JP6218264B2 - Degradation method of digested sludge - Google Patents

Degradation method of digested sludge Download PDF

Info

Publication number
JP6218264B2
JP6218264B2 JP2013030270A JP2013030270A JP6218264B2 JP 6218264 B2 JP6218264 B2 JP 6218264B2 JP 2013030270 A JP2013030270 A JP 2013030270A JP 2013030270 A JP2013030270 A JP 2013030270A JP 6218264 B2 JP6218264 B2 JP 6218264B2
Authority
JP
Japan
Prior art keywords
digested sludge
sludge
microorganisms
strain
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013030270A
Other languages
Japanese (ja)
Other versions
JP2014158433A (en
Inventor
藤井 克彦
克彦 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Original Assignee
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY filed Critical NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority to JP2013030270A priority Critical patent/JP6218264B2/en
Publication of JP2014158433A publication Critical patent/JP2014158433A/en
Application granted granted Critical
Publication of JP6218264B2 publication Critical patent/JP6218264B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、消化汚泥を唯一の栄養源とする培養液で生育でき、消化汚泥に水を添加した培養液に接種してpH5、温度30℃の条件下で7日間培養したときの固形物重量の減少率(%)が10.0%以上である微生物や、かかる微生物を、消化汚泥を含有する培養液で培養する消化汚泥の分解方法に関する。   The present invention is capable of growing in a culture solution using digested sludge as a sole nutrient source, inoculated into a culture solution obtained by adding water to digested sludge, and the solid weight when cultured for 7 days under conditions of pH 5 and temperature 30 ° C. The present invention relates to a microorganism having a decrease rate (%) of 10.0% or more, and a digested sludge decomposition method for culturing such a microorganism in a culture solution containing digested sludge.

家庭生活ならびに産業由来の下水を浄化する場合、一般には活性汚泥法等の生物学的処理が用いられている。生物学的処理では下水中の有機物、窒素、リン等の汚染物質を処理槽に棲息する微生物に栄養として摂取させることで下水の上澄みを浄化し、河川等の自然水域に放流できる仕組みとなっている。かかる処理槽では、下水から汚染物質が除去された量に応じて微生物が増殖し、増殖した微生物が廃棄物として大量に発生しており、これは余剰汚泥と呼ばれている。このように、地域の下水処理場には毎日大量の下水が流入することから余剰汚泥の年間発生量は莫大なものとなる。   When purifying sewage from home life or industry, generally, biological treatment such as activated sludge method is used. In biological treatment, pollutants such as organic matter, nitrogen, and phosphorus in sewage are ingested as nutrients by microorganisms that inhabit treatment tanks, thereby purifying the sewage supernatant and releasing it into natural waters such as rivers. Yes. In such a treatment tank, microorganisms grow in accordance with the amount of pollutants removed from the sewage, and a large amount of the grown microorganisms are generated as waste, which is called surplus sludge. In this way, since a large amount of sewage flows into the sewage treatment plant every day, the amount of excess sludge generated annually becomes enormous.

そこで、下水処理場で排出される余剰汚泥を有効利用する手段として、バイオガス(メタン含有ガス)生産が採用されるようになってきた。特によく研究されているのはメタン生産菌等の嫌気性微生物による嫌気消化技術であり、例えば、余剰汚泥を汚泥分、液状有機性廃棄物及び固形状有機性廃棄物とともにメタン発酵処理する廃棄物処理方法(例えば、特許文献1参照)や、メタン生成菌を主体とする嫌気性菌が自己固定化したグラニュール汚泥を充填したメタン生成槽を備えた汚泥処理装置(例えば、特許文献2参照)や、アルカリ無添加の余剰汚泥、あるいは0.02N以下のアルカリ濃度でアルカリ条件とした余剰汚泥を、嫌気条件で加温処理して得られた可溶化液を上向流嫌気性汚泥床法により高速メタン発酵処理する余剰汚泥の処理方法(例えば、特許文献3参照)が報告されている。   Therefore, biogas (methane-containing gas) production has come to be adopted as a means for effectively using surplus sludge discharged from sewage treatment plants. Particularly well-studied is anaerobic digestion technology using anaerobic microorganisms such as methane-producing bacteria. For example, waste that undergoes methane fermentation treatment of excess sludge together with sludge, liquid organic waste, and solid organic waste A treatment method (for example, refer to Patent Document 1) and a sludge treatment apparatus provided with a methane generation tank filled with granular sludge in which anaerobic bacteria mainly composed of methanogens are self-immobilized (for example, refer to Patent Document 2) Or solubilized liquid obtained by heating the excess sludge with no alkali added, or the excess sludge with alkali concentration of 0.02N or less in an alkaline condition under anaerobic conditions by the upflow anaerobic sludge bed method A method for treating surplus sludge subjected to high-speed methane fermentation (for example, see Patent Document 3) has been reported.

このように、余剰汚泥を有効利用する手段として、バイオガス生産が行われているが、バイオガス生産ではメタン生産菌等の嫌気性微生物によって生分解しやすい成分、例えば、水溶性糖質、タンパク質、脂質等の下水中の水溶性有機物や、活性汚泥微生物の細胞内成分は分解されるものの、分解後には難生分解性の成分、例えば、活性汚泥微生物やメタン生産菌の細胞壁多糖に由来するキチン、人毛に由来するケラチン、し尿由来のセルロース、キシラン等の難分解性糖質などの消化汚泥が発生する。その消化汚泥の量は年間およそ1億7千万トンにも達し、我国で最も大量に排出される産業廃棄物であり、産業廃棄物全体の44.5%も占める(例えば、非特許文献1参照)。発生した消化汚泥は、一部が建設資材の副原料や下水堆肥の原料として利用されるにとどまり、残りの多くは有効な用途もなく産業廃棄物として処分される現状にある。   As described above, biogas production is performed as a means for effectively using surplus sludge. In biogas production, components that are easily biodegradable by anaerobic microorganisms such as methane-producing bacteria, such as water-soluble carbohydrates and proteins Although water-soluble organic substances in sewage such as lipids and intracellular components of activated sludge microorganisms are decomposed, they are derived from non-biodegradable components after degradation, such as activated sludge microorganisms and cell wall polysaccharides of methane producing bacteria. Digested sludge such as keratin derived from chitin, human hair, cellulose derived from human waste, refractory carbohydrates such as xylan is generated. The amount of digested sludge reaches about 170 million tons per year, and is the most industrial waste discharged in Japan, accounting for 44.5% of the total industrial waste (for example, Non-Patent Document 1) reference). The generated digested sludge is only partially used as a secondary material for construction materials and as a raw material for sewage compost, and most of the rest is disposed of as industrial waste without any effective use.

そこで、消化汚泥を減量する方法が研究されている。例えば、消化汚泥の一部分にオゾン処理を行ない、オゾン処理後にアルカリ処理及び嫌気性消化を行なう工程を含む有機性廃液の処理方法(例えば、特許文献4参照)が報告されている。   Therefore, methods for reducing digested sludge have been studied. For example, a method for treating an organic waste liquid including a step of performing ozone treatment on a part of digested sludge and performing alkali treatment and anaerobic digestion after the ozone treatment (see, for example, Patent Document 4) has been reported.

特開平11−309438号公報JP-A-11-309438 特開平9−29290号公報JP-A-9-29290 特開平09−1194号公報Japanese Patent Laid-Open No. 09-1194 特開2005−7339号公報JP 2005-7339 A

平成23年度事業 産業廃棄物排出・処理状況調査報告書 平成21年度実績(概要版) 第25頁2011 Business Industrial Waste Discharge / Treatment Status Report 2009 Results (Summary Version) Page 25

これまでに、物理化学的処理工程を含まず、生物学的に消化汚泥を処理する技術は開発されていない。また、消化汚泥を唯一の栄養源とする培養液で生育でき、消化汚泥に水を添加した培養液に接種してpH5、温度30℃の条件下で7日間培養したときの固形物重量の減少率(%)が10.0%以上である微生物を単離したことも報告されていない。本発明の課題は、下水処理の最終産物である消化汚泥を微生物によって分解する方法や、消化汚泥を分解する微生物を提供することにある。   So far, no technology for biologically treating digested sludge has been developed that does not involve physicochemical treatment steps. In addition, it can grow in a culture solution that uses digested sludge as its only nutrient source, and inoculates into a culture solution in which water is added to digested sludge and reduces the weight of solids when cultured for 7 days at pH 5 and temperature of 30 ° C. It has not been reported that a microorganism having a rate (%) of 10.0% or more was isolated. The subject of this invention is providing the microorganisms which decompose | disassemble the digested sludge which is the final product of a sewage treatment with microorganisms, and the digested sludge.

本発明者は、下水処理の最終産物である消化汚泥を分解できる微生物を鋭意探索した。消化汚泥の主要成分は難生分解性とはいえ、元々は微生物の増殖バイオマスを多く含むことから、これを生分解できる微生物は比較的容易に得られるであろうと当初期待したが、探索開始から数年間は消化汚泥を分解できる微生物を得ることができなかった。そこで原因を検討し、汚泥に含まれる重金属類や消化汚泥を脱水するために用いられる凝集剤の塩化アルミニウム等が微生物の生育に悪影響を与えていることが関与していると考え、酸処理によって金属を溶脱させた消化汚泥を用いて再度微生物探索を試みたところ、消化汚泥を分解する能力を持つ微生物を単離することができ、かかる微生物が意外にも消化汚泥を唯一の栄養源とする培養液で生育できるものであることを確認し、本発明を完成した。   The inventor has eagerly searched for microorganisms capable of decomposing digested sludge, which is the final product of sewage treatment. Although the main component of digested sludge is hardly biodegradable, it originally contained a large amount of microbial growth biomass, so we originally expected that microorganisms capable of biodegrading would be obtained relatively easily. For several years, microorganisms capable of degrading digested sludge could not be obtained. Therefore, we investigated the cause and thought that the heavy metals contained in the sludge and the aluminum flocculant used to dehydrate the digested sludge are involved in the adverse effects on the growth of microorganisms. When we tried to search for microorganisms again using digested sludge from which metal was leached, it was possible to isolate microorganisms capable of degrading digested sludge, and these microorganisms unexpectedly make digested sludge the only nutrient source. The present invention was completed after confirming that it could grow in the culture solution.

すなわち本発明は、[1]消化汚泥を唯一の栄養源とする培養液で生育でき、消化汚泥に水を添加した培養液に接種してpH5、温度30℃の条件下で7日間培養したときの固形物重量の減少率(%)が10.0%以上である微生物を、消化汚泥を含有する培養液で培養する消化汚泥の分解方法であって、前記微生物がペニシリウム・ジャンシネラム(Penicillium janthinellum)、カニンガメラ・バイニエリ(Cunninghamella bainieri)、ネオサルトリア・フィシェリ(Neosartorya fischeri)、ウンベロプシス・イサベリナ(Umbelopsis isabellina)のいずれか1種又は2種以上の微生物であることを特徴とする消化汚泥の分解方法や、[2]微生物がキシラナーゼ及びキチナーゼ活性を有することを特徴とする上記[1]記載の消化汚泥の分解方法や、[3]微生物がペニシリウム・ジャンシネラムCedarWA2株(受領番号:NITE AP−1523)、カニンガメラ・バイニエリCedarWA4株(受領番号:NITE AP−1524)、ネオサルトリア・フィシェリOreWA株(受領番号:NITE AP−1522)、ウンベロプシス・イサベリナFernWA株(受領番号:NITE AP−1525)のいずれか1種又は2種以上の微生物であることを特徴とする上記[1]又は[2]記載の消化汚泥の分解方法や、[4]消化汚泥からあらかじめ金属を溶脱させる工程を含むことを特徴とする上記[1]〜[3]のいずれか記載の消化汚泥の分解方法に関する。   That is, the present invention [1] can be grown in a culture solution using digested sludge as a sole nutrient source, inoculated into a culture solution obtained by adding water to digested sludge, and cultured for 7 days under conditions of pH 5 and temperature 30 ° C. A digestion sludge decomposition method for culturing a microorganism having a solid weight reduction rate (%) of 10.0% or more in a culture solution containing digested sludge, wherein the microorganism is Penicillium janthinellum A method for decomposing digested sludge characterized by being one or more microorganisms of Cunninghamella bainieri, Neosartorya fischeri, Umbelopsis isabellina, [2] The digested sludge decomposition method according to [1] above, wherein the microorganism has xylanase and chitinase activity, and [3] the microorganism is penicillin Mu Jan Cineram CedarWA2 strain (reception number: NITE AP-1523), Kaningamera bainieri CedarWA4 strain (reception number: NITE AP-1524), Neosartoria Fischeri OreWA strain (reception number: NITE AP-1522), Unveropsis Isaverina FernWA The digestion sludge decomposition method according to the above [1] or [2], which is any one or more microorganisms of a stock (reception number: NITE AP-1525), and [4] digestion sludge The method for decomposing digested sludge according to any one of the above [1] to [3], comprising a step of leaching metal in advance.

また本発明は、[5]消化汚泥を唯一の栄養源とする培養液で生育でき、消化汚泥に水を添加した培養液に接種してpH5、温度30℃の条件下で7日間培養したときの固形物重量の減少率(%)が10.0%以上である、ペニシリウム・ジャンシネラム(Penicillium janthinellum)、カニンガメラ・バイニエリ(Cunninghamella bainieri)、ネオサルトリア・フィシェリ(Neosartorya fischeri)、ウンベロプシス・イサベリナ(Umbelopsis isabellina)のいずれかの微生物や、[6]キシラナーゼ及びキチナーゼ活性を有することを特徴とする上記[5]記載の微生物や、[7]ペニシリウム・ジャンシネラムが、ペニシリウム・ジャンシネラムCedarWA2株(受領番号:NITE AP−1523)であることを特徴とする上記[5]又は[6]記載の微生物や、[8]カニンガメラ・バイニエリが、カニンガメラ・バイニエリCedarWA4株(受領番号:NITE AP−1524)であることを特徴とする上記[5]又は[6]記載の微生物や、[9]ネオサルトリア・フィシェリが、ネオサルトリア・フィシェリOreWA株(受領番号:NITE AP−1522)であることを特徴とする上記[5]又は[6]記載の微生物や、[10]ウンベロプシス・イサベリナが、ウンベロプシス・イサベリナFernWA株(受領番号:NITE AP−1525)であることを特徴とする上記[5]又は[6]記載の微生物に関する。   [5] The present invention can be grown in a culture solution using [5] digested sludge as a sole nutrient source, inoculated into a culture solution in which water is added to digested sludge, and cultured for 7 days under conditions of pH 5 and temperature 30 ° C. Penicillium janthinellum, Cunninghamella bainieri, Neosartorya fischeri, Umbelopsis isabellina, whose solids weight loss (%) is more than 10.0% ), [6] the microorganism described in [5] above having xylanase and chitinase activity, and [7] Penicillium cinecineram, -1523), the micro-organism according to the above [5] or [6] And [8] Kaningamela bainieri is the Kaningamela bainieri CedarWA4 strain (reception number: NITE AP-1524), or the microorganism described in [5] or [6] above, The microorganism described in [5] or [6] above, wherein [10] Unveropsis Isaverina FernWA is characterized in that the Fischery is Neosartoria Fischeri OreWA strain (reception number: NITE AP-1522). The microorganism according to [5] or [6] above, which is a strain (reception number: NITE AP-1525).

さらに本発明は、[11]上記[5]〜[10]のいずれか記載の微生物を、消化汚泥を含有する培養液に接種して培養することにより得られる、消化汚泥分解物と微生物との混合物や、[12]上記[11]記載の消化汚泥分解物と微生物との混合物を含む燃料に関する。   Furthermore, the present invention provides [11] a digested sludge degradation product obtained by inoculating the microorganism according to any one of [5] to [10] above into a culture solution containing digested sludge and culturing the microorganism. The present invention relates to a fuel containing a mixture and [12] the digested sludge decomposition product described in [11] above and a mixture of microorganisms.

本発明に用いる微生物は消化汚泥を唯一の栄養源とする培養液で生育でき、消化汚泥の分解能力も高いことから、消化汚泥を低コストで大量に分解することができ、産業廃棄物の大幅な減量が可能となる。また、本発明によって得られた消化汚泥の分解物と微生物との混合物(以下「汚泥−菌体混合物」ともいう)は燃焼時発熱量が高いことから、燃料としての利用が可能となる。   Microorganisms used in the present invention can grow in a culture solution using digested sludge as a sole nutrient source, and have a high ability to decompose digested sludge, so that digested sludge can be decomposed in large quantities at low cost, which greatly reduces industrial waste. Can be reduced. Further, the digested sludge decomposition product obtained by the present invention and a mixture of microorganisms (hereinafter also referred to as “sludge-bacteria mixture”) have a high calorific value during combustion, and thus can be used as fuel.

分離した消化汚泥分解微生物の顕微鏡写真である。It is a microscope picture of the separated digested sludge decomposition microorganisms. 消化汚泥分解試験の結果を示す図である。It is a figure which shows the result of a digested sludge decomposition test. CedarWA2における熱量測定の結果を示す図である。It is a figure which shows the result of the calorie | heat amount measurement in CedarWA2. 分離した消化汚泥分解微生物の系統樹を示す図である。It is a figure which shows the phylogenetic tree of the isolate | separated digested sludge decomposition microorganisms.

本発明の微生物としては、消化汚泥を唯一の栄養源とする培養液で生育でき、消化汚泥に水を添加した培養液に接種してpH5、温度30℃の条件下で7日間培養したときの固形物重量の減少率(%)が10.0%以上であるペニシリウム・ジャンシネラム(Penicillium janthinellum)、カニンガメラ・バイニエリ(Cunninghamella bainieri)、ネオサルトリア・フィシェリ(Neosartorya fischeri)、又はウンベロプシス・イサベリナ(Umbelopsis isabellina)に属する微生物であれば特に制限されず、また、本発明の消化汚泥の分解方法としては、上記本発明の微生物を、消化汚泥を含有する培養液で培養する方法であれば特に制限されず、かかる本発明の消化汚泥の分解方法により、消化汚泥を低コストで大量に分解することができ、産業廃棄物の大幅な減量が可能となる。また本発明は、上記本発明の微生物を、消化汚泥を含有する培養液に接種して培養することにより得られる消化汚泥分解物と微生物との混合物に関する他、かかる消化汚泥分解物と微生物との混合物を含む燃料に関する。さらに、本発明の消化汚泥の分解方法により得られる汚泥−菌体混合物もまた燃料として有用である。   The microorganism of the present invention can be grown in a culture solution using digested sludge as a sole nutrient source, inoculated into a culture solution obtained by adding water to digested sludge, and cultured for 7 days under conditions of pH 5 and temperature 30 ° C. Penicillium janthinellum, Cunninghamella bainieri, Neosartorya fischeri, or Umbelopsis isabellina whose solids weight loss (%) is 10.0% or more In addition, the digestion sludge decomposition method of the present invention is not particularly limited as long as it is a method of culturing the microorganism of the present invention in a culture solution containing digested sludge, By the digested sludge decomposition method of the present invention, the digested sludge can be decomposed in large quantities at low cost, and the industrial waste can be significantly reduced. It becomes ability. The present invention also relates to a mixture of digested sludge degradation product and microorganisms obtained by inoculating the microorganism of the present invention into a culture solution containing digested sludge and culturing, as well as such digested sludge degradation product and microorganisms. It relates to a fuel containing a mixture. Furthermore, the sludge-bacteria mixture obtained by the digested sludge decomposition method of the present invention is also useful as a fuel.

本発明において、「消化汚泥」とは、余剰汚泥をメタン生産菌等の嫌気性微生物によって生分解した際に発生する難生分解性の成分から構成される汚泥残渣であり、かかる消化汚泥には、活性汚泥微生物等の好気性菌及びメタン生産菌等の嫌気性菌の細胞壁多糖に由来するキチン、人毛に由来するケラチン、し尿由来のセルロース、キシラン等の難分解性糖質が含まれる。   In the present invention, "digested sludge" is a sludge residue composed of hardly biodegradable components that are generated when an excess of sludge is biodegraded by anaerobic microorganisms such as methane producing bacteria. In addition, chitin derived from cell wall polysaccharides of aerobic bacteria such as activated sludge microorganisms and anaerobic bacteria such as methane producing bacteria, keratin derived from human hair, cellulose derived from human waste, refractory carbohydrates such as xylan and the like are included.

本発明において、「消化汚泥を唯一の栄養源とする培養液」とは、消化汚泥以外の有機物、無機物等の微生物が生育するために必要な栄養源を添加していない培養液、好ましくは懸濁培養液であり、懸濁状態にある消化汚泥や消化汚泥と水との混合物等を挙げることができる。培養液のpHは5であり、適宜調節することができる。また、培養液を使用する前には、必要に応じてオートクレーブ等により培養液を滅菌処理することができる。   In the present invention, the “culture medium containing digested sludge as the only nutrient source” means a culture medium that does not contain nutrient sources necessary for the growth of microorganisms such as organic substances and inorganic substances other than digested sludge, and preferably suspended. Examples of the suspension culture medium include suspended digested sludge and a mixture of digested sludge and water. The pH of the culture solution is 5, and can be adjusted as appropriate. Moreover, before using a culture solution, a culture solution can be sterilized by an autoclave etc. as needed.

本発明において、「固形物重量の減少率(%)」とは、(培養前の固形物重量(g)−培養後の固形物重量(g))/培養前の固形物重量(g)×100で求められ、上記培養前の固形物重量とは、微生物を接種した培養前の消化汚泥の乾燥重量であり、上記培養後の固形物重量とは、培養後の汚泥−菌体混合物の乾燥重量であり、ここで乾燥重量は、遠心分離(3000rpm、10分)後の残渣を乾燥(105℃、24時間)した重量(g)である。   In the present invention, the “decrease rate (%) of the solid weight” means (solid weight before culturing (g) −solid weight after culturing (g)) / solid weight before culturing (g) × The solid weight before culturing is the dry weight of digested sludge before culturing inoculated with microorganisms, and the solid weight after culturing is the dried sludge-bacteria mixture after culturing. Here, the dry weight is the weight (g) obtained by drying (105 ° C., 24 hours) the residue after centrifugation (3000 rpm, 10 minutes).

本発明において、「消化汚泥を含有する培養液」とは、少なくとも消化汚泥を含有する培養液であれば特に制限されず、かかる培養液には、消化汚泥や水の他に、必要に応じて有機物、無機物等の栄養源やpH調節剤を添加することができる。また、培養液を使用する前には、オートクレーブ等により培養液を滅菌処理してもよい。   In the present invention, the “culture solution containing digested sludge” is not particularly limited as long as it is a culture solution containing at least digested sludge. In addition to digested sludge and water, the culture solution may be used as necessary. Nutrient sources such as organic and inorganic substances and pH regulators can be added. Further, before using the culture solution, the culture solution may be sterilized by an autoclave or the like.

本発明において、消化汚泥を含有する培養液で培養し、消化汚泥を分解する際の培養条件は特に制限されないが、例えば培養液のpHは4〜8、好ましくは5〜7であり、培養温度は20℃〜35℃、好ましくは25℃〜30℃であり、培養時間は3日〜20日、好ましくは7日〜14日であり、通気培養、振とう培養、撹拌培養、静置培養、又はこれらの組み合わせでもよい。   In the present invention, the culture conditions are not particularly limited when culturing with a culture solution containing digested sludge and decomposing the digested sludge. For example, the pH of the culture solution is 4 to 8, preferably 5 to 7, and the culture temperature. Is 20 ° C. to 35 ° C., preferably 25 ° C. to 30 ° C., and the culture time is 3 to 20 days, preferably 7 to 14 days. Aeration culture, shaking culture, agitation culture, stationary culture, Or a combination of these may be used.

本発明の消化汚泥の分解方法に用いる微生物や本発明の微生物としては、上記固形物重量の減少率(%)が10%以上のペニシリウム・ジャンシネラム(Penicillium janthinellum)、カニンガメラ・バイニエリ(Cunninghamella bainieri)、ネオサルトリア・フィシェリ(Neosartorya fischeri)、ウンベロプシス・イサベリナ(Umbelopsis isabellina)のいずれかの天然から分離した微生物やその人為的な変異株であれば特に制限されないが、キシラナーゼやキチナーゼ活性、好ましくはキシラナーゼ、キチナーゼ及びケラチナーゼ活性を有する微生物や、固形物重量の減少率(%)が13%以上、好ましくは14%以上、より好ましくは18%以上、さらに好ましくは25%以上の微生物や、汚泥−菌体混合物の単位重量あたりの燃焼時発熱量(発熱により増加する温度センサーの電圧値を燃焼時間で積分した値;μVsec/mg)が10000以上、好ましくは11000以上、より好ましくは12000以上の微生物を好適に例示することができる。なお、消化汚泥の分解方法に用いる場合には、上記微生物を2種以上用いてもよい。   The microorganisms used in the digestion sludge decomposition method of the present invention and the microorganisms of the present invention include Penicillium janthinellum, Cunninghamella bainieri having a solid weight reduction rate (%) of 10% or more, It is not particularly limited as long as it is a microorganism isolated from nature or an artificial mutant of Neosartorya fischeri or Umbelopsis isabellina, but xylanase or chitinase activity, preferably xylanase or chitinase Microorganisms having keratinase activity, microorganisms having a solid weight reduction rate (%) of 13% or more, preferably 14% or more, more preferably 18% or more, and even more preferably 25% or more, or a sludge-bacteria mixture Calorific value during combustion per unit weight (increases due to heat generation) A microorganism having a value obtained by integrating the voltage value of the temperature sensor with the combustion time (μVsec / mg) is 10,000 or more, preferably 11000 or more, more preferably 12000 or more. In addition, when using for the digestion sludge decomposition | disassembly method, you may use 2 or more types of the said microorganisms.

本発明の消化汚泥の分解方法に用いる微生物や本発明の微生物としては、天然から分離したペニシリウム・ジャンシネラムCedarWA2株(受領番号:NITE AP−1523)、カニンガメラ・バイニエリCedarWA4株(受領番号:NITE AP−1524)、ネオサルトリア・フィシェリOreWA株(受領番号:NITE AP−1522)、若しくはウンベロプシス・イサベリナFernWA株(受領番号:NITE AP−1525)、又はそれらの変異株を特に好適に例示することができる。かかる天然から分離した微生物は、独立行政法人製品評価技術基盤機構 特許微生物寄託センター(〒292−0818 千葉県木更津市かずさ鎌足2−5−8)に2013年2月1日付でそれぞれ寄託されている。   The microorganisms used in the digestion sludge decomposition method of the present invention and the microorganisms of the present invention include Penicillium Jancineram CedarWA2 strain (reception number: NITE AP-1523) and Kaningamera bainieri CedarWA4 strain (reception number: NITE AP-) isolated from nature. 1524), Neosartoria Fischeri OreWA strain (reception number: NITE AP-1522), Unveropsis isaverina FernWA strain (reception number: NITE AP-1525), or mutants thereof can be particularly preferably exemplified. Such microorganisms isolated from nature were deposited on February 1, 2013, respectively, at the Patent Microorganism Depositary Center of the National Institute of Technology and Evaluation (2-5-8 Kazusa Kamashichi, Kisarazu City, Chiba Prefecture). Yes.

本発明の消化汚泥の分解方法においては、消化汚泥からあらかじめ金属を溶脱させる工程を含むことが好ましい。金属には、アルミニウム等の軽金属や、銅、ニッケル、鉛、亜鉛、カドミウム等の重金属が含まれる。金属を溶脱させる方法としては、消化汚泥を硫酸や塩酸等の鉱酸、好ましくは硫酸で処理し、その後酸を除去する方法を挙げることができ、例えば2Nの硫酸で1時間処理し、その後消化汚泥と酸の混合物をろ過し、ろ過残渣を十分量の水で洗浄する方法が挙げることができる。金属を溶脱させることにより、微生物の増殖力が高まり、消化汚泥の分解能力が向上する。   The digested sludge decomposition method of the present invention preferably includes a step of leaching metal from the digested sludge in advance. The metal includes light metals such as aluminum and heavy metals such as copper, nickel, lead, zinc, and cadmium. Examples of the method for leaching the metal include a method in which digested sludge is treated with a mineral acid such as sulfuric acid and hydrochloric acid, preferably sulfuric acid, and then the acid is removed. For example, the digested sludge is treated with 2N sulfuric acid for 1 hour and then digested. A method of filtering the sludge and acid mixture and washing the filtration residue with a sufficient amount of water can be mentioned. By leaching the metal, the proliferation power of microorganisms is increased and the digestive sludge decomposition ability is improved.

さらに本発明の微生物の菌糸体や胞子は、消化汚泥を分解するためのキットや微生物製剤として使用されてもよく、その場合には、本発明の微生物を用いて消化汚泥を分解する方法等を記載した文書を添付することができる。   Furthermore, the mycelium or spore of the microorganism of the present invention may be used as a kit or microbial preparation for decomposing digested sludge. In that case, a method for decomposing digested sludge using the microorganism of the present invention is used. A written document can be attached.

本発明において、消化汚泥を含有する培養液に本発明の微生物を接種して、消化汚泥分解物と微生物との混合物を得る際の培養条件は、前述の本発明の消化汚泥の分解方法における培養条件と同様である。かかる消化汚泥分解物と微生物との混合物には、消化汚泥の分解物、消化汚泥の未分解物、増殖した微生物等が含まれる。   In the present invention, the culture conditions for inoculating the microorganism of the present invention into a culture solution containing digested sludge to obtain a mixture of digested sludge degradation product and microorganisms are the culture conditions in the digested sludge decomposition method of the present invention described above. It is the same as conditions. Such a mixture of digested sludge degradation products and microorganisms includes digested sludge degradation products, digested sludge undegraded products, proliferated microorganisms, and the like.

本発明の燃料としては、上記消化汚泥分解物と微生物との混合物を含む固形物を好適に例示することができ、かかる固形物としては、培養後の培養液を遠心分離して培養上清を除去した後に残った残渣の乾燥物や、培養後の培養液におがくず、もみ殻等の可燃性吸水物質を添加し、必要に応じて乾燥したものを挙げることができる。上記遠心分離の条件は特に制限されないが、消化汚泥の量や組成、微生物の種類によって適宜調整することができ、例えば回転数は1000〜10000rpm、好ましくは2000rpm〜5000rpm、より好ましくは2500rpm〜3500rpmであり、時間は1分〜60分、好ましくは3分〜30分、より好ましくは5分〜15分である。上記乾燥の温度や時間は、消化汚泥の量や組成、微生物の種類によって適宜調整することができ、例えば、温度は90℃〜120℃、好ましくは100℃〜110℃であり、時間は12時間〜30時間、好ましくは20時間〜28時間である。   As the fuel of the present invention, a solid material containing a mixture of the digested sludge decomposition product and microorganisms can be preferably exemplified. As the solid material, a culture solution after culturing is obtained by centrifuging the culture solution after culturing. Examples include a dried residue remaining after removal, and a combustible water-absorbing substance such as sawdust and rice husk added to the culture solution after culturing, and dried as necessary. The centrifugation conditions are not particularly limited, but can be appropriately adjusted depending on the amount and composition of digested sludge and the type of microorganism. For example, the number of revolutions is 1000 to 10000 rpm, preferably 2000 rpm to 5000 rpm, more preferably 2500 rpm to 3500 rpm. Yes, the time is 1 minute to 60 minutes, preferably 3 minutes to 30 minutes, more preferably 5 minutes to 15 minutes. The drying temperature and time can be appropriately adjusted depending on the amount and composition of digested sludge and the type of microorganism. For example, the temperature is 90 ° C to 120 ° C, preferably 100 ° C to 110 ° C, and the time is 12 hours. -30 hours, preferably 20 hours to 28 hours.

[消化汚泥分解微生物の探索]
(消化汚泥の酸処理)
下水処理場から入手した脱水消化汚泥300gと2N硫酸600mlをガラスビーカーに加えて混合し、1時間室温静置し、活性汚泥に含まれる金属を溶脱した。この方法で酸処理を施した消化汚泥と硫酸の混合物をガーゼでろ過し、ガーゼ上に残った消化汚泥を十分量の水で洗浄することで硫酸を除いた。水洗を繰り返すごとにpH試験紙を消化汚泥に漬け、pHが6以上に戻った時点で硫酸が除去されたと判断した。さらに消化汚泥を105℃で24時間乾燥させた後、オステライザーブレンダー(Oster社製)で破砕することで乾燥粉末とした。
[Search for digested sludge-decomposing microorganisms]
(Acid treatment of digested sludge)
300 g of dehydrated digested sludge obtained from the sewage treatment plant and 600 ml of 2N sulfuric acid were added to a glass beaker and mixed, and allowed to stand at room temperature for 1 hour to leach out the metals contained in the activated sludge. The mixture of digested sludge and sulfuric acid treated with acid in this manner was filtered with gauze, and the digested sludge remaining on the gauze was washed with a sufficient amount of water to remove sulfuric acid. Each time the washing with water was repeated, the pH test paper was soaked in digested sludge, and when the pH returned to 6 or more, it was judged that the sulfuric acid was removed. Further, the digested sludge was dried at 105 ° C. for 24 hours, and then crushed with an Osterizer blender (Oster) to obtain a dry powder.

(汚泥分解微生物の分離)
消化汚泥分解微生物を得るために、山口県各所(森林など9箇所)より土壌を採集し、土壌10gを滅菌水30mlに懸濁して接種源とした。消化汚泥200mgと水10mlからなる消化汚泥培養液(以下、単に「消化汚泥培養液」ともいう。)をフラスコに入れて121℃、15分間オートクレーブ(TOMY社製)にて滅菌した。滅菌後の消化汚泥培養液のpHは5.0であった。熱処理により汚泥中の一部の成分が水に溶出したことにより、pHが低下したと考えられる。次に、滅菌した消化汚泥培養液に接種源0.2mlを加え、30℃で7日間振とう培養(集積培養)した。集積培養によって微生物増殖が認められたフラスコから菌液0.2mlを採取し、滅菌した新鮮な消化汚泥培養液が入ったフラスコに接種し、継代培養を7日間行った。この継代培養を2回繰り返した後、菌液30μlをYM寒天培地(10g/lグルコース、3g/l酵母エキス、3g/l麦芽エキス、5g/lバクトペプトン、20g/lバクトアガー)に接種し、30℃で静置培養を7日間行った。出現したコロニーを滅菌済み爪楊枝で拾い、これを新しいYM寒天培地に画線接種することで菌株の純粋分離を行った。このようにして合計8株の分離株(FernWA、CedarWA1、CedarWA2、CedarWA3、CedarWA4、OreWA、OreYA、GalleryYA)を得た。得られた8株を滅菌した消化汚泥培養液に接種してpH5、温度30℃の条件下で7日間培養し、顕微鏡で観察した結果を図1に示す。
(Separation of sludge-decomposing microorganisms)
In order to obtain digested sludge-decomposing microorganisms, soil was collected from various places in Yamaguchi Prefecture (9 places such as forests), and 10 g of soil was suspended in 30 ml of sterilized water as an inoculation source. A digested sludge culture solution (hereinafter simply referred to as “digested sludge culture solution”) consisting of 200 mg of digested sludge and 10 ml of water was placed in a flask and sterilized in an autoclave (manufactured by TOMY) at 121 ° C. for 15 minutes. The pH of the digested sludge culture solution after sterilization was 5.0. It is considered that the pH decreased due to the elution of some of the components in the sludge into water by the heat treatment. Next, 0.2 ml of the inoculum was added to the sterilized digested sludge culture solution, followed by shaking culture (accumulation culture) at 30 ° C. for 7 days. 0.2 ml of a bacterial solution was collected from a flask in which microbial growth was observed by enrichment culture, inoculated into a flask containing a sterilized fresh digested sludge culture solution, and subculture was performed for 7 days. After this subculture was repeated twice, 30 μl of the bacterial solution was inoculated into YM agar medium (10 g / l glucose, 3 g / l yeast extract, 3 g / l malt extract, 5 g / l bactopeptone, 20 g / l bacto agar). Static culture was performed at 30 ° C. for 7 days. The emerged colony was picked up with a sterilized toothpick, and this was streaked on a new YM agar medium to perform pure isolation of the strain. In this way, a total of 8 isolates (FernWA, CedarWA1, CedarWA2, CedarWA3, CedarWA4, OreWA, OreYA, GalleryYA) were obtained. The obtained 8 strains are inoculated into a sterilized digested sludge culture solution, cultured for 7 days under conditions of pH 5 and temperature 30 ° C., and the results of observation with a microscope are shown in FIG.

図1中の矢印で示した箇所で明らかなように、菌糸又は胞子を観察することができ、得られた8株はいずれも消化汚泥培養液で生育できること、すなわち消化汚泥を唯一の栄養源とする培養液で生育できることが確認できた。なお、図1中の黒又は灰色の粒子は伸展した菌糸と絡み合った消化汚泥である。   As is apparent from the location indicated by the arrow in FIG. 1, mycelia or spores can be observed, and all 8 strains obtained can grow in the digested sludge culture solution, that is, digested sludge is the only nutrient source. It was confirmed that it can grow in the culture solution. In addition, the black or gray particle | grains in FIG. 1 are the digested sludge intertwined with the extended mycelium.

[消化汚泥分解試験]
(固形物重量の減少率の算出)
各分離株の薄い菌膜片5mgを上記と同様の条件でオートクレーブ処理して滅菌した消化汚泥培養液に接種してpH5、温度30℃の条件下で7日間振とう培養した。培養後の菌液をH−19F遠心分離機(コクサン社製)で遠心分離(3000rpm、10分)して培養上清を除去した後に残った残渣(消化汚泥分解物、消化汚泥の未分解物及び増殖した微生物の混合物)を乾燥(105℃、24時間)し、固形物を得た。この固形物の重量を測定することで、培養による固形物重量の減少率を、固形物重量の減少率(%)=(培養前の固形物重量(g)−培養後の固形物重量(g))/培養前の固形物重量(g)×100で求めた。コントロールとして、微生物の接種無しで滅菌した消化汚泥培養液をpH5、温度30℃の条件下で7日間振とうした。各分離株それぞれ3株の固形物重量の減少率の平均値を図2に示す。
[Digested sludge decomposition test]
(Calculation of decrease rate of solid weight)
5 mg of a thin bacterial membrane piece of each isolate was inoculated into a digested sludge culture solution that had been sterilized by autoclaving under the same conditions as described above, and cultured with shaking at pH 5 and a temperature of 30 ° C. for 7 days. Residues (digested sludge degradation product, digested sludge undegraded product) remaining after removing the culture supernatant by centrifuging (3000 rpm, 10 minutes) the microbial solution after culture with an H-19F centrifuge (manufactured by Kokusan) And a mixture of grown microorganisms) was dried (105 ° C., 24 hours) to obtain a solid. By measuring the weight of this solid matter, the reduction rate of the solid weight due to the culture was calculated as follows: solid matter weight reduction rate (%) = (solid weight before cultivation (g) −solid weight after cultivation (g )) / Obtained by solid weight (g) × 100 before culture. As a control, the digested sludge culture solution sterilized without inoculation of microorganisms was shaken for 7 days under the conditions of pH 5 and temperature 30 ° C. The average value of the reduction rate of the solid weight of each of the three isolates is shown in FIG.

(結果)
図2に示すように、固形物重量の減少率はFernWA株で13.0%、CedarWA1株及びCedarWA2株はそれぞれ14.0%、14.5%、CedarWA3株及びCedarWA4株はそれぞれ18.5%、18.0%、OreWA株で27.0%であった。
(result)
As shown in FIG. 2, the decrease rate of the solid weight was 13.0% for FernWA strain, 14.0% for CedarWA1 strain and CedarWA2 strain, 14.5% for CedarWA3 strain and 18.5% for CedarWA3 strain, respectively. 18.0% and 27.0% for the OreWA strain.

[酵素活性試験]
分離株が活性汚泥に含まれるどのような成分を分解して生育するのかを知るため、消化汚泥の成分に対する分解酵素の活性を検討した。具体的には、エキソセルラーゼ、エンドセルラーゼ、キシラナーゼ、キチナーゼ、ケラチナーゼ活性を測定した。
[Enzyme activity test]
In order to know what components contained in activated sludge decompose and grow, the activity of degrading enzymes on digested sludge components was examined. Specifically, exocellulase, endocellulase, xylanase, chitinase, and keratinase activity were measured.

(測定方法)
実施例2と同様に各分離株を滅菌した消化汚泥培養液に接種してpH5、温度30℃の条件下で7日間振とう培養した。次に、培養液をガラスろ紙でろ過し、得られた培養上清を酵素液として各種酵素活性試験に用いた。エキソセルラーゼ、エンドセルラーゼ、キシラナーゼ及びキチナーゼ活性の測定では、各基質(セルロース、カルボキシメチルセルロース、キシラン及びキチン)10mg、クエン酸緩衝液(pH4.8)0.8ml、酵素液0.2mlをマイクロチューブに加えて50℃で60分加温し、この間に遊離する還元糖の濃度をDNS法(Ghose TK, Pure and Applied Chemistry (1987) 59, 257-268)で測定することで酵素活性を定量した。ケラチナーゼ活性の測定では、ケラチンアズール(シグマアルドリッチ社製)10mg、62.5mM Tris−HCl緩衝液(pH8.5)0.8ml、酵素液0.2mlをマイクロチューブに加えて50℃で60分加温し、Riffelらの方法(Riffel A et al., Journal of Biotechnology (2007) 128, 693-703)に基づき酵素活性を算出した。結果を表1に示す。
(Measuring method)
In the same manner as in Example 2, each isolate was inoculated into a sterilized digested sludge culture solution and cultured under shaking at pH 5 and a temperature of 30 ° C. for 7 days. Next, the culture solution was filtered with glass filter paper, and the obtained culture supernatant was used as an enzyme solution for various enzyme activity tests. In the measurement of exocellulase, endocellulase, xylanase and chitinase activities, 10 mg of each substrate (cellulose, carboxymethylcellulose, xylan and chitin), 0.8 ml of citrate buffer (pH 4.8) and 0.2 ml of enzyme solution were placed in a microtube. In addition, the mixture was heated at 50 ° C. for 60 minutes, and the enzyme activity was quantified by measuring the concentration of reducing sugar released during this time by the DNS method (Ghose TK, Pure and Applied Chemistry (1987) 59, 257-268). For the measurement of keratinase activity, 10 mg of keratin azul (manufactured by Sigma Aldrich), 0.8 ml of 62.5 mM Tris-HCl buffer (pH 8.5) and 0.2 ml of enzyme solution were added to a microtube and added at 50 ° C. for 60 minutes. The enzyme activity was calculated based on the method of Riffel et al. (Riffel A et al., Journal of Biotechnology (2007) 128, 693-703). The results are shown in Table 1.

(結果)
表1より、分離株はすべてキシラナーゼ活性を有し、CedarWA3とGalleyYAを除いてキチナーゼ活性も有していた。また、FernWA、CedarWA4、OreWA、OreYAはキシラナーゼ、キチナーゼ及びケラチナーゼ活性を有していた。活性汚泥にはし尿に由来するキシラン等の未消化植物繊維が含まれると推察される。また、メタン生産菌には分解できない糸状菌や原生生物の細胞壁成分であるキチンや、人毛に由来するケラチンも多く残存していると考えられる。これらは活性汚泥曝気槽の好気微生物やメタン生産菌では生分解しづらい成分であることから、分離株はこれら成分を分解することで生育していると考えられる。
(result)
From Table 1, all isolates had xylanase activity and also had chitinase activity except for CedarWA3 and GalleyYA. FernWA, CedarWA4, OreWA, and OreYA had xylanase, chitinase and keratinase activities. It is assumed that the activated sludge contains undigested plant fibers such as xylan derived from human waste. In addition, it is considered that a large amount of filamentous fungi that cannot be decomposed into methane-producing bacteria, chitin which is a cell wall component of protists, and keratin derived from human hair remain. Since these are components that are difficult to biodegrade in the aerobic microorganisms and methane producing bacteria in the activated sludge aeration tank, it is considered that the isolate grows by decomposing these components.

[熱量及び燃焼時発熱量の測定]
(熱量の測定方法)
実施例2と同様に各分離株を滅菌した消化汚泥培養液に接種してpH5、温度30℃の条件下で7日間振とう培養し、遠心分離及び乾燥処理を行って消化汚泥分解物と微生物との混合物からなる固形物を得た。この固形物の熱量をThermo Plus EvoII差動型示差熱天秤(リガク社製)を用いて測定した。炉内温度を毎分20℃の割合で室温から800℃まで昇温させ、この間に燃焼して発せられる熱量を、発熱により増加する温度センサーの電圧値(μV)によって測定した。
[Measurement of calorific value and calorific value during combustion]
(Measurement method of calorie)
As in Example 2, each isolate was inoculated into a sterilized digested sludge broth and cultured with shaking for 7 days under conditions of pH 5 and temperature 30 ° C., followed by centrifugation and drying treatment, and digested sludge degradation products and microorganisms. A solid consisting of a mixture with was obtained. The amount of heat of the solid was measured using a Thermo Plus Evo II differential type differential thermal balance (manufactured by Rigaku Corporation). The temperature inside the furnace was raised from room temperature to 800 ° C. at a rate of 20 ° C. per minute, and the amount of heat generated by combustion during this time was measured by the voltage value (μV) of the temperature sensor that increased due to heat generation.

(結果)
CedarWA2における熱量測定の結果を図3に示す。横軸は燃焼時間(分)、右の縦軸は熱量(μV)、左の縦軸は炉内温度(℃)であり、点線の直線が炉内温度、実線の曲線がCedarWA2を接種した消化汚泥培養液の培養後の固形物の熱量、点線の曲線が微生物未接種の消化汚泥培養液の培養後の固形物の熱量である。微生物未接種の消化汚泥培養液の培養後の固形物では、530℃で70μV程度であるのに対し、CedarWA2を接種した消化汚泥培養液の培養後の固形物では、530℃で2倍以上の180μVであり、高い熱量を有していた。
(result)
The result of calorimetric measurement at CedarWA2 is shown in FIG. The horizontal axis is the combustion time (minutes), the right vertical axis is the amount of heat (μV), the left vertical axis is the furnace temperature (° C.), the dotted line is the furnace temperature, and the solid curve is the digestion inoculated with CedarWA2. The amount of heat of the solid after the culture of the sludge culture solution, and the dotted curve are the amount of heat of the solid after the culture of the digested sludge culture solution not inoculated with microorganisms. In the solid after the culture of the digested sludge culture medium not inoculated with microorganisms, it is about 70 μV at 530 ° C., whereas in the solid after the culture of the digested sludge culture inoculated with CedarWA2, it is more than double at 530 ° C. It was 180 μV and had a high calorific value.

(燃焼時発熱量の測定方法)
さらに、各分離株を消化汚泥培養液に接種してpH5、温度30℃の条件下で7日間振とう培養し、培養液から得た固形物の単位重量あたりの燃焼時発熱量(μVsec/mg)、及び、消化汚泥培養液に微生物未接種でpH5、温度30℃の条件下で7日間振とう培養し、培養液から得た固形物の単位重量あたりの燃焼時発熱量を1とした場合の、各分離株を消化汚泥培養液に接種してpH5、温度30℃の条件下で7日間振とう培養し、培養液から得た固形物の単位重量あたりの燃焼時発熱量との相対発熱量を求めた。単位重量あたりの燃焼時発熱量は、発熱により増加する温度センサーの電圧値を燃焼時間で積分することで求めた。
(Measurement method of calorific value during combustion)
Furthermore, each isolate was inoculated into digested sludge culture broth and cultured under shaking at pH 5 and temperature 30 ° C. for 7 days. The calorific value at the time of burning per unit weight of the solid obtained from the culture broth (μVsec / mg ), And when the digested sludge culture solution is not inoculated with microorganisms and cultured with shaking for 7 days under the conditions of pH 5 and temperature 30 ° C., and the calorific value at the time of combustion per unit weight of the solid matter obtained from the culture solution is set to 1. Each isolate was inoculated into digested sludge culture broth and cultured with shaking for 7 days under the conditions of pH 5 and temperature 30 ° C., and the relative exotherm with the calorific value during combustion per unit weight of the solid matter obtained from the culture broth The amount was determined. The calorific value during combustion per unit weight was determined by integrating the voltage value of the temperature sensor, which increases due to heat generation, with the combustion time.

(結果)
結果を表2に示す。いずれの微生物で培養した場合も微生物未接種に較べて単位重量あたりの燃焼時発熱量で高い値が得られ、特に、FernWA株、CedarWa2株、CedarWA4株、OreWA株では微生物未接種における固形物の燃料の1.4倍〜1.68倍もの燃焼時発熱量を有していた。
(result)
The results are shown in Table 2. When cultivated with any microorganism, a higher value of calorific value at the time of combustion per unit weight is obtained than when microorganisms are not inoculated. The calorific value at the time of combustion was 1.4 to 1.68 times that of fuel.

[各分離株の系統解析]
(系統解析方法)
得られた各分離株の系統解析は、菌類の系統分類に用いられるDNAバーコードとして最も有望であると提案されている内部転写スペーサー領域(Internal Transcribed Spacer:ITS)を解析する方法によって行った(Conrad L. Schoch et al., PNAS (2012) 109, 6241-6246)。各分離株をYM培地(10g/lグルコース、3g/l酵母エキス、3g/l麦芽エキス、5g/lバクトペプトン)20mlで30℃の条件下で7日間静置培養した。7日間の培養で生成された菌膜を水洗した後、Master Pure Yeast DNA Purification Kit(Epicentre社製)を用いてゲノムDNAを抽出した。抽出したDNAを鋳型とし、KOD Fx DNA polymerase(東洋紡社製)を用いてITS領域をPCR増幅した。PCR反応のプライマーにはITS1プライマー(5’-TCCGTAGGTGAACCTGCGG-3’:配列番号1)とITS4プライマー(5’-TCCTCCGCTTATTGATATGC-3’:配列番号2)を用い、PCR温度条件は、98℃で10秒、54℃で30秒、68℃で60秒を30サイクルとした。増幅されたITS領域DNAはBigDye Terminator ver3.1 Cycle Sequencing kit(Life Technologies社製)を用いて配列を決定した。得られた配列をBLASTアルゴリズムに入力し、GenBank、EMBL、DDBJ遺伝子データベースの既知DNA配列と照合することで、分離株の属種を決定した。
[Systematic analysis of each isolate]
(System analysis method)
The phylogenetic analysis of each obtained isolate was performed by a method of analyzing an internal transcription spacer region (Internal Transcribed Spacer: ITS) that has been proposed as the most promising DNA barcode used for fungal phylogeny ( Conrad L. Schoch et al., PNAS (2012) 109, 6241-6246). Each isolate was statically cultured in 20 ml of YM medium (10 g / l glucose, 3 g / l yeast extract, 3 g / l malt extract, 5 g / l bactopeptone) at 30 ° C. for 7 days. Bacterial membranes produced by 7 days of culture were washed with water, and then genomic DNA was extracted using Master Pure Yeast DNA Purification Kit (Epicentre). Using the extracted DNA as a template, the ITS region was PCR amplified using KOD Fx DNA polymerase (manufactured by Toyobo). ITS1 primer (5′-TCCGTAGGTGAACCTGCGG-3 ′: SEQ ID NO: 1) and ITS4 primer (5′-TCCTCCGCTTATTGATATGC-3 ′: SEQ ID NO: 2) were used as PCR reaction primers, and the PCR temperature conditions were 98 ° C. for 10 seconds. 30 cycles of 54 ° C. for 30 seconds and 68 ° C. for 60 seconds. The amplified ITS region DNA was sequenced using BigDye Terminator ver3.1 Cycle Sequencing kit (Life Technologies). The obtained sequence was input into the BLAST algorithm, and the genus species of the isolate was determined by comparing with the known DNA sequences in the GenBank, EMBL, and DDBJ gene databases.

(結果)
CedarWA1のITS領域の塩基配列(配列番号3)、CedarWA2のITS領域の塩基配列(配列番号4)はペニシリウム・ジャンシネラム(Penicillium janthinellum)のITS領域の塩基配列と99%同一であり、CedarWA3のITS領域の塩基配列(配列番号5)、CedarWA4のITS領域の塩基配列(配列番号6)はカニンガメラ・バイニエリ(Cunninghamella bainieri)のITS領域の塩基配列と99%同一であり、OreWA株のITS領域の塩基配列(配列番号7)はネオサルトリア・フィシェリ(Neosartorya fischeri)のITS領域の塩基配列と100%同一であり、FernWA株のITS領域の塩基配列(配列番号8)はウンベロプシス・イサベリナ(Umbelopsis isabellina)のITS領域の塩基配列と99%同一であり、GalleryYA株のITS領域の塩基配列(配列番号9)はケトミウム・グロボスム(Chaetomium Globosum)のITS領域の塩基配列と95%同一であり、OreYA株のITS領域の塩基配列(配列番号10)はフザリウム・オキシスポラム(Fusarium oxysporum)のITS領域の塩基配列と99%同一であった。また、近隣結合法として知られているClustal W プログラム(Saitou&Nei,(1987)Mol.Biol.Evol.4,406-425、Thompson et al., Nucleic Acids Res. (1994) 22, 4673-4680)を用いて,ITS領域のDNAに基づく系統樹を作成した結果を図4に示す。図4に示すように、CedarWA1、CedarWA2はペニシリウム・ジャンシネラム(Penicillium janthinellum)、CedarWA3、CedarWA4はカニンガメラ・バイニエリ(Cunninghamella bainieri)、OreWA株はネオサルトリア・フィシェリ(Neosartorya fischeri)、FernWA株はウンベロプシス・イサベリナ(Umbelopsis isabellina)、GalleryYA株はケトミウム・グロボスム(Chaetomium Globosum)、OreYA株はフザリウム・オキシスポラム(Fusarium oxysporum)であることが明らかとなった。
(result)
The base sequence of the ITS region of CedarWA1 (SEQ ID NO: 3), the base sequence of the ITS region of CedarWA2 (SEQ ID NO: 4) is 99% identical to the base sequence of the ITS region of Penicillium janthinellum, and the ITS region of CedarWA3 The base sequence of SEQ ID NO: 5 and the base sequence of the ITS region of CedarWA4 (SEQ ID NO: 6) are 99% identical to the base sequence of the ITS region of Cunninghamella bainieri, and the base sequence of the ITS region of the OreWA strain (SEQ ID NO: 7) is 100% identical to the nucleotide sequence of the ITS region of Neosartorya fischeri, and the nucleotide sequence (SEQ ID NO: 8) of the ITS region of FernWA strain is the ITS of Umbelopsis isabellina. 99% identical to the base sequence of the region, The base sequence of the ITS region of the GalleryYA strain (SEQ ID NO: 9) is 95% identical to the base sequence of the ITS region of Chaetomium Globosum, and the base sequence of the ITS region of the OreYA strain (SEQ ID NO: 10) is Fusarium. It was 99% identical to the base sequence of the ITS region of Fusarium oxysporum. In addition, using the Clustal W program (Saitou & Nei, (1987) Mol. Biol. Evol. 4, 406-425, Thompson et al., Nucleic Acids Res. (1994) 22, 4673-4680), known as the neighborhood joining method. FIG. 4 shows the results of creating a phylogenetic tree based on DNA in the ITS region. As shown in FIG. 4, CedarWA1 and CedarWA2 are Penicillium janthinellum, CedarWA3 and CedarWA4 are Cunninghamella bainieri, and OreWA is Neosartoria FiseriWaN. Umbelopsis isabellina), GalleryYA strain was found to be Chaetomium Globosum, and OreYA strain was found to be Fusarium oxysporum.

本発明の消化汚泥の分解方法は、難生分解性の消化汚泥を低コストで分解できるものであり、産業廃棄物処理の分野において産業上の有用性は高い。   The digested sludge decomposition method of the present invention is capable of decomposing hardly biodegradable digested sludge at low cost, and has high industrial utility in the field of industrial waste treatment.

Claims (7)

消化汚泥を唯一の栄養源とする培養液で生育でき、消化汚泥に水を添加した培養液に接種してpH5、温度30℃の条件下で7日間培養したときの固形物重量の減少率(%)が10.0%以上である微生物を、消化汚泥を含有する培養液で培養する消化汚泥の分解方法であって、前記微生物がペニシリウム・ジャンシネラム(Penicillium janthinellum)、カニンガメラ・バイニエリ(Cunninghamella bainieri)、ネオサルトリア・フィシェリ(Neosartorya fischeri)、ウンベロプシス・イサベリナ(Umbelopsis isabellina)のいずれか1種又は2種以上の微生物であることを特徴とする消化汚泥の分解方法。 The rate of decrease in the weight of solids when grown in a culture solution using digested sludge as the only nutrient source, inoculated into a culture solution in which water is added to the digested sludge and cultured at pH 5 and temperature of 30 ° C. for 7 days ( %) Is a digestion sludge decomposition method for culturing a microorganism having a digestion sludge containing a microorganism having a content of 10.0% or more, wherein the microorganism is Penicillium janthinellum, Cunninghamella bainieri A method for decomposing digested sludge, characterized in that it is one or more microorganisms of Neosartorya fischeri and Umbelopsis isabellina. 微生物がキシラナーゼ及びキチナーゼ活性を有することを特徴とする請求項1記載の消化汚泥の分解方法。 2. The digested sludge decomposition method according to claim 1, wherein the microorganism has xylanase and chitinase activities. 微生物がペニシリウム・ジャンシネラムCedarWA2株(受託番号:NITE P−1523)、カニンガメラ・バイニエリCedarWA4株(受託番号:NITE P−1524)、ネオサルトリア・フィシェリOreWA株(受託番号:NITE P−1522)、ウンベロプシス・イサベリナFernWA株(受託番号:NITE P−1525)のいずれか1種又は2種以上の微生物であることを特徴とする請求項1又は2記載の消化汚泥の分解方法。 Microorganisms are Penicillium cinecineram CedarWA2 strain (Accession number: NITE P-1523), Kaningamera bainieri CedarWA4 strain (Accession number: NITE P-1524), Neosartoria Fischeri OreWA strain (Accession number: NITE P-1522), Unveropsis The digested sludge decomposition method according to claim 1 or 2, wherein the microorganism is any one or more microorganisms of Isabela FernWA strain (Accession number: NITE P-1525). 消化汚泥からあらかじめ金属を溶脱させる工程を含むことを特徴とする請求項1〜3のいずれか記載の消化汚泥の分解方法。 The method for decomposing digested sludge according to any one of claims 1 to 3, further comprising a step of leaching the metal from the digested sludge in advance. 消化汚泥を唯一の栄養源とする培養液で生育でき、消化汚泥に水を添加した培養液に接種してpH5、温度30℃の条件下で7日間培養したときの固形物重量の減少率(%)が10.0%以上である、ペニシリウム・ジャンシネラム(Penicillium janthinellum)CedarWA2株(受託番号:NITE P−1523)、カニンガメラ・バイニエリ(Cunninghamella bainieri)CedarWA4株(受託番号:NITE P−1524)、ネオサルトリア・フィシェリ(Neosartorya fischeri)OreWA株(受託番号:NITE P−1522)、ウンベロプシス・イサベリナ(Umbelopsis isabellina)FernWA株(受託番号:NITE P−1525)のいずれかの微生物。 The rate of decrease in the weight of solids when grown in a culture solution using digested sludge as the only nutrient source, inoculated into a culture solution in which water is added to the digested sludge and cultured at pH 5 and temperature of 30 ° C. for 7 days ( %) Is 10.0% or more, Penicillium janthinellum CedarWA2 strain (Accession number: NITE P-1523), Cunninghamella bainieri CedarWA4 strain (Accession number: NITE P-1524), Neo One of the microorganisms of the Neosartorya fischeri OreWA strain (Accession number: NITE P-1522) and Umbelopsis isabellina FernWA strain (Accession number: NITE P-1525). キシラナーゼ及びキチナーゼ活性を有することを特徴とする請求項5記載の微生物。 6. The microorganism according to claim 5, which has xylanase and chitinase activities. 請求項5又は6記載の微生物を、消化汚泥を含有する培養液に接種して培養することを特徴とする、消化汚泥分解物と微生物との混合物の製造方法 Method for producing a microorganism according to claim 5 or 6, was inoculated with a culture medium containing digested sludge, characterized by culturing a mixture of digested sludge decomposition products with microorganisms.
JP2013030270A 2013-02-19 2013-02-19 Degradation method of digested sludge Expired - Fee Related JP6218264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013030270A JP6218264B2 (en) 2013-02-19 2013-02-19 Degradation method of digested sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013030270A JP6218264B2 (en) 2013-02-19 2013-02-19 Degradation method of digested sludge

Publications (2)

Publication Number Publication Date
JP2014158433A JP2014158433A (en) 2014-09-04
JP6218264B2 true JP6218264B2 (en) 2017-10-25

Family

ID=51610729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013030270A Expired - Fee Related JP6218264B2 (en) 2013-02-19 2013-02-19 Degradation method of digested sludge

Country Status (1)

Country Link
JP (1) JP6218264B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104829078B (en) * 2015-06-02 2016-08-17 四川德拉普环保科技有限公司 Method with mixed microorganism microbial inoculum harmless treatment drilling mud
JP2020157184A (en) * 2019-03-25 2020-10-01 大阪瓦斯株式会社 Digested sludge treatment method

Also Published As

Publication number Publication date
JP2014158433A (en) 2014-09-04

Similar Documents

Publication Publication Date Title
Masami et al. Ethanol production from the water hyacinth Eichhornia crassipes by yeast isolated from various hydrospheres
KR102004089B1 (en) Mixed strain for decomposing food waste and Decomposition method for food waste using same
CN103025862B (en) Novel thraustochytrid-based microalgae, and method for preparing bio-oil by using same
CN104560816B (en) Bacillus licheniformis with biomass hydrolase activity and application thereof
CN115873754A (en) Enteromorpha clotrimaca RS804 and application thereof
CN114107092B (en) Endophyte Gordonia L191 for degrading phthalate and application thereof
CN111100827A (en) Bacillus capable of producing high-activity alginate lyase and application thereof
WO2019112515A1 (en) Methods and products for biodegradation of waste
JP2010226959A (en) New microorganism, method for treating waste water with the microorganism and waste water-treating apparatus
JP6218264B2 (en) Degradation method of digested sludge
Ratnasri et al. Isolation, characterization of Aspergillus fumigatus and optimization of cultural conditions for amylase production
JP6675714B2 (en) Sludge volume reduction method for microbial material and excess sludge
JP5219050B2 (en) Oil-degrading bacteria and oil-degrading agents
Ngo et al. Cellulose degrading ability of bacterial strains isolated from gut of termites in Vinhlong province-Vietnam
JP5667174B2 (en) Novel microorganism, hydrogen production method using the same, 1,3-propanediol production method and biodiesel waste liquid treatment method
JP2012139216A (en) New microorganism, and waste water disposal method and waste water disposal apparatus using the new microorganism
JP4088690B2 (en) New microorganisms and methods for removing arsenic by microorganisms
Lakshmi et al. Production and optimization of glucoamylase from Aspergillus oryzae NCIM 1212 using wheat bran, varying chemical parameters under solid state fermentation
CN107164280A (en) One plant of vomitoxin degradation bacteria and its application
CN110042063B (en) Gliocladium roseum (Clinostacchys rosea) strain YZC3 and application thereof
JP2011240328A (en) Method for treating object to be treated using microorganism
JP4876247B2 (en) A new microorganism belonging to the genus Penicillium
CN106085923B (en) A kind of preparation method and application of bacillus amyloliquefaciens and its biological flocculant
JP2008142042A (en) Mixed microorganisms, preparation and method for treating substance containing oil and fat
CN112375699B (en) Bacillus licheniformis for expressing lipase and fermentation enzyme production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170922

R150 Certificate of patent or registration of utility model

Ref document number: 6218264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees