh) * 2017-09-07 2020-10-09 北京泰美世纪科技有限公司 数字多媒体信号的发送、接收方法及装置
KR101967299B1 (ko) * 2017-12-19 2019-04-09 엘지전자 주식회사 방송 신호를 수신하는 차량용 수신 장치 및 방송 신호를 수신하는 차량용 수신 방법

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007096658A (ja) * 2005-09-28 2007-04-12 Matsushita Electric Ind Co Ltd 無線送信装置および無線受信装置
US20070082633A1 (en) * 2005-10-06 2007-04-12 Staccato Communications, Inc. Avoidance of wireless devices
JP4854496B2 (ja) * 2006-12-19 2012-01-18 日本放送協会 デジタルデータの送信装置
EP2195985A4 (en) * 2007-09-18 2011-06-08 Lg Electronics Inc METHOD AND SYSTEM FOR SENDING AND RECEIVING SIGNALS
ES2379625T3 (es) * 2007-09-28 2012-04-30 Lg Electronics Inc. Aparato y método para transmitir y recibir una señal
KR100937430B1 (ko) * 2008-01-25 2010-01-18 엘지전자 주식회사 신호 송수신 방법 및 신호 송수신 장치
KR20090094738A (ko) * 2008-03-03 2009-09-08 삼성전자주식회사 무선 디지털 방송 시스템에서 시그널링 정보를 부호화하는 장치 및 방법
US8724636B2 (en) 2008-03-31 2014-05-13 Qualcomm Incorporated Methods of reliably sending control signal
US8498312B2 (en) 2008-10-02 2013-07-30 Nokia Corporation Transmission of physical layer signaling in a broadcast system
KR101500339B1 (ko) * 2008-12-23 2015-03-09 삼성전자주식회사 디지털방송 시스템의 패킷 통신 장치 및 방법
KR101691841B1 (ko) 2009-02-12 2017-01-02 엘지전자 주식회사 신호 송신 장치 및 방법
US8503551B2 (en) * 2009-02-13 2013-08-06 Lg Electronics Inc. Apparatus for transmitting and receiving a signal and method of transmitting and receiving a signal
KR101587281B1 (ko) * 2009-03-12 2016-01-20 삼성전자주식회사 통신 시스템에서 제어 정보를 부호화하는 방법과 그 제어 정보를 송수신하는 방법 및 장치
US8320823B2 (en) 2009-05-04 2012-11-27 Siport, Inc. Digital radio broadcast transmission using a table of contents
TWI427936B (zh) * 2009-05-29 2014-02-21 Sony Corp 接收設備,接收方法,程式,及接收系統
WO2011062424A2 (en) * 2009-11-18 2011-05-26 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in a communication system
KR20110055410A (ko) * 2009-11-18 2011-05-25 삼성전자주식회사 통신 시스템에서 데이터 송수신 방법 및 장치
WO2012070837A2 (ko) 2010-11-23 2012-05-31 엘지전자 주식회사 방송 신호 송/수신기 및 방송 신호 송/수신 방법
WO2012099398A2 (en) * 2011-01-18 2012-07-26 Samsung Electronics Co., Ltd. Apparatus and method for transmittng and receiving data in communication/broadcasting system
JP2014506020A (ja) * 2011-02-22 2014-03-06 日本電気株式会社 無線送信装置、無線送信方法および無線送信プログラム
US9100052B2 (en) * 2013-02-01 2015-08-04 Samsung Electronics Co., Ltd. QC-LDPC convolutional codes enabling low power trellis-based decoders
EP3050305A4 (en) * 2013-09-25 2017-05-10 LG Electronics Inc. Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
WO2015076511A1 (en) * 2013-11-25 2015-05-28 Lg Electronics Inc. Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
CN106105237A (zh) 2014-03-10 2016-11-09 Lg电子株式会社 发送广播信号的设备、接收广播信号的设备、发送广播信号的方法以及接收广播信号的方法

Also Published As

Publication number Publication date
EP3050305A1 (en) 2016-08-03
JP2016536938A (ja) 2016-11-24
KR101801588B1 (ko) 2017-11-27
EP3050305A4 (en) 2017-05-10
US20150085951A1 (en) 2015-03-26
KR20160040703A (ko) 2016-04-14
US9294325B2 (en) 2016-03-22
CN105684451A (zh) 2016-06-15
CN105684451B (zh) 2019-01-08
WO2015046885A1 (en) 2015-04-02
CA2924985C (en) 2017-09-19
US20170279649A1 (en) 2017-09-28
CA2924985A1 (en) 2015-04-02
US9712364B2 (en) 2017-07-18
US10103919B2 (en) 2018-10-16
US20160156495A1 (en) 2016-06-02

Similar Documents

Publication Publication Date Title
JP6261748B2 (ja) 放送信号送信装置、放送信号受信装置、放送信号送信方法及び放送信号受信方法
JP6453462B2 (ja) 放送信号送信装置、放送信号受信装置、放送信号送信方法、及び放送信号受信方法
JP7083772B2 (ja) 放送信号送信装置、放送信号受信装置、放送信号送信方法及び放送信号受信方法
JP6204607B2 (ja) 放送信号送信装置、放送信号受信装置、放送信号送信方法及び放送信号受信方法
JP6567548B2 (ja) 放送信号送信装置、放送信号受信装置、放送信号送信方法及び放送信号受信方法
JP6542372B2 (ja) 放送信号送信装置、放送信号受信装置、放送信号送信方法及び放送信号受信方法
JP6267358B2 (ja) 放送信号送信装置、放送信号受信装置、放送信号送信方法及び放送信号受信方法
JP6339216B2 (ja) 放送信号送信装置、放送信号受信装置、放送信号送信方法及び放送信号受信方法
JP2016541186A (ja) 放送信号送信装置、放送信号受信装置、放送信号送信方法及び放送信号受信方法
JP6317522B2 (ja) 放送信号送信装置、放送信号受信装置、放送信号を送受信する方法
JP6640982B2 (ja) 放送信号送信装置、放送信号受信装置、放送信号送信方法、及び放送信号受信方法
KR101899826B1 (ko) 방송 신호 송신 장치, 방송 신호 수신 장치, 방송 신호 송신 방법, 및 방송 신호 수신 방법
JP6453460B2 (ja) 放送信号受信装置及び放送信号受信方法
JP2016540466A (ja) 放送信号送信装置、放送信号受信装置、放送信号送信方法及び放送信号受信方法
JP2017521906A (ja) 放送信号送信装置、放送信号受信装置、放送信号送信方法及び放送信号受信方法
KR20170108056A (ko) 방송 신호 송수신 장치 및 방법
JP2017511013A (ja) ロバストヘッダー圧縮パケットストリームを含む放送信号を送受信する方法及び装置
JP2016533082A (ja) 放送信号送信装置、放送信号受信装置、放送信号送信方法及び放送信号受信方法
JP6487054B2 (ja) 放送信号送信装置、放送信号受信装置、放送信号送信方法、及び放送信号受信方法
JP6510730B2 (ja) 放送信号送信装置、放送信号受信装置、放送信号送信方法、及び放送信号受信方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171212

R150 Certificate of patent or registration of utility model

Ref document number: 6261748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250