JP6238816B2 - 燃料電池システムの制御方法及び燃料電池システム - Google Patents

燃料電池システムの制御方法及び燃料電池システム Download PDF

Info

Publication number
JP6238816B2
JP6238816B2 JP2014069984A JP2014069984A JP6238816B2 JP 6238816 B2 JP6238816 B2 JP 6238816B2 JP 2014069984 A JP2014069984 A JP 2014069984A JP 2014069984 A JP2014069984 A JP 2014069984A JP 6238816 B2 JP6238816 B2 JP 6238816B2
Authority
JP
Japan
Prior art keywords
emergency stop
allowable
count
cumulative
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014069984A
Other languages
English (en)
Other versions
JP2015191863A (ja
Inventor
潤 岩見
潤 岩見
沙奈 細川
沙奈 細川
岩田 伸
伸 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2014069984A priority Critical patent/JP6238816B2/ja
Publication of JP2015191863A publication Critical patent/JP2015191863A/ja
Application granted granted Critical
Publication of JP6238816B2 publication Critical patent/JP6238816B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、水素含有ガス供給手段により供給される水素含有ガスと酸素含有ガス供給手段により供給される酸素含有ガスとの電気化学反応により発電する燃料電池と、運転を制御する制御手段とが設けられ、前記制御手段が、通常停止指令に基づいて、所定の停止用手順に基づいて前記水素含有ガス供給手段及び前記酸素含有ガス供給手段を停止する通常停止処理を実行し、緊急停止指令に基づいて、前記停止用手順を経ることなく前記水素含有ガス供給手段及び前記酸素含有ガス供給手段を停止する緊急停止処理を実行するように構成された燃料電池システムの制御方法及び燃料電池システムに関する。
かかる燃料電池システムは、一般家庭等に設置されるものであり、燃料電池の発電電力が電気機器等の電力負荷で消費される。又、燃料電池での発電の際に発生する熱も給湯や暖房等に利用可能であり、コージェネレーションシステムとして構成される。
このような燃料電池システムにおいて、その運転を停止させる処理としては、燃料電池システムの使用者が任意に指令可能な通常停止指令に基づく通常停止処理と、異常が発生すること等により、使用者が意図することなく指令される緊急停止指令に基づく緊急停止処理がある。
通常停止処理は、所定の停止用手順に基づいて水素含有ガス供給手段及び酸素含有ガス供給手段を停止するものであり、その停止用手順は、燃料電池システム(具体的には、例えば、燃料電池の燃料極や空気極)の劣化を十分に抑制可能な手順に設定されているので、通常停止処理により燃料電池システムが停止される場合は、燃料電池システムの性能(例えば、燃料電池の発電効率)の低下を十分に抑制することができる。ちなみに、停止用手順は、例えば、燃料電池の温度がその劣化を十分に抑制可能な温度にまで低下した後に、水素含有ガス供給手段及び酸素含有ガス供給手段を停止する手順に設定される。
一方、緊急停止処理は、異常が発生したときに燃料電池システムを迅速に停止することを最優先にするためのものであり、前述の停止用手順を経ることなく水素含有ガス供給手段及び酸素含有ガス供給手段を停止するので、緊急停止処理により燃料電池システムが停止される場合は、燃料電池システムの性能の低下の度合いが通常停止処理におけるよりも大きくなる。
そして、燃料電池システムの起動・停止が繰り返されると、燃料電池システムの劣化が徐々に進行するので、起動・停止が過度に頻繁に繰り返されると、燃料電池システムを所定の性能が得られる状態で使用できる期間(以下、使用可能期間と記載する場合がある)が、予め設定された耐用年数(例えば10年間)よりも短くなる場合がある。
そこで、このような燃料電池システムでは、使用可能期間が耐用年数よりも短くなるのを回避するための方策が講じられる。
例えば、従来では、通常停止処理及び緊急停止処理のいずれか一方を管理対象の停止処理として、その管理対象の停止処理が実行された回数を累積停止回数として計数し、燃料電池システムの累積運転時間が増加するほど累積停止回数の許容上限値である許容停止回数を漸次増加させる形態で示された累積運転時間と許容停止回数との関係に基づいて、現時点の累積運転時間から現時点の許容停止回数を求めて、現時点の累積停止回数が現時点の許容停止回数以上になると、停止回数異常と判定して、その停止回数異常を認識可能な情報を表示部に表示するように構成されていた(例えば、特許文献1参照。)。
つまり、停止回数異常を認識可能な情報を表示部に表示することにより、使用者に対して、頻繁な起動・停止を控えるのを意識づけるための注意喚起、及び、メンテナンスの推奨を行うようになっていた。
尚、特許文献1には、通常停止処理の累積停止回数を利用した停止回数異常の判定と、緊急停止処理の累積停止回数を利用した停止回数異常の判定とを組み合わせて実行することも記載されている。
特開2013−225445号公報
ところで、通常停止処理により燃料電池システムを劣化させる作用と、緊急停止処理により燃料電池システムを劣化させる作用は、相乗的に作用すると考えられる。
しかしながら、従来の燃料電池システムでは、通常停止処理及び緊急停止処理のいずれか一方について、現時点の累積運転時間から現時点の許容停止回数を求めるものであるので、求めた許容停止回数が緊急停止処理に対するものである場合は、求めた許容停止回数には、通常停止処理による劣化作用が反映されていない。そのため、燃料電池システムの劣化が比較的進行しているにも拘らず、許容停止回数が、燃料電池システムの実際の劣化状態に対応した値よりも多目に求められる場合があった。
従って、使用者が頻繁な起動・停止を行っているにも拘らず、現時点の累積停止回数が現時点の許容停止回数よりも少ないために、使用者に対して注意喚起がなされず、使用者が頻繁な起動・停止を控える意識を持っていない状態で、頻繁な起動・停止が継続されることにより、燃料電池システムの劣化が比較的速く進行する場合があった。そのような場合、使用者の意に反して緊急停止処理が実行されると、所定の性能が得られなくなって、使用可能期間が耐用年数よりも短くなるという問題が発生する虞がある。
このような虞は、緊急停止処理の累積停止回数を利用した停止回数異常の判定が、通常停止処理の累積停止回数を利用した停止回数異常の判定と組み合わせて実行されている場合でも、同様に起こり得るものである。
本発明は、かかる実情に鑑みてなされたものであり、その目的は、使用可能期間が耐用年数よりも短くなるのを的確に回避可能に使用し得る燃料電池システムの制御方法及び燃料電池システムを提供することにある。
本発明に係る燃料電池システムの制御方法は、水素含有ガス供給手段により供給される水素含有ガスと酸素含有ガス供給手段により供給される酸素含有ガスとの電気化学反応により発電する燃料電池と、
運転を制御する制御手段とが設けられ、
前記制御手段が、通常停止指令に基づいて、所定の停止用手順に基づいて前記水素含有ガス供給手段及び前記酸素含有ガス供給手段を停止する通常停止処理を実行し、緊急停止指令に基づいて、前記停止用手順を経ることなく前記水素含有ガス供給手段及び前記酸素含有ガス供給手段を停止する緊急停止処理を実行するように構成された燃料電池システムの制御方法であって、
その特徴構成は、前記通常停止処理が実行された回数を累積通常停止回数として計数し、前記緊急停止処理が実行された回数を累積緊急停止回数として計数し、
前記累積通常停止回数が増加するほど、許容可能な前記緊急停止処理の累積実行回数の上限値である許容緊急停止回数が少なくなる形態で、前記累積通常停止回数と前記許容緊急停止回数との関係として設定された許容緊急停止回数設定情報に基づいて、現時点の累積通常停止回数に対応する現時点の許容緊急停止回数を求め、
現時点の累積緊急停止回数が現時点の許容緊急停止回数以上になると、警報手段を作動させる警報処理を実行する点にある。
即ち、本発明の発明者らは、使用可能期間が耐用年数よりも短くなるのを的確に回避可能にすべく、通常停止処理により燃料電池システムを劣化させる作用と、緊急停止処理により燃料電池システムを劣化させる作用とが、どのように相乗的に作用するかを鋭意検討し、通常停止処理の累積実行回数である累積通常停止回数が増加するほど、許容可能な緊急停止処理の累積実行回数の上限値が徐々に少なくなることを見出した。
本特徴構成は、このような知見に基づいてなされたものである。
つまり、本特徴構成によれば、通常停止処理が実行される度に、累積通常停止回数を計数し、緊急停止処理が実行される度に、累積緊急停止回数を計数する。
又、累積通常停止回数が増加するほど許容緊急停止回数が少なくなる形態で、累積通常停止回数と許容緊急停止回数との関係として設定された許容緊急停止回数設定情報に基づいて、現時点の累積通常停止回数に対応する現時点の許容緊急停止回数を求める。
そして、現時点の累積緊急停止回数が現時点の許容緊急停止回数以上になると、警報手段を作動させる警報処理を実行する。
つまり、許容緊急停止回数設定情報に基づいて、現時点の累積通常停止回数に対応する現時点の許容緊急停止回数を求めることにより、現時点の許容緊急停止回数を、通常停止処理による劣化作用が反映された状態で適切に求めることができるので、許容停止回数を、燃料電池システムの実際の劣化状態に対応した値よりも多目に求めたり、少な目に求めたりするといった不都合を確実に回避することができる。
そのことにより、遅すぎることのない適切なタイミングで、警報処理を実行することができるので、使用者に対して、頻繁な起動・停止を控えるのを意識づけるための注意喚起、及び、メンテナンスの推奨を適切に行うことができる。
従って、使用可能期間が耐用年数よりも短くなるのを的確に回避可能に使用し得る燃料電池システムの制御方法を提供することができる。
ここで、「累積通常停止回数が増加するほど許容緊急停止回数が少なくなる形態で」には、後に示すように、初期の一定期間においては、許容緊急停止回数が予め定められた一定の値とされており、その一定期間を過ぎた後、漸次少なくなる形態を含み、累積通常停止回数が増加するほど許容緊急停止回数が順に少なくなる形態を含む。さらに、漸次少なくなるには、例えば、図3に示すように、複数の減少傾向(図3で破線で示す場合は初期には減少させない)で段階的に少なくなるほか、連続的に減少傾向が大きくなる形態で少なくなる場合を含む。
本発明に係る燃料電池システムの制御方法の更なる特徴構成は、
前記累積通常停止回数が所定の下位境界値に達するまでは、現時点の許容緊急停止回数を、前記累積通常停止回数が前記下位境界値のときに前記許容緊急停止回数設定情報に基づいて求められる前記許容緊急停止回数以上に設定された所定の前期基準許容回数とし、
前記累積通常停止回数が前記下位境界値を超えた後は、現時点の許容緊急停止回数を、現時点の累積通常停止回数に応じて、前記許容緊急停止回数設定情報に基づいて求める点にある。
即ち、本発明の発明者らは、累積通常停止回数と許容緊急停止回数との関係は、全般的には、累積通常停止回数が増加するほど許容緊急停止回数が漸次少なくなる関係であるが、累積通常停止回数が増加するほど許容緊急停止回数が少なくなる度合いは、累積通常停止回数の範囲により異なることを見出した。
つまり、累積通常停止回数が増加するほど許容緊急停止回数が少なくなる度合いは、累積通常停止回数が所定の下位境界値までの範囲では、比較的小さく、累積通常停止回数が下位境界値位境界値を超えると、下位境界値までの範囲における度合いよりも大きくなることを見出した。
上記特徴構成は、このような知見に基づくものであり、累積通常停止回数が所定の下位境界値に達するまでは、現時点の許容緊急停止回数を一律に前期基準許容回数とし、累積通常停止回数が下位境界値を超えた後は、現時点の許容緊急停止回数を、現時点の累積通常停止回数に応じて、許容緊急停止回数設定情報に基づいて求める。前期基準許容回数は、累積通常停止回数が下位境界値のときに、許容緊急停止回数設定情報に基づいて求められる許容緊急停止回数以上に設定する。
従って、広範囲の累積通常停止回数にわたって、現時点の許容緊急停止回数を、現時点の累積通常停止回数に応じて適正に求めることができるので、広範囲の累積通常停止回数にわたって、一層適切なタイミングで、警報処理を実行することができる。
本発明に係る燃料電池システムの制御方法の更なる特徴構成は、
前記累積通常停止回数が前記下位境界値を超えた後、上位境界値に達するまでは、現時点の許容緊急停止回数を、現時点の累積通常停止回数に応じて、前記許容緊急停止回数設定情報に基づいて求め、
前記累積通常停止回数が前記上位境界値を超えた後は、現時点の許容緊急停止回数を、前記累積通常停止回数が前記上位境界値のときに前記許容緊急停止回数設定情報に基づいて求められる前記許容緊急停止回数以下に設定された所定の後期基準許容回数とする点にある。
即ち、本発明の発明者らは、累積通常停止回数と許容緊急停止回数との関係は、全般的には、累積通常停止回数が増加するほど許容緊急停止回数が漸次少なくなる関係であるにしても、累積通常停止回数が増加するほど許容緊急停止回数が少なくなる度合いは、累積通常停止回数が下位境界値よりも多い所定の上位境界値を超えると、累積通常停止回数が下位境界値から上位境界値までの範囲までの値よりも大きくなることを見出した。
上記特徴構成は、このような知見に基づくものであり、累積通常停止回数が下位境界値を超えた後、上位境界値に達するまでは、現時点の許容緊急停止回数を、現時点の累積通常停止回数に応じて許容緊急停止回数設定情報に基づいて求め、累積通常停止回数が上位境界値を超えた後は、現時点の許容緊急停止回数を一律に所定の後期基準許容回数とする。後期基準許容回数は、累積通常停止回数が上位境界値のときに、許容緊急停止回数設定情報に基づいて求められる許容緊急停止回数以下に設定する。
そして、例えば、後期基準許容回数を少なめに設定して、早めに警報処理を実行するようにする。すると、累積通常停止回数がかなり多くなって、燃料電池システムの劣化が比較的進行している状態では、早めに頻繁な起動・停止を控えるようにすることができるので、使用可能期間を一層長期化することができる。
本発明に係る燃料電池システムの制御方法の更なる特徴構成は、
前記燃料電池が、固体酸化物を電解質として用いた固体酸化物型である点にある。
即ち、固体酸化物型の燃料電池は、特に動作温度が高いので、頻繁な起動・停止に伴い、燃料電池地ステムの劣化が進行し易い。
そこで、本発明を固体酸化物型の燃料電池を備えた燃料電池システムに適用することにより、本発明の作用を効果的に発揮させて、固体酸化物型の燃料電池を備えた燃料電池システムを、使用可能期間が耐用年数よりも短くなるのを的確に回避可能に使用することができる。
本発明に係る燃料電池システムは、水素含有ガス供給手段により供給される水素含有ガスと酸素含有ガス供給手段により供給される酸素含有ガスとの電気化学反応により発電する燃料電池と、
運転を制御する制御手段とが設けられ、
前記制御手段が、通常停止指令に基づいて、所定の停止用手順に基づいて前記水素含有ガス供給手段及び前記酸素含有ガス供給手段を停止する通常停止処理を実行し、緊急停止指令に基づいて、前記停止用手順を経ることなく前記水素含有ガス供給手段及び前記酸素含有ガス供給手段を停止する緊急停止処理を実行するように構成された燃料電池システムであって、
その特徴構成は、前記通常停止処理が実行された回数を累積通常停止回数として計数し、前記緊急停止処理が実行された回数を累積緊急停止回数として計数する停止回数計数手段と、
前記累積通常停止回数が増加するほど、許容可能な前記緊急停止処理の累積実行回数の上限値である許容緊急停止回数が少なくなる形態で、前記累積通常停止回数と前記許容緊急停止回数との関係として設定された許容緊急停止回数設定情報に基づいて、現時点の累積通常停止回数に対応する現時点の許容緊急停止回数を求める許容緊急停止回数導出手段と、
前記停止回数計数手段により計数された現時点の累積緊急停止回数が、前記許容緊急停止回数導出手段により求められた現時点の許容緊急停止回数以上になると、警報手段を作動させる警報処理を実行する警報発報手段とが設けられている点にある。
上記特徴構成によれば、停止回数計数手段により、通常停止処理が実行される度に、累積通常停止回数が計数され、緊急停止処理が実行される度に、累積緊急停止回数が実行される。
又、許容緊急停止回数導出手段により、累積通常停止回数が増加するほど許容緊急停止回数が少なくなる形態で、累積通常停止回数と許容緊急停止回数との関係として設定された許容緊急停止回数設定情報に基づいて、現時点の累積通常停止回数に対応する現時点の許容緊急停止回数が求められる。
そして、停止回数計数手段により計数された現時点の累積緊急停止回数が、許容緊急停止回数導出手段により求められた現時点の許容緊急停止回数以上になると、警報発報手段により、警報手段を作動させる警報処理が実行される。
つまり、本特徴構成は、先の燃料電池システムの制御方法の特徴構成において説明したのと同様の知見に基づいてなされたものであり、先の説明と同様に、現時点の許容緊急停止回数を、通常停止処理による劣化作用が反映された状態で適切に求めることができる。
そのことにより、遅すぎることのない適切なタイミングで、警報処理が実行されるので、使用者に対して、頻繁な起動・停止を控えるのを意識づけるための注意喚起、及び、メンテナンスの推奨を適切に行うことができる。
従って、使用可能期間が耐用年数よりも短くなるのを的確に回避可能に使用し得る燃料電池システムを提供することができる。
燃料電池システムの全体構成を示すブロック図 制御動作のフローチャートを示す図 累積通常停止回数と許容緊急停止回数との関係を示す図 累積通常停止回数がN(1)回のときのシャットダウン耐性を説明する図 累積通常停止回数がN(2)回のときのシャットダウン耐性を説明する図
以下、図面に基づいて、本発明の実施の形態を説明する。
燃料電池システムは、一般家庭等に設置されるものであり、図1に示すように、供給される水素含有ガス中の水素と空気(酸素含有ガスの一例)中の酸素との電気化学反応により発電する燃料電池1、燃料電池1に水素含有ガスを供給する水素含有ガス供給設備2(水素含有ガス供給手段の一例)、燃料電池1に空気を供給する反応用送風機3(酸素含有ガス供給手段の一例)、燃料電池1の出力電力を調整自在なインバータ4、燃料電池システムの運転を制御する制御部5(制御手段の一例)、及び、制御部5に運転制御情報を送信するリモートコントローラ6(以下、リモコンと略記する場合がある)等を備えて構成されている。尚、インバータ4は、燃料電池1の出力電力を商用電力系統(図示省略)から受電する受電電力と同じ電圧及び同じ周波数にするように構成されて、燃料電池1を商用電力系統に連系する。
このような燃料電池システムは、燃料電池1での発電の際に発生する熱も利用可能なコージェネレーションシステムとして構成され、インバータ4から出力される電力が電気機器等の電力負荷(図示省略)で消費されると共に、燃料電池1から発生する熱を利用して給湯、暖房等が行われる。
次に、燃料電池システムの各部について、説明を加える。
燃料電池1は、電解質としてYSZ(イットリウム安定化ジルコニア)等の固体酸化物を用いた固体酸化物型である。
固体酸化物型の燃料電池1は、周知であるので、詳細な説明及び図示を省略して、簡単に説明すると、固体酸化物を電解質層とするセルを複数積層状態に設けて構成され、各セルの燃料極に水素含有ガス供給設備2から水素含有ガスが供給されると共に、各セルの空気極に反応用送風機3から空気が供給されて、水素と酸素との電気化学反応により発電するように構成されている。
更に、燃料電池システムには、システムの停止時に、セルを保護するためのパージ用ガスを燃料電池1に充填するガスパージ装置7が設けられている。
このガスパージ設備7も公知であるので、詳細な説明及び図示を省略して、簡単に説明すると、燃料電池1の水素含有ガスや空気の入り口側、及び、出口側の各部に設けた開閉弁を開閉操作することにより、燃料電池1における水素含有ガスや空気のガス流路にパージ用ガスを所定の圧力で充填することが可能に構成されている。
水素含有ガス供給設備2も公知であるので、詳細な説明及び図示を省略して、簡単に説明すると、炭化水素系の原燃料ガス(例えば、13A等の天然ガスベースの都市ガス)と改質用水蒸気とを改質反応させて水素を主成分とする改質ガスを生成する改質器21、改質器21への原燃料ガスの供給を断続する原燃料断続弁22、改質器21への原燃料ガスの供給量を調整する原燃料調整弁23、供給される改質用水を蒸発させて生成した水蒸気を改質器21に供給する水蒸気生成器24、その水蒸気生成器24に改質用水を供給する改質用水ポンプ25等を備えて構成され、改質器21にて生成された改質ガスが水素含有ガスとして燃料電池1に供給されるように構成されている。
リモコン6には、燃料電池システムの起動及び停止の指令や、各種運転条件の設定等を行う人為操作式の操作部61、及び、燃料電池システムの作動状態等、各種情報の表示を行う表示部62が備えられている。ちなみに、表示部62は、液晶ディスプレイで構成される。
燃料電池1、改質器21等には、それらの異常を検知するための各種の異常検知用センサ8が設けられ、それら異常検知用センサ8の検出情報に基づいて、燃料電池1や改質器21等の異常を検知するように構成されている。図1に示すように、異常検知用センサ8としては、例えば、燃料電池1の所定箇所の温度を検出する電池温度センサ81が設けられ、その電池温度センサ81の検出温度が予め設定された上限温度を超えると、燃料電池1で異常が発生したと検知するように構成されている。ちなみに、上限温度は、正常に運転されているときの燃料電池1の温度(例えば、700℃程度)よりも高い温度に設定される。
そして、異常検知用センサ8の検出情報は制御部5に入力され、その検出情報により異常が検知されることに基づいて、制御部5は、緊急停止指令が指令されたと判断するように構成されている。
尚、以下の説明では、利用者による操作により操作部61から指令される停止指令を、緊急停止指令と区別して、通常停止指令と称する。
制御部5は、マイクロコンピュータを用いて構成され、所定のプログラムを実行して各種処理を実行するものである。
次に、制御部5の制御構成について説明する。
制御部5は、操作部61から起動指令が指令されると、所定の起動用手順に基づいて、原燃料断続弁22及び原燃料調整弁23の開弁、改質用水ポンプ25の起動、並びに、反応用送風機3の起動を行う起動処理を実行する。尚、本願発明は、燃料電池システムの停止時の制御方法に関するものであるので、起動用手順については、その説明を省略する。
尚、起動処理では、燃料電池1に充填されているパージ用ガスを系外に排出すべく、ガスパージ装置7を操作するパージ用ガス排出処理も行われるが、詳細な説明は省略する。
このように起動処理が実行されると、改質器21にて改質ガスが生成されて水素含有ガスとして燃料電池1に供給される共に、反応用送風機3により燃料電池1に空気が供給されて、燃料電池1にて発電され、その発電電力がインバータ4を介して電力負荷に供給される。
制御部5は、燃料電池システムの運転中は、電力負荷で消費される電力に応じた電力を出力すべく、原燃料調整弁23を制御して原燃料ガスの供給量を調整すると共に、改質用水ポンプ25を制御して改質用水の供給量を調整する。
つまり、燃料電池システムの運転中は、燃料電池1の発電電力が電力負荷で消費される電力に追従して調整される、所謂、電力負荷追従運転が実行される。
制御部5は、燃料電池システムの運転中に、操作部61から通常停止指令が指令されると、所定の停止用手順に基づいて水素含有ガス供給設備2及び反応用送風機3を停止する通常停止処理を実行し、異常検知用センサ8の検出情報により異常が検知されることに基づいて、緊急停止指令が指令されると、停止用手順を経ることなく水素含有ガス供給設備2及び反応用送風機3を停止する緊急停止処理を実行するように構成されている。
通常停止処理における停止用手順は、公知の各種の手順を採用可能であり、詳細な説明を省略して、一例を簡単に説明する。
即ち、停止用手順に基づく通常停止処理では、操作部61から通常停止指令が指令されると、先ず、燃料電池1からインバータ4への電力の出力を停止させるように、インバータ4を制御し、次いで、電池温度センサ81の検出温度が所定のガス供給停止用の設定温度以下になると、原燃料断続弁22及び原燃料調整弁23を閉弁すると共に、改質用水ポンプ25を停止し、並びに、反応用送風機3を停止して、燃料電池1への水素含有ガス及び空気の供給を停止し、次いで、ガスパージ装置7を作動させて、燃料電池1にパージ用ガスを充てんするガスパージ処理を実行する。ちなみに、ガス供給停止用の設定温度は、正常に運転されているときの燃料電池1の温度よりも低い温度で、しかも、燃料電池1への水素含有ガス及び空気の供給を停止しても、燃料極及び空気極の劣化を十分に抑制し得る温度に設定される。
つまり、停止用手順は、燃料電池1からの電力の取り出しを停止させて、燃料電池1の発電動作を停止させた後、燃料電池1の温度がガス供給停止用の設定温度にまで低下すると、原燃料断続弁22及び原燃料調整弁23を閉弁すると共に、改質用水ポンプ25を停止することにより、水素含有ガス供給設備2を停止し、並びに、反応用送風機3を停止する手順である。
一方、緊急停止処理では、緊急停止指令が指令されると、燃料電池1からインバータ4への電力の出力を停止させるためのインバータ4の制御、原燃料断続弁22及び原燃料調整弁23の閉弁、改質用水ポンプ25の停止、並びに、反応用送風機3の停止を、停止用手順を経ることなく、略同時に、あるいは、短時間の間に実行し、次いで、ガスパージ装置7を作動させて、燃料電池1にパージ用ガスを充てんするガスパージ処理を実行する。
つまり、燃料電池1からインバータ4への電力の出力を停止させて、燃料電池1における発電動作を停止させると、燃料電池1での発熱が停止する。
そして、通常停止処理では、燃料電池1における発電動作を停止させた以降も、燃料電池1への水素含有ガス及び空気の供給が継続され、燃料電池1の温度がガス供給停止用の設定温度にまで低下すると、水素含有ガス及び空気の供給が停止されるので、燃料極及び空気極の劣化が十分に抑制されて、燃料電池1の発電効率の低下を十分に抑制することができる。
一方、緊急停止処理では、燃料電池1の温度がガス供給停止用の設定温度にまで低下するのを待つことなく、燃料電池1における発電動作を停止させるのと略同時に、あるいは、短時間の間に、燃料電池1への水素含有ガス及び空気の供給が停止されるので、燃料極及び空気極の劣化が抑制され難く、燃料電池1の発電効率の低下の度合いが通常停止処理におけるよりも大きくなる。
以上が、燃料電池システムの基本構成である。先にも説明したように、本発明の燃料電池システムは、燃料電池システムを所定の性能(例えば、発電効率)が得られる状態で使用できる期間、即ち、使用可能期間が耐用年数(例えば10年間)よりも短くなるのを回避するように構成されている。以下、使用可能期間が耐用年数よりも短くなるのを回避するための制御方法について、説明する。
本発明の燃料電池システムの制御方法は、通常停止処理が実行された回数を累積通常停止回数Ncとして計数し、緊急停止処理が実行された回数を累積緊急停止回数Neとして計数し、累積通常停止回数Ncが増加するほど、許容可能な緊急停止処理の累積実行回数の上限値である許容緊急停止回数Npが漸次少なくなる形態で、累積通常停止回数Ncと許容緊急停止回数Npとの関係として設定された許容緊急停止回数設定情報に基づいて、現時点の累積通常停止回数Ncに対応する現時点の許容緊急停止回数Npを求め、現時点の累積緊急停止回数Neが現時点の許容緊急停止回数Np以上になると、警報手段9を作動させる警報処理を実行する制御方法である。
そして、本発明の燃料電池システムでは、図1、2に示すように、通常停止処理が実行された回数を累積通常停止回数Ncとして計数し、緊急停止処理が実行された回数を累積緊急停止回数Neとして計数する停止回数計数手段51と、累積通常停止回数Ncが増加するほど、許容可能な緊急停止処理の累積実行回数の上限値である許容緊急停止回数Npが漸次少なくなる形態で、累積通常停止回数Ncと許容緊急停止回数Npとの関係として設定された許容緊急停止回数設定情報に基づいて、現時点の累積通常停止回数Ncに対応する現時点の許容緊急停止回数Npを求める許容緊急停止回数導出手段52と、停止回数計数手段51により計数された現時点の累積緊急停止回数Neが、許容緊急停止回数導出手段52により求められた現時点の許容緊急停止回数Np以上になると、警報手段9を作動させる警報処理を実行する警報発報手段53とが設けられている。
尚、停止回数計数手段51、許容緊急停止回数導出手段52及び警報発報手段53は、制御部5により構成される。
この実施形態では、許容緊急停止回数導出手段52が、累積通常停止回数Ncが所定の下位境界値Bsに達するまでは、現時点の許容緊急停止回数Npを、累積通常停止回数Ncが下位境界値Bsのときに許容緊急停止回数設定情報に基づいて求められる許容緊急停止回数Np以上に設定された所定の前期基準許容回数Ksとし、累積通常停止回数Ncが下位境界値Bsを超えた後は、現時点の許容緊急停止回数Npを、現時点の累積通常停止回数Ncに応じて、許容緊急停止回数設定情報に基づいて求めるように構成されている。
更に、許容緊急停止回数導出手段52が、累積通常停止回数Ncが下位境界値Bsを超えた後、上位境界値Buに達するまでは、現時点の許容緊急停止回数Npを、現時点の累積通常停止回数Ncに応じて、許容緊急停止回数設定情報に基づいて求め、累積通常停止回数Ncが上位境界値Buを超えた後は、現時点の許容緊急停止回数Npを、累積通常停止回数Ncが上位境界値Buのときに許容緊急停止回数設定情報に基づいて求められる許容緊急停止回数Np以下に設定された所定の後期基準許容回数Kuとするように構成されている。
次に、図3〜図5に基づいて、下位境界値Bs、上位境界値Bu、前期基準許容回数Ks、後期基準許容回数Ku及び許容緊急停止回数設定情報の具体的な設定の仕方について、説明を加える。
先ず、上記の各項目を設定するために行った試験結果について説明する。
上述の起動用手順に基づいて水素含有ガス供給設備2及び反応用送風機3を起動させた後、水素含有ガス供給設備2及び反応用送風機3を通常停止処理により停止させる処理を繰り返し、通常停止処理の累積回数、即ち、累積通常停止回数Ncが所定の評価用回数になると、燃料電池1の発電効率低下率Rd(%)を求めながら、その発電効率低下率Rdが所定の設定低下率Lに達するまで、水素含有ガス供給設備2及び反応用送風機3を緊急停止処理により停止させた後、上述の起動用手順に基づいて水素含有ガス供給設備2及び反応用送風機3の起動を行う処理を繰り返すことにより、燃料電池1の緊急停止処理に対する耐性(以下、シャットダウン耐性と記載する場合がある)を評価した。
そして、発電効率低下率Rdが所定の設定低下率Lに最も近づいた時の緊急停止処理の累積回数を、許容緊急停止回数に設定した。
このシャットダウン耐性を評価する試験を、評価用回数を異ならせて複数回行った。
ちなみに、燃料電池1の発電効率は、改質器21に供給される原燃料ガスのエネルギー量に対する燃料電池1からの出力電力量の比率である。
設定低下率Lは、燃料電池1の性能が保持されていると評価できる発電効率低下率Rdの許容値に設定され、例えば、1%に設定される。
尚、説明を省略するが、発電効率低下率Rdが設定低下率Lに達すると、直ぐに、燃料電池システムの再起動を禁止するように構成されているのではなく、発電効率低下率Rdが設定低下率Lよりも大きい所定の値を超えると、燃料電池システムの再起動を禁止するように構成されている。
ちなみに、図4、図5に、夫々、評価用回数(累積通常停止回数Nc)がN(1)回のとき、N(1)回よりも多いN(2)回のとき夫々のシャットダウン耐性試験の結果を示す
図4に示すように、評価用回数がN(1)回のときは、発電効率低下率Rdと緊急停止処理の累積回数、即ち、累積緊急停止回数Neとの関係は、以下の式1に示す一次関数に近似することができる。
Rd=a(1)×Ne+k(1)……………(式1)
但し、a(1)は負の実数であり、k(1)は正の実数である。
又、図5に示すように、評価用回数がN(2)回のときは、発電効率低下率Rdと累積緊急停止回数Neとの関係は、以下の式2に示す一次関数に近似することができる。
Rd=a(2)×Ne+k(2)……………(式2)
但し、a(2)は絶対値がa(1)の絶対値よりも大きい負の実数であり、k(2)は正の実数である。
評価用回数がN(1)回のときは、上記の式1により、累積緊急停止回数NeがN(3)回になると、発電効率低下率Rdが設定低下率Lに近づき、評価用回数がN(2)回のときは、上記の式2により、累積緊急停止回数NeがN(4)回になると、発電効率低下率Rdが設定低下率Lに近づく。
そして、発電効率低下率Rdが設定低下率Lに最も近づく累積緊急停止回数Neを許容緊急停止回数Npとすると、例えば、評価用回数がN(1)回のときは、許容緊急停止回数NpをN(3)回に、評価用回数がN(2)回のときは、許容緊急停止回数NpをN(4)回に夫々設定することができる。
評価用回数がN(1)回及びN(2)回以外のときのシャットダウン耐性試験の結果の図示及び説明は省略するが、N(1)回及びN(2)回以外の各評価用回数においても、許容緊急停止回数Npを設定した。
図3に、実線にて、評価用回数、即ち累積通常停止回数Ncに応じた許容緊急停止回数Npの設定結果を示す。
図3の実線にて示す試験結果により、累積通常停止回数Ncと許容緊急停止回数Npとの関係は、全般的には、累積通常停止回数Ncが増加するほど、許容緊急停止回数Npが漸次少なくなる関係であることを見出した。
更に、累積通常停止回数Ncが増加するほど許容緊急停止回数Npが少なくなる度合いは、累積通常停止回数Ncの範囲により異なることを見出した。
例えば、図3に示すように、累積通常停止回数Ncが所定の下位境界値Bsまでの範囲と、下位境界値Bsから所定の上位境界値Buまでの範囲と、上位境界値Buよりも多い範囲とで、記載順に、累積通常停止回数Ncが増加するほど許容緊急停止回数Npが少なくなる度合いが大きくなる。
即ち、累積通常停止回数Ncが増加するほど、許容緊急停止回数Npが漸次少なくなる形態の、累積通常停止回数Ncと許容緊急停止回数Npとの関係は、一次関数で近似することができ、その一次関数の勾配の絶対値が、累積通常停止回数Ncが下位境界値Bsまでの範囲のとき、下位境界値Bsから上位境界値Buまでの範囲のとき、上位境界値Buよりも多い範囲のときの順に大きくなる。
そこで、この実施形態では、図3において破線で示すように、累積通常停止回数Ncが下位境界値Bsから上位境界値Buまでの範囲では、累積通常停止回数Ncと許容緊急停止回数Npとの関係を近似した下記式3に示す一次関数の数式(即ち、許容緊急停止回数設定情報に相当し、以下、許容緊急停止回数導出式と記載する場合がある)に基づいて、現時点の許容緊急停止回数Npを現時点の累積通常停止回数Ncに応じて求めるようにした。
Np=a(3)×Nc+k(3)……………(式3)
但し、a(3)は、絶対値がa(1)の絶対値とa(2)の絶対値の間の負の実数であり、k(3)は正の実数である。
又、図3において破線で示すように、累積通常停止回数Ncが下位境界値Bsに達するまでは、現時点の許容緊急停止回数Npを、式3の許容緊急停止回数導出式に基づいて求められる、累積通常停止回数Ncが下位境界値Bsのときの許容緊急停止回数Npと同じ回数に設定された前期基準許容回数Ksに一律に設定するようにした。
更に、図3において破線で示すように、累積通常停止回数Ncが上位境界値Buを超えると、現時点の許容緊急停止回数Npを、式3の許容緊急停止回数導出式に基づいて求められる、累積通常停止回数Ncが上位境界値Buのときの許容緊急停止回数Npと同じ回数に設定された後期基準許容回数Kuに一律に設定するようにした。
次に、図2に示すフローチャートに基づいて、上述のようにして許容緊急停止回数Npを設定するための許容緊急停止回数設定処理、及び、警報処理における制御動作を説明する。
停止回数計数手段51は、通常停止処理が実行されると、現時点の累積通常停止回数Ncを計数し、緊急停止処理が実行されると、現時点の累積緊急停止回数Neを計数する(ステップ#1,2,6,7)。
許容緊急停止回数導出手段52は、停止回数計数手段51により現時点の累積通常停止回数Ncが計数される毎に、上述のように、現時点の許容緊急停止回数Npを求める(ステップ#3)。
通常停止処理が実行されて現時点の累積通常停止回数Ncを新たに計数することにより、新たに現時点の許容緊急停止回数Npを求めると(ステップ#1〜3)、あるいは、緊急停止処理が実行されることにより、新たに、現時点の累積緊急停止回数Neを計数すると(ステップ#1,6,7)、警報発報手段53は、現時点の累積緊急停止回数Neと現時点の許容緊急停止回数Npとを比較して、現時点の累積緊急停止回数Neが現時点の許容緊急停止回数Np以上になると、注意喚起情報を表示部62に表示する(ステップ#5)。つまり、この実施形態では、表示部62を警報手段9として機能させるように構成されている。ちなみに、注意喚起情報としては、例えば、頻繁な起動停止の回避を喚起するための情報や、メンテナンスを推奨する情報等が挙げられる。
尚、新たに累積通常停止回数Ncが計数されて、新たに現時点の許容緊急停止回数Npが求められることにより、現時点の累積緊急停止回数Neと現時点の許容緊急停止回数Npとを比較する場合は、直近で現時点の累積緊急停止回数Neとして計数した累積緊急停止回数Neを、現時点の累積緊急停止回数Neとする。
又、新たに現時点の累積緊急停止回数Neが計数されることにより、現時点の累積緊急停止回数Neと現時点の許容緊急停止回数Npとを比較する場合は、直近で現時点の許容緊急停止回数Npとして求めた許容緊急停止回数Npを、現時点の許容緊急停止回数Npとする。
〔別実施形態〕
次に別実施形態を説明する。
(イ) 現時点の許容緊急停止回数Npを求める方法としては、上記の実施形態において例示した方法、即ち、累積通常停止回数Ncが所定の下位境界値Bsに達するまでは、一律に前期基準許容回数Ksとし、累積通常停止回数Ncが下位境界値Bsを超えた後、上位境界値Buに達するまでは、累積通常停止回数Ncが増加するほど許容緊急停止回数Npが漸次少なくなる形態で設定された許容緊急停止回数設定情報に基づいて、現時点の累積通常停止回数Ncに応じて求め、累積通常停止回数Ncが上位境界値Buを超えた後は、一律に後期基準許容回数Kuとする方法に限定されるものではない。
例えば、累積通常停止回数Ncが下位境界値Bsに達するまででも、現時点の許容緊急停止回数Npを、現時点の累積通常停止回数Ncに応じて、許容緊急停止回数設定情報に基づいて求めるように構成しても良い。
又、累積通常停止回数Ncが上位境界値Buを超えた後でも、現時点の許容緊急停止回数Npを、現時点の累積通常停止回数Ncに応じて、許容緊急停止回数設定情報に基づいて求めるように構成しても良い。
ちなみに、累積通常停止回数Ncが下位境界値Bsに達するまでの許容緊急停止回数設定情報、及び、累積通常停止回数Ncが上位境界値Buを超えた後の許容緊急停止回数設定情報としては、夫々、例えば、図3に示す如き一次関数とすることができる。
又、現時点の許容緊急停止回数Npを、累積通常停止回数Ncの範囲に拘わらず、一つの共通の許容緊急停止回数設定情報(例えば、一次関数)に基づいて、現時点の累積通常停止回数Ncに応じて求めるように構成しても良い。
(ロ) 後期基準許容回数Kuを設定するに、上記の実施形態では、式3の許容緊急停止回数導出式に基づいて求められる、累積通常停止回数Ncが上位境界値Buのときの許容緊急停止回数Npと同じ回数に設定したが、その回数よりも少ない回数に設定しても良い。この場合は、累積通常停止回数Ncがかなり多くなって、燃料電池システムの劣化が比較的進行している状態では、早めに警報処理を実行して、使用者に対して、早めに頻繁な起動・停止を控えるよう注意喚起することができるので、使用可能期間を一層長期化することができる。
(ハ) シャットダウン耐性評価試験において、許容緊急停止回数Npを設定するための発電効率低下率Rdである設定低下率Lは、上記の実施形態において例示した1%に限定されるものではなく、1%よりも小さく、あるいは、大きく設定しても良い。
(ニ) 異常検知用センサ8の具体例としては、上記の実施形態において例示した電池温度センサ81に限定されるものではなく、例えば、改質器21の改質触媒の温度を検出する改質触媒温度センサ、燃料電池1の水素含有ガスや空気のガス流路の圧力を検出するガス流路圧力センサ等を設けることができる。そして、異常検知用センサ8として、電池温度センサ81、改質触媒温度センサ及びガス流路圧力センサ等、複数のセンサを設けて、これら複数のセンサ夫々の検出情報に基づいて、燃料電池システムの異常を検知するように構成しても良い。
(ホ) 通常停止処理における停止用手順は、上記の実施形態において例示した手順に限定されるものではなく、公知の各種の手順を採用することができる。
(ヘ) 本発明を適用可能な燃料電池システムは、上記の実施形態のように、固体酸化物型の燃料電池1を備えたものに限定されるものではなく、電解質層に高分子膜を用いた固体高分子型等、種々の型式の燃料電池を備えた燃料電池システムに適用することができる。
以上説明したように、使用可能期間が耐用年数よりも短くなるのを的確に回避可能に使用し得る燃料電池システムの制御方法及び燃料電池システムを提供することができる。
1 燃料電池
2 水素含有ガス供給設備(水素含有ガス供給手段)
3 反応用送風機(酸素含有ガス供給手段)
5 制御部(制御手段)
9 警報手段
51 停止回数計数手段
52 許容緊急停止回数導出手段
53 警報発報手段
Bs 下位境界値
Bu 上位境界値
Ks 前期基準許容回数
Ku 後期基準許容回数
Nc 累積通常停止回数
Ne 累積緊急停止回数
Np 許容緊急停止回数

Claims (5)

  1. 水素含有ガス供給手段により供給される水素含有ガスと酸素含有ガス供給手段により供給される酸素含有ガスとの電気化学反応により発電する燃料電池と、
    運転を制御する制御手段とが設けられ、
    前記制御手段が、通常停止指令に基づいて、所定の停止用手順に基づいて前記水素含有ガス供給手段及び前記酸素含有ガス供給手段を停止する通常停止処理を実行し、緊急停止指令に基づいて、前記停止用手順を経ることなく前記水素含有ガス供給手段及び前記酸素含有ガス供給手段を停止する緊急停止処理を実行するように構成された燃料電池システムの制御方法であって、
    前記通常停止処理が実行された回数を累積通常停止回数として計数し、前記緊急停止処理が実行された回数を累積緊急停止回数として計数し、
    前記累積通常停止回数が増加するほど、許容可能な前記緊急停止処理の累積実行回数の上限値である許容緊急停止回数が少なくなる形態で、前記累積通常停止回数と前記許容緊急停止回数との関係として設定された許容緊急停止回数設定情報に基づいて、現時点の累積通常停止回数に対応する現時点の許容緊急停止回数を求め、
    現時点の累積緊急停止回数が現時点の許容緊急停止回数以上になると、警報手段を作動させる警報処理を実行する燃料電池システムの制御方法。
  2. 前記累積通常停止回数が所定の下位境界値に達するまでは、現時点の許容緊急停止回数を、前記累積通常停止回数が前記下位境界値のときに前記許容緊急停止回数設定情報に基づいて求められる前記許容緊急停止回数以上に設定された所定の前期基準許容回数とし、
    前記累積通常停止回数が前記下位境界値を超えた後は、現時点の許容緊急停止回数を、現時点の累積通常停止回数に応じて、前記許容緊急停止回数設定情報に基づいて求める請求項1に記載の燃料電池システムの制御方法。
  3. 前記累積通常停止回数が前記下位境界値を超えた後、上位境界値に達するまでは、現時点の許容緊急停止回数を、現時点の累積通常停止回数に応じて、前記許容緊急停止回数設定情報に基づいて求め、
    前記累積通常停止回数が前記上位境界値を超えた後は、現時点の許容緊急停止回数を、前記累積通常停止回数が前記上位境界値のときに前記許容緊急停止回数設定情報に基づいて求められる前記許容緊急停止回数以下に設定された所定の後期基準許容回数とする請求項2に記載の燃料電池システムの制御方法。
  4. 前記燃料電池が、固体酸化物を電解質として用いた固体酸化物型である請求項1〜3のいずれか1項に記載の燃料電池システムの制御方法。
  5. 水素含有ガス供給手段により供給される水素含有ガスと酸素含有ガス供給手段により供給される酸素含有ガスとの電気化学反応により発電する燃料電池と、
    運転を制御する制御手段とが設けられ、
    前記制御手段が、通常停止指令に基づいて、所定の停止用手順に基づいて前記水素含有ガス供給手段及び前記酸素含有ガス供給手段を停止する通常停止処理を実行し、緊急停止指令に基づいて、前記停止用手順を経ることなく前記水素含有ガス供給手段及び前記酸素含有ガス供給手段を停止する緊急停止処理を実行するように構成された燃料電池システムであって、
    前記通常停止処理が実行された回数を累積通常停止回数として計数し、前記緊急停止処理が実行された回数を累積緊急停止回数として計数する停止回数計数手段と、
    前記累積通常停止回数が増加するほど、許容可能な前記緊急停止処理の累積実行回数の上限値である許容緊急停止回数が少なくなる形態で、前記累積通常停止回数と前記許容緊急停止回数との関係として設定された許容緊急停止回数設定情報に基づいて、現時点の累積通常停止回数に対応する現時点の許容緊急停止回数を求める許容緊急停止回数導出手段と、
    前記停止回数計数手段により計数された現時点の累積緊急停止回数が、前記許容緊急停止回数導出手段により求められた現時点の許容緊急停止回数以上になると、警報手段を作動させる警報処理を実行する警報発報手段とが設けられている燃料電池システム。
JP2014069984A 2014-03-28 2014-03-28 燃料電池システムの制御方法及び燃料電池システム Expired - Fee Related JP6238816B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014069984A JP6238816B2 (ja) 2014-03-28 2014-03-28 燃料電池システムの制御方法及び燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014069984A JP6238816B2 (ja) 2014-03-28 2014-03-28 燃料電池システムの制御方法及び燃料電池システム

Publications (2)

Publication Number Publication Date
JP2015191863A JP2015191863A (ja) 2015-11-02
JP6238816B2 true JP6238816B2 (ja) 2017-11-29

Family

ID=54426182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014069984A Expired - Fee Related JP6238816B2 (ja) 2014-03-28 2014-03-28 燃料電池システムの制御方法及び燃料電池システム

Country Status (1)

Country Link
JP (1) JP6238816B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11557777B2 (en) 2017-07-28 2023-01-17 Kyocera Corporation Fuel cell system, equipment management method, management apparatus, and equipment management system
CN110945695A (zh) * 2017-07-28 2020-03-31 京瓷株式会社 燃料电池系统、设备管理方法、管理装置和设备管理系统
JP7221036B2 (ja) * 2018-12-05 2023-02-13 東京瓦斯株式会社 燃料電池装置および燃料電池装置の制御方法、制御プログラム
JP7504051B2 (ja) 2021-03-25 2024-06-21 大阪瓦斯株式会社 電力供給システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5406426B2 (ja) * 2006-09-28 2014-02-05 アイシン精機株式会社 燃料電池システム
JP2010267561A (ja) * 2009-05-18 2010-11-25 Panasonic Corp 熱電併給装置とその制御方法
JP2013164956A (ja) * 2012-02-10 2013-08-22 Jx Nippon Oil & Energy Corp 固体酸化物形燃料電池システム、及び、セル温度センサ故障時のシステム停止方法
JP5911366B2 (ja) * 2012-04-23 2016-04-27 大阪瓦斯株式会社 燃料電池システム及びその制御方法

Also Published As

Publication number Publication date
JP2015191863A (ja) 2015-11-02

Similar Documents

Publication Publication Date Title
JP6238816B2 (ja) 燃料電池システムの制御方法及び燃料電池システム
US9685672B2 (en) Hydrogen generation apparatus, fuel cell system including the same, method of operating hydrogen generation apparatus and method of operating fuel cell system
KR101679971B1 (ko) 연료전지시스템의 공기공급계 고장진단장치 및 그 고장진단방법
JP2007035446A (ja) 燃料電池システムおよびガス漏れ検知装置
US20120021313A1 (en) Fuel cell system and method for operating the same
JP5911366B2 (ja) 燃料電池システム及びその制御方法
EP2948576B1 (en) A process for monitoring, protection and safety shut-down of an electrolyser system
JP7119716B2 (ja) 燃料電池システム
JP6183414B2 (ja) 燃料電池システム
JP2018160363A (ja) 燃料電池システム
JP7257639B2 (ja) 燃料電池システム
JP4212266B2 (ja) 燃料電池発電システムおよび燃料電池発電システムの制御方法
JP5112107B2 (ja) 燃料電池発電システム
JP2020161306A (ja) 燃料電池システム
JP6719098B2 (ja) 燃料電池システム及び燃料電池システムの運転方法
JP2014002924A (ja) 燃料電池システム
JP6931793B2 (ja) 燃料電池システム
JP6628153B2 (ja) 水素生成装置及びそれを備えた燃料電池システム
JP6759151B2 (ja) 燃料電池装置及び制御方法
JP5693358B2 (ja) 燃料電池システム
WO2017204278A1 (ja) 水素生成装置及びそれを備えた燃料電池システムならびに水素生成装置の運転方法
JP7055042B2 (ja) エネルギー供給システム
JP6155795B2 (ja) 燃料電池システム
JP2015111013A (ja) 発電システム及びその運転方法
JP5982648B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171031

R150 Certificate of patent or registration of utility model

Ref document number: 6238816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees