JP6233499B2 - ヒートポンプ装置 - Google Patents

ヒートポンプ装置 Download PDF

Info

Publication number
JP6233499B2
JP6233499B2 JP2016507142A JP2016507142A JP6233499B2 JP 6233499 B2 JP6233499 B2 JP 6233499B2 JP 2016507142 A JP2016507142 A JP 2016507142A JP 2016507142 A JP2016507142 A JP 2016507142A JP 6233499 B2 JP6233499 B2 JP 6233499B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
heat exchanger
pressure
heating operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016507142A
Other languages
English (en)
Other versions
JPWO2015136595A1 (ja
Inventor
啓輔 高山
啓輔 高山
森下 国博
国博 森下
徹 小出
徹 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2015136595A1 publication Critical patent/JPWO2015136595A1/ja
Application granted granted Critical
Publication of JP6233499B2 publication Critical patent/JP6233499B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/227Temperature of the refrigerant in heat pump cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/242Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/335Control of pumps, e.g. on-off control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/385Control of expansion valves of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/421Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Computer Hardware Design (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、対象流体を加熱するヒートポンプ装置に関する。
下記特許文献1には、次のような給湯サイクル装置が開示されている。給湯サイクル装置は、圧縮機、ガスクーラ、膨張弁、蒸発器等を備える。圧縮機は、密閉容器内に圧縮要素及び電動要素を有する。圧縮機は、低圧の冷媒を圧縮要素に直接導く吸入管と、圧縮要素で圧縮した高圧の冷媒を密閉容器内に放出することなく密閉容器外に吐出する吐出管と、吐出管より吐出され熱交換した後の冷媒を密閉容器内に再度導入する冷媒再導入管と、この冷媒再導入管より密閉容器内に導入され電動要素を通過した後の冷媒を密閉容器外に吐出する冷媒再吐出管とを備える。ガスクーラは、内部において、給湯用の水が流通する水配管と、圧縮冷媒が流通する冷媒配管とが熱交換することで、冷媒配管の冷媒により水配管の水の温度を上昇させるものである。冷媒配管のうち、吐出管に接続する高温側冷媒配管がガスクーラの水配管の出口側と熱交換し、冷媒再吐出管に接続する低温側冷媒配管がガスクーラの水配管の入口側と熱交換する。
下記特許文献2には、次のようなヒートポンプ給湯機が開示されている。ヒートポンプ給湯機は、圧縮機、水冷媒熱交換器、膨張弁、蒸発器が環状に接続されたヒートポンプサイクルを有する。ヒートポンプ給湯機は、貯湯運転モードと湯張り運転モードとを有する。湯張り運転モードにおいては、ヒートポンプサイクルを動作させ、貯湯タンクから供給される水と、ヒートポンプサイクルの水冷媒熱交換器から流出する水とを、湯張り混合弁によって混合させ、混合させた水を浴槽に供給し、出湯温度を貯湯運転モードよりも低温とする。
日本特開2006−132427号公報 日本特開2011−21828号公報
特許文献1の装置で、特許文献2のような湯張り運転モードを実施すると、圧縮機の吐出圧力が臨界点以下になり、高温側冷媒配管で冷媒が気液二相状態まで凝縮し、密閉容器に気液二相冷媒が流入する可能性がある。吐出管は密閉容器の上部に付いている。気液二相冷媒が密閉容器に流入すると、密閉容器内で気液分離され、ガス冷媒のみが吐出管から流出する。その結果、密閉容器内に液冷媒が蓄積されてしまい、冷凍サイクル全体が冷媒不足になる。また、密閉容器内に溜まった液冷媒が、圧縮要素あるいは電動要素の熱で加熱されると、冷凍機油と混合している冷媒が蒸発することで、冷凍機油が発泡し、冷凍機油が冷媒とともに吐出管から流出する。その結果、密閉容器内の冷凍機油が不足するおそれがある。
本発明は、上述のような課題を解決するためになされたもので、低加熱運転のときに密閉容器の内部に液冷媒が溜まることを抑制できるヒートポンプ装置を提供することを目的とする。
本発明のヒートポンプ装置は、密閉容器と、密閉容器の内部に設けられた圧縮要素と、密閉容器の外部から吸入される低圧冷媒を密閉容器の内部空間へ放出せずに圧縮要素へ導く第一吸入通路と、圧縮要素により圧縮された高圧冷媒を密閉容器の内部空間へ放出せずに密閉容器の外部へ吐出する第一吐出通路と、第一吐出通路から吐出された後に熱交換をした高圧冷媒を圧縮せずに密閉容器の内部空間へ放出する第二吸入通路と、密閉容器の内部空間の高圧冷媒を圧縮せずに密閉容器の外部へ吐出する第二吐出通路とを有する圧縮機と、第一吐出通路から吐出された高圧冷媒の熱で対象流体を加熱する第一熱交換器と、第二吐出通路から吐出された高圧冷媒の熱で対象流体を加熱する第二熱交換器と、第二熱交換器を通過した高圧冷媒を膨張させて低圧冷媒にする膨張部と、膨張部を通過した低圧冷媒を蒸発させる蒸発器と、高加熱運転と、第一熱交換器及び第二熱交換器の合計の加熱量が高加熱運転に比べて小さい低加熱運転とを行う制御手段と、を備え、制御手段は、低加熱運転のとき、第二吸入通路の冷媒の状態が過熱ガス状態になるように、膨張部の開度、圧縮機の容量、及び対象流体の流量のうちの少なくとも一つを制御し、高加熱運転のときには圧縮要素から吐出される冷媒の圧力が臨界圧力を超える圧力になるとともに第一熱交換器から出る対象流体の温度が冷媒の臨界温度を超える温度になり、低加熱運転のときには圧縮要素から吐出される冷媒の圧力が臨界圧力以下の圧力になるとともに第一熱交換器から出る対象流体の温度が臨界温度より低い温度になり、制御手段は、低加熱運転のとき、圧縮要素から吐出される冷媒の温度と、第二吸入通路の冷媒の温度と、第一熱交換器から出る対象流体の温度とに基づいて、第二吸入通路の冷媒の過熱度を推定し、その推定結果に基づいて、膨張部の開度、圧縮機の容量、及び対象流体の流量のうちの少なくとも一つを制御するものである。
また、本発明のヒートポンプ装置は、密閉容器と、密閉容器の内部に設けられた圧縮要素と、密閉容器の外部から吸入される低圧冷媒を密閉容器の内部空間へ放出せずに圧縮要素へ導く第一吸入通路と、圧縮要素により圧縮された高圧冷媒を密閉容器の内部空間へ放出せずに密閉容器の外部へ吐出する第一吐出通路と、第一吐出通路から吐出された後に熱交換をした高圧冷媒を圧縮せずに密閉容器の内部空間へ放出する第二吸入通路と、密閉容器の内部空間の高圧冷媒を圧縮せずに密閉容器の外部へ吐出する第二吐出通路とを有する圧縮機と、第一吐出通路から吐出された高圧冷媒の熱で対象流体を加熱する第一熱交換器と、第二吐出通路から吐出された高圧冷媒の熱で対象流体を加熱する第二熱交換器と、第二熱交換器を通過した高圧冷媒を膨張させて低圧冷媒にする膨張部と、膨張部を通過した低圧冷媒を蒸発させる蒸発器と、高加熱運転と、第一熱交換器及び第二熱交換器の合計の加熱量が高加熱運転に比べて小さい低加熱運転とを行う制御手段と、を備え、制御手段は、低加熱運転のとき、第二吸入通路の冷媒の状態が過熱ガス状態になるように、膨張部の開度、圧縮機の容量、及び対象流体の流量のうちの少なくとも一つを制御し、高加熱運転のときには圧縮要素から吐出される冷媒の圧力が臨界圧力を超える圧力になるとともに第一熱交換器から出る対象流体の温度が冷媒の臨界温度を超える温度になり、低加熱運転のときには圧縮要素から吐出される冷媒の圧力が臨界圧力以下の圧力になるとともに第一熱交換器から出る対象流体の温度が臨界温度より低い温度になり、制御手段は、低加熱運転のとき、圧縮要素に吸入される冷媒の温度と、圧縮要素から吐出される冷媒の温度と、蒸発器の蒸発飽和温度とに基づいて、第二吸入通路の冷媒の過熱度を推定し、その推定結果に基づいて、膨張部の開度、圧縮機の容量、及び対象流体の流量のうちの少なくとも一つを制御するものである。
本発明のヒートポンプ装置によれば、低加熱運転のときに密閉容器の内部に液冷媒が溜まることを抑制することが可能となる。
本発明の実施の形態1のヒートポンプ装置を示す構成図である。 本発明の実施の形態1のヒートポンプ装置が備えるヒートポンプユニットを示す構成図である。 本発明の実施の形態1のヒートポンプ装置の高加熱運転の圧力−エンタルピ線図である。 本発明の実施の形態1のヒートポンプ装置の高加熱運転での第一熱交換器及び第二熱交換器での冷媒及び水の温度変化の一例を表す図である。 本発明の実施の形態1のヒートポンプ装置の高加熱運転での制御装置の制御動作を示すフローチャートである。 本発明の実施の形態1のヒートポンプ装置の低加熱運転の圧力−エンタルピ線図である。 本発明の実施の形態1の低加熱運転での第一熱交換器及び第二熱交換器での冷媒及び水の温度変化の一例を表す図である。 本発明の実施の形態1のヒートポンプ装置の低加熱運転での制御装置の制御動作を示すフローチャートである。 本発明の実施の形態2のヒートポンプ装置の低加熱運転での制御装置の制御動作を示すフローチャートである。 本発明の実施の形態3のヒートポンプ装置の低加熱運転での制御装置の制御動作を示すフローチャートである。 本発明の実施の形態4のヒートポンプ装置が備えるヒートポンプユニットを示す構成図である。 本発明の実施の形態4のヒートポンプ装置の低加熱運転での制御装置の制御動作を示すフローチャートである。
以下、図面を参照して本発明の実施の形態について説明する。なお、各図において共通する要素には、同一の符号を付して、重複する説明を省略する。また、本発明は、以降に示す各実施の形態のあらゆる組み合わせを含むものとする。
実施の形態1.
図1は、本発明の実施の形態1のヒートポンプ装置を示す構成図である。図1に示すように、本実施の形態1のヒートポンプ装置1は、水を加熱するヒートポンプユニット2と、貯湯タンク10と、制御装置50とを有する。貯湯タンク10は、上側が高温で下側が低温になる温度成層を形成して水を貯留する。貯湯タンク10の下部と、ヒートポンプユニット2の入口12とは、入口配管11を介して接続されている。入口配管11の途中には、ポンプ13が設置されている。貯湯タンク10の上部には、上部配管14の一端が接続されている。上部配管14の他端側は、二つに分岐して、給湯混合弁15の第一入口と風呂混合弁16の第一入口とにそれぞれ接続されている。ヒートポンプユニット2の出口17は、出口配管18を介して、上部配管14の途中の位置に接続されている。ヒートポンプユニット2の詳細については後述する。本実施の形態1では、加熱する対象流体が水である場合について説明するが、本発明における対象流体は、例えばブライン、不凍液など、水以外の流体でも良い。
貯湯タンク10の下部には、水道等の水源からの水を供給する給水配管19が接続されている。給水配管19の途中には、水源圧力を所定圧力に減圧する減圧弁20が設置されている。給水配管19から水が流入することで、貯湯タンク10内は常に満水状態に維持される。貯湯タンク10と減圧弁20との間の給水配管19から給水配管21が分岐している。給水配管21の下流側は、二つに分岐して、給湯混合弁15の第二入口と風呂混合弁16の第二入口とにそれぞれ接続されている。給湯混合弁15の出口は、給湯配管22を介して、給湯栓23に接続されている。給湯配管22には、給湯流量検知手段24と、給湯温度センサ25とが設置されている。風呂混合弁16の出口は、風呂配管26を介して、浴槽27に接続されている。風呂配管26には、開閉弁28と、風呂温度センサ29とが設置されている。ヒートポンプユニット2の出口17の近傍の出口配管18には、ヒートポンプユニット2から出る水の温度であるヒートポンプ出口温度を検知するヒートポンプ出口温度センサ30が設置されている。ヒートポンプ出口温度センサ30は、ヒートポンプユニット2の内部の配管(後述する水流路48)に設けても良い。なお、以下の説明では、ヒートポンプユニット2に入る水の温度を「ヒートポンプ入口温度」と称する。
制御装置50は、例えばマイクロコンピュータ等により構成される制御手段である。制御装置50は、ROM(Read Only Memory)、RAM(Random Access Memory)、不揮発性メモリ等を含む記憶部、記憶部に記憶されたプログラムに基いて演算処理を実行する演算処理装置(CPU)、演算処理装置に対して外部の信号を入出力する入出力ポート、時刻を計時するタイマー等を備える。制御装置50は、ヒートポンプ装置1が備える各種のアクチュエータ及びセンサとそれぞれ電気的に接続される。また、制御装置50は、操作部60と相互に通信可能に接続される。使用者は、操作部60を操作することで、給湯温度、浴槽湯量、浴槽温度等を設定したり、浴槽湯張り時刻をタイマー予約したりすることができる。制御装置50は、各センサで検知される情報及び操作部60からの指示情報などに基づき、各アクチュエータの動作を記憶部に記憶されたプログラムに従って制御することにより、ヒートポンプ装置1の運転を制御する。
次に、貯湯運転について説明する。貯湯運転は、貯湯タンク10内の貯湯量及び蓄熱量を増加させる運転である。貯湯運転時には、制御装置50は、ヒートポンプユニット2及びポンプ13を稼動する。貯湯運転では、貯湯タンク10の下部からポンプ13により導出された低温水が、入口配管11を通ってヒートポンプユニット2に送られ、ヒートポンプユニット2で加熱され、高温水になる。この高温水が、出口配管18及び上部配管14を通り、貯湯タンク10の上部に流入する。このような貯湯運転により、貯湯タンク10内に上側から高温水が溜まっていく。
貯湯運転では、制御装置50は、ヒートポンプ出口温度センサ30で検知されるヒートポンプ出口温度が例えば65℃〜90℃程度になるように制御する。ヒートポンプユニット2を流れる水の流量が高くなるようにポンプ13を制御することでヒートポンプ出口温度が低下する。ヒートポンプユニット2を流れる水の流量が低くなるようにポンプ13を制御することでヒートポンプ出口温度が上昇する。また、貯湯運転では、制御装置50は、ヒートポンプユニット2が高加熱運転を行うように制御する。ヒートポンプユニット2の高加熱運転とは、ヒートポンプユニット2の加熱能力を所定の定格能力にする運転である。
次に、給湯運転について説明する。給湯運転は、給湯栓23に給湯する運転である。使用者が給湯栓23を開くと、給水配管19からの水が水源圧力により貯湯タンク10内の下部に流入することで、貯湯タンク10内の上部の高温水が上部配管14へ流出する。給湯混合弁15において、給水配管21から供給される低温水と、貯湯タンク10から上部配管14を通って供給される高温水とが混合される。この混合水が給湯配管22を通って給湯栓23から外部に放出される。このとき、混合水の通過が給湯流量検知手段24で検知されると、制御装置50は、給湯温度センサ25で検知される給湯温度が、使用者によって予め操作部60で設定された給湯温度設定値になるように、給湯混合弁15の混合比率を制御する。
次に、湯張り運転について説明する。湯張り運転は、浴槽27に湯を溜める運転である。使用者が操作部60で湯張り運転の起動操作を実施した場合、または、タイマー予約された時刻になった場合に、湯張り運転が開始される。湯張り運転時には、制御装置50は、ヒートポンプユニット2及びポンプ13を稼動し、開閉弁28を開状態にする。給水配管19からの水が水源圧力により貯湯タンク10の下部に流入することで、貯湯タンク10の上部の高温水が上部配管14へ流出する。また、貯湯タンク10の下部からポンプ13により導出された低温水が、入口配管11を通ってヒートポンプユニット2に送られ、ヒートポンプユニット2で加熱される。ヒートポンプユニット2で加熱された水は、出口配管18を通り、上部配管14に流入する。貯湯タンク10から供給される高温水とヒートポンプユニット2で加熱された水とが上部配管14で合流し、風呂混合弁16に供給される。風呂混合弁16において、給水配管21から供給される低温水と、上部配管14を通って供給される湯とが混合される。この混合水は風呂配管26を通り、開閉弁28を通過し、浴槽27内へ放出される。このとき、制御装置50は、風呂温度センサ29で検知される給湯温度が、使用者によって予め操作部60で設定された浴槽温度設定値になるように、風呂混合弁16の混合比率を制御する。
このように、本実施の形態1の湯張り運転では、貯湯タンク10に貯えた高温水だけでなく、ヒートポンプユニット2で加熱した水を補助的に用いることで、浴槽27に湯を供給する。湯張り運転では、制御装置50は、ヒートポンプ出口温度センサ30で検知されるヒートポンプ出口温度が浴槽温度設定値よりも低くなるように制御する。また、湯張り運転では、制御装置50は、ヒートポンプユニット2が低加熱運転を行うように制御する。ヒートポンプユニット2の低加熱運転とは、ヒートポンプユニット2の加熱能力を高加熱運転に比べて低くする運転である。
ここで、湯張り能力について説明する。湯張り能力とは、所定の浴槽容量、給水温度及び湯張り流量の条件下で、目標浴槽温度で浴槽を満たす場合に必要とされる単位時間当たりの熱エネルギーである。例えば、浴槽容量180L、給水温度9℃及び目標浴槽温度45℃とし、湯張り流量を10L/min〜20L/minとすると、標準的な湯張り能力は25kW〜50kWとなる。一方、ヒートポンプユニット2の定格加熱能力は、例えば4.5kW〜9kW程度である。ヒートポンプユニット2の加熱能力のみでは、標準的な湯張り能力を満足させることができない。標準的な湯張り能力を満足するには、貯湯タンク10に貯えた高温水を用いる必要がある。
ヒートポンプユニット2は、加熱能力を低くして運転するほど、COP(Coefficient Of Performance)が高くなる特性を有する。また、ヒートポンプユニット2は、ヒートポンプ出口温度が低くなるほどCOPが高くなる特性を有する。このため、低加熱運転のCOPは、高加熱運転のCOPより高くなる。低加熱運転のCOPをC1とし、高加熱運転のCOPをC2とし、湯張り運転の実質的なCOPである湯張りCOPをC3とし、湯張り能力に対するヒートポンプユニット2の低加熱運転の加熱能力の比率をRhpとすると、湯張りCOPは次式で表される。
C3=C1×Rhp+C2×(1−Rhp) ・・・(1)
上述したように、貯湯運転では高加熱運転を行う。すなわち、貯湯タンク10内の高温水は、高加熱運転で生成されたものである。したがって、湯張り運転で、ヒートポンプユニット2を稼動せず、貯湯タンク10に貯えた高温水だけを用いて浴槽27に湯を供給した場合には、湯張りCOPは高加熱運転のCOPに等しくなる。つまり、上記(1)式でRhp=0とすると、C3=C2となる。これに対し、本実施の形態1の湯張り運転によれば、低加熱運転を行い、ヒートポンプユニット2で加熱した水を補助的に用いることで、湯張りCOPを高加熱運転のCOPより高くすることができる。つまり、上記(1)式でRhp>0であるので、C3>C2となる。このように、本実施の形態1では、低加熱運転を伴う湯張り運転を行うことで、前述の湯張り能力を確保しつつ、湯張りCOPを向上することができる。また、湯張り運転時にヒートポンプユニット2を稼動することで、湯張りに必要な熱エネルギーの一部をまかなうことができる。このため、貯湯タンク10に確保すべき蓄熱量を削減できる。よって、貯湯タンク10からの放熱ロスを低減でき、全体としてのエネルギー効率をさらに向上できる。また、貯湯タンク10に確保すべき蓄熱量を削減できるため、貯湯タンク10の容量を減らすことができ、貯湯タンク10の小型化が図れる。
図2は、本発明の実施の形態1のヒートポンプ装置1が備えるヒートポンプユニット2を示す構成図である。図2に示すように、ヒートポンプユニット2は、圧縮機3と、第一熱交換器4と、第二熱交換器5と、膨張弁6と、蒸発器7とを冷媒配管により接続した冷媒回路を備える。第一熱交換器4及び第二熱交換器5は、冷媒の熱で水を加熱する熱交換器である。蒸発器7は、空気と冷媒との熱交換を行う空気冷媒熱交換器で構成されている。ヒートポンプユニット2は、蒸発器7に送風する送風機8と、高圧冷媒と低圧冷媒との熱交換を行う高低圧熱交換器9とを更に備える。本実施の形態1では、冷媒として二酸化炭素を使用する。なお、本発明における蒸発器7は、空気と冷媒とを熱交換するものに限らず、例えば、地下水、太陽熱温水などと冷媒とを熱交換するものでも良い。
圧縮機3は、密閉容器31と、密閉容器31の内部に設けられた圧縮要素32及び電動要素33と、第一吸入通路34と、第一吐出通路35と、第二吸入通路36と、第二吐出通路37とを有する。電動要素33の下側に圧縮要素32が配置されている。密閉容器31の内部には、圧縮要素32と電動要素33との間の内部空間38と、電動要素33の上側の内部空間39とが設けられている。第一吸入通路34は、圧縮機3に吸入される低圧冷媒を密閉容器31の内部空間38,39へ放出せず、この低圧冷媒を直接圧縮要素32へ導く。圧縮要素32は、低圧冷媒を圧縮し、高圧冷媒にする。圧縮要素32は、電動要素33により駆動される。電動要素33は、固定子33a及び回転子33bを有する電動機である。圧縮要素32は、圧縮した高圧冷媒を第一吐出通路35へ吐出する。第一吐出通路35は、この高圧冷媒を密閉容器31の内部空間38,39へ放出せず、この高圧冷媒を密閉容器31の外部へ直接吐出する。第一吐出通路35から吐出された高圧冷媒は、冷媒流路40を通って、第一熱交換器4に流入する。第一熱交換器4にて水で冷却された高圧冷媒は、冷媒流路41及び第二吸入通路36を通り、圧縮機3に再吸入される。
第二吸入通路36の出口は、電動要素33と圧縮要素32との間の内部空間38に位置する。第二吸入通路36は、圧縮機3に再吸入される高圧冷媒を圧縮せず、この高圧冷媒を電動要素33と圧縮要素32との間の内部空間38へ放出する。第二吐出通路37の入口は、電動要素33の上側の内部空間39に位置する。第二吸入通路36の出口から電動要素33と圧縮要素32との間の内部空間38へ放出された高圧冷媒は、電動要素33の回転子33bと固定子33aとの隙間等を通って、電動要素33の上側の内部空間39に至る。このとき、高温になっている電動要素33が高圧冷媒により冷却され、高圧冷媒は電動要素33の熱で加熱される。第二吐出通路37は、電動要素33の上側の内部空間39の高圧冷媒を圧縮せず、この高圧冷媒を密閉容器31の外部へ吐出する。
第二吐出通路37から吐出された高圧冷媒は、冷媒流路42を通って、第二熱交換器5に流入する。第二熱交換器5にて水で冷却された高圧冷媒は、冷媒流路43を通って、膨張弁6に至る。膨張弁6は、高圧冷媒を膨張させて低圧冷媒にする膨張部である。膨張弁6で膨張した低圧冷媒は、冷媒流路44を通って、蒸発器7に流入する。蒸発器7では、低圧冷媒は、送風機8によって導かれた外気と熱交換することで加熱され、蒸発する。蒸発器7を通過した低圧冷媒は、冷媒流路45を通って圧縮機3の第一吸入通路34に至り、圧縮機3に吸入される。高低圧熱交換器9は、冷媒流路43の途中の高圧冷媒と、冷媒流路45の途中の低圧冷媒とを熱交換させる。
以下の説明では、圧縮要素32から吐出される冷媒の圧力を「圧縮要素吐出圧力」と称し、圧縮要素32に吸入される冷媒の圧力を「圧縮要素吸入圧力」と称し、圧縮要素32から吐出される冷媒の温度を「圧縮要素吐出温度」と称し、圧縮要素32に吸入される冷媒の温度を「圧縮要素吸入温度」と称する。第一吐出通路35から吐出される高圧冷媒の圧力は圧縮要素吐出圧力に等しい。第一吐出通路35から吐出された高圧冷媒は、第一熱交換器4を経由して第二吸入通路36に至るまでの圧力損失により、圧力が低下する。このため、密閉容器31の内部空間38の高圧冷媒の圧力は、第一吐出通路35から吐出される高圧冷媒の圧力すなわち圧縮要素吐出圧力に比べて、やや低くなる。
ヒートポンプユニット2は、入口12から流入した水を第二熱交換器5に導く水流路46と、第二熱交換器5を通過した水を第一熱交換器4に導く水流路47と、第一熱交換器4を通過した水を出口17に導く水流路48とを更に備える。加熱運転時には、入口12から流入した水が水流路46を通って第二熱交換器5に流入し、第二熱交換器5内で冷媒の熱により加熱される。第二熱交換器5内で加熱された水は、第一熱交換器4に流入し、第一熱交換器4内で冷媒の熱により更に加熱される。第一熱交換器4内で更に加熱された水は、水流路48を通って出口17に至り、出口配管18へ流れる。
第一吐出通路35または冷媒流路40には、圧縮要素吐出温度を検知する吐出温度センサ51が設けられている。第二吸入通路36または冷媒流路41には、第二吸入通路36の冷媒温度を検知する冷媒温度センサ52が設けられている。
次に、貯湯運転時の高加熱運転についてさらに説明する。前述したように、高加熱運転では、制御装置50は、第一熱交換器4から出る水の温度すなわちヒートポンプ出口温度を例えば65℃〜90℃程度に制御する。図3は、高加熱運転の圧力−エンタルピ線図である。図3中のAからHは、図2中のAからHに対応する。図3に示すように、冷媒は、圧縮要素32で、臨界圧力を超える圧力まで圧縮される(A→B)。この超臨界状態の高圧冷媒は、第一熱交換器4で冷却される(B→C)。第二吸入通路36から密閉容器31の内部空間38へ吸入される高圧冷媒の状態は図3中のCである。この高圧冷媒は、内部空間39へ至る間に電動要素33の熱で加熱される(C→D)。第二吐出通路37から吐出される高圧冷媒の状態は図3中のDである。この高圧冷媒は、第二熱交換器5で冷却される(D→E)。その後、高圧冷媒は、高低圧熱交換器9でさらに冷却される(E→F)。高低圧熱交換器9を通過した高圧冷媒は、膨張弁6で減圧され、低圧冷媒になる(F→G)。この低圧冷媒は、蒸発器7で蒸発する(G→H)。蒸発器7で蒸発した低圧冷媒は、高低圧熱交換器9で加熱される(H→A)。このような高加熱運転のヒートポンプ出口温度である65℃〜90℃は、冷媒である二酸化炭素の臨界温度に比較して十分に高い。高加熱運転では、圧縮要素吐出圧力、並びに、第一熱交換器4、密閉容器31及び第二熱交換器5の内部の冷媒の圧力は、臨界圧力を超える圧力になる。
図4は、高加熱運転での第一熱交換器4及び第二熱交換器5での冷媒及び水の温度変化の一例を表す図である。図4中のBからEは、図2及び図3中のBからEに対応する。図4の横軸は、第一熱交換器4及び第二熱交換器5の内部での位置を流路長の比で表す。すなわち、図4の横軸は、第一熱交換器4及び第二熱交換器5の水流路の全長を1とした場合の第二熱交換器5の水入口からの水流路長の比、あるいは第一熱交換器4及び第二熱交換器5の冷媒流路の全長を1とした場合の第二熱交換器5の冷媒出口からの冷媒流路長の比を表す。図4に示す例では、第二熱交換器5へ入る水の温度すなわちヒートポンプ入口温度は約9℃であり、第一熱交換器4から出る水の温度すなわちヒートポンプ出口温度は約65℃である。第一熱交換器4へ入る冷媒の温度すなわち圧縮要素吐出温度は約85℃である。
図5は、高加熱運転での制御装置50の制御動作を示すフローチャートである。高加熱運転では、制御装置50は、各アクチュエータを以下のように制御する。制御装置50は、ヒートポンプユニット2の加熱能力が定格能力になるように、圧縮機3を制御する(ステップS1)。ここで、加熱能力とは、第一熱交換器4及び第二熱交換器5の合計の、時間当たりの水加熱量である。制御装置50は、圧縮機3の容量を制御することで加熱能力を制御できる。制御装置50は、圧縮機3の駆動速度、駆動周波数等を制御することで圧縮機3の容量を制御できる。また、制御装置50は、ヒートポンプ出口温度センサ30で検知されるヒートポンプ出口温度が、65℃〜90℃の範囲にある、所定の加熱温度設定値になるように、ポンプ13による水流量を制御する。また、制御装置50は、必要な蒸発能力に応じて送風機8の送風量を制御する。蒸発能力とは、蒸発器7での空気から冷媒が吸収する熱量である。
高加熱運転のとき、制御装置50は、圧縮要素吐出温度が目標値に一致するように、冷媒流量を膨張弁6で制御する。膨張弁6の開度を小さくして冷媒流量を低くするほど、圧縮要素吐出温度が高くなる。圧縮要素吐出温度は、図2及び図6中のBに設けた吐出温度センサ51で検知できる。制御装置50には、ヒートポンプ出口温度、外気温度、加熱能力などのパラメータと、圧縮要素吐出温度の目標値との関係を定めたテーブルが記憶されている。圧縮要素吐出温度の目標値は、ヒートポンプ出口温度、外気温度、加熱能力などのパラメータに応じて、最大のCOPが得られるように定められている。制御装置50は、ヒートポンプ出口温度、外気温度、加熱能力などのパラメータと、上記テーブルとに基づいて、圧縮要素吐出温度の目標値を決定する。そして、制御装置50は、圧縮要素吐出温度が目標値に一致しているか否かを判断する(ステップS2)。制御装置50は、ステップS2で圧縮要素吐出温度が目標値に一致している場合には、ステップS1に戻る。ステップS2で圧縮要素吐出温度が目標値に一致していない場合には、制御装置50は、圧縮要素吐出温度が目標値に一致するように、冷媒流量を膨張弁6で制御する(ステップS3)。以上のように制御することで、高加熱運転のときのCOPを十分に高くすることができる。
以下の説明では、蒸発器7から出る冷媒の過熱度を「蒸発器出口過熱度」と称する。圧縮要素吐出温度と、蒸発器出口過熱度とは、相関がある。このため、高加熱運転のとき、制御装置50は、上記ステップS2及びS3に代えて、蒸発器出口過熱度が目標値に一致するように、冷媒流量を膨張弁6で制御しても良い。膨張弁6の開度を小さくして冷媒流量を低くするほど、蒸発器7の出口の過熱度が大きくなる。蒸発器出口過熱度は、例えば、図2及び図6中のG及びHにそれぞれ温度センサを設け、その二つの温度センサの温度差として検知できる。この場合、制御装置50には、ヒートポンプ出口温度、外気温度、加熱能力などのパラメータと、蒸発器出口過熱度の目標値との関係を定めたテーブルが記憶されている。蒸発器出口過熱度の目標値は、ヒートポンプ出口温度、外気温度、加熱能力などのパラメータに応じて、最大のCOPが得られるように定められている。制御装置50は、ヒートポンプ出口温度、外気温度、加熱能力などのパラメータと、上記テーブルとに基づいて、蒸発器出口過熱度の目標値を決定する。そして、制御装置50は、上記ステップS2に代えて、蒸発器出口過熱度が目標値に一致しているか否かを判断する。制御装置50は、蒸発器出口過熱度が目標値に一致している場合には、ステップS1に戻る。蒸発器出口過熱度が目標値に一致していない場合には、制御装置50は、上記ステップS3に代えて、蒸発器出口過熱度が目標値に一致するように、冷媒流量を膨張弁6で制御する。以上のように制御することで、高加熱運転のときのCOPを十分に高くすることができる。
次に、湯張り運転時の低加熱運転についてさらに説明する。低加熱運転では、制御装置50は、ヒートポンプ出口温度を例えば20℃〜30℃程度に制御する。図6は、低加熱運転の圧力−エンタルピ線図である。図6中のAからHは、図2中のAからHに対応する。図6に示すように、冷媒は、圧縮要素32で、臨界圧力以下の圧力まで圧縮される(A→B)。圧縮要素32で圧縮された後の高圧冷媒(図6中のB)は、過熱ガス状態である。この過熱ガス状態の高圧冷媒は、第一熱交換器4で冷却される(B→C)。第一熱交換器4で冷却された後の高圧冷媒(図6中のC)も、過熱ガス状態である。この高圧冷媒は、内部空間39へ至る間に電動要素33の熱で加熱される(C→D)。第二吐出通路37から吐出される高圧冷媒の状態は図6中のDである。この高圧冷媒は、第二熱交換器5で冷却されることで凝縮し、液化する(D→E)。その後、高圧冷媒は、高低圧熱交換器9でさらに冷却される(E→F)。高低圧熱交換器9を通過した高圧冷媒は、膨張弁6で減圧され、低圧冷媒になる(F→G)。この低圧冷媒は、蒸発器7で蒸発する(G→H)。蒸発器7で蒸発した低圧冷媒は、高低圧熱交換器9で加熱される(H→A)。このような低加熱運転のヒートポンプ出口温度である20℃〜30℃は、冷媒である二酸化炭素の臨界温度より低い。低加熱運転では、圧縮要素吐出圧力、並びに、第一熱交換器4、密閉容器31及び第二熱交換器5の内部の冷媒の圧力は、臨界圧力以下の圧力になる。
図7は、低加熱運転での第一熱交換器4及び第二熱交換器5での冷媒及び水の温度変化の一例を表す図である。図7中のBからEは、図2及び図6中のBからEに対応する。図7の横軸の意味は、図4の横軸と同じである。図7に示す例では、第二熱交換器5へ入る水の温度すなわちヒートポンプ入口温度は約9℃であり、ヒートポンプ出口温度は約25℃である。第一熱交換器4へ入る冷媒の温度すなわち圧縮要素吐出温度は約45℃である。第二熱交換器5での冷媒の凝縮飽和温度は約22℃である。以下の説明では、第二熱交換器5での冷媒の凝縮飽和温度を単に「凝縮飽和温度」と称する。また、蒸発器7での冷媒の蒸発飽和温度を単に「蒸発飽和温度」と称する。
図8は、低加熱運転での制御装置50の制御動作を示すフローチャートである。低加熱運転では、制御装置50は、各アクチュエータを以下のように制御する。制御装置50は、ヒートポンプユニット2の加熱能力が、高加熱運転での加熱能力より低い能力、すなわち定格能力より低い能力になるように、圧縮機3を制御する(ステップS11)。このステップS11で、制御装置50は、高加熱運転に比べて、圧縮機3の容量を低くするように制御する。例えば、高加熱運転に比べて、圧縮機3の駆動速度、駆動周波数等を低くする。低加熱運転の冷媒流量は、高加熱運転の冷媒流量に比べて、低くなる。また、制御装置50は、ヒートポンプ出口温度センサ30で検知されるヒートポンプ出口温度が、20℃〜30℃の範囲にある、所定の加熱温度設定値になるように、ポンプ13による水流量を制御する。低加熱運転の水流量は、高加熱運転の水流量に比べて、高くなる。また、制御装置50は、必要な蒸発能力に応じて送風機8の送風量を制御する。
低加熱運転では、制御装置50は、密閉容器31の内部空間38に流入する冷媒の状態、すなわち第二吸入通路36の冷媒の状態が、過熱ガス状態になるように、冷媒流量を膨張弁6で制御する。このとき、膨張弁6の開度を小さくすると、冷媒流量が低くなり、かつ、第二吸入通路36の冷媒の過熱度が大きくなる。過熱度とは、過熱ガス(すなわち過熱蒸気)の温度と、飽和蒸気の温度との差である。過熱度がゼロより大きければ、冷媒の状態が過熱ガス状態になる。
本実施の形態1では、低加熱運転のとき、制御装置50は、後述の方法で、第二吸入通路36の冷媒の過熱度SHsiを推定する(ステップS12)。制御装置50は、その推定した過熱度SHsiと参照値αとを比較する(ステップS13)。参照値αはゼロ以上の所定値である。ステップS13で過熱度SHsiが参照値αに比べて大きい場合には、過熱度SHsiが十分大きく、第二吸入通路36の冷媒の状態を過熱ガス状態に確実に維持できると判断できる。この場合は、ステップS11に戻る。これに対し、ステップS13で過熱度SHsiが参照値α以下である場合には、過熱度SHsiが十分でないと判断できる。この場合には、制御装置50は、膨張弁6の開度を小さくすることで、過熱度SHsiを上昇させる(ステップS14)。これにより、第二吸入通路36の冷媒の状態を過熱ガス状態に確実に維持できる。
次に、低加熱運転時に第二吸入通路36の冷媒の過熱度SHsiを推定する方法について説明する。第二吸入通路36の冷媒の過熱度SHsiは、凝縮飽和温度Tcと、第二吸入通路36の冷媒温度Ts2とから、次式により算出できる。
SHsi=Ts2−Tc ・・・(2)
ヒートポンプ出口温度から凝縮飽和温度を推定する方法について、図7を参照して説明する。図7に示すように、冷媒が過熱ガスである領域及び冷媒が過冷却液である領域に比べて、冷媒が気液二相になる領域では、冷媒の熱伝達率が高く、冷媒から水への伝熱が促進される。このため、水温が上昇する領域の大部分は、気液二相領域である。低加熱運転は、高加熱運転に比べて、ヒートポンプ入口温度からヒートポンプ出口温度までの水温度変化が小さい。また、低加熱運転は、高加熱運転に比べて、水流量が高く、水の熱伝達率が高い。その結果、低加熱運転は、高加熱運転に比べて、ピンチポイントにおける冷媒と水との温度差が小さくなる。ピンチポイントとは、冷媒温度と水温度とが最も近くなるポイントである。過熱ガス領域では、流路方向に対する冷媒の温度変化の傾きは、図7中のB(第一熱交換器4の冷媒入口)に近いほど大きく、ピンチポイントに近いほど小さい。よって、流路方向に対する水の温度変化の傾きも、ピンチポイント付近では小さい。したがって、ピンチポイントでの水温Twpと、第一熱交換器4の水入口の水温Twgc1iとは、ほぼ等しいとみなせる。すなわち、次式が成り立つ。
Twp≒Twgc1i ・・・(3)
第一熱交換器4での熱交換量Qgc1は、冷媒の出入口の温度差で算出できる。すなわち、次式が成り立つ。
Qgc1=Gr×Cpr×(Td1−Ts2) ・・・(4)
ただし、Grは冷媒流量、Cprは冷媒の定圧比熱、Td1は圧縮要素吐出温度である。冷媒流量Grは、圧縮機3の容量及び外気温度などから推定できる。圧縮要素吐出温度Td1は、吐出温度センサ51で検知できる。
また、第一熱交換器4での熱交換量Qgc1は、冷媒と水の温度差から算出することもできる。すなわち、次式が成り立つ。
Qgc1=Agc1×Kgc1×ΔTgc1 ・・・(5)
ただし、Agc1は第一熱交換器4の伝熱面積、Kgc1は第一熱交換器4の熱通過率、ΔTgc1は第一熱交換器4での冷媒と水の温度差である。Agc1は固定値である。Kgc1は、ほぼ一定値とみなせる。ΔTgc1は、算術平均温度差とすると、次式で算出できる。
ΔTgc1=(Td1+Ts2)/2−(Two+Twgc1i)/2 ・・・(6)
ただし、Twoはヒートポンプ出口温度である。算術平均温度差は上記(6)式で簡易に算出できる。また、ΔTgc1として、対数平均温度差を用いても良い。その場合には、より正確にΔTgc1を算出できる。
上記(4)式、(5)式及び(6)式を連立することで、圧縮要素吐出温度Td1、第二吸入通路36の冷媒温度Ts2、及びヒートポンプ出口温度Twoに基づいて、第一熱交換器4の水入口の水温Twgc1iを推定できる。そのようにして推定したTwgc1iがピンチポイントでの水温Twpに等しいとみなすことで、ピンチポイントでの水温Twpを求めることができる。凝縮飽和温度Tcは、次式で算出できる。
Tc=Twp+ΔTp ・・・(7)
ただし、ΔTpはピンチポイントでの冷媒と水の温度差である。ピンチポイントでの冷媒と水の温度差ΔTpは、約1℃〜3℃程度である。上記(7)式で算出した凝縮飽和温度Tcを上記(2)式に代入することで第二吸入通路36の冷媒の過熱度SHsiを求めることができる。図8のステップS12では、以上のようにして、圧縮要素吐出温度Td1、第二吸入通路36の冷媒温度Ts2、及びヒートポンプ出口温度Twoに基づいて、第二吸入通路36の冷媒の過熱度SHsiを推定できる。
また、第一熱交換器4の水入口の水温Twgc1iを推定する方法は、上記方法に代えて、次のようにしても良い。第一熱交換器4での熱交換量Qgc1は、水の出入口の温度差で算出できる。すなわち、次式が成り立つ。
Qgc1=Gw×Cpw×(Two−Twgc1i) ・・・(8)
ただし、Gwは水流量、Cpwは水の比熱である。水流量Gwは、ポンプ13の駆動速度から推定できる。あるいは流量センサで水流量Gwを検知しても良い。上記(4)式及び(5)式のいずれか一方と、上記(8)とを連立することで、圧縮要素吐出温度Td1、第二吸入通路36の冷媒温度Ts2、及びヒートポンプ出口温度Twoに基づいて、第一熱交換器4の水入口の水温Twgc1iを推定できる。そのようにして推定したTwgc1iがピンチポイントでの水温Twpに等しいとみなし、上記(7)式及び(2)式を用いることで、第二吸入通路36の冷媒の過熱度SHsiを推定できる。
本実施の形態1では、第二吸入通路36の冷媒温度Ts2は、冷媒温度センサ52で検知できる。ただし、冷媒温度センサ52に代えて、密閉容器31の外表面などに設けた温度センサによって第二吸入通路36の冷媒温度Ts2を検知しても良い。
また、冷媒温度センサ52を設けずに、圧縮要素吐出温度Td1及びヒートポンプ出口温度Twoに基づいて、以下のようにして、第二吸入通路36の冷媒温度Ts2を推定してもよい。第一熱交換器4での熱交換量Qgc1は、圧縮要素吐出温度Td1とヒートポンプ出口温度Twoとの温度差に比例するとみなせる。このため、その比例係数をFとすると、次式が成り立つ。
Qgc1=F×(Td1−Two) ・・・(9)
上記(4)式及び(9)式を連立することで、圧縮要素吐出温度Td1及びヒートポンプ出口温度Twoに基づいて、第二吸入通路36の冷媒温度Ts2を推定できる。また、上記(8)式及び(9)式を連立することで、圧縮要素吐出温度Td1及びヒートポンプ出口温度Twoに基づいて、第一熱交換器4の水入口の水温Twgc1iを推定できる。そのようにして推定したTwgc1iがピンチポイントでの水温Twpに等しいとみなし、上記(7)式及び(2)式を用いることで、第二吸入通路36の冷媒の過熱度SHsiを推定できる。
上述した理論では、第一熱交換器4での熱交換量Qgc1を算出する際に、第二吸入通路36の冷媒が過熱ガス状態であることを前提にしている。このため、第二吸入通路36の冷媒が気液二相状態になったと仮定すると、第一熱交換器4での熱交換量Qgc1を実際より小さく推定することになる。第一熱交換器4での熱交換量Qgc1を実際より小さく推定することは、第一熱交換器4での冷媒と水の温度差ΔTgc1を実際より小さく推定することにつながる。第一熱交換器4での冷媒と水の温度差ΔTgc1を実際より小さく推定することは、第一熱交換器4の水入口の水温Twgc1iを実際より高く推定することにつながる。第一熱交換器4の水入口の水温Twgc1iを実際より高く推定することは、凝縮飽和温度Tcを実際より高く推定することにつながる。第二吸入通路36の冷媒の過熱度SHsiは、上記(2)式で算出される。このため、凝縮飽和温度Tcを実際より高く推定することは、第二吸入通路36の冷媒の過熱度SHsiを実際より小さく推定することにつながる。したがって、上述した理論によって推定した第二吸入通路36の冷媒の過熱度SHsiがゼロより大きくなるように制御すれば、第二吸入通路36の冷媒の状態を確実に過熱ガス状態に制御できる。
図8のステップS12では、上述した方法に代えて、以下のようにして、蒸発飽和温度Te、圧縮要素吸入温度Ts1及び圧縮要素吐出温度Td1に基づいて、第二吸入通路36の冷媒の過熱度SHsiを推定しても良い。圧縮要素32での圧縮工程をポリトロープ変化とし、ポリトロープ指数をnとすると、次式が成り立つ。なお、ポリトロープ指数nは、冷媒の物性値及び圧縮機効率から定まる一定値とみなせる。
Td1=Ts1×(Pd1/Ps1)(n−1)/n ・・・(10)
ただし、Pd1は圧縮要素吐出圧力である。圧縮要素吸入温度Ts1は、図2及び図6中のAに温度センサを設けることで検知できる。圧縮要素吐出温度Td1は、図2及び図6中のBに設けた吐出温度センサ51で検知できる。
蒸発飽和温度Teは、図2及び図6中のGに温度センサを設けることで検知できる。その蒸発飽和温度Teに基づき、飽和温度と飽和圧力との関係から、蒸発飽和圧力Peを算出できる。蒸発器7での圧力損失を無視すれば、圧縮要素吸入圧力Ps1は蒸発飽和圧力Peに等しいとみなせる。また、蒸発飽和圧力Peから圧力損失の一定値を引くことで圧縮要素吸入圧力Ps1を算出しても良い。そのようにして求めた圧縮要素吸入圧力Ps1を上記(10)式に代入することで、蒸発飽和温度Te、圧縮要素吸入温度Ts1及び圧縮要素吐出温度Td1に基づいて、圧縮要素吐出圧力Pd1を算出できる。その圧縮要素吐出圧力Pd1に基づき、飽和温度と飽和圧力との関係から、凝縮飽和温度Tcを算出できる。このようにして算出した凝縮飽和温度Tcを上記(2)式に代入することで、第二吸入通路36の冷媒の過熱度SHsiを推定できる。
本実施の形態1のヒートポンプ装置1によれば、以下のような効果が得られる。
(1)貯湯運転時すなわち高加熱運転時には、圧縮要素吐出圧力Pd1が超臨界圧になり、第一熱交換器4及び第二熱交換器5の冷媒は凝縮しない。このため、COPが最大になるように膨張弁6で冷媒流量を制御できる。
(2)湯張り運転時すなわち低加熱運転時には、第二吸入通路36の冷媒の状態が過熱ガス状態になるように制御することで、密閉容器31の内部空間38に気液二相冷媒が流入することを確実に防止できる。これにより、信頼性を高めつつ、冷媒流量を適正に制御できる。その結果、効率の良い運転ができる。
(3)ヒートポンプ出口温度センサ30、吐出温度センサ51及び冷媒温度センサ52等の温度センサの検知温度に基づいて、第二吸入通路36の冷媒の過熱度SHsiを推定できる。このため、高価な圧力センサを用いずに、低加熱運転時の第二吸入通路36の冷媒の状態が過熱ガス状態になるように制御できる。
(4)低加熱運転時にも密閉容器31への気液二相冷媒の流入を確実に防止できるので、密閉容器31に液冷媒が蓄積されない。密閉容器31に蓄積された液冷媒が圧縮要素32あるいは電動要素33により加熱されると、冷凍機油と混合している液冷媒が気化することで冷凍機油が発泡する。冷凍機油が発泡すると、冷凍機油がガス冷媒に混合し、冷凍機油がガス冷媒に伴って第二吐出通路37から流出する。その結果、密閉容器31内の冷凍機油が不足し、圧縮機3の摺動部の潤滑不良が生じる。また、第二熱交換器5に冷凍機油が滞留し、冷媒の伝熱が阻害されて、性能が低下する。これに対し、本実施の形態1によれば、密閉容器31に液冷媒が蓄積されないので、これらの弊害を確実に防止できる。
本発明は、上述した構成に限定されるものではなく、例えば以下のようにしても良い。圧縮要素吐出圧力Pd1を検知する圧力センサを設け、その圧力センサの値に基づいて、第二吸入通路36の冷媒の過熱度を制御しても良い。第一熱交換器4と第二熱交換器5とを接続する水流路47に温度センサを設け、第一熱交換器4の水入口の水温Twgc1iをその温度センサで検知しても良い。第二熱交換器5の冷媒流路の中間点に温度センサを設け、その温度センサで凝縮飽和温度Tcを直接検知してもよい。
本発明の効果は、本実施の形態1のように高加熱運転時の圧縮要素吐出圧力が臨界圧力を超える圧力になる冷媒(例えば二酸化炭素)を用いる場合に、特に顕著に発揮される。しかしながら、本発明は、高加熱運転時の圧縮要素吐出圧力が臨界圧力以下の圧力になる冷媒を用いる場合にも適用できる。そのような冷媒としては、例えば、R410A、R32、R22,R407C、プロパン、プロピレン、HFO−1234yf、HFO−1234ze、またはこれらの混合冷媒が挙げられる。
高加熱運転時の圧縮要素吐出圧力が臨界圧力以下の圧力になる冷媒を用いる場合の一般的な設計手法は、定格能力で運転する高加熱運転時の条件に合わせて、第二吸入通路36の冷媒が過熱ガスになるように、第一熱交換器4と第二熱交換器5の大きさ(熱交換量)の比を設計するという手法である。しかしながら、このように設計した場合でも、低加熱運転時には、ヒートポンプ出口温度が低く、圧縮要素吐出圧力が低下し、第一熱交換器4及び第二熱交換器5でのエンタルピ差が減少するため、第二吸入通路36の冷媒が気液二相状態になり易い。これに対し、本発明を適用することで、上記と同様の効果が得られる。よって、高加熱運転時の圧縮要素吐出圧力が臨界圧力以下の圧力になる冷媒を用いる場合であっても本願発明を適用する意義がある。
実施の形態2.
次に、図9を参照して、本発明の実施の形態2について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図9は、本発明の実施の形態2のヒートポンプ装置1の低加熱運転での制御装置50の制御動作を示すフローチャートである。図9のステップS11からステップS13は実施の形態1と同様であるので説明を省略する。本実施の形態2では、ステップS13で第二吸入通路36の冷媒の過熱度SHsiが参照値α以下である場合には、制御装置50は、圧縮機3の容量が大きくなるように圧縮機3を制御すること(例えば圧縮機3の駆動速度を速くすること)で、第二吸入通路36の冷媒の過熱度SHsiを上昇させる(ステップS15)。これにより、本実施の形態2では、第二吸入通路36の冷媒の状態をより確実に過熱ガス状態に維持することができる。本実施の形態2は、上述した事項以外は実施の形態1と同様であるので、これ以上の説明を省略する。
実施の形態3.
次に、図10を参照して、本発明の実施の形態3について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図10は、本発明の実施の形態3のヒートポンプ装置1の低加熱運転での制御装置50の制御動作を示すフローチャートである。図10のステップS11からステップS13は実施の形態1と同様であるので説明を省略する。本実施の形態3では、ステップS13で第二吸入通路36の冷媒の過熱度SHsiが参照値α以下である場合には、制御装置50は、水流量が低くなるようにポンプ13を制御することで、第二吸入通路36の冷媒の過熱度SHsiを上昇させる(ステップS16)。水流量を低くすると、圧縮要素吐出圧力が上昇するが、圧力−エンタルピ線図の飽和蒸気線が左上に傾いているため、圧力が上昇するほど飽和ガスのエンタルピが小さくなる。その結果、過熱度SHsiが大きくなる。本実施の形態3によれば、第二吸入通路36の冷媒の状態をより確実に過熱ガス状態に維持することができる。本実施の形態3は、上述した事項以外は実施の形態1と同様であるので、これ以上の説明を省略する。
実施の形態4.
次に、図11及び図12を参照して、本発明の実施の形態4について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図11は、本発明の実施の形態4のヒートポンプ装置1が備えるヒートポンプユニット2を示す構成図である。図11に示すように、本実施の形態4のヒートポンプユニット2は、実施の形態1と同様の構成に加え、第一吐出通路35から第一熱交換器4を経由せずに第二吸入通路36へ冷媒を流すバイパス流路55と、このバイパス流路55に設けられたバイパス弁56とをさらに備える。バイパス流路55は、第一熱交換器4の冷媒流路をバイパスする流路である。バイパス弁56は、バイパス流路55を通る冷媒の量を可変にする流路制御要素である。バイパス弁56を閉じた状態では、第一吐出通路35から吐出された過熱ガス状態の冷媒がすべて第一熱交換器4を通る状態になる。すなわち、実施の形態1と同様の状態になる。これに対し、バイパス弁56を開いた状態では、第一吐出通路35から吐出された過熱ガス状態の冷媒は、第一熱交換器4の冷媒流路と、バイパス流路55とに分かれて流れる。そして、第一熱交換器4の冷媒流路を通過した冷媒と、バイパス流路55を通過した冷媒とが合流し、第二吸入通路36へ流れる。
図12は、本発明の実施の形態4のヒートポンプ装置1の低加熱運転での制御装置50の制御動作を示すフローチャートである。図12のステップS11からステップS13は実施の形態1と同様であるので説明を省略する。本実施の形態4では、ステップS13で第二吸入通路36の冷媒の過熱度SHsiが参照値α以下である場合には、制御装置50は、バイパス弁56の開度が大きくなるようにバイパス弁56を制御することで、第二吸入通路36の冷媒の過熱度SHsiを上昇させる(ステップS17)。すなわち、ステップS17では、バイパス弁56が閉じている場合にはバイパス弁56を所定の開度に開き、バイパス弁56がすでに開いている場合にはバイパス弁56の開度を大きくする。バイパス弁56の開度を大きくすると、バイパス流路55を通過する冷媒の割合が上昇する。バイパス流路55を通過した過熱ガス状態の冷媒は、熱交換していないので、第一熱交換器4の冷媒流路を通過した冷媒より高温である。したがって、バイパス弁56の開度を大きくし、バイパス流路55を通過する冷媒の割合を上昇させることで、第二吸入通路36の冷媒の過熱度SHsiが上昇する。このような構成により、本実施の形態4では、第二吸入通路36の冷媒の状態をより確実に過熱ガス状態に維持することができる。本実施の形態4は、上述した事項以外は実施の形態1と同様であるので、これ以上の説明を省略する。
1 ヒートポンプ装置、3 圧縮機、4 第一熱交換器、5 第二熱交換器、6 膨張弁、7 蒸発器、8 送風機、9 給水温度、9 高低圧熱交換器、10 貯湯タンク、11 入口配管、12 入口、13 ポンプ、14 上部配管、15 給湯混合弁、16 風呂混合弁、17 出口、18 出口配管、19 給水配管、20 減圧弁、21 給水配管、22 給湯配管、23 給湯栓、24 給湯流量検知手段、25 給湯温度センサ、26 風呂配管、27 浴槽、28 開閉弁、29 風呂温度センサ、30 ヒートポンプ出口温度センサ、31 密閉容器、32 圧縮要素、33 電動要素、33a 固定子、33b 回転子、34 第一吸入通路、35 第一吐出通路、36 第二吸入通路、37 第二吐出通路、38,39 内部空間、40,41,42,43,44,45 冷媒流路、46,47,48 水流路、50 制御装置、51 吐出温度センサ、52 冷媒温度センサ、55 バイパス流路、56 バイパス弁、60 操作部

Claims (4)

  1. 密閉容器と、前記密閉容器の内部に設けられた圧縮要素と、前記密閉容器の外部から吸入される低圧冷媒を前記密閉容器の内部空間へ放出せずに前記圧縮要素へ導く第一吸入通路と、前記圧縮要素により圧縮された高圧冷媒を前記密閉容器の内部空間へ放出せずに前記密閉容器の外部へ吐出する第一吐出通路と、前記第一吐出通路から吐出された後に熱交換をした高圧冷媒を圧縮せずに前記密閉容器の内部空間へ放出する第二吸入通路と、前記密閉容器の内部空間の高圧冷媒を圧縮せずに前記密閉容器の外部へ吐出する第二吐出通路とを有する圧縮機と、
    前記第一吐出通路から吐出された高圧冷媒の熱で対象流体を加熱する第一熱交換器と、
    前記第二吐出通路から吐出された高圧冷媒の熱で前記対象流体を加熱する第二熱交換器と、
    前記第二熱交換器を通過した高圧冷媒を膨張させて低圧冷媒にする膨張部と、
    前記膨張部を通過した低圧冷媒を蒸発させる蒸発器と、
    高加熱運転と、前記第一熱交換器及び前記第二熱交換器の合計の加熱量が前記高加熱運転に比べて小さい低加熱運転とを行う制御手段と、
    を備え、
    前記制御手段は、前記低加熱運転のとき、前記第二吸入通路の冷媒の状態が過熱ガス状態になるように、前記膨張部の開度、前記圧縮機の容量、及び前記対象流体の流量のうちの少なくとも一つを制御し、
    前記高加熱運転のときには前記圧縮要素から吐出される冷媒の圧力が臨界圧力を超える圧力になるとともに前記第一熱交換器から出る前記対象流体の温度が冷媒の臨界温度を超える温度になり、前記低加熱運転のときには前記圧縮要素から吐出される冷媒の圧力が前記臨界圧力以下の圧力になるとともに前記第一熱交換器から出る前記対象流体の温度が前記臨界温度より低い温度になり、
    前記制御手段は、前記低加熱運転のとき、前記圧縮要素から吐出される冷媒の温度と、前記第二吸入通路の冷媒の温度と、前記第一熱交換器から出る前記対象流体の温度とに基づいて、前記第二吸入通路の冷媒の過熱度を推定し、その推定結果に基づいて、前記膨張部の開度、前記圧縮機の容量、及び前記対象流体の流量のうちの少なくとも一つを制御するヒートポンプ装置。
  2. 密閉容器と、前記密閉容器の内部に設けられた圧縮要素と、前記密閉容器の外部から吸入される低圧冷媒を前記密閉容器の内部空間へ放出せずに前記圧縮要素へ導く第一吸入通路と、前記圧縮要素により圧縮された高圧冷媒を前記密閉容器の内部空間へ放出せずに前記密閉容器の外部へ吐出する第一吐出通路と、前記第一吐出通路から吐出された後に熱交換をした高圧冷媒を圧縮せずに前記密閉容器の内部空間へ放出する第二吸入通路と、前記密閉容器の内部空間の高圧冷媒を圧縮せずに前記密閉容器の外部へ吐出する第二吐出通路とを有する圧縮機と、
    前記第一吐出通路から吐出された高圧冷媒の熱で対象流体を加熱する第一熱交換器と、
    前記第二吐出通路から吐出された高圧冷媒の熱で前記対象流体を加熱する第二熱交換器と、
    前記第二熱交換器を通過した高圧冷媒を膨張させて低圧冷媒にする膨張部と、
    前記膨張部を通過した低圧冷媒を蒸発させる蒸発器と、
    高加熱運転と、前記第一熱交換器及び前記第二熱交換器の合計の加熱量が前記高加熱運転に比べて小さい低加熱運転とを行う制御手段と、
    を備え、
    前記制御手段は、前記低加熱運転のとき、前記第二吸入通路の冷媒の状態が過熱ガス状態になるように、前記膨張部の開度、前記圧縮機の容量、及び前記対象流体の流量のうちの少なくとも一つを制御し、
    前記高加熱運転のときには前記圧縮要素から吐出される冷媒の圧力が臨界圧力を超える圧力になるとともに前記第一熱交換器から出る前記対象流体の温度が冷媒の臨界温度を超える温度になり、前記低加熱運転のときには前記圧縮要素から吐出される冷媒の圧力が前記臨界圧力以下の圧力になるとともに前記第一熱交換器から出る前記対象流体の温度が前記臨界温度より低い温度になり、
    前記制御手段は、前記低加熱運転のとき、前記圧縮要素に吸入される冷媒の温度と、前記圧縮要素から吐出される冷媒の温度と、前記蒸発器の蒸発飽和温度とに基づいて、前記第二吸入通路の冷媒の過熱度を推定し、その推定結果に基づいて、前記膨張部の開度、前記圧縮機の容量、及び前記対象流体の流量のうちの少なくとも一つを制御するヒートポンプ装置。
  3. 前記制御手段は、前記高加熱運転のとき、前記圧縮要素から吐出される冷媒の温度または前記蒸発器から出る冷媒の過熱度が目標値になるように、前記膨張部により冷媒流量を制御する請求項1または請求項2に記載のヒートポンプ装置。
  4. 貯湯タンクを備え、
    前記制御手段は、前記第一熱交換器及び前記第二熱交換器で加熱された水を前記貯湯タンクに流入させる貯湯運転のときは前記高加熱運転を行い、前記第一熱交換器及び前記第二熱交換器で加熱された水を浴槽へ供給する湯張り運転のときは前記低加熱運転を行う請求項1から請求項のいずれか一項に記載のヒートポンプ装置。
JP2016507142A 2014-03-10 2014-03-10 ヒートポンプ装置 Active JP6233499B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/056149 WO2015136595A1 (ja) 2014-03-10 2014-03-10 ヒートポンプ装置

Publications (2)

Publication Number Publication Date
JPWO2015136595A1 JPWO2015136595A1 (ja) 2017-04-06
JP6233499B2 true JP6233499B2 (ja) 2017-11-22

Family

ID=54071075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016507142A Active JP6233499B2 (ja) 2014-03-10 2014-03-10 ヒートポンプ装置

Country Status (3)

Country Link
EP (1) EP3128256A4 (ja)
JP (1) JP6233499B2 (ja)
WO (1) WO2015136595A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105627630A (zh) * 2016-03-01 2016-06-01 田幼华 一种热泵系统
CN108278751B (zh) * 2017-12-26 2021-11-16 广东申菱环境系统股份有限公司 一种显热潜热双回收的节能空调系统
WO2022119436A1 (en) * 2020-12-01 2022-06-09 Daikin Research & Development Malaysia Sdn. Bhd. An apparatus for heating water

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512325Y1 (ja) * 1970-11-07 1976-01-23
JPS5534540Y2 (ja) * 1976-05-17 1980-08-15
JPH0473553A (ja) * 1990-07-10 1992-03-09 Sanyo Electric Co Ltd 冷凍装置
JPH07294025A (ja) * 1994-04-21 1995-11-10 Nippon Kentetsu Co Ltd 冷凍装置
JPH09196477A (ja) * 1996-01-17 1997-07-31 Tokyo Gas Co Ltd 圧縮式冷凍機及びこの運転制御方法
JP3915770B2 (ja) * 2003-10-31 2007-05-16 松下電器産業株式会社 ヒートポンプ給湯機
JP4434924B2 (ja) * 2004-11-05 2010-03-17 三菱電機株式会社 圧縮機及び給湯サイクル装置
JP4948374B2 (ja) * 2007-11-30 2012-06-06 三菱電機株式会社 冷凍サイクル装置
JP2010216687A (ja) * 2009-03-13 2010-09-30 Daikin Ind Ltd ヒートポンプシステム
JP5159719B2 (ja) * 2009-07-16 2013-03-13 三菱電機株式会社 ヒートポンプ給湯機
JP5861577B2 (ja) * 2012-07-05 2016-02-16 株式会社デンソー 給湯装置

Also Published As

Publication number Publication date
JPWO2015136595A1 (ja) 2017-04-06
EP3128256A1 (en) 2017-02-08
EP3128256A4 (en) 2017-12-27
WO2015136595A1 (ja) 2015-09-17

Similar Documents

Publication Publication Date Title
JP5452138B2 (ja) 冷凍空調装置
CN105247302B (zh) 空调装置
JP5240332B2 (ja) 冷凍装置
US10845095B2 (en) Air-conditioning apparatus
JP5349686B2 (ja) 冷凍サイクル装置
JP5042058B2 (ja) ヒートポンプ式給湯用室外機及びヒートポンプ式給湯装置
JP5847366B1 (ja) 空気調和装置
JP5816789B2 (ja) 冷凍サイクル装置及びそれを備えた温水暖房装置
US20100287964A1 (en) Refrigerating apparatus
JP4883201B2 (ja) 熱源ユニット
JP2017044454A (ja) 冷凍サイクル装置及び冷凍サイクル装置の制御方法
JP2014016079A (ja) ヒートポンプ
JP2011080634A (ja) 冷凍サイクル装置および温水暖房装置
JP6233499B2 (ja) ヒートポンプ装置
JP4442237B2 (ja) 空気調和装置
JP6267952B2 (ja) 冷凍サイクル装置
JP6288146B2 (ja) 冷凍装置
JP2010060181A (ja) 冷凍装置
JP6150906B2 (ja) 冷凍サイクル装置
JP6024241B2 (ja) ヒートポンプシステム
WO2017138243A1 (ja) 冷凍サイクル装置
JP2013092369A (ja) ヒートポンプ
KR102136416B1 (ko) 공기조화기 및 그 제어방법
JP5764029B2 (ja) ヒートポンプ給湯機及び冷凍サイクル
JP2016084986A (ja) ヒートポンプ装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170825

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171009

R150 Certificate of patent or registration of utility model

Ref document number: 6233499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250