JP6259396B2 - 電極箔及び有機発光デバイス - Google Patents

電極箔及び有機発光デバイス Download PDF

Info

Publication number
JP6259396B2
JP6259396B2 JP2014526807A JP2014526807A JP6259396B2 JP 6259396 B2 JP6259396 B2 JP 6259396B2 JP 2014526807 A JP2014526807 A JP 2014526807A JP 2014526807 A JP2014526807 A JP 2014526807A JP 6259396 B2 JP6259396 B2 JP 6259396B2
Authority
JP
Japan
Prior art keywords
electrode foil
electrode
foil
organic
organic light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014526807A
Other languages
English (en)
Other versions
JPWO2014017183A1 (ja
Inventor
宜範 松浦
宜範 松浦
利美 中村
利美 中村
政治 苗井
政治 苗井
望 北島
望 北島
矢口 充雄
充雄 矢口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JPWO2014017183A1 publication Critical patent/JPWO2014017183A1/ja
Application granted granted Critical
Publication of JP6259396B2 publication Critical patent/JP6259396B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/114Poly-phenylenevinylene; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Description

関連出願の相互参照
この出願は、2012年7月24日に出願された日本国特許出願2012−164025号に基づく優先権を主張するものであり、その全体の開示内容が参照により本明細書に組み込まれる。
本発明は、金属箔を用いた電極箔及びそれを用いた有機発光デバイスに関するものである。
近年、有機EL照明等の有機発光デバイスが、環境に配慮したグリーンデバイスとして注目されている。有機EL照明の特徴としては、1)白熱灯に対して低消費電力であること、2)薄型かつ軽量であること、3)フレキシブルであることが挙げられる。現在、有機EL照明は、上記2)及び3)の特徴を実現すべく開発が進められている。この点、フラットパネルディスプレイ(FPD)等で従来使用されてきたガラス基板では、上記2)及び3)の特徴を実現することは不可能である。
そこで、有機EL照明のための支持体としての基板(以下、支持基材という)に対する研究が進められており、その候補として、極薄ガラス、樹脂フィルム、金属箔等が提案されている。極薄ガラスは、耐熱性、バリア性、及び光透過性に優れ、フレキシブル性も良好であるが、ハンドリング性がやや劣り、熱伝導性が低く、材料コストも高い。また、樹脂フィルムは、ハンドリング性及びフレキシブル性に優れ、材料コストも低く、光透過性も良好であるが、耐熱性及びバリア性に乏しく、熱伝導性が低い。
これに対し、金属箔は、光透過性が無いことを除けば、耐熱性、バリア性、ハンドリング性、熱伝導性に優れ、フレキシブル性も良好であり、材料コストも低いといった優れた特徴を有する。特に、熱伝導性については、典型的なフレキシブルガラスやフィルムが1W/m℃以下と極めて低いのに対し、銅箔の場合、400W/m℃程度と極めて高い。
ところで、金属箔を電子材料として使用する場合、表面の酸化や水酸化を防止するため、有機窒素化合物を塗布して防錆する技術が知られている(例えば特許文献1(特開平8−158074号公報)参照)。
一方、金属基板を用いた発光素子を実現するために、特許文献2(特開2009−152113号公報)では金属基板の表面を研磨処理やメッキ処理により平滑化して、その上に有機層を形成することが提案されている。また、特許文献3(特開2008−243772号公報)では金属基板上にニッケルめっき層を設けることで研磨等をすることなく平滑面を形成し、その上に有機EL素子を形成することが提案されている。これらの技術においては、電極間の短絡防止のため、金属基板表面の平滑化が重要な課題となっている。この課題に対処した技術として、特許文献4(国際出願第2011/152091号)及び特許文献5(国際出願第2011/152092号)では、算術平均粗さRaが10.0nm以下と極めて低い超平坦面を備えた金属箔を支持基材兼電極として用いることが提案されている。このように有機半導体層をその金属電極箔上に直接形成する技術が確立されつつあり、金属箔上に直接有機半導体層を形成し発光させることが出来るようになってきたが、ガラス基板上に形成した電極と比較して80%程度の外部量子効率しか得られず、更なる発光効率の改善が求められている。
特開平8−158074号公報 特開2009−152113号公報 特開2008−243772号公報 国際出願第2011/152091号 国際出願第2011/152092号
本発明者らは、今般、金属箔と反射層の界面に有機窒素化合物が存在した電極箔において、有機窒素化合物の存在量を特定の範囲に制限することで、有機発光デバイスとした際における外部量子効率を有意に高められ、それにより発光効率を向上できるとの知見を得た。
したがって、本発明の目的は、金属箔と反射層の界面に有機窒素化合物が存在しながらも、外部量子効率の高い有機発光デバイスを構成可能な電極箔を提供することにある。
本発明の一態様によれば、銅又は銅合金からなる金属箔と、前記金属箔の少なくとも一方の面に設けられる反射層とを備えてなる電極箔であって、
前記金属箔と前記反射層の間の界面に有機窒素化合物が存在し、該界面を飛行時間型二次イオン質量分析(TOF−SIMS)により分析した場合に、前記有機窒素化合物中のC−N結合のカウント数の、銅及びC−N結合の総カウント数に対する比CN/(CN+Cu)が0.4以下である、電極箔が提供される。
本発明の他の一態様によれば、上記電極箔と、
前記電極箔の前記反射層側の最表面上に設けられる有機発光層と、
を備えた、有機発光デバイスが提供される。
本発明による電極箔の一例を示す模式断面図である。 飛行時間型二次イオン質量分析(TOF−SIMS)におけるポジティブイオン分析結果の一例を示す図である。 飛行時間型二次イオン質量分析(TOF−SIMS)におけるネガティブイオン分析結果の一例を示す図である。 本発明による電極箔をアノードとして用いた有機EL素子の一例を示す模式断面図である。 例3で得られた、界面BTA濃度(CN/(CN+Cu)比)と洗浄液への浸漬時間との関係を示す図である。 例4で作製ないし評価された各種試料の電極表面粗さRaと外部量子効率との関係を示す図である。
電極箔
図1に本発明による電極箔の一例の模式断面図を示す。図1に示される電極箔10は、銅又は銅合金からなる金属箔12と、金属箔の少なくとも一方の面に設けられる反射層13、及び所望により反射層上に直接設けられるバッファ層14を備えてなる。すなわち、電極箔10は金属箔12、反射層13およびバッファ層14を備えた3層構成であるが、本発明の電極箔はこれに限定されず、金属箔12および反射層13の2層構成であってもよい。本発明の典型的な態様においては、反射層13は金属箔12の少なくとも一方の面に直接設けられるが、電極箔10としての所期の機能を損ねないかぎり金属箔12と反射層13の間に他の層が存在していてもよい。例えば、金属箔上に一層又はそれ以上の金属層が形成され、この金属層上に反射層13が存在していてもよい。
金属箔12と反射層13の間の界面には有機窒素化合物が存在している。典型的には、有機窒素化合物は防錆剤として金属箔に用いられるものであるが、これに限定されない。そのような有機窒素化合物(典型的には防錆剤)は、表面の酸化や水酸化を防止するために、特に電子材料用の金属箔に従来から塗布されてきたものである。本発明における有機窒素化合物は、好ましくはトリアゾール又はその誘導体若しくは異性体であり、より好ましくはベンゾトリアゾール(BTA)、ベンゾトリアゾール誘導体、アミノトリアゾール、アミノリアゾール異性体、及びアミノトリアゾール誘導体からなる群から選択される少なくとも一種である。ベンゾトリアゾール誘導体の好ましい例としては、耐熱性成分のカルボキシベンゾトリアゾール、トリルトリアゾール(TTA)及びカルボキシベンゾトリアゾール(C−BTA)、トリルトリアゾールのナトリウム塩及び各種アミン塩、例えばモノエタノールアミン、シクロヘキシルアミン、ジイソプロピルアミン塩、モルホリン塩等を含むものが挙げられる。アミノトリアゾール異性体の好ましい例としては、3−アミノ−1,2,4−トリアゾール、2−アミノ−1,3,4−トリアゾール、4−アミノ−1,2,4−トリアゾール、1−アミン−1,3,4−トリアゾールが挙げられる。アミノトリアゾール誘導体の好ましい例としては、アミノトリアゾールのナトリウム塩、各種アミン塩、例えば、モノエタノールアミン塩、シクロヘキシルアミン塩、ジイソプロピルアミン塩、モルホリン塩等が挙げられる。なお、金属箔12と反射層13の間の界面は、金属箔12と反射層13の間に他の層が存在する場合には、金属箔12と他の層との界面を意味するものとする。
この点、本発明の電極箔10においては、金属箔12と反射層13の間の界面を飛行時間型二次イオン質量分析(TOF−SIMS)により分析した場合に、有機窒素化合物中のC−N結合のカウント数の、銅及びC−N結合の総カウント数に対する比CN/(CN+Cu)が0.4以下であり、好ましくは0.3以下であり、より好ましくは0.2以下であり、更に好ましくは0.1以下であり、最も好ましくは0.05以下であるようにする。このCN/(CN+Cu)比は有機窒素化合物の残留量を評価するための客観的な指標である。すなわち、界面を分析するに際しては飛行時間型二次イオン質量分析(TOF−SIMS)により、反射層側から金属箔の深さ方向にスパッタリングを行いながら界面を正確に露出させつつ二次イオン質量分析を行うことが望まれるところ、有機窒素化合物中に存在するC−N結合は強固なためこの分析においても分解されることなく直接検出が可能なため、界面における有機窒素化合物濃度を知る上での客観的な指標となる。電極箔が有機発光デバイスに組み込まれた状態であっても、電極箔上の有機層をアセトンやイソプロピルアルコール(IPA)等の有機溶剤により除去した後、TOF−SIMS装置内において深さ方向にスパッタリングを行いながら測定を行うことができる。
TOF−SIMSにおいて、図2に示されるようなポジティブイオン分析において界面と判断される箇所におけるCuのカウント数(図2では約200カウント)と、図3に示されるようなネガティブイオン分析において界面と解される箇所におけるC−N結合のカウント数(図3では約20カウント)とを用いて、CN/(CN+Cu)比を算出することができる(図2及び3では20/(200+20)=0.09)。すなわち、C−N結合のカウント数が相対的に少なければ、有機窒素化合物の残留濃度が少ないことを意味する。そして、予想外なことに、有機窒素化合物の残留濃度が所定濃度を下回ると、有機発光デバイスとした際における外部量子効率を有意に高められ、それにより発光効率が向上する。具体的には、ガラス基板上に形成した電極と同等か又はそれ以上の外部量子効率が実現可能となる。CN/(CN+Cu)比の下限値は、特に限定されるものではないが、有機窒素化合物による効果(典型的には防錆効果)が残存する0.001以上が望ましい。有機窒素化合物が全く存在しない場合、金属箔表面で酸化物や水酸化物を形成して反射層との密着性を悪化させるばかりか、かかる酸化物や水酸化物が抵抗層となり電極としての機能を阻害するおそれがある。
本発明にあっては、金属箔12を支持基材のみならず電極として用いることで、支持基材、電極及び反射層の機能を兼ね備えた電極箔を提供することができる。その上、金属板ではなく、典型的には1〜250μmの金属箔12を用いたことで、フレキシブル電子デバイス用の支持基材を兼ねた電極として用いることができる。このようなフレキシブル電子デバイスの製造に関して、本発明の電極箔12は、金属箔をベースとしているため、支持基材を特に必要とすることなく、例えばロール・トゥ・ロール(roll-to-roll)プロセスによって効率的に製造することができる。ロール・トゥ・ロール・プロセスは、ロール状に巻いた長尺状の箔を引き出して所定のプロセスを施したのち再び巻き取るという電子デバイスを効率的に量産する上で極めて有利なプロセスであり、本願発明の用途である発光素子及び光電素子等の電子デバイスの量産化を実現する上で鍵になるプロセスである。このように、本発明の電極箔は、支持基材及び反射層を不要にすることができる。このため、本発明の電極箔は、少なくとも電子デバイスが構築される部分に絶縁層を有しないのが好ましく、より好ましくはいかなる部位にも絶縁層を有しない。
金属箔12は、銅又は銅合金からなる箔である。銅箔又は銅合金箔は比較的安価でありながら、強度、フレキシブル性、電気的特性等に優れる。また、銅は非磁性金属であるため、加工時に発生する粒子状物の帯磁による付着を防止できる。
電極箔10の反射層側の最表面は、60.0nm以下の算術平均粗さRaを有する超平坦面であるのが好ましく、より好ましくは30.0nm以下、さらに好ましくは20.0nm以下、特に好ましくは10.0nm以下、より特に好ましくは7.0nm以下であり、電極箔に求められる用途や性能等に応じて粗さを適宜決定すればよい。算術平均粗さRaの下限は特に限定されずゼロであってもよいが、平坦化処理の効率を考慮すると0.5nmが下限値の目安として挙げられる。この算術平均粗さRaは、JIS B 0601−2001に準拠して市販の粗さ測定装置を用いて測定することができる。
前述のとおり、電極箔10の反射層側の最表面とは、最も外側に位置する反射層13又はバッファ層14の表面を意味する。もっとも、このような複数層構成の場合における上記算術平均粗さRaの実現は、反射層13及び場合によりバッファ層14が形成されることになる金属箔12の表面12aの算術平均粗さRaを上記同様の範囲、すなわち60.0nm以下、好ましくは30.0nm以下、より好ましくは20.0nm以下、さらに好ましくは10.0nm以下、特に好ましくは7.0nm以下、最も好ましくは5.0nm以下にしておき、その上に反射層13及び場合によりバッファ層14を成膜することにより行うことができる。このように、最表面において付与されるべき算術平均粗さRaよりも同等もしくは若干小さめの算術平均粗さRaをそれよりも下の層ないし箔の表面に付与しておくのが好ましい。なお、積層状態のため最表面を構成しない金属箔表面の算術平均粗さRaの評価は、金属箔表面からFIB(Focused Ion Beam)加工にて断面を作製し、その断面を透過型電子顕微鏡(TEM)にて観察することにより行うことができ、積層状態のため最表面を構成しない反射層表面の算術平均粗さRaの評価も同様にして行うことができる。
金属箔12の超平坦面12aは、電解研磨法、バフ研磨法、薬液研磨法、物理化学研磨法、及びこれらの組み合わせ等を用いて金属箔12を研磨することによっても実現することができる。薬液研磨法は、薬液、薬液温度、薬液浸漬時間等を適宜調整して行えばよく特に限定されないが、例えば、銅箔の薬液研磨は、2−アミノエタノールと塩化アンモニウムとの混合物を使用することにより行うことができる。薬液温度は室温が好ましく、浸漬法(Dip法)を用いるのが好ましい。また、薬液浸漬時間は、長くなると平坦性が悪化する傾向があるため、10〜120秒間が好ましく、30〜90秒間がより好ましい。薬液研磨後の金属箔は流水により洗浄されるのが好ましい。このような平坦化処理によれば、算術平均粗さRaが12nm程度の表面を10.0nm以下、例えば3.0nm程度のRaにまで平坦化することができる。
超平坦面12aは、金属箔12の表面をブラストにより研磨する方法や、金属箔12の表面をレーザー、抵抗加熱、ランプ加熱等の手法により溶融させた後に急冷させる方法等によっても実現することもできる。
金属箔12の厚さは、フレキシブル性を損なうことなく、箔として単独でハンドリングが可能な厚さである限り特に限定されないが、典型的には1〜250μmであり、好ましくは5〜200μm、より好ましくは10〜150μm、さらに好ましくは15〜100μmであるが、電極箔に求められる用途や性能等に応じて厚さを適宜決定すればよい。したがって、金属の使用量の低減や軽量化がより望まれる場合には厚さの上限は50μm、35μm又は25μmとするのが特に好ましい一方、強度がより望まれる場合には厚さの下限を25μm、35μm又は50μmとするのが特に好ましい。このような厚さであれば、市販の裁断機を用いて簡単に切断することが可能である。また、金属箔12は、ガラス基板と異なり、割れ、欠け等の問題が無く、また、切断時のパーティクルが発生しづらい等の利点も有する。金属箔12は、四角形以外の形状、例えば、円形、三角形、多角形といった様々な形状とすることができ、しかも切断及び溶接も可能なことから、切り貼りによりキュービック状やボール状といった立体的な形状の電子デバイスを作製することも可能である。この場合、金属箔12の切断部や溶接部には、半導体機能層を形成しないことが好ましい。
超平坦面12aはアルカリ溶液で洗浄することが好ましい。そのようなアルカリ溶液としては、アンモニアを含有した溶液、水酸化ナトリウム溶液、水酸化カリウム溶液等の公知のアルカリ溶液が使用可能である。好ましいアルカリ溶液はアンモニアを含有した溶液であり、より好ましくはアンモニアを含有した有機系アルカリ溶液、さらに好ましくはテトラメチルアンモニウムハイドロオキサイド(TMAH)溶液である。TMAH溶液の好ましい濃度は0.1〜3.0wt%である。そのような洗浄の一例としては、0.4%TMAH溶液を用いて23℃で1分間の洗浄を行うことが挙げられる。このようなアルカリ溶液による洗浄と併せて、又は、アルカリ溶液による洗浄の代わりに、UV(Ultra Violet)処理を行っても同様の洗浄効果を得ることができる。さらに、銅箔等の場合、希硫酸等の酸性洗浄液を用いて、銅表面に形成されうる酸化物を除去することも可能である。酸洗浄の一例としては、希硫酸を用いて30秒間の洗浄を行うことが挙げられる。
超平坦面12a上に存在するパーティクルを除去することが好ましい。有効なパーティクル除去の手法としては、超純水によるソニック洗浄法やドライアイスブラスト法等が挙げられるが、ドライアイスブラスト法がより効果的である。ドライアイスブラスト法は、高圧に圧縮した炭酸ガスを細いノズルから噴射させることにより、低温固化した炭酸を超平坦面12aに吹き付けてパーティクルを除去する方法である。このドライアイスブラスト法は、ウェット工程とは異なり、乾燥工程を省くことができ、また有機物の除去ができる等の利点を有する。ドライアイスブラスト法は、例えばドライアイススノーシステム(エアウォーター社製)等の市販の装置を用いて行うことができる。もっとも、2.0以上のPv/Pp比を超平坦面12aに付与するための処理(例えばドライアイスブラスト法)によって既にパーティクルが除去されている場合には、このパーティクル除去工程は省略可能である。
金属箔12への有機窒素化合物の塗布は、有機窒素化合物を含む水溶液で金属箔を、浸漬、スプレー又はロールによる塗布等の従来の手法を用いて処理して乾燥すればよく、特に限定されない。なお、上述したアルカリ溶液での洗浄やパーティクルの除去を行う場合には、これらの工程を完了した後に有機窒素化合物の塗布を行えばよい。こうして得られた金属箔表面における有機窒素化合物量の低減による所望のCN/(CN+Cu)比の実現は、水酸化ナトリウム及び/又は水酸化カリウム等のアルカリ溶液等の洗浄液に金属箔を浸漬し、その浸漬時間を適宜制御することにより行うことができるが、有機窒素化合物を含む水溶液の濃度を制御することによって有機窒素化合物の残留濃度の更なる調整ないし低減を行うのが好ましい。例えば、塗布液としてのBTA水溶液中のBTA濃度を0.5mmol/Lと低く設定することでCN/(CN+Cu)比で0.4以下(例えば0.2)のレベルにまで金属箔表面のBTA濃度を低減しておき、この金属箔を更に濃度2重量%のNaOH+KOH水溶液に浸漬することでCN/(CN+Cu)比で0.1以下のレベルにまでBTA濃度を低減することができる。
反射層13は、アルミニウム、アルミニウム系合金、銀、及び銀系合金からなる群から選択される少なくとも一種で構成されるのが好ましい。これらの材料は、光の反射率が高いため反射層に適しており、しかも薄膜化した際の平坦性にも優れる。特に、アルミニウム又はアルミニウム系合金は安価な材料であることから好ましい。アルミニウム系合金及び銀系合金としては、発光素子や光電素子においてアノード又はカソードとして使用される一般的な合金組成を有するものが幅広く採用可能である。好ましいアルミニウム系合金組成の例としては、Al−Ni、Al−Cu、Al−Ag、Al−Ce、Al−Zn、Al−B、Al−Ta、Al−Nd、Al−Si、Al−La、Al−Co、Al−Ge、Al−Fe、Al−Li、Al−Mg、Al−Mn合金が挙げられる。これらの合金を構成する元素であれば、必要な特性に合わせて任意に組み合わせることが可能である。また、好ましい銀合金組成の例としては、Ag−Pd、Ag−Cu、Ag−Al、Ag−Zn、Ag−Mg、Ag−Mn、Ag−Cr、Ag−Ti、Ag−Ta、Ag−Co、Ag−Si、Ag−Ge、Ag−Li、Ag−B、Ag−Pt、Ag−Fe、Ag−Nd、Ag−La、Ag−Ce合金が挙げられる。これらの合金を構成する元素であれば、必要な特性に合わせて任意に組み合わせることが可能である。反射層13の膜厚は特に限定されるものではないが、30〜500nmの厚さを有するのが好ましく、より好ましくは50〜300nmであり、さらに好ましくは100〜250nmである。
反射層13の最表面にはバッファ層14が設けられてもよい。有機発光デバイスの場合、バッファ層14は、有機発光層と接触して所望の仕事関数を与えるものであれば特に限定されない。本発明におけるバッファ層は、光散乱効果を十分に確保するため、透明又は半透明であるのが好ましい。
本発明による電極箔の厚さは1〜300μmであるのが好ましく、より好ましくは1〜250μmであり、さらに好ましくは5〜200μm、特に好ましくは10〜150μm、最も好ましくは15〜100μmであるが、電極箔に求められる用途や性能等に応じて厚さを適宜決定すればよい。したがって、金属の使用量の低減や軽量化がより望まれる場合には厚さの上限は50μm、35μm又は25μmとするのが特に好ましい一方、強度がより望まれる場合には厚さの下限を25μm、35μm又は50μmとするのが特に好ましい。これらの電極箔の厚さはいずれも前述した金属箔12の厚さと同様であるが、これは金属箔12上に形成されてもよい反射層13及び/又はバッファ層14の厚さは、通常、金属箔12の厚さに比べて無視できるほどに小さいためである。
本発明による電極箔は、各種電子デバイス用の電極(すなわちアノード又はカソード)として好ましく用いることができる。本発明の電極箔は、概して低応力で屈曲が容易なことからフレキシブル電子デバイス用の電極として用いるのが特に好ましいが、フレキシブル性に劣る又は剛性のある電子デバイスに用いるものであってもよい。そのような電子デバイス(主としてフレキシブル電子デバイス)の例としては、i)発光素子、例えば有機EL素子、有機EL照明、有機ELディスプレイ、ii)光電素子、例えば薄膜太陽電池が挙げられるが、好ましくは有機EL素子、有機EL照明、有機ELディスプレイ等の有機発光デバイスであり、より好ましくは極薄で高輝度の発光が得られる点で有機EL照明である。
本発明による電極箔の長さは特に限定されないが、ロール・トゥ・ロール・プロセスに適用させるためにはある程度の長さを有するのが好ましい。電極箔の好ましい長さは、装置の仕様等に応じて異なってくるが、概ね2m以上であり、生産性向上の観点から、より好ましくは20m以上、さらに好ましくは50m以上、特に好ましくは100m以上、最も好ましくは1000m以上である。また、電極箔の好ましい幅は、装置の仕様等に応じて異なってくるが、概ね150mm以上であり、生産性向上の観点から、好ましくは350mm以上、より好ましくは600mm以上、特に好ましくは1000mm以上である。
有機発光デバイス
本発明による電極箔をアノード又はカソードとして用いて、有機発光層を電極箔の反射層側の最表面に備えた有機発光デバイスを構成することができる。すなわち、有機発光層は反射層に直接形成されるか又は存在する場合にはバッファ層に直接形成されるのが好ましい。有機発光層は、励起発光の機能を有する有機EL層等の有機半導体層であればいかなる構成や材質のものであってもよい。有機発光層上には透明又は半透明の対向電極が更に設けられるのが好ましい。本発明の電極箔は、有機発光層の形成に際して、高分子材料や低分子材料をクロロベンゼン等の溶剤に溶解させて塗布するプロセスが好ましく適用可能であり、また、インライン式の真空プロセスも適用可能であり、生産性の向上に適する。
本発明による電極箔を反射電極として用いて、その光散乱面にトップエミッション型有機EL素子を備えた発光素子及び有機EL照明を構築することができる。図4に、本発明の電極箔をアノードとして用いたトップエミッション型有機EL素子の層構成の一例を示す。図4に示される有機EL素子は、金属箔22、反射層23及び所望によりバッファ層24を備えたアノードとしての電極箔20と、バッファ層24の表面に直接設けられる有機EL層26と、有機EL層26の表面に直接設けられる透光電極としてのカソード28とを備えてなる。バッファ層24は、アノードとして適するように導電性非晶質炭素膜又は導電性酸化物膜で構成されるのが好ましい。
有機EL層26としては、有機EL素子に使用される公知の種々のEL層構成が使用可能であり、所望により正孔注入層及び/又は正孔輸送層、発光層、ならびに所望により電子輸送層及び/又は電子注入層を、アノード電極箔20からカソード28に向かって順次備えてなることができる。正孔注入層、正孔輸送層、発光層、電子輸送層、及び電子注入層としては、それぞれ公知の種々の構成ないし組成の層が適宜使用可能であり特に限定されるものではない。
有機EL層26は、真空蒸着プロセス、塗布、印刷プロセス、及びそれらの組合せのいずれの手法によって作製されてもよい。なお、発光層に用いられる材料としては、低分子有機材料、高分子有機材料、金属酸化物、及びそれらの組合せのいずれであってもよい。
また、正孔注入層または電子注入層としては、金属を用いることも可能である。光取出し側の上部基材としては、ガラスのような剛性の高い材料を用いてもよいし、プラスチックフィルムのようなフレキシブルな材料を用いてもよい。
本発明を以下の例によってさらに具体的に説明する。
例1:各種界面BTA濃度の電極箔の作製
各種界面BTA濃度の電極箔試料1〜4の作製を以下のとおり行った。その際、算術平均粗さRa及び界面BTA濃度の測定方法は以下のとおりとした。
(算術平均粗さRaの測定)
表面平坦度測定機(Zygo社製、NewView5032)を用いてJIS B 0601−2001に準拠して各試料表面の算術平均粗さRaを測定した。181μm×136μmの範囲について、Filter High:Auto、Filter Low:Fixed(150μm)にて行った。
(界面BTA濃度の測定)
金属箔と反射層の間の界面におけるBTA濃度(具体的にはCN/(CN+Cu)比)の測定は、飛行時間型二次イオン質量分析装置(TOF−SIMS)(TRIFT IV、アルバック・ファイ株式会社)を用いて、反射層側から金属箔の深さ方向にスパッタリングを行いながら以下の測定条件で行った。
・一次イオン:Au
・加速電圧:30kV
・測定エリア:□300μm
・測定時間の単位:sec
・測定イオン種:Positive/Negative
・電子中和:有
(試料1‐比較)
金属箔として、厚さ65μmの市販の両面平坦電解銅箔(三井金属鉱業社製DFF(Dual Flat Foil)を用意した。銅箔表面の粗さは表面平坦度測定機(Zygo社製、NewView5032)を用いてJIS B 0601−2001に準拠して測定したところ、算術平均粗さRa:18.0nmであった。この測定は、181μm×136μmの範囲について、Filter High:Auto、Filter Low:Fixed(150μm)にて行った。
この銅箔を、市販の研磨機を用いて研磨処理をおこなった。この化学物理研磨処理は、XY溝付き研磨パットおよびコロイダルシリカ系研磨液を用いて、パッド回転数:30rpm、荷重:200gf/cm、液供給量:100cc/minの条件で行った。こうしてCMP処理された銅箔表面の粗さは表面平坦度測定機(Zygo社製、NewView5032)を用いてJIS B 0601−2001に準拠して測定したところ、算術平均粗さRaは1.5nmであった。この測定は、181μm×136μmの範囲について、Filter High:Auto、Filter Low:Fixed(150μm)にて行った。CMP処理後の銅箔の厚さは60μmであった。
一方、35℃に保温した純水(17.5MΩ・cm以上)に、防錆剤としてBTA(ベンゾトリアゾール)を25mmol/L(約3g/L)添加した塗布液を作製した。このBTA含有洗浄液をシャワーノズルから銅箔上へ0.15〜0.35MPaで噴霧し、純水にて洗浄した後、乾燥を行った。
こうしてBTAが塗布された銅箔表面に、膜厚150nmのAl合金反射層をスパッタリング法により成膜した。このスパッタリングは、Al−0.5Ni (at.%)の組成を有するアルミニウム合金ターゲット(直径203.2mm×8mm厚)をクライオ(Cryo)ポンプが接続されたマグネトロンスパッタ装置(MSL−464、トッキ株式会社製)に装着した後、投入パワー(DC):1000W(3.1W/cm)、到達真空度:<5×10−5Pa、スパッタ圧力:0.5Pa、Ar流量:100sccm、基板温度:室温の条件で行った。こうして得られた試料表面の算術平均粗さRaを上記同様に測定したところ、2.3nmであった。また、金属箔と反射層の間の界面におけるBTA濃度を測定したところ、CN/(CN+Cu)比が0.96であった。
(試料2‐比較)
BTAが塗布された反射層形成前の銅箔を、NaOH及びKOHを合計で2重量%含む洗浄液に3分間浸漬してBTAの溶出を行ったこと以外は、試料1と同様にして試料の作製及び評価を行った。得られた試料表面の算術平均粗さRaを上記同様に測定したところ、1.9nmであった。また、金属箔と反射層の間の界面におけるBTA濃度を測定したところ、CN/(CN+Cu)比が0.57であった。
(試料3)
BTA塗布液のBTA濃度を0.4mmol/Lと低くしたこと以外は、試料1と同様にして試料の作製及び評価を行った。得られた試料表面の算術平均粗さRaを上記同様に測定したところ、2.0nmであった。また、金属箔と反射層の間の界面におけるBTA濃度を測定したところ、CN/(CN+Cu)比が0.29であった。
(試料4)
BTA塗布液のBTA濃度を0.1mmol/Lと低くし、かつ、BTAが塗布された反射層形成前の銅箔を、NaOH及びKOHを合計2重量%含む溶液に3分間浸漬してBTAの溶出を行ったこと以外は、試料1と同様にして試料の作製及び評価を行った。得られた試料表面の算術平均粗さRaを上記同様に測定したところ、1.9nmであった。また、金属箔と反射層の間の界面におけるBTA濃度を測定したところ、CN/(CN+Cu)比が0.04であった。
例2:有機発光デバイスの作製及び評価
(1)有機発光デバイスの作製
例1で作製された電極箔試料1〜4をアノードとして用いて有機発光デバイスを以下のようにして作製した。まず、電極箔試料1〜4上に、PEDOT:PSS(Clevios(登録商標)P VP AI4083,H.C.Starck社製)を膜厚約65nmになるように塗布して、200℃で15分間焼成(アニール処理)することにより正孔注入層を形成した。そして、TFB(ポリ[(9,9−ジオクチルフルオレニル−2,7−ジイル)−コ−(4,4’−(N−(4−sec−ブチルフェニル))ジフェニルアミン)])(アメリカンダイソース社製、「Hole Transport Polymer ADS259BE」)をTHF溶媒に溶解した溶液を、正孔注入層の上に膜厚20nmになるようにスピンコーターで塗布してTFB被膜を作製し、これを100℃で10分間乾燥することによって、インターレイヤーを形成した。さらに、高分子発光材料(アメリカンダイソース社製、「Light Emitting Polymer ADS111RE」)をTHF溶媒に溶解した溶液を、インターレイヤーの上にスピンコーターで塗布し、100℃で10分間焼成(アニール処理)することによって、発光層を形成した。さらに、発光層の上に、電子注入層として、Ba(高純度化学製)を5nmの膜厚で形成した。そして最後に、電子注入層の上にAg(高純度化学社製)を20nmの膜厚で真空蒸着し、カソードとして第2電極を形成した。
(2)外部量子効率の測定
上記作製された有機発光デバイスの外部量子効率を、ガラス基板上にアルミニウムが蒸着された試料を100%とした場合の相対値として測定した。具体的には、各電極箔試料を用いた得られた有機発光デバイスにおいて、電極間に電流密度が10mA/cmとなるように電流を流し、正面を0度とした場合の0度〜80度の各角度における輝度を輝度計(トプコンテクノハウス社製BM−7A)により計測し全光束量の計算を行い、外部量子効率を算出した。
試料1〜4について測定された外部量子効率は表1に示されるとおりであり、界面BTA濃度がCN/(CN+Cu)比で0.4以下(好ましくは0.3以下)であると、ガラス基板を用いた場合と同等又はそれ以上の高い外部量子効率が得られることが分かる。
例3:界面BTA濃度と浸漬時間の関係
例1の試料2の作製方法において、BTAが塗布された反射層形成前の銅箔を、NaOH及びKOHを合計で2重量%含む洗浄液に浸漬する時間を0分、0.5分、3分、10分と変化させることにより、BTA濃度に相当するCN/(CN+Cu)比の変化を調べた。その結果は図5に示されるとおりであった。図5に示される結果から明らかなように、浸漬時間を調節することにより、界面BTA濃度を制御することが可能である。防錆剤としてトリルトリアゾール(TTA)やカルボキシベンゾトリアゾール(C−BTA)についても、上記同様にして残留濃度を制御可能である。
例4:各種Ra及び界面BTA濃度における外部量子効率の検討
例1の試料2の作製において、研磨条件を適宜変更することにより、種々の算術平均粗さRaを表面に有する5種類の電極箔(CN/(CN+Cu)=0.57)を作製した。得られた電極箔について例2と同様にして外部量子効率の測定を行ったところ、図6に示されるような結果が得られた。参考のため、図6には、試料3(CN/(CN+Cu)=0.29)及び試料4(CN/(CN+Cu)=0.04)について測定された外部量子効率のプロットも併せて示してある。図6に示される結果から、界面BTA濃度が高い場合であっても、電極箔表面の算術平均粗さRaが低いほど外部量子効率の向上効果が見受けられるものの、界面BTA濃度(CN/(CN+Cu)比)を低くすることで、Raの低減効果からは予測し得ないほど顕著に外部量子効率が向上することが分かる(図中の矢印参照)。

Claims (11)

  1. 銅又は銅合金からなる金属箔と、前記金属箔の少なくとも一方の面に設けられる反射層とを備えてなる電極箔であって、
    前記金属箔と前記反射層の間の界面に有機窒素化合物が存在し、該界面を飛行時間型二次イオン質量分析(TOF−SIMS)により分析した場合に、前記有機窒素化合物中のC−N結合のカウント数の、銅及びC−N結合の総カウント数に対する比CN/(CN+Cu)が0.001〜0.3である、電極箔。
  2. 前記有機窒素化合物が、トリアゾール又はその誘導体若しくは異性体である、請求項1に記載の電極箔。
  3. 前記トリアゾール又はその誘導体若しくは異性体が、ベンゾトリアゾール、ベンゾトリアゾール誘導体、アミノトリアゾ−ル、アミノリアゾール異性体、及びアミノトリアゾ−ル誘導体からなる群から選択される少なくとも一種である、請求項に記載の電極箔。
  4. 前記電極箔の前記反射層側の最表面が、JIS B 0601−2001に準拠して測定される、60nm以下の算術平均粗さRaを有する、請求項1〜のいずれか一項に記載の電極箔。
  5. 前記算術平均粗さRaが10nm以下である、請求項に記載の電極箔。
  6. 前記反射層上に直接設けられる透明又は半透明のバッファ層をさらに備えてなる、請求項1〜のいずれか一項に記載の電極箔。
  7. 前記金属箔が、1〜250μmの厚さを有する、請求項1〜のいずれか一項に記載の電極箔。
  8. 有機発光デバイスの電極として用いられる、請求項1〜のいずれか一項記載の電極箔。
  9. 有機発光デバイスの支持基材を兼ねた電極として用いられる、請求項1〜のいずれか一項記載の電極箔。
  10. 請求項1〜のいずれか一項に記載の電極箔と、
    前記電極箔の前記反射層側の最表面上に設けられる有機発光層と、
    を備えた、有機発光デバイス。
  11. 前記有機発光層上に透明又は半透明の対向電極を備えた、請求項10に記載の有機発光デバイス。
JP2014526807A 2012-07-24 2013-06-07 電極箔及び有機発光デバイス Expired - Fee Related JP6259396B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012164025 2012-07-24
JP2012164025 2012-07-24
PCT/JP2013/065824 WO2014017183A1 (ja) 2012-07-24 2013-06-07 電極箔及び有機発光デバイス

Publications (2)

Publication Number Publication Date
JPWO2014017183A1 JPWO2014017183A1 (ja) 2016-07-07
JP6259396B2 true JP6259396B2 (ja) 2018-01-10

Family

ID=49997000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014526807A Expired - Fee Related JP6259396B2 (ja) 2012-07-24 2013-06-07 電極箔及び有機発光デバイス

Country Status (5)

Country Link
US (1) US9508951B2 (ja)
EP (1) EP2879467A4 (ja)
JP (1) JP6259396B2 (ja)
CN (1) CN104472012B (ja)
WO (1) WO2014017183A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7158727B2 (ja) 2019-03-08 2022-10-24 オリオン機械株式会社 偏心回動部材を備える駆動機構及びそれを用いた開閉弁装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107719223A (zh) * 2017-09-21 2018-02-23 柳州环山科技有限公司 一种可防锈快速多向旋拧拉钩

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3224704B2 (ja) * 1994-12-05 2001-11-05 三井金属鉱業株式会社 有機防錆処理銅箔
US6492308B1 (en) * 1999-11-16 2002-12-10 Esc, Inc. Post chemical-mechanical planarization (CMP) cleaning composition
JP3812834B2 (ja) * 2002-08-12 2006-08-23 三井金属鉱業株式会社 キャリア箔付電解銅箔並びにその製造方法及びそのキャリア箔付電解銅箔を用いた銅張積層板
KR20050017169A (ko) * 2003-08-08 2005-02-22 삼성에스디아이 주식회사 애노드 표면 개질층을 사용하는 유기 전계 발광 소자
EP1715510B2 (en) * 2004-02-09 2016-02-24 Mitsubishi Chemical Corporation Substrate cleaning liquid for semiconductor device and cleaning method
JP2005240105A (ja) * 2004-02-26 2005-09-08 Fujikura Ltd 電解銅箔およびその製造方法
JP2005285659A (ja) * 2004-03-30 2005-10-13 Toyota Industries Corp 有機el装置及びその製造方法
WO2007099881A1 (en) * 2006-03-03 2007-09-07 Semiconductor Energy Laboratory Co., Ltd. Light emitting material, light emitting element, light emitting device and electronic device
JP2008243772A (ja) 2007-03-29 2008-10-09 Seiko Epson Corp 発光装置およびその製造方法
JP2009152113A (ja) 2007-12-21 2009-07-09 Rohm Co Ltd 有機el素子
DE102008030845B4 (de) * 2008-03-28 2021-09-23 Pictiva Displays International Limited Organisches elektronisches Bauelement und Verfahren zur Herstellung eines organischen elektronischen Bauelements
WO2010086893A1 (ja) * 2009-01-27 2010-08-05 三洋化成工業株式会社 銅配線半導体用洗浄剤
EP2579686B1 (en) * 2010-06-04 2018-07-25 Mitsui Mining & Smelting Co., Ltd Electrode foil and organic device
US8816338B2 (en) 2010-06-04 2014-08-26 Mitsui Mining & Smelting Co., Ltd. Electrode foil and organic device
JP5016712B2 (ja) * 2010-09-21 2012-09-05 三井金属鉱業株式会社 電極箔および有機デバイス
JP2013211229A (ja) * 2012-03-30 2013-10-10 Jx Nippon Mining & Metals Corp 銅箔及びそれを用いたリチウムイオン二次電池用負極集電体及び負極材、ならびにリチウムイオン二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7158727B2 (ja) 2019-03-08 2022-10-24 オリオン機械株式会社 偏心回動部材を備える駆動機構及びそれを用いた開閉弁装置

Also Published As

Publication number Publication date
EP2879467A1 (en) 2015-06-03
WO2014017183A1 (ja) 2014-01-30
CN104472012B (zh) 2016-06-29
US9508951B2 (en) 2016-11-29
CN104472012A (zh) 2015-03-25
EP2879467A4 (en) 2016-03-16
JPWO2014017183A1 (ja) 2016-07-07
US20150207096A1 (en) 2015-07-23

Similar Documents

Publication Publication Date Title
EP2814303A1 (en) Electrode foil and electronic device
JP5832034B2 (ja) 電極箔および有機デバイス
JP5016712B2 (ja) 電極箔および有機デバイス
JP5297546B1 (ja) 電極箔及び電子デバイス
JP6141641B2 (ja) 電解銅箔及び電子デバイス
JPWO2011152092A1 (ja) 電極箔および有機デバイス
TW201251163A (en) Electrode sheet for organic device, organic device module, and method for producing same
KR101970167B1 (ko) 전해 동박 및 그 제조 방법
JP6259396B2 (ja) 電極箔及び有機発光デバイス
EP2879466B1 (en) Metal foil and electronic device
TW201508965A (zh) 有機半導體裝置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171208

R150 Certificate of patent or registration of utility model

Ref document number: 6259396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees