JP4088690B2 - New microorganisms and methods for removing arsenic by microorganisms - Google Patents

New microorganisms and methods for removing arsenic by microorganisms Download PDF

Info

Publication number
JP4088690B2
JP4088690B2 JP2004075390A JP2004075390A JP4088690B2 JP 4088690 B2 JP4088690 B2 JP 4088690B2 JP 2004075390 A JP2004075390 A JP 2004075390A JP 2004075390 A JP2004075390 A JP 2004075390A JP 4088690 B2 JP4088690 B2 JP 4088690B2
Authority
JP
Japan
Prior art keywords
arsenic
microorganisms
bacillus
removal
bacillus megaterium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004075390A
Other languages
Japanese (ja)
Other versions
JP2005261234A (en
Inventor
幸男 林
宗利 宮武
公子 田辺
Original Assignee
国立大学法人 宮崎大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 宮崎大学 filed Critical 国立大学法人 宮崎大学
Priority to JP2004075390A priority Critical patent/JP4088690B2/en
Publication of JP2005261234A publication Critical patent/JP2005261234A/en
Application granted granted Critical
Publication of JP4088690B2 publication Critical patent/JP4088690B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、新規微生物及び微生物によるヒ素類の除去方法、特にヒ素類含有水溶液を微生物処理してヒ素類を除去する方法に関するものである。   The present invention relates to a novel microorganism and a method for removing arsenic by a microorganism, and more particularly, to a method for removing arsenic by microbial treatment of an arsenic-containing aqueous solution.

廃液中のヒ素類の除去には、例えば鉄(3)を塗布したアルギニンゲル(非特許文献1)や鉄粒子(非特許文献2)で吸着する方法、活性化された赤泥(非特許文献3)やフライアッシュ(非特許文献4)に吸着させる方法、化学的沈殿方法(非特許文献5)、モリブデン含浸キトサンビーズによる吸着(非特許文献6)、炭素ベース吸着剤による方法(非特許文献7)などが一般的に知られている。さらに生物的な吸着方法として、化学的に修飾されたバイオマス菌を用いて除去する方法も、実験室的にではあるが知られている(特許文献8)。尚、鉄(3)及びFe(3)は、3価の鉄(Fe)を示し、As(3)は、3価のヒ素(As)を示し、As(5)及びArsenic(5)は、5価のヒ素(As)を示す。
Min JH et al:Arsenate sorption by Fe(3)-doped alginate gels.Water Res 32 [1544] 52 (1998) Matis KA et al:Sorption of As(5) by goethite particles and study of their flocculation.Water Air Soil Pollut 111 [297] 316(1999) Bildik M. et al:Arsenic removal from aqueous solutions by adsorption on red mud.Waste Manage 22 [357] 63 (2002) Diamantopoulos E et al:As(5) removal from aqueous solution by fly ash.Water Res 27(12) [1773] 7 (1993) Harper TR et al:Removale of Arsenic from wastewaters using chemical precipitation methods. Water Environ Res 64 [200] 3 (1992) Dambies l et al:Arsenic(5) sorption on molybdate-impregnated chitosan beads.Colloids Surf A 170 [19] 31 (2000) Pattanayak J et al:A parametric evaluation of the removal of As(5) and As(3) by carbon-based adsorbents.Carbon 38 [589] 96 (2000) Maria X et al:Removal of As(5) from wastewaters by chemically modified fungal biomass.Water Res 37 [4544] 52 (2003)
For removing arsenic in the waste liquid, for example, a method of adsorbing with arginine gel (Non-patent Document 1) or iron particles (Non-patent Document 2) coated with iron (3), activated red mud (Non-patent Document) 3) and a method of adsorbing to fly ash (Non-Patent Document 4), a chemical precipitation method (Non-Patent Document 5), adsorption with molybdenum-impregnated chitosan beads (Non-Patent Document 6), a method using a carbon-based adsorbent (Non-Patent Document) 7) etc. are generally known. Further, as a biological adsorption method, a method of removing using chemically modified biomass bacteria is also known in the laboratory (Patent Document 8). Iron (3) and Fe (3) indicate trivalent iron (Fe), As (3) indicates trivalent arsenic (As), As (5) and Arsenic (5) It represents pentavalent arsenic (As).
Min JH et al: Arsenate sorption by Fe (3) -doped alginate gels.Water Res 32 [1544] 52 (1998) Matis KA et al: Sorption of As (5) by goethite particles and study of their flocculation.Water Air Soil Pollut 111 [297] 316 (1999) Bildik M. et al: Arsenic removal from aqueous solutions by adsorption on red mud.Waste Manage 22 [357] 63 (2002) Diamantopoulos E et al: As (5) removal from aqueous solution by fly ash.Water Res 27 (12) [1773] 7 (1993) Harper TR et al: Removale of Arsenic from wastewaters using chemical precipitation methods. Water Environ Res 64 [200] 3 (1992) Dambies l et al: Arsenic (5) sorption on molybdate-impregnated chitosan beads.Colloids Surf A 170 [19] 31 (2000) Pattanayak J et al: A parametric evaluation of the removal of As (5) and As (3) by carbon-based adsorbents. Carbon 38 [589] 96 (2000) Maria X et al: Removal of As (5) from wastewaters by chemically modified fungal biomass.Water Res 37 [4544] 52 (2003)

一方、生物的吸着による重金属の除去に関しては、固定化M.rouxiiバイオマスによる生物吸着カラムでの除去(非特許文献9)や、アスペルギルス・ニガーを用いた方法(非特許文献10)等が知られている。
Yan G et al.Heavy metal removal in a biosorption column by immobilized M. rouxii biomass. Bioresource Technology 78 [243] 249 (2001) Kapoor A et al.Removal of heavy metals using the fungus Aspergillus niger.Bioresource Technology 70 [95] 104 (1999)
On the other hand, regarding the removal of heavy metals by biological adsorption, immobilized M.P. A method using a biosorption column with rouxii biomass (Non-patent Document 9), a method using Aspergillus niger (Non-patent Document 10), and the like are known.
Yan G et al. Heavy metal removal in a biosorption column by immobilized M. rouxii biomass. Bioresource Technology 78 [243] 249 (2001) Kapoor A et al. Removal of heavy metals using the fungus Aspergillus niger. Bioresource Technology 70 [95] 104 (1999)

重金属の生物吸着は、非特許文献9及び10を待つまでもなく広く知られているが、ヒ素類含有廃水からのヒ素類の除去に微生物を用いた例はほとんどない。マリア等の非特許文献8は数少ない例のひとつである。しかしながら、マリア等のヒ素類の吸着方法で実際に使用している菌は、ペニシリウム・クリソゲナムバイオマスである。また除去するヒ素類は、As(5)である。しかも、この菌バイオマス自体ではAs(5)の回収率は低く、菌バイオマスを通常の界面活性剤及び陽イオン電解液で前処理し、化学的に修飾したものでないと、所期の目的を達成しない。前処理は比較的簡単とされているが、工業的な実施に際してはコスト的にも大きな障害となる。これまでのところ、ヒ素類の除去に微生物を用いた例、特にAs(3)の微生物吸着による除去技術は知られていない。   The biosorption of heavy metals is widely known without waiting for Non-Patent Documents 9 and 10, but there are few examples of using microorganisms to remove arsenic from arsenic-containing wastewater. Non-patent document 8 such as Maria is one of few examples. However, the fungus actually used in the adsorption method of arsenic such as Maria is Penicillium chrysogenum biomass. The arsenic to be removed is As (5). Moreover, the recovery rate of As (5) is low with the fungus biomass itself, and the intended purpose is achieved unless the fungus biomass is pretreated with a normal surfactant and a cationic electrolyte and chemically modified. do not do. Although the pretreatment is relatively simple, it is a significant cost obstacle for industrial implementation. So far, there is no known example in which microorganisms are used for removing arsenic, in particular, removal techniques by adsorption of As (3) by microorganisms.

本発明は、前記のごとき課題を解決するヒ素類吸着能を有する新規微生物を提供することを目的としている。   An object of the present invention is to provide a novel microorganism having an ability to adsorb arsenic to solve the above-described problems.

また本発明は、培養で大量に増やすことのでき、生分解性の微生物を用い、ヒ素またはヒ素化合物含有水溶液からヒ素類を回収する操作が簡単なヒ素類の除去方法を提供することを目的としている。   Another object of the present invention is to provide a method for removing arsenic that can be increased in large quantities by culturing and that is easy to recover arsenic from an arsenic or arsenic compound-containing aqueous solution using a biodegradable microorganism. Yes.

前記課題を解決した本発明の第1の発明である新規微生物は、土壌から単離されたヒ素吸着能を有する新菌株バシルス・メガテリウムUM−123(Bacillus megaterium UM−123、2004年2月12日に独立行政法人産業技術総合研究所特許生物寄託センターに寄託、寄託番号[FERM P−19682])を特徴としている。   The novel microorganism which is the first invention of the present invention which has solved the above problems is a new strain Bacillus megaterium UM-123 (Bacillus megaterium UM-123, February 12, 2004) having an arsenic adsorption ability isolated from soil. And the deposit number [FERM P-19682]) at the Patent Organism Depositary of the National Institute of Advanced Industrial Science and Technology.

本発明の第2の発明である微生物によるヒ素類の除去方法は、新菌株バシルス・メガテリウムUM−123を用いて、ヒ素類含有水溶液を処理することを特徴としている。   The method for removing arsenic by a microorganism according to the second invention of the present invention is characterized in that an arsenic-containing aqueous solution is treated using a new strain, Bacillus megaterium UM-123.

第2の本発明は、特にAs(3)のヒ素類の除去において効果的である。この場合、被処理水溶液のpHは2〜11、望ましくは2〜8、さらに望ましくは6〜8の範囲が除去率の観点から好適である。また処理温度は、約30〜50℃の範囲が除去率の観点から望ましい。   The second aspect of the present invention is particularly effective in removing As (3) arsenic. In this case, the pH of the aqueous solution to be treated is preferably 2 to 11, desirably 2 to 8, and more desirably 6 to 8 from the viewpoint of removal rate. The treatment temperature is preferably in the range of about 30 to 50 ° C. from the viewpoint of removal rate.

以下、本発明でヒ素類とは、三価または五価のヒ素、As(3)As(5)またはそれらを含むヒ素化合物をいう。   Hereinafter, the arsenic in the present invention refers to trivalent or pentavalent arsenic, As (3) As (5) or an arsenic compound containing them.

本発明によれば、以下の産業上の効果及び利点がある。   The present invention has the following industrial effects and advantages.

(1)本発明の第1及び第2の発明によれば、バシルス属に属する新規菌株バシルス・メガテリウムUM−123を用いることにより、これまで前例のないAs(3)をマイルドな条件下で、ヒ素類含有水溶液からヒ素類を約85%の高い回収率でもって除去できる。 (1) According to the first and second inventions of the present invention, by using the new strain Bacillus megaterium UM-123 belonging to the genus Bacillus, As (3), which has never been seen before, under mild conditions, Arsenic can be removed from an arsenic-containing aqueous solution with a high recovery rate of about 85%.

(2)本発明の第3の発明によれば、微生物の中でもバシルス属及びエセリシア属に属する細菌、アスペルギルス属に属する糸状菌、サッカロマイセス属に属する酵母の使用により、ヒ素類含有水溶液からヒ素類を除去できる。 (2) According to the third invention of the present invention, by using a bacterium belonging to the genus Bacillus and Escherichia among microorganisms, a filamentous fungus belonging to the genus Aspergillus, or a yeast belonging to the genus Saccharomyces, arsenic is removed from an arsenic-containing aqueous solution. Can be removed.

前記各本発明では、生分解性あるいは自己消化性の微生物によりヒ素類を吸着することにより、化学的吸着等にくらべると、ヒ素除去後の廃棄物の環境負荷が少ない利点がある。   Each of the present inventions has an advantage that the environmental load of waste after arsenic removal is small compared to chemical adsorption by adsorbing arsenic by a biodegradable or self-digestible microorganism.

本発明の第1の発明である新規菌株バシルス・メガテリウムUM−123は、土壌を滅菌水に懸濁後、その上清を例えばヒ素含有寒天平板培地に塗布して培養し、菌株を単離することにより得ることができる。培養に使用する培地に特に制限はないが、ヒ素含有培地の使用は、ヒ素類に耐性のある菌の選択を考慮したためである。   The novel strain Bacillus megaterium UM-123, which is the first invention of the present invention, is obtained by suspending soil in sterilized water and then culturing the supernatant by applying it to, for example, an arsenic-containing agar plate medium. Can be obtained. The medium used for the culture is not particularly limited, but the use of the arsenic-containing medium is due to consideration of selection of bacteria resistant to arsenic.

得られた新規菌株バシルス・メガテリウムUM−123の菌学的性質及び同種公知菌との相違は、後述の実施例1及び実施例1に基づく表1に示すとおりである。   The bacteriological properties of the obtained new strain Bacillus megaterium UM-123 and the differences from the known homologous bacteria are as shown in Table 1 based on Example 1 and Example 1 described later.

Figure 0004088690
Figure 0004088690

本発明の第2、第3の発明で吸着除去可能なヒ素類としては、ヒ素の単体、三価As(3)及び五価As(5)並びにそれらのヒ素化合物など特に制限はない。しかし、新菌株バシルス・メガテリウムUM−123を用いる第2の発明では、図1から明らかなように、三価のヒ素化合物、三酸化二ヒ素(As)の除去率は、五価のヒ素化合物、ヒ酸二ナトリウム七水和物(NaHAsO・7HO)のそれに比べていちじるしく高い。したがって、第2の発明は、As(3)において特に有効である。 Arsenic compounds that can be adsorbed and removed in the second and third inventions of the present invention are not particularly limited, such as arsenic alone, trivalent As (3) and pentavalent As (5), and arsenic compounds thereof. However, in the second invention using the new strain Bacillus megaterium UM-123, as is clear from FIG. 1, the removal rate of the trivalent arsenic compound, diarsenic trioxide (As 2 O 3 ) is pentavalent. The arsenic compound, disodium arsenate heptahydrate (Na 2 HAsO 4 · 7H 2 O), is considerably higher than that. Therefore, the second invention is particularly effective in As (3).

本発明の第3の発明において使用する細菌としては、バシルス属及びエセリシア属に属するヒ素類吸着能を有するバシルス・メガテリウム及びバシルス・サブティリスをあげることができる。特に、後述する新規菌株バシルス・メガテリウムUM−123の使用は、高いAs(3)の除去率を示す。またエセリシア属に属するヒ素類吸着能を有するエセリシア・コリも有用である。糸状菌としてはアスペルギルス・ニガー、酵母としてはサッカロマイセス・セレヴィシエを挙げることができる。バシルス・サブティリス(IFO03335)とエセリシア・コリ(IFO3301)、アスペルギルス・ニガー(IFO4414)、サッカロマイセス・セレヴィシエ(IFO2044)は、いずれも(財)発酵研究所から購入可能な公知菌である。   Examples of the bacterium used in the third invention of the present invention include Bacillus megaterium and Bacillus subtilis having the ability to adsorb arsenic belonging to the genus Bacillus and Escherichia. In particular, the use of the new strain Bacillus megaterium UM-123 described below shows a high As (3) removal rate. In addition, Escherichia coli having an ability to adsorb arsenic belonging to the genus Escherichia is also useful. Examples of filamentous fungi include Aspergillus niger, and examples of yeast include Saccharomyces cerevisiae. Bacillus subtilis (IFO03335), Escherichia coli (IFO3301), Aspergillus niger (IFO4414), and Saccharomyces cerevisiae (IFO2044) are all known bacteria that can be purchased from the Fermentation Research Institute.

本発明に用いる微生物類の培養には、例えば培地には、肉エキス、ペプトン、塩化ナトリウム、燐酸−水素カリウム等を用い、pH7程度に調整する。オートクレーブで滅菌した培地に菌を接種し、30℃で24時間、110ストローク/分で振盪培養する。培養後、培養液から遠心分離機により菌体を分離し、生理食塩水により洗浄後、凍結乾燥して菌体を得る。   For culturing the microorganisms used in the present invention, for example, meat extract, peptone, sodium chloride, phosphoric acid-potassium hydrogen phosphate, etc. are used as the medium, and the pH is adjusted to about 7. The bacteria are inoculated in a medium sterilized by autoclaving, and cultured at 30 ° C. for 24 hours with shaking at 110 strokes / minute. After culturing, the cells are separated from the culture solution by a centrifuge, washed with physiological saline, and lyophilized to obtain the cells.

本発明のヒ素類の除去は、一般的に被処理水溶液のpH調整、温度、圧力、菌体類添加量、混合撹拌時間等に依存する。   The removal of arsenic of the present invention generally depends on pH adjustment of the aqueous solution to be treated, temperature, pressure, added amount of fungus, mixing stirring time and the like.

pHは使用する菌体の種により異なるので特定できないが、本発明の第2の発明では、図1が示すように、As(3)の除去率の観点から、pH2〜11、好ましくは8以下、さらに好ましくは6〜8の中性近傍が好適である。温度は、図2に示すように、30〜50℃、特に30〜45℃の範囲はが好適である。   Although pH cannot be specified because it varies depending on the type of cells used, in the second invention of the present invention, as shown in FIG. 1, from the viewpoint of the removal rate of As (3), pH is 2 to 11, preferably 8 or less. More preferably, the neutral vicinity of 6 to 8 is suitable. As shown in FIG. 2, the temperature is preferably 30 to 50 ° C., particularly 30 to 45 ° C.

菌体類の添加量は、ヒ素類の濃度、菌体の種類により異なるが、例えばヒ素類濃度が1mg/Lであれば、菌体量は0.2〜2.0w/v程度でよい。   The amount of fungus added varies depending on the concentration of arsenic and the type of fungus. For example, if the arsenic concentration is 1 mg / L, the amount of fungus may be about 0.2 to 2.0 w / v.

撹拌時間は、2時間程度で十分である。2時間以上長時間に亘っても、除去率に大きな変化はない。処理後は、遠心分離機等により菌体と上清を分けて菌体を除けば、ヒ素を除去した清浄な水が得られる。   A stirring time of about 2 hours is sufficient. There is no significant change in the removal rate even over 2 hours or longer. After the treatment, clean water from which arsenic has been removed can be obtained by separating the cells from the supernatant using a centrifuge and removing the cells.

(本発明の第1の発明による新菌株の取得と同定)
[新菌株の取得]
宮崎県内の畑の土壌を滅菌水に懸濁後、その上清を平板培地に塗布し30℃で培養した。平板培地には、商品名「Nutrient Agar」(日水製薬株式会社製)に三酸化二ヒ素[As:As(3)]を1mg/Lになるように加えたものを用いた。主な成分は、肉エキス0.5%、ペプトン1.0%、塩化ナトリウム0.5%、寒天1.5%で、pHは7である。平板培地上のコロニーを分画操作より単一にした。得られた菌株を培地に接種した。培地には、商品名「Nutrient Broth」(日水製薬株式会社製)に三酸化二ヒ素[As:As(3)]を1mg/Lになるように加えたものを用いた。主な成分は、肉エキス0.5%、ペプトン1.5%、塩化ナトリウム0.5%、燐酸−水素カリウム0.5%で、pHは7である。接種後、30℃で24時間、110ストローク/分の振盪培養を行った。次いで、遠心分離機により、培養液から菌体を分離し、その上清のヒ素濃度を測定した。ヒ素濃度の測定は、宮崎大学フロンティア科学実験総合センター実験支援部門機器分析分野木花分室のヒ素形態別分析システム(ヒ素形態別前処理装置−原子吸光分光光度計)によった。培養上清のヒ素濃度の低下が著しかったものを新規菌株とした。
(Acquisition and identification of a new strain according to the first invention of the present invention)
[Acquisition of new strain]
The field soil in Miyazaki Prefecture was suspended in sterilized water, and the supernatant was applied to a plate medium and cultured at 30 ° C. The plate medium used was a trade name “Nutrient Agar” (manufactured by Nissui Pharmaceutical Co., Ltd.) with diarsenic trioxide [As 2 O 3 : As (3)] added to 1 mg / L. The main ingredients are 0.5% meat extract, 1.0% peptone, 0.5% sodium chloride, 1.5% agar and pH is 7. Colonies on the plate medium were made single by fractionation. The resulting strain was inoculated into the medium. The medium used was a trade name “Nutrient Broth” (manufactured by Nissui Pharmaceutical Co., Ltd.) with diarsenic trioxide [As 2 O 3 : As (3)] added to 1 mg / L. The main components are 0.5% meat extract, 1.5% peptone, 0.5% sodium chloride, 0.5% potassium hydrogen phosphate and pH is 7. After inoculation, shaking culture was performed at 30 ° C. for 24 hours at 110 strokes / minute. Subsequently, the cells were separated from the culture solution by a centrifuge, and the arsenic concentration of the supernatant was measured. The arsenic concentration was measured by an arsenic morphology analysis system (arsenic morphology pretreatment device-atomic absorption spectrophotometer) in the instrumental analysis field of the Miyazaki University Frontier Science Experimental Center. A strain having a remarkable decrease in the arsenic concentration in the culture supernatant was designated as a novel strain.

[新菌株の同定1:微生物第1段階試験]
新菌株UM−123(登録番号SIID2588)につき、(株)エヌシーアイエムビー・ジャパンで、形態学的・生理生化学的試験の結果からSIID2588と類似の性状を示す分類群を推定するため、下記の試験を実施した。
[Identification of new strain 1: First stage microorganism test]
For new strain UM-123 (registration number SIID2588), in order to estimate a classification group showing similar properties to SIID2588 from the results of morphological and physiological biochemical tests at NMC Japan, Inc. The test was conducted.

光学顕微鏡U−LH1000(オリンパス、日本)による細胞形態、グラム染色性、胞子の有無、鞭毛による運動性の有無の観察を行った。Nutrient Agar(Oxoid,イングランド、英国)平板培地上でのコロニー形態を観察した。カタラーゼ反応、オキシダーゼ反応、ブドウ糖からの酸/ガス産生、ブドウ糖の酸化/醗酵(O/F)について試験した。結果を表1に示す。   The cell morphology, Gram stainability, the presence or absence of spores, and the presence or absence of flagellar motility were observed with an optical microscope U-LH1000 (Olympus, Japan). Colony morphology was observed on Nutrient Agar (Oxoid, England, UK) plate media. Catalase reaction, oxidase reaction, acid / gas production from glucose, glucose oxidation / fermentation (O / F) were tested. The results are shown in Table 1.

表1から明らかなように、SIID2588は、グラム染色陽性、桿菌、芽胞形成、好気条件下での生育性、カタラーゼ反応要請などの性状を示し、BARROW, G.I. et al:Cowan and Steel’s Manual for the Identification of Medical Bacteria. 3rd. Ed. 1993, Cambridge University Press、及びSNEATH, P. H. A. et al:Bergey’s Manual of Systematic Bacteriology. 2 1984, Williams and Wilkins, Baltimoreを参考にして、バシルス属に属する菌株と推定した。
[新菌株の同定2:16S rDNA−500塩基配列解析]
As is clear from Table 1, SIID2588 shows properties such as Gram staining positive, Neisseria gonorrhoeae, spore formation, growth under aerobic conditions, catalase reaction requirement, etc., BARROW, GI et al: Cowan and Steel's Manual for the Identification of Medical Bacteria. 3 rd . Ed. 1993, Cambridge University Press and SNEATH, PHA et al: Bergey's Manual of Systematic Bacteriology. 2 1984, Williams and Wilkins, Baltimore .
[Identification of new strain 2: 16S rDNA-500 nucleotide sequence analysis]

次に、登録番号SIID2588につき、(株)エヌシーアイエムビー・ジャパンで、16S rDNA(16S rRNA遺伝子)の部分塩基配列500bpを用いて検体の帰属分類群を推定するため、塩基配列解析を行った。   Next, for the registration number SIID2588, in order to estimate the belonging taxonomic group of the specimen using a partial base sequence 500 bp of 16S rDNA (16S rRNA gene) at NMC Japan Co., Ltd., nucleotide sequence analysis was performed.

SIID2588をNutrient Agar(Oxoid, England, UK)に植菌し、30℃で2日間培養した。その後、この菌体をDNA抽出の供試菌体とした。   SIID2588 was inoculated into Nutrient Agar (Oxoid, England, UK) and cultured at 30 ° C. for 2 days. Thereafter, this microbial cell was used as a test microbial cell for DNA extraction.

ゲノムDNAの抽出には、PrepMan Method(Applied Biosystems, CA, USA)を使用した。抽出したゲノムDNAを鋳型としてPCRにより16S Ribosomal RNA遺伝子(16S rDNA)のうち5′末端側約500bpの領域を増幅した。その後、増幅された塩基配列をシーケンシングし、検体の16S rDNA部分塩基配列を得た。PCR産物の精製、サイクルシーケンスには、MicroSeq500 16S rDNA Bacterial Sequencing Kit(Applied Biosystems, CA, USA)を使用した。サーマルサイクラーには、GeenAmp PCR System9600(Applied Biosystems, CA, USA)、DNAシーケンサーには、ABIPRISM 3100DNA Sequencer(Applied Biosystems, CA, USA)を使用した。なお、ゲノムDNA抽出からサイクルシークエンスまえの基本操作は、Applied Biosystems社のプロトコール(P/N4308132 Rev.Aに従った。   PrepMan Method (Applied Biosystems, CA, USA) was used for genomic DNA extraction. The extracted genomic DNA was used as a template to amplify a region of about 500 bp at the 5 ′ end of the 16S Ribosomal RNA gene (16S rDNA) by PCR. Thereafter, the amplified base sequence was sequenced to obtain a 16S rDNA partial base sequence of the specimen. For purification of PCR products and cycle sequence, MicroSeq500 16S rDNA Bacterial Sequencing Kit (Applied Biosystems, CA, USA) was used. A GeneCycle PCR System 9600 (Applied Biosystems, CA, USA) was used for the thermal cycler, and an ABI PRISM 3100 DNA Sequencer (Applied Biosystems, CA, USA) was used for the DNA sequencer. The basic operation from the extraction of genomic DNA to the cycle sequence was in accordance with the protocol (P / N4308132 Rev. A) of Applied Biosystems.

解析では、得られた16S rDNAの塩基配列を用いて相同性検索を行い、相同率の上位10株を決定した。さらに検索された上位10株と検体の16S rDNAを用いて近隣結合法(SAITOU, N. et al: The neighbor-joining method:anew method for reconstructing phylogenetic trees.Molecular Biology and Evolution 4 406-425 (1987))により分子系統樹を作製、検体の近縁種及び帰属分類群の検討を行った。相同性検索及び系統樹の作製には、MicroSeq Microbial Identification System Software V.1.4.1を、相同性検索を行う際のデータベースとしてMicroSeq Bacterial 500 Library v.0023(Applied Biosystems, CA, USA)を使用した。また、MicroSeq Bacterial 500 Libraryに対する相同性検索において、相同率100%で一致する菌株が検索されなかった場合は、BLASTには、ALTDCHUL, S. F. et al:Gapped BLAST:a new generation of protein database search programs.Nucleic Acids Res. 25 3389-3402 (1997)及びSKERMAN V. B. D. et al:Approved lists of Bacterial Names. INt. J. Syst. Bacteriol., 30 225-420 (1980)を用いて、DNA塩基配列データベース(GenBank/DDBJ/EMBL)に対して相同性検索を行った。 In the analysis, a homology search was performed using the obtained 16S rDNA base sequence, and the top 10 strains with the highest homology were determined. Furthermore, using the searched top 10 strains and 16S rDNA of the specimen, the neighbor-joining method (anew method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4 406-425 (1987) ) To create a molecular phylogenetic tree, and examined closely related species and assigned taxonomic groups. For homology search and phylogenetic tree construction, MicroSeq Microbial Identification System Software V. As a database for performing homology search, MicroSeq Bacterial 500 Library v. 0023 (Applied Biosystems, CA, USA) was used. In addition, in the homology search for MicroSeq Bacterial 500 Library, when no matching strain was found with a homology rate of 100%, BLAST contains ALTDCHUL, SF et al: Gapped BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25 3389-3402 (1997) and SKERMAN VBD et al: Approved lists of Bacterial Names. INt. J. Syst. Bacteriol., 30 225-420 (1980), DNA base sequence database (GenBank / A homology search was performed on DDBJ / EMBL).

Microseqによる検体[UM−123](SIID2588)株の16S rDNA塩基配列解析結果は、次の配列表のフリーテキストに示す。 The 16S rDNA nucleotide sequence analysis result of the sample [UM-123] (SIID2588) strain by Microseq is shown in the free text of the following sequence listing.

(配列表のフリーテキスト)

Figure 0004088690
(Free text of sequence listing)
Figure 0004088690

本検体と近縁とされる菌株とその相違性
Library:500 0023 0.9 1286/1286
BLAST:536SIID2588
0.37% 536 Bacillus megaterium
3.54% 536 Bacillus flexus
10.26%536 Bacillus cohnii
10.75%530 Bacillus psychrosaccharolyticus
11.57%536 Bacillus horikoshii
12.03%532 Bacillus circulans
12.15%535 Bacillus azotoformans
12.17%534 Bacillus fastidiosus
12.73%534 Bacillus marinus
12.87%537 Bacillus cereus
Strains related to this specimen and their differences Library: 500 0023 0.9 1286/1286
BLAST: 536 SID2588
0.37% 536 Bacillus megaterium
3.54% 536 Bacillus flexus
10.26% 536 Bacillus cohni
10.75% 530 Bacillus psychosaccharolyticus
11.57% 536 Bacillus horikoshii
12.03% 532 Bacillus circulans
12.15% 535 Bacillus azotoformans
12.17% 534 Bacillus fastidiosus
12.73% 534 Bacillus marinus
12.87% 537 Bacillus cereus

本検体と近縁上位株との相違点



SIID2588 Y
Bacillus megaterium T
Differences between this sample and related upper strains
4
7
7
SIID2588 Y
Bacillus megaterium T

本検体と近縁株との近隣結合法による系統樹は、図3に示す。   FIG. 3 shows a phylogenetic tree based on the neighborhood binding method between this specimen and a related strain.

BLAST Result DNA塩基配列データベースに対して行った相同性検索の結果:検索された上位20エントリーの内エントリー上位5位塩基配列とSIID2588塩基配列とのアイデンティティの比較を表2に示す。   Results of homology search performed on BLAST Result DNA base sequence database: Table 2 shows a comparison of identities between the top 5 base sequences of the searched top 20 entries and the SIID2588 base sequence.

Figure 0004088690
Figure 0004088690

さらにSIID2588 rDNAとエントリー最上位のDNAとの塩基配列の配列比較を実施した。結果は図4に示す。   Furthermore, the sequence comparison of the base sequences of SIID2588 rDNA and the entry topmost DNA was carried out. The results are shown in FIG.

これらの結果、MicroSEqを用いた解析では、SIID2588の16S rDNA部分塩基配列は、相同率99.63%でBaccillus megaterium(STACKEBRANDT, E. et al:Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology.Int. J. Syst. Evol. Microbiol., [52] 1043-1047 (2002))の16S rDNAに対し高い相同率を示し、2株の16S rDNA間の相違点はIUBコード(Y=CまたはT)で1塩基のみであった。分子系統樹上でもSIID2588の16S rDNAは、Bacillus megateriumの16S rDNAと同じ場所に位置した。BLASTを用いたGenBank/DDBJ/EMBLに対する相同性検索の結果、SIID2588の16S rDNAは、相同率99.4%でBacillus megaterium QMB1551株の16S rDNAに対し最も高い相同性を示した。上記の結果から、SIIDD2588は、Bacillus megateriumに帰属する新規な菌株と推定、Bacillus megaterium UM−123と命名した。   As a result, in the analysis using MicroSEq, the 16S rDNA partial nucleotide sequence of SIID2588 has a homology of 99.63%, and Baccillus megaterium (STACKEBRANDT, E. et al: Report of the ad hoc committee for the re-evaluation of the Species definition in bacteriology. Int. J. Syst. Evol. Microbiol., [52] 1043-1047 (2002)), showing a high homology rate, and the difference between 16S rDNA of two strains is the IUB code ( Y = C or T) and only one base. In the molecular phylogenetic tree, 16S rDNA of SIID2588 was located at the same position as 16S rDNA of Bacillus megaterium. As a result of homology search for GenBank / DDBJ / EMBL using BLAST, 16S rDNA of SIID2588 showed the highest homology to 16S rDNA of Bacillus megaterium strain QMB1551 with a homology of 99.4%. From the above results, SIIDD2588 was presumed to be a novel strain belonging to Bacillus megaterium and named Bacillus megaterium UM-123.

(第2の発明によるヒ素類の除去)
土壌から得られたバシルス・メガテリウムUM−123を培地に接種した。培地には、商品名「Nutrient Broth」(日水製薬株式会社製)を用いた。主な成分は、肉エキス0.5%、ペプトン1.5%、塩化ナトリウム0.5%、燐酸−水素カリウム0.5%で、pHは7である。接種後、30℃で24時間、110ストローク/分の振盪培養を行った。次いで、遠心分離機により、培養液から菌体を分離し、生理食塩水で洗浄後、凍結乾燥して菌体を得た。
(Removal of arsenic according to the second invention)
The medium was inoculated with Bacillus megaterium UM-123 obtained from soil. The brand name “Nutrient Broth” (manufactured by Nissui Pharmaceutical Co., Ltd.) was used as the medium. The main components are 0.5% meat extract, 1.5% peptone, 0.5% sodium chloride, 0.5% potassium hydrogen phosphate and pH is 7. After inoculation, shaking culture was performed at 30 ° C. for 24 hours at 110 strokes / minute. Subsequently, the bacterial cells were separated from the culture solution by a centrifuge, washed with physiological saline, and lyophilized to obtain bacterial cells.

pHを下記のごとく調整した緩衝液(Mcllvaine, Carmody)に、三酸化二ヒ素[As:As(3)]とヒ酸二ナトリウム七水和物[NaHAsO・7HO:As(5)]を1mg/Lになるように加えた。このヒ素水溶液に下記の量の菌体、バシルス・メガテリウムUM−123を添加し、下記の時間撹拌した後静置し、各上清を採取した。
pH調整;pH2、3、4、5、6、7、8、9、10、11、12
(菌体添加量2.0w/v、撹拌時間2時間)
菌体添加量;0.2、0.5、1.0、1.5、2.0%(w/v)
(pH7、撹拌時間4時間)
撹拌時間;2、4、6時間
(pH7、菌体添加量2.0%(w/v))
In a buffer solution (Mclvaine, Carmody) adjusted as follows, diarsenic trioxide [As 2 O 3 : As (3)] and disodium arsenate heptahydrate [Na 2 HAsO 4 · 7H 2 O: As (5)] was added to 1 mg / L. The following amounts of bacterial cells, Bacillus megaterium UM-123, were added to this arsenic aqueous solution, stirred for the following time, allowed to stand, and each supernatant was collected.
pH adjustment; pH 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
(Bacteria added amount 2.0 w / v, stirring time 2 hours)
Bacterial cell addition amount: 0.2, 0.5, 1.0, 1.5, 2.0% (w / v)
(PH 7, stirring time 4 hours)
Stirring time: 2, 4, 6 hours
(PH 7, added amount of bacterial cells 2.0% (w / v))

各上清のヒ素濃度を測定した。ただし、各試験にあってはヒ素初濃度;As(3)1mg/Lとした。pH依存性試験にあっては菌体添加量;2.0%(w/v)、撹拌時間;2時間、菌体添加量依存性試験にあってはpH;7、撹拌時間;4時間、撹拌時間依存性試験にあってはpH;7、菌体添加量;2.0%(w/v)とした。ヒ素濃度の測定は、宮崎大学フロンティア科学実験総合センター実験支援部門機器分析分野木花分室のヒ素形態別分析システム(ヒ素形態別前処理装置−原子吸光分光光度計)によった。pH依存性の結果を表3及び図1に、菌体添加量依存性の結果を表4に、撹拌時間依存性を表5に示す。   The arsenic concentration of each supernatant was measured. However, in each test, the initial concentration of arsenic was As (3) 1 mg / L. In the pH dependence test, the added amount of cells: 2.0% (w / v), stirring time: 2 hours, and in the added amount dependency test of pH: 7, stirring time: 4 hours, In the stirring time dependency test, the pH was 7, and the amount of added bacterial cells was 2.0% (w / v). The arsenic concentration was measured by an arsenic morphology analysis system (arsenic morphology pretreatment device-atomic absorption spectrophotometer) in the laboratory analysis field of the Miyazaki University Frontier Science Experimental Center. The results of pH dependency are shown in Table 3 and FIG. 1, the results of dependency on the amount of added cells are shown in Table 4, and the stirring time dependency is shown in Table 5.

Figure 0004088690
Figure 0004088690

Figure 0004088690
Figure 0004088690

Figure 0004088690
Figure 0004088690

表3及び図1から明らかなように、pH依存性については、As(3)はpH7付近で84.5%の高い除去率を示したが、As(5)ではpH依存性がなく5%以下の除去率しか示さなかった。このことから、バシルス・メガテリウムUM−123による微生物処理では、これまでに例のないAs(3)に関して、pH8以下、望ましくはpH6〜8の範囲で、きわめて高い選択的吸着が起こることが判明した。   As is apparent from Table 3 and FIG. 1, as for pH dependence, As (3) showed a high removal rate of 84.5% near pH 7, but As (5) had no pH dependence and 5% Only the following removal rates were shown. From this, it was found that in the microbial treatment with Bacillus megaterium UM-123, extremely high selective adsorption occurs at pH 8 or lower, preferably in the range of pH 6-8, with respect to As (3), which has never been seen before. .

表4から明らかなように、菌体添加量が多いほど除去率が高いことが判明した。また表5から明らかなように、撹拌時間は、2時間以上であれば変化が認められない。   As is clear from Table 4, it was found that the removal rate was higher as the amount of added bacterial cells was larger. Further, as is apparent from Table 5, no change is observed if the stirring time is 2 hours or longer.

(第3の発明によるヒ素類の除去)
pH7調整した緩衝液(McIlvaine, Carmody)に、三酸化二ヒ素[As:As(3)]を1mg/Lになるように加えた。このヒ素水溶液に下記の菌体を2.0%(v/w)添加し、4時間撹拌した後静置し、各上清を採取した。
・バシルス・メガテリウムUM−123(Bacillus megaterium UM-123)
・バシルス・サブティリス(Bacillus subtilis)
・エセリシア・コリ(Escherichia coli)
・アスペルギルス・ニガー(Aspergillus niger)
・サッカロマイセス・セレヴィシエ(Saccharomyces cerevisiae)
(Removal of arsenic according to the third invention)
Arsenic trioxide [As 2 O 3 : As (3)] was added to a buffer solution (McIlvaine, Carmody) adjusted to pH 7 to 1 mg / L. The following cells were added to this arsenic aqueous solution at 2.0% (v / w), stirred for 4 hours, and allowed to stand, and each supernatant was collected.
・ Bacillus megaterium UM-123
・ Bacillus subtilis
・ Escherichia coli
・ Aspergillus niger
・ Saccharomyces cerevisiae

各検体の上清につき、実施例1と同じ方法でAs(3)の除去率をみた。結果を表6に示す。   The removal rate of As (3) was observed for the supernatant of each specimen in the same manner as in Example 1. The results are shown in Table 6.

Figure 0004088690
Figure 0004088690

表6から明らかなように、バシルス属及びエセリシア属のヒ素吸着可能菌の使用により、As(3)を50%以上の有効率で除去し得ることが分かった。また除去率はそれほど高くはないが、糸状菌及び酵母でもヒ素類の除去が可能なことが判明した。   As is apparent from Table 6, it was found that As (3) can be removed at an effective rate of 50% or more by using an arsenic-adsorbable bacterium of the genus Bacillus and Escherichia. Although the removal rate is not so high, it has been found that arsenic can be removed even by filamentous fungi and yeast.

本発明のヒ素類吸着能を有する新規菌株バシルス・メガテリウムUM−123とそれを用いたヒ素類除去方法、またはバシルス属に属するヒ素類吸着能を有する細菌、エセリシア属に属するヒ素類吸着能を有する細菌を用いたヒ素類の除去方法は、いずれも土壌のヒ素汚染による地下水からのヒ素類の除去に有効に利用できる。さらに、アスペルギルス属に属する糸状菌、サッカロマイセス属に属する酵母も、同様にヒ素類の除去に利用可能である。   The novel strain Bacillus megaterium UM-123 having the ability to adsorb arsenic of the present invention and an arsenic removal method using the same, or a bacterium having the ability to adsorb arsenic belonging to the genus Bacillus, and having the ability to adsorb arsenic belonging to the genus Escherichia Any method of removing arsenic using bacteria can be effectively used to remove arsenic from groundwater due to arsenic contamination of soil. Furthermore, filamentous fungi belonging to the genus Aspergillus and yeast belonging to the genus Saccharomyces can also be used for the removal of arsenic.

本発明の第2発明におけるヒ素除去方法でのpH依存性を示すグラフである。It is a graph which shows the pH dependence in the arsenic removal method in 2nd invention of this invention. 本発明の第2発明におけるヒ素除去方法での温度依存性を示すグラフである。It is a graph which shows the temperature dependence in the arsenic removal method in 2nd invention of this invention. 本発明の第1発明における新菌株同定での本検体と近縁株との近隣結合法による系統樹図である。It is a phylogenetic tree by the neighborhood joint method of this specimen and related strain in new strain identification in the 1st invention of the present invention. 本発明の第1発明における新菌株同定でのSIID2588 rDNAとエントリー最上位のDNAとの塩基配列の配列比較図である。It is a sequence comparison figure of the base sequence of SIID2588 rDNA by the new strain identification in 1st invention of this invention, and DNA of the highest entry.

Claims (7)

ヒ素吸着能を有することを特徴とする新菌株バシルス・メガテリウムUM−123。   New strain Bacillus megaterium UM-123 characterized by having an arsenic adsorption ability. 請求項1の新菌株バシルス・メガテリウムUM−123を用いて、ヒ素類含有水溶液を処理することを特徴とする微生物によるヒ素類の除去方法。   A method for removing arsenic by a microorganism, comprising treating an arsenic-containing aqueous solution with the new strain Bacillus megaterium UM-123 according to claim 1. ヒ素類が3価のヒ素類であることを特徴とする請求項2記載の微生物によるヒ素類の除去方法。   The method for removing arsenic by a microorganism according to claim 2, wherein the arsenic is trivalent arsenic. 水溶液のpHが2〜11であることを特徴とする請求項2記載の微生物処理によるヒ素類の除去方法。   The method for removing arsenic by microbial treatment according to claim 2, wherein the pH of the aqueous solution is 2-11. 水溶液のpHが2〜8であることを特徴とする請求項2記載の微生物処理によるヒ素類の除去方法。   The method for removing arsenic by microbial treatment according to claim 2, wherein the pH of the aqueous solution is 2-8. 水溶液のpHが6〜8であることを特徴とする請求項2記載の微生物処理によるヒ素類の除去方法。   The method of removing arsenic by microbial treatment according to claim 2, wherein the pH of the aqueous solution is 6-8. 処理温度が30〜50℃であることを特徴とする請求項2記載の微生物によるヒ素類の除去方法。   The method for removing arsenic by a microorganism according to claim 2, wherein the treatment temperature is 30 to 50 ° C.
JP2004075390A 2004-03-16 2004-03-16 New microorganisms and methods for removing arsenic by microorganisms Expired - Lifetime JP4088690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004075390A JP4088690B2 (en) 2004-03-16 2004-03-16 New microorganisms and methods for removing arsenic by microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004075390A JP4088690B2 (en) 2004-03-16 2004-03-16 New microorganisms and methods for removing arsenic by microorganisms

Publications (2)

Publication Number Publication Date
JP2005261234A JP2005261234A (en) 2005-09-29
JP4088690B2 true JP4088690B2 (en) 2008-05-21

Family

ID=35086396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004075390A Expired - Lifetime JP4088690B2 (en) 2004-03-16 2004-03-16 New microorganisms and methods for removing arsenic by microorganisms

Country Status (1)

Country Link
JP (1) JP4088690B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101540860B1 (en) * 2013-12-16 2015-07-31 재단법인 전주생물소재연구소 Bacillus thuringiensis JB-007 strain having sorption of anionic dye and metal, and biomass using the same
CN105039194A (en) * 2015-03-20 2015-11-11 甘肃明德伟业生物科技有限公司 Yeast fused strain mixed bacterial agent and method of fermenting organic waste water therewith to prepare liquid fertilizer
CN107200445B (en) * 2017-08-01 2018-05-18 唐山市冀滦纸业有限公司 The recycle device and processing method of papermaking enriched water
CN108070541B (en) * 2017-12-05 2020-12-15 四川农业大学 Bacillus subtilis SICAU-PV1 for promoting plant growth and application thereof
CN111320287A (en) * 2020-02-20 2020-06-23 广东海洋大学深圳研究院 Method for treating eutrophic seawater by compounding bacteria and chitosan
CN114766118A (en) * 2022-04-24 2022-07-22 湖南农业大学 Application of enterobacter M5 in inhibiting absorption and accumulation of cadmium and arsenic in rice

Also Published As

Publication number Publication date
JP2005261234A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
CN108977399B (en) Alcaligenes faecalis and application thereof
Mekuto et al. Biodegradation of free cyanide using Bacillus sp. consortium dominated by Bacillus safensis, Lichenformis and Tequilensis strains: A bioprocess supported solely with whey
Queiroz et al. Rich growth medium promotes an increased on Mn (II) removal and manganese oxide production by Serratia marcescens strains isolates from wastewater
CN108977398B (en) Bacillus megaterium and application thereof
CN104371948B (en) Microbacterium sp. strain and application thereof
JP4088690B2 (en) New microorganisms and methods for removing arsenic by microorganisms
JP6675714B2 (en) Sludge volume reduction method for microbial material and excess sludge
JP4654437B2 (en) Novel microorganism and method for treating organic sludge using the same
CN105670965B (en) Strain with iron reduction capacity and application thereof
CN106834165B (en) Paracoccus capable of degrading penicillin, cell fraction and composition thereof
KR101475589B1 (en) A novel microorganism Rhodococcus pyridinovorans EDB2 degrading aromatic compounds
JP2002301494A (en) Activated sludge and wastewater disposal method
Verma et al. Isolation and characterization of Pseudomonas stutzeri as lead tolerant bacteria from water bodies of Udaipur, India using 16S rDNA sequencing technique
JP4614756B2 (en) Denitrification strain and method for removing nitric acid using the same
CN110819553B (en) Bacillus aryabhattai and application thereof in acrylic acid degradation
JP4296564B2 (en) Bio-based porous ceramic, method for producing the same, environmental purification material, and environmental purification tool
JP2002125657A (en) New microorganism belonging to bacillus subtilis
CN109666613B (en) Facultative autotrophic rhizobium with nitrate reduction ferrous oxidation function and application thereof
CN109628355B (en) Sulfide degrading bacteria and application thereof
CN113564081A (en) Devorax SCS-3 for producing vomitoxin degrading enzyme and application thereof
JP4540210B2 (en) A new microorganism belonging to Bacillus schurigensis
CN111826302A (en) Iron oxidizing bacteria, and application thereof in arsenic-polluted soil remediation, product and method
JP2007519419A (en) Rhodococcus erythropolis LG12 having acrylic acid decomposing activity and method for removing acrylic acid using the same
JP5790983B2 (en) Novel oil-degrading bacteria, oil-degrading bacteria preparation, and method for treating oil-containing wastewater
Rizwan et al. Seasonal effects of domestic wastewaters on the Cr (VI) reduction potential of Bacillus cereus S-6 and Ochrobactrum intermedium CrT-1

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150