JP4296564B2 - Bio-based porous ceramic, method for producing the same, environmental purification material, and environmental purification tool - Google Patents

Bio-based porous ceramic, method for producing the same, environmental purification material, and environmental purification tool Download PDF

Info

Publication number
JP4296564B2
JP4296564B2 JP2002162179A JP2002162179A JP4296564B2 JP 4296564 B2 JP4296564 B2 JP 4296564B2 JP 2002162179 A JP2002162179 A JP 2002162179A JP 2002162179 A JP2002162179 A JP 2002162179A JP 4296564 B2 JP4296564 B2 JP 4296564B2
Authority
JP
Japan
Prior art keywords
bio
based porous
porous ceramic
microorganisms
environmental purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002162179A
Other languages
Japanese (ja)
Other versions
JP2003321282A (en
Inventor
久 宮本
浩邦 宮本
健一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN ECO-SCIENCE CO., LTD.
MIROKU CO., LTD.
Original Assignee
JAPAN ECO-SCIENCE CO., LTD.
MIROKU CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN ECO-SCIENCE CO., LTD., MIROKU CO., LTD. filed Critical JAPAN ECO-SCIENCE CO., LTD.
Priority to JP2002162179A priority Critical patent/JP4296564B2/en
Publication of JP2003321282A publication Critical patent/JP2003321282A/en
Application granted granted Critical
Publication of JP4296564B2 publication Critical patent/JP4296564B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、環境浄化材等、広範囲の各種産業分野に利用できる機能性セラミックとしてのバイオ系多孔質セラミック及びその製造方法、並びに環境浄化材、環境浄化具に関する。
【0002】
【従来の技術】
従来より、活性炭、ゼオライト、シリカゲル等の多孔質体は、除臭剤や濾過剤等として使用できることが知られている。
【0003】
また、活性炭や多孔質セラミックにおいては、除菌能を有することが知られており、例えば二酸化チタンによる光触媒反応を利用したものや、天然鉱石である黒鉛珪石を用いたものが知られている。
【0004】
【発明が解決しようとする課題】
この発明は、除臭能、濾過能、除菌能等の性能を向上でき、環境浄化材等として好適に使用できるバイオ系多孔質セラミック及びその製造方法、並びに環境浄化材、環境浄化具を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するための請求項1のバイオ系多孔質セラミックの製造方法は、アルミニウム、カルシウム、鉄、カリウム、マグネシウム、ナトリウム、及びチタンのうちの少なくとも1種と、珪酸と、グラファイトとを含む原料粉体と、予め所定成分が蓄積・濃縮された少なくとも1種の極限環境下で生息可能である微生物の懸濁液又は培養液とを混練し、この混練物を所定形状に成形した後、この成形体を800℃以上で焼成することによって、形成される多孔質焼成体に、前記微生物から前記焼成により生成する生成物を含有する無定形炭素粒子を分散させるものである。
【0019】
【発明の実施の実態】
この実施形態に係るバイオ系多孔質セラミックは、アルミニウム(Al)、カルシウム(Ca)、鉄(Fe)、カリウム(K)、マグネシウム(Mg)、ナトリウム(Na)、及びチタン(Ti)のうちの少なくとも1種と、珪酸(SiO)と、グラファイトとを含む原料粉体と、少なくとも1種の微生物又は少なくとも1種の生物細胞の懸濁液又は培養液とを混練し、この混練物を所定形状に成形した後、この成形体を800℃以上で焼成することによって、形成される多孔質焼成体に、前記微生物又は前記生物細胞から前記焼成により生成する無定形炭素粒子を分散させることにより製造されたものである。
【0020】
原料粉体の各成分の重量比は用途に応じて異なるが、例えば、珪酸やグラファイトはそれぞれ40〜90%程度、アルミニウム、カルシウム、鉄、カリウム、マグネシウム、ナトリウム、チタンは0.1〜5%程度が適当である。
【0021】
原料粉体としては、例えば、グラファイトを含有する天然鉱石である黒鉛珪石粉体の他、CaやNaを主成分とする含水アルミノ珪酸塩鉱物であるゼオライト粉体にグラファイト粉体を添加したものや、アルミナ、シリカ、ナトリウム、カルシウム等からなるランプストーン(白亜紀の造山活動に伴う動力熱変性作用により形成された鉱物資源)粉体にグラファイト粉体を添加したもの等が挙げられる。原料粉体の粒径としては、500μm以下、好ましくは100μm以下が適当である。
【0022】
原料粉体と混練する有機体としては、生物細胞や複数種の生物細胞からなる生物細胞群を使用してもよいが、微生物や複数種の微生物からなる微生物群を使用するのが望ましい。ここで、このような微生物が極限環境下で生息可能であれば、難分解性成分や有毒物質等が共存する劣悪な環境下でも酵素活性を維持でき、生命を維持する能力が高いので、極限環境下においても常温の微生物に比べて各種成分の取り込み能や機能成分の生合成能を高い状態に維持できる。そのため、通常の微生物が蓄積困難な成分の取り込みや生合成が可能であるという利点がある。
【0023】
極限環境下で生息可能な微生物としては、例えば、後述する好熱性種菌PTA−1773等の好熱菌群、高圧下で生息可能な微生物群、好冷菌群、あるいはメタン生成古細菌であるMethanobacterium属、Methanosarcina属、好塩菌であるHalobacterium属、Haloarcula属、好アルカリ菌であるNatronobacterium属、高度好熱硫黄性又は好熱好酸菌であるThermoplasma属、Sulfolobus属、Thermocuccus属、鉄細菌であるSpharotilus属等が挙げられる。なお、ここでいうところの極限環境下とは、常温微生物が生息できない高温下、常圧微生物が生息できない高圧下、常温微生物が生息できない低温下、高塩濃度環境下、高アルカリ濃度環境下、高酸濃度環境下等、通常の微生物が生息できない環境下をいう。
【0024】
また、微生物が、キチン質をそれぞれ含有するカニ、エビ、及び小魚のうちの少なくとも1種を60℃以上で発酵させることによって得られる好熱性又は耐熱性の培養微生物であれば、常温微生物が蓄積困難な成分の取り込みや生合成を効率的に行えるという利点がある。このような培養微生物としては、好熱性種菌PTA−1773が好適である。
【0025】
好熱性種菌PTA−1773は、バチルス・ブレビス(Bacillus brevis)の近縁の種である好熱性細菌C−1(以下、「C−1」という。)と、バチルス・ブレビス(Bacillus brevis)の近縁の種である好熱性細菌C−3(以下、「C−3」という。)と、好熱性バチルス・ステアロサーモフィラス(Bacillus stearothermophilus)CH−4(以下、「CH−4」という。)と、好熱性放線菌MH−1(以下、「MH−1」という。)と、好熱性又は耐熱性乳酸菌LM−1〔バチルス・コアギュランス(Bacillus coagulans)の近縁の種。以下、「LM−1」という。)と、好熱性又は耐熱性乳酸菌LM−2〔バチルス・コアギュランス(Bacillus coagulans)の近縁の種。以下、「LM−2」という。)と、未知の細菌及び/又は放線菌との混合菌であって、環境浄化・改良能を有している。なお、環境浄化・改良能とは、生態系に好影響をもたらす生物を活性化し、直接的又は間接的に環境を浄化すると共に、環境(生態系)を整える(改良する)能力(機能)をいう。
【0026】
また、好熱性種菌PTA−1773は、好気条件下でエビやカニの残渣の分解能、並びに安定性・持続力等に優れた耐熱性キチナーゼ(例えば耐熱性N−アセチル−β−D−ヘキソサミニダーゼ等)・耐熱性SOD(スーパーオキシドジスムターゼ)等の耐熱性酵素及び分子シャペロンの生産能を有すると共に、耐熱性酵素、分子シャペロン、及び耐熱性SOD・ビタミンE・セレニウム(Se)・不飽和脂肪酸・各種ミネラル成分等の抗酸化機能性成分を発現している。
【0027】
前記耐熱性酵素の常温下における活性の持続力は、常温微生物由来の酵素が1週間以内であるのに対し、半年〜1年程度と長い。また、この耐熱性酵素は、エタノール等の有機溶媒や界面活性剤等によっても失活しない。
【0028】
ここで、分子シャペロンとは、酵素の構造を保持等させることによって、酵素が安定な活性を示すことができるように手助けをするタンパク質であるが、常温微生物由来の分子シャペロンではATP(アデノシン−5’−三リン酸)のエネルギーが必要であるのに対し、好熱性種菌PTA−1773由来の分子シャペロンではATPのエネルギーがなくても働く性質がある。そのため、この好熱性種菌PTA−1773由来の分子シャペロンは、各種の環境で前記耐熱性酵素や常温微生物由来の酵素等の変性を防止し、その働きを助けることができる。これにより、好熱性種菌PTA−1773は、各種の環境で生育する、生態系に好影響をもたらす常温微生物を活性化(安定化)することができる。
【0029】
この好熱性種菌PTA−1773は、大分県杵築市三光坊の山中の土壌と別府湾の海底エビとの混合発酵物から採取、分離された混合菌である。混合菌を構成する各菌の同定結果等を表1〜表3、その他にも同定不能な未知の細菌及び/又は放線菌が含まれている。なお、表中の生育温度や耐熱性は単離菌のものであり、混合菌としての好熱性種菌PTA−1773の生育は−10〜90℃で確認されている。ここで、好熱性種菌PTA−1773は、2000年5月1日付けでATCC(American Type CultureCollection,10801 University Boulevard Manassas,Virginia 20110−2209 U.S.A.)に国際寄託されている(受託番号:PTA−1773)。
【0030】
【表1】

Figure 0004296564
【0031】
【表2】
Figure 0004296564
【0032】
MH−1の細胞壁には、メソ−ジアミノピメル酸、グルタミン酸又はグルタミン(Glx)、グリシン(Gly)、アラニン(Ala)、グルコサミンが含まれていた。MH−1の全菌体には、マンノース、キシロース、リボース、アラビノース、ラムノースが含まれていた。MH−1のDNA中のグアニン(G)とシトシン(C)の合計比率は、54.6%であった。
【0033】
MH−1については、16S rRNA遺伝子塩基配列(配列の長さ:1020)を調べた。具体的には、自動DNAシークエンサー(ABI 300)を用い、操作はLaneらのダイ−ターミネーター法(Lane,D,J.,B.Pace,G.J.Olsen,D.A.Stahl,M.L.Sogin,and N.R.Pace.1985.Rapid determunationof 16S ribosomal RNA sequences for phylogenetic analysis.Proc.Natl.Acad.Sci.USA 82:6855−6959)に従った。DNA解析は「CLUSTAL W (Thompson,J.D.,D.G.Higgins,and T.J.Gibson.1994.CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting,position−specific gap penalties and weight matrix choice.Nucleic Acids Res.22:4673−4680)」に従い、「Ribosomal Database Project(http://rdp.life.uiuc.edu/)」及び「GenBank(http://ww.ucbi.ulm.nih.gov/)」のデータベースにより照合検索を行った
【0034】
LM−1及びLM−2の好熱性種菌PTA−1773からの分離に際しては、1gの検体を無菌的に分取し、9mLの滅菌蒸留水に添加して10倍希釈水とした。この希釈水に対しては、80℃、15分間の加熱処理を行った。このようにして加熱処理した希釈水をもとに順次希釈操作を繰り返して10〜10倍の希釈系列を作製した。その後、各希釈検水の0.1mLを乳酸菌選択(MRS)寒天培地に塗抹し、37℃、48時間、嫌気条件下で培養したところ、2種類の異なるコロニー(LM−1及びLM−2)が観察された。なお、LM−1については、MRS培地では芽胞非形成であったが、一般寒天培地では芽胞形成であった。LM−2についても同様であった。これらLM−1及びLM−2の同定結果を表3に示す。
【0035】
【表3】
Figure 0004296564
【0036】
また、LM−1及びLM−2について、それぞれ16S rRNA遺伝子塩基配列を調べた。具体的には、分離株をMRS培地(OXOID)に植菌し、37℃での培養物を供試菌体とした。DNA抽出、PCR、PCR産物の精製、サイクルシークエンスは「MicroSeqTM 500 16S rDNA Bacterial Sequencing Kit(Applied Biosystems社製)」を用い、操作はApplied Biosystems社のプロトコルに従った。DNA解析は「ABI PRISMTM 377 DNASequencer(Applied Biosystems社製)」を用い、MicroSeqTMのデータベースにより照合検索を行った。その結果を配列表(配列番号1及び配列番号2)に示す
【0037】
ここで、キチン濃度を変えて(0、0.05、0.1、0.2%)培養したC−1、C−3、及びCH−4について、p−ニトロフェニル−N−アセチル−β−D−グルコサミン(p−NP−β−D−GlcNAc)を基質として耐熱性キチナーゼの比活性をそれぞれ測定した。その結果を表4に示す。測定は、グルコース(Glc)−ペプトン培地(Broth)条件及び無細胞(Cell−free)条件でそれぞれ行った。CH−4については、更に酢酸ナトリウム(AcONa)−ペプトン培地(Broth)条件及び無細胞(Cell−free)条件でも行った。
【0038】
【表4】
Figure 0004296564
【0039】
また、C−1、C−3、及びCH−4を、0.2%のコロイダルキチンを含むグルコース−ペプトン培地でそれぞれ培養し、キチン分解活性を測定した。その結果を表5に示す。測定は、グルコース−ペプトン培地(Broth)条件及び無細胞(Cell−free)条件でそれぞれ行った。CH−4については、更に酢酸ナトリウム(AcONa)−ペプトン培地(Broth)条件及び無細胞(Cell−free)条件でも行った。活性は、コロイダルキチン懸濁液を60℃で反応させ、1時間後の濁度低下を蛋白mg当りで表示した。
【0040】
【表5】
Figure 0004296564
【0042】
また、p−ニトロフェニル−N−アセチル−β−D−グルコサミン誘導体を用いて分解活性の基質特異性を調べた。その結果を表6(p−NP−β−D−GalNAcはp−ニトロフェニル−N−アセチル−β−D−ガラクトサミン)に示す。
【0043】
【表6】
Figure 0004296564
【0044】
加えて、MH−1には3種類の耐熱性キチナーゼ(L,M,Sという)が含まれていたので、これらを常法により単離した後、p−NP−β−D−diGlcNAcを基質として耐熱性キチナーゼの比活性をそれぞれ測定した。その結果を表7に示す。
【0045】
【表7】
Figure 0004296564
【0046】
微生物、微生物群、生物細胞、又は生物細胞群の懸濁液又は培養液と、既述の原料粉体とは、適宜の含水率となるように混練する。懸濁液又は培養液は、適宜の濃度としておけばよい。
【0047】
混練物は、従来公知の各種の成形機等により所望の形状に成形して成形体とすればよいが、加圧成形機等により加圧成形すれば、成形体が形状を保持し易いという利点がある。なお、成形体への成形後は、常温〜110℃で数時間以上養生するのが望ましい。
【0048】
バイオ系多孔質セラミックを製造するには、成形体を800℃以上で焼成すればよいが、この際、形成される多孔質焼成体に、微生物、微生物群、生物細胞、又は生物細胞群から焼成により生成する無定形炭素粒子が分散する。また、多孔質焼成体には、原料粉体に含まれていたグラファイト粒子も分散する。
【0049】
生成する無定形炭素粒子の粒径は100μm程度以下(ナノメートルレベル〜100μm程度)と微細であり、グラファイトよりも表面積が大きいので、このような無定形炭素粒子やグラファイト粒子が多孔質焼成体に分散したバイオ系多孔質セラミックにおいては、多孔質構造の空隙内に被トラップ物をトラップするか、あるいは付着させる能力が高い。そのため、除臭能、濾過能、除菌能等の環境浄化能が高く、自然環境を保全することを目的とした産業分野に好適に使用できるという利点がある。また、無定形炭素粒子やグラファイト粒子は遠赤外線の放射能を有するので、液体分子や気体分子のクラスター化(団塊化)を効率良く防止できるという利点がある。更に、微生物、微生物群、生物細胞、又は生物細胞群は生育に必要なCa、Na、Ma、Zn等の各種のミネラル分を含有しているので、生物にとって有効なミネラル分をバランスよい形でバイオ系多孔質セラミックにも含有させることができるという利点がある。そのため、バイオ系多孔質セラミックを飲料水の浄水材等として使用すれば、飲料水等にミネラル分を添加することができる。
【0050】
ここで、バイオ系多孔質セラミックが、微生物や生物細胞に蓄積・濃縮された濃縮成分から焼成により生成した酸化生成物を含有する場合は、酸化生成物が有する特有の機能をバイオ系多孔質セラミックに付与できるので、高性能セラミックとして好適に使用できるという利点がある。濃縮成分は、例えば、微生物や生物細胞の特性を利用して微生物等を特定の増殖条件で培養したり、あるいは微生物等の特有の生合成を利用したりすれば、微生物等の体内に蓄積・濃縮させることができる。
【0051】
例えば、Feが蓄積した鉄細菌を使用し、既述の成形体を1500℃以上で焼成すれば、磁性酸化鉄であるFeが生成するので、磁性を帯びたバイオ系多孔質セラミックを製造できる。また、セレン(Se)が多く含まれる栄養源で微生物等を培養すれば、セレンを含有する活性度の高いグルタチオンペルオキシダーゼが生合成される。このような微生物等を使用すれば、成形体の焼成により金属状灰色セレンの長鎖が多孔質焼成体に生成するので、セレン長鎖の特性である光伝導性や整流作用を有するバイオ系多孔質セラミックを製造できる。更に、高気圧下で生息する微生物を使用し、フラーレン等の炭素から磁石を生成するようにしても同様である。即ち、天然鉱石の発掘、精製、加工に頼ることなく、微生物等の特性を活用することによって、簡易に特殊なセラミックを製造できるという利点がある。
【0052】
この場合、極限環境下で生息可能な耐久性に優れた微生物を使用すれば、単独では生体毒性のある危険な物質や、セラミック成分として必要でありながら収集が困難な物質等の濃縮が可能であるので、この濃縮成分由来の酸化生成物を含有する高機能性触媒等を製造することができる。
【0053】
また、バイオ系多孔質セラミックが、焼成により生成した二酸化チタン等の光触媒成分を含有する場合は、液体分子や気体分子のクラスター化の防止、脱塩素、除菌・殺菌・除ウイルス・殺ウイルス、除臭等をより効率良く行えるという利点がある。
【0054】
【実施例】
次に、実施例により更に詳細に説明するが、この発明は係る実施例に限定されるものではない。
【0055】
〔好熱性種菌PTA−1773由来の無定形炭素粒子を含有するバイオ系多孔質セラミックの製造〕
微生物群としては、好熱性種菌PTA−1773を使用した。この好熱性種菌PTA−1773は高度な有機物分解能を持っており、70〜90℃の発酵熱エネルギーを発することができる微生物群である。好熱性種菌PTA−1773を培養するための栄養源としては、腐敗していない生のエビやカニの残渣等の他、90℃程度の高温下でも分解されにくい多孔体である炭、コーヒー粕を使用し、微生物の付着部分を増やした。好気条件下で好熱性種菌PTA−1773を12時間以上培養した。この際の発酵熱は60〜90℃に保たれていた。また、上記の水産系栄養源由来の遷移金属元素等が、酵素成分の一部として微生物体内に蓄積していた。これらの製造工程で生じた培養物を、標準寒天培地上で発育する微生物数として1グラム当たり10〜10の微生物数に調整した。この好熱性種菌PTA−1773の100倍希釈懸濁液を好気条件下で4時間以上曝気して培養した。次いで、この好熱菌懸濁液(1グラム当たり10〜10個の微生物数)が10重量%、アルミニウム、カルシウム、鉄、カリウム、マグネシウム、ナトリウム、チタン、珪酸、及びグラファイトを含む原料粉体(粒径100μm以下)が90重量%の割合となるように両者を混練し、混練物を直径1cmの球形に成形した後、成形体を1000℃で焼成した。得られたバイオ系多孔質セラミックの割断面の電子顕微鏡写真(3500倍)を図1に示す。
【0056】
図1から明らかなように、バイオ系多孔質セラミックにおいては、粒径が5μm以下の無定形炭素粒子が群集構造を形成しており、表面積が大きくなっている。
【0057】
〔実施例1〕
核磁気共鳴装置(NMR)を用い、上記で得られたバイオ系多孔質セラミックによる水分子のクラスター化の防止効果を確認した。具体的には、東京都内の水道水2Lに、バイオ系多孔質セラミック100gを添加した後、軽く攪拌後、4℃に保持された冷蔵庫に24時間、静置保管した。その後、核磁気共鳴装置により、測定核種17O対象とした半値幅を測定した。その結果を表8に示す。
【0058】
【表8】
Figure 0004296564
【0059】
〔比較例1〕
東京都内の水道水を検体として使用し、バイオ系多孔質セラミックを添加しない他は、実施例1と同様の操作を行った。その結果を表8に示す。
【0060】
表8から明らかなように、バイオ系多孔質セラミックの使用によって、水道水における水分子のクラスター化を防止できたことが分かる。
【0061】
〔実施例2〕
バイオ系多孔質セラミックの脱塩素効果を試験した。具体的には、バイオ系多孔質セラミックを水道水(東京都多摩市)で軽く洗浄した後、容器に入れた水道水1Lに浸漬し、ポリ塩化ビニリデン性フィルムで容器の上部を覆い、冷蔵庫内に静置した。6時間及び24時間経過時にそれぞれ100mLずつ採水し、オルト・トリジン法により残留塩素濃度を測定した。その結果を表9に示す。
【0062】
【表9】
Figure 0004296564
【0063】
〔比較例2〕
実施例2と同じ水道水を検体として使用し、バイオ系多孔質セラミックを浸漬しない他は、実施例2と同様の操作を行った。その結果を表9に示す。なお、比較例2においては、開始時の残留塩素濃度も測定した。
【0064】
〔実施例3〕
バイオ系多孔質セラミックの除菌・殺菌効果を試験した。具体的には、100Lタンク内に水道水を充填し、バイオ系多孔質セラミック10kgを添加した後、キュウリ10kgを投入し、曝気条件下でさらした際のキュウリに付着した大腸菌数の変化を測定した。大腸菌数は、DHL寒天培地を用いて好気条件下35℃で24時間培養したコロニー数を計数化した。その結果を表10に示す。
【0065】
【表10】
Figure 0004296564
【0066】
〔比較例3〕
バイオ系多孔質セラミックを添加しない他は、実施例3と同様の操作を行った。その結果を表10に示す。
【0067】
表10から明らかなように、短時間のうちに除菌効果があることが分かる。
【0068】
〔実施例4〕
バイオ系多孔質セラミックを5重量%含む水6Lに100%綿製の布地を浸漬し、160℃で乾燥処理後、黄色ブドウ球菌(Staphylococcus aureus/ATCC 6538P)を植菌して、その後の抗菌効果を確認した。その結果を表11に示す。試験は、JIS1902定量試験(統一試験方法)に準じて実施した。菌体数はlog値で示す。植菌は1/20ニュートリエントグロスの200μL液で行い、無菌条件の小ビンに、植菌した布地を投入した。植菌数は2.0×10であり、殺菌活性値は〔(植菌数のlog値)−(植菌処理18時間後のlog値)〕、静菌活性値は〔(比較例の処理後のlog値)−(植菌処理18時間後のlog値)〕として算出した。
【0069】
【表11】
Figure 0004296564
【0070】
〔比較例4〕
バイオ系多孔質セラミックを添加しない他は、実施例4と同様の操作を行った。その結果を表11に示す。
【0071】
表11から明らかなように、財団法人日本紡績協会における抗菌加工値2.2を上まわることから、バイオ系多孔質セラミックで作られた水に浸漬した布地が殺菌効果を示すことが判明した。このことは、バイオ系多孔質セラミックの放射エネルギーの作用が布地に移行しうること、またその作用効果の持続性が優れていることを示唆している。
【0072】
【発明の効果】
以上のように、請求項1の発明によれば、原料粉体と少なくとも1種の微生物又は少なくとも1種の生物細胞の懸濁液又は培養液とを混練し、この混練物を所定形状に成形した後、この成形体を800℃以上で焼成することによって、形成される多孔質焼成体に、前記微生物又は前記生物細胞から前記焼成により生成する無定形炭素粒子を分散させるので、環境浄化能を有するバイオ系多孔質セラミックを簡単に製造できる。さらに、前記微生物が極限環境下で生息可能であるので、難分解性成分や有毒物質等が共存する劣悪な環境下でも酵素活性を維持でき、生命を維持する能力が高い。そのため、極限環境下においても常温の微生物に比べて各種成分の取り込み能や機能成分の生合成能を高い状態に維持でき、通常の微生物が蓄積困難な成分の取り込みや生合成が可能である。
【0085】
【配列表】
配列番号:1
配列の長さ:537
配列の型:RNA
鎖の数:一本鎖
トポロジー:直鎖状
生物名:バチルス・コアギュランス(Bacillus coagulans)の近縁の種である好熱性又は耐熱性乳酸菌LM−1
配列の種類:16S rRNA
配列:
Figure 0004296564
【0086】
配列番号:2
配列の長さ:537
配列の型:RNA
鎖の数:一本鎖
トポロジー:直鎖状
生物名:バチルス・コアギュランス(Bacillus coagulans)の近縁の種である好熱性又は耐熱性乳酸菌LM−2
配列の種類:16S rRNA
配列:
Figure 0004296564

【図面の簡単な説明】
【図1】実施例で製造したバイオ系多孔質セラミックの割断面における電子顕微鏡写真。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bio-based porous ceramic as a functional ceramic that can be used in a wide variety of industrial fields such as an environmental purification material, a method for producing the same, an environmental purification material, and an environmental purification tool.
[0002]
[Prior art]
Conventionally, it has been known that porous bodies such as activated carbon, zeolite, and silica gel can be used as a deodorizing agent, a filtering agent, and the like.
[0003]
In addition, activated carbon and porous ceramics are known to have sterilizing ability. For example, those using a photocatalytic reaction with titanium dioxide and those using graphite ore that is a natural ore are known.
[0004]
[Problems to be solved by the invention]
The present invention provides a bio-based porous ceramic that can improve performance such as deodorizing ability, filtering ability, and sterilizing ability, and can be suitably used as an environmental purification material, a method for producing the same, an environmental purification material, and an environmental purification tool The purpose is to do.
[0005]
[Means for Solving the Problems]
The method for producing a bio-based porous ceramic according to claim 1 for achieving the above object comprises at least one of aluminum, calcium, iron, potassium, magnesium, sodium, and titanium, silicic acid, and graphite. After kneading the raw material powder and a suspension or culture solution of microorganisms that can live in at least one extreme environment in which predetermined components are accumulated and concentrated in advance , and molding this kneaded product into a predetermined shape, by firing the molded body at 800 ° C. or higher, the porous fired body formed, is intended to disperse the amorphous carbon particles containing product produced by the microorganism or al the firing.
[0019]
[The actual state of the invention]
The bio-based porous ceramic according to this embodiment includes aluminum (Al), calcium (Ca), iron (Fe), potassium (K), magnesium (Mg), sodium (Na), and titanium (Ti). A raw material powder containing at least one kind, silicic acid (SiO 2 ) and graphite, and a suspension or culture solution of at least one microorganism or at least one biological cell are kneaded, and the kneaded product is predetermined. After being molded into a shape, this molded body is fired at 800 ° C. or higher to disperse amorphous carbon particles produced by the firing from the microorganisms or the biological cells in the porous fired body to be formed. It has been done.
[0020]
The weight ratio of each component of the raw material powder varies depending on the application. For example, silicic acid and graphite are about 40 to 90%, and aluminum, calcium, iron, potassium, magnesium, sodium, and titanium are 0.1 to 5%. The degree is appropriate.
[0021]
Examples of the raw material powder include, in addition to graphite silica powder which is a natural ore containing graphite, zeolite powder which is a hydrous aluminosilicate mineral mainly composed of Ca and Na, and graphite powder added thereto. In addition, lamp stone (mineral resource formed by power thermal denaturation accompanying the Cretaceous orogenic activity) powder made of alumina, silica, sodium, calcium, etc. is added with graphite powder. The particle size of the raw material powder is 500 μm or less, preferably 100 μm or less.
[0022]
As the organic substance to be kneaded with the raw material powder, a biological cell group composed of a biological cell or a plurality of types of biological cells may be used, but it is desirable to use a microorganism or a group of microorganisms composed of a plurality of types of microorganisms. Here, if such microorganisms can live in an extreme environment, the enzyme activity can be maintained even in a poor environment where persistent components and toxic substances coexist, and the ability to sustain life is high. Even under the environment, the ability to take up various components and the ability to biosynthesize functional components can be maintained at a higher level than normal temperature microorganisms. Therefore, there is an advantage that it is possible to take in and biosynthesize components that are difficult for normal microorganisms to accumulate.
[0023]
Examples of microorganisms that can live in an extreme environment include, for example, thermophilic bacteria such as thermophilic inoculum PTA-1773 described later, microorganisms that can live under high pressure, psychrophilic bacteria, or Methanobacterium that is a methanogenic archaea. Genus, Methanosarcina genus, Halobacterium genus halophilic bacteria, Haloarcula genus, Natronobacterium genus thermophilic bacteria, Thermoplasma genus, Thermoplasma genus, Sulfolobus genus, Thermococcus genus, Thermoiron bacterium Examples include the genus Spharotilus. In addition, the extreme environment mentioned here is a high temperature at which room temperature microorganisms cannot live, a high pressure at which normal pressure microorganisms cannot live, a low temperature at which room temperature microorganisms cannot live, a high salt concentration environment, a high alkali concentration environment, An environment where normal microorganisms cannot live, such as in a high acid concentration environment.
[0024]
In addition, if the microorganism is a thermophilic or heat-resistant cultured microorganism obtained by fermenting at least one of crabs, shrimps and small fish each containing chitin, at 60 ° C. or higher, room temperature microorganisms accumulate. There is an advantage that it is possible to efficiently take in difficult components and biosynthesis. As such a cultured microorganism, thermophilic inoculum PTA-1773 is preferable.
[0025]
The thermophilic inoculum PTA-1773 is a thermophilic bacterium C-1 (hereinafter referred to as “C-1”), which is a closely related species of Bacillus brevis, and the vicinity of Bacillus brevis. Thermophilic bacterium C-3 (hereinafter referred to as “C-3”), which is a related species, and thermophilic Bacillus stearothermophilus CH-4 (hereinafter referred to as “CH-4”). ), A thermophilic actinomycete MH-1 (hereinafter referred to as “MH-1”), and a thermophilic or heat-resistant lactic acid bacterium LM-1 (Bacillus coagulans). Hereinafter, it is referred to as “LM-1”. ) And thermophilic or thermostable lactic acid bacteria LM-2 [Bacillus coagulans]. Hereinafter, it is referred to as “LM-2”. ) And unknown bacteria and / or actinomycetes, and has the ability to purify and improve the environment. The ability to clean and improve the environment refers to the ability (function) to activate organisms that have a positive impact on the ecosystem, clean the environment directly or indirectly, and prepare (improve) the environment (ecosystem). Say.
[0026]
In addition, thermophilic inoculum PTA-1773 is a thermostable chitinase (for example, thermostable N-acetyl-β-D-hexosa) having excellent resolution, stability and sustainability of shrimp and crab residues under aerobic conditions. It has the ability to produce thermostable enzymes and molecular chaperones such as minidases, thermostable SOD (superoxide dismutase), thermostable enzymes, molecular chaperones, and thermostable SOD / vitamin E / selenium (Se) / unsaturated It expresses antioxidant functional components such as fatty acids and various mineral components.
[0027]
The sustainability of the activity of the thermostable enzyme at room temperature is as long as about six months to one year, while the enzyme derived from a room temperature microorganism is within one week. Further, this thermostable enzyme is not inactivated by an organic solvent such as ethanol, a surfactant or the like.
[0028]
Here, the molecular chaperone is a protein that helps the enzyme to exhibit a stable activity by retaining the structure of the enzyme, but ATP (adenosine-5) is used in a molecular chaperone derived from a room temperature microorganism. '-Triphosphate) energy is required, whereas the molecular chaperone derived from thermophilic inoculum PTA-1773 has the property of working even without ATP energy. Therefore, the molecular chaperone derived from the thermophilic inoculum PTA-1773 can prevent the denaturation of the thermostable enzyme, the enzyme derived from room temperature microorganisms, and the like in various environments, and can assist in its function. Thereby, the thermophilic inoculum PTA-1773 can activate (stabilize) room temperature microorganisms that grow in various environments and have a positive effect on the ecosystem.
[0029]
This thermophilic inoculum PTA-1773 is a mixed bacterium collected and separated from a mixed fermented product of soil in the mountains of Sankobo, Kitsuki City, Oita Prefecture, and seabed shrimp in Beppu Bay. The identification results of the bacteria which constitute the mixed bacteria are included in Table 1 to Table 3, in addition to non identifying unknown bacteria of that and / or actinomycetes. In addition, the growth temperature and heat resistance in a table | surface are those of an isolated microbe, and the growth of the thermophilic seed | species PTA-1773 as a mixed microbe has been confirmed at -10-90 degreeC. Here, the thermophilic inoculum PTA-1773 is deposited with the ATCC (American Type Culture Collection, 10801 University Boulevard Manassas, Virginia 2011-10209 US, deposited on May 1, 2000). : PTA-1773).
[0030]
[Table 1]
Figure 0004296564
[0031]
[Table 2]
Figure 0004296564
[0032]
The cell wall of MH-1 contained meso-diaminopimelic acid, glutamic acid or glutamine (Glx), glycine (Gly), alanine (Ala), and glucosamine. Mannose, xylose, ribose, arabinose, and rhamnose were contained in all MH-1 cells. The total ratio of guanine (G) and cytosine (C) in MH-1 DNA was 54.6%.
[0033]
For MH-1, the 16S rRNA gene base sequence (sequence length: 1020) was examined. Specifically, an automatic DNA sequencer (ABI 300) was used, and the operation was performed by the Lane-Die-terminator method (Lane, D, J., B. Pace, GJ. Olsen, D.A. Stahl, M. et al. L. Sogin, and N. R. Pace. 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analysis.Proc. Natl. Acad. Sci. USA 82: 6855-6959). DNA analysis is performed according to “CLUSTAL W (Thompson, JD, DG Higgins, and TJ Gibson, 1994, CLUSTAL W: impromptive the prosthetic sequencial sequence. "Weight Matrix Choice. Nucleic Acids Res. 22: 4673-4680)" and "Riboso Database Database Project (http://rdp.life.uiuc.edu/)" and "GenBank (w.p./. n It was matching the search by the database of h.gov/) ".
[0034]
When separating LM-1 and LM-2 from the thermophilic inoculum PTA-1773, 1 g of a sample was aseptically collected and added to 9 mL of sterile distilled water to give 10-fold diluted water. This diluted water was subjected to heat treatment at 80 ° C. for 15 minutes. Thus heat-treated dilution water by repeating the sequential dilution procedure based were prepared 10 to 10 6 fold dilution series. Thereafter, 0.1 mL of each diluted test water was smeared on a lactic acid bacteria selection (MRS) agar medium and cultured under anaerobic conditions at 37 ° C. for 48 hours. Two different colonies (LM-1 and LM-2) Was observed. For LM-1, spore formation was not observed in the MRS medium, but spore formation was observed in the general agar medium. The same was true for LM-2. The identification results of these LM-1 and LM-2 are shown in Table 3.
[0035]
[Table 3]
Figure 0004296564
[0036]
Moreover, 16S rRNA gene base sequences were examined for LM-1 and LM-2, respectively. Specifically, the isolate was inoculated into MRS medium (OXOID), and a culture at 37 ° C. was used as a test cell. DNA extraction, PCR, purification of PCR products, and cycle sequence were performed using “MicroSeq 500 16S rDNA Bacterial Sequencing Kit (manufactured by Applied Biosystems)”, and the operation was performed according to the protocol of Applied Biosystems. For DNA analysis, “ABI PRISM 377 DNASequencer (Applied Biosystems)” was used, and a collation search was performed using a MicroSeq database. The results are shown in the Sequence Listing (SEQ ID NO: 1 and SEQ ID NO: 2) .
[0037]
Here, p-nitrophenyl-N-acetyl-β for C-1, C-3, and CH-4 cultured at different chitin concentrations (0, 0.05, 0.1, 0.2%) Specific activity of thermostable chitinase was measured using -D-glucosamine (p-NP-β-D-GlcNAc) as a substrate. The results are shown in Table 4. The measurement was performed under the conditions of glucose (Glc) -peptone medium (Broth) and cell-free. CH-4 was also performed under sodium acetate (AcONa) -peptone medium (Broth) conditions and cell-free conditions.
[0038]
[Table 4]
Figure 0004296564
[0039]
Further, C-1, C-3, and CH-4 were each cultured in a glucose-peptone medium containing 0.2% colloidal chitin, and the chitinolytic activity was measured. The results are shown in Table 5. The measurement was carried out under glucose-peptone medium (Broth) conditions and cell-free conditions, respectively. CH-4 was also performed under sodium acetate (AcONa) -peptone medium (Broth) conditions and cell-free conditions. The activity was indicated by reacting the colloidal chitin suspension at 60 ° C. and reducing the turbidity after 1 hour per mg of protein.
[0040]
[Table 5]
Figure 0004296564
[0042]
In addition, the substrate specificity of the degradation activity was examined using p-nitrophenyl-N-acetyl-β-D-glucosamine derivatives. The results are shown in Table 6 (p-NP-β-D-GalNAc is p-nitrophenyl-N-acetyl-β-D-galactosamine).
[0043]
[Table 6]
Figure 0004296564
[0044]
In addition, since MH-1 contained three types of thermostable chitinases (L, M, and S), these were isolated by a conventional method, and then p-NP-β-D-diGlcNAc was used as a substrate. Specific activity of thermostable chitinase was measured respectively. The results are shown in Table 7.
[0045]
[Table 7]
Figure 0004296564
[0046]
The microorganism, microorganism group, biological cell, or suspension or culture solution of the biological cell group and the above-described raw material powder are kneaded so as to have an appropriate water content. The suspension or culture solution may be set to an appropriate concentration.
[0047]
The kneaded material may be formed into a desired shape by various types of conventionally known molding machines, etc., but if the pressure molding is performed by a pressure molding machine or the like, the advantage is that the molded body can easily maintain the shape. There is. In addition, after shaping | molding to a molded object, it is desirable to cure for several hours or more at normal temperature-110 degreeC.
[0048]
In order to produce a bio-based porous ceramic, the molded body may be fired at 800 ° C. or higher. At this time, the formed porous fired body is fired from microorganisms, microbial groups, biological cells, or biological cell groups. The amorphous carbon particles produced by the dispersion are dispersed. Moreover, the graphite particles contained in the raw material powder are also dispersed in the porous fired body.
[0049]
The generated amorphous carbon particles have a particle size of about 100 μm or less (nanometer level to about 100 μm) and a surface area larger than that of graphite. Therefore, such amorphous carbon particles and graphite particles are formed into a porous fired body. The dispersed bio-based porous ceramic has a high ability to trap or adhere an object to be trapped in a void having a porous structure. Therefore, there is an advantage that environmental purification ability such as deodorizing ability, filtering ability, and sterilizing ability is high, and it can be suitably used in the industrial field for the purpose of preserving the natural environment. In addition, since amorphous carbon particles and graphite particles have far-infrared radiation, there is an advantage that it is possible to efficiently prevent clustering (aggregation) of liquid molecules and gas molecules. Furthermore, since microorganisms, microbial groups, biological cells, or biological cell groups contain various minerals such as Ca, Na, Ma, and Zn necessary for growth, the minerals that are effective for organisms are balanced. There is an advantage that it can be contained in a bio-based porous ceramic. Therefore, if a bio-based porous ceramic is used as a water purification material or the like for drinking water, a mineral can be added to the drinking water or the like.
[0050]
Here, when the bio-based porous ceramic contains an oxidation product generated by firing from a concentrated component accumulated and concentrated in microorganisms or biological cells, the bio-based porous ceramic has a unique function of the oxidation product. Therefore, there is an advantage that it can be suitably used as a high-performance ceramic. Concentrated components can be accumulated in the body of microorganisms, for example, by culturing microorganisms under specific growth conditions using the characteristics of microorganisms or biological cells, or by utilizing specific biosynthesis of microorganisms. It can be concentrated.
[0051]
For example, if iron bacteria that have accumulated Fe are used and the above-mentioned molded body is fired at 1500 ° C. or higher, Fe 3 O 4 that is magnetic iron oxide is produced. Can be manufactured. In addition, when microorganisms and the like are cultured in a nutrient source containing a large amount of selenium (Se), glutathione peroxidase having high activity containing selenium is biosynthesized. When such a microorganism is used, a long chain of metallic gray selenium is produced in the porous fired body by firing the molded body, so that a bio-based porous material having photoconductivity and rectifying action, which are characteristics of the selenium long chain, is used. Quality ceramics can be produced. Further, the same applies to the case where a microorganism that inhabits under high pressure is used to generate a magnet from carbon such as fullerene. That is, there is an advantage that a special ceramic can be easily produced by utilizing the characteristics of microorganisms and the like without depending on excavation, refining and processing of natural ore.
[0052]
In this case, if microorganisms with excellent durability that can live in extreme environments are used, it is possible to concentrate dangerous substances that are biologically toxic by themselves or substances that are necessary as ceramic components but are difficult to collect. Therefore, a highly functional catalyst or the like containing an oxidation product derived from this concentrated component can be produced.
[0053]
In addition, when the bio-based porous ceramic contains a photocatalytic component such as titanium dioxide produced by firing, prevention of clustering of liquid molecules and gas molecules, dechlorination, sterilization, disinfection, virus removal, virus killing, There is an advantage that deodorization and the like can be performed more efficiently.
[0054]
【Example】
Next, although an Example demonstrates further in detail, this invention is not limited to the Example which concerns.
[0055]
[Production of bio-based porous ceramic containing amorphous carbon particles derived from thermophilic inoculum PTA-1773]
As the microorganism group, thermophilic inoculum PTA-1773 was used. This thermophilic inoculum PTA-1773 is a group of microorganisms having a high organic matter resolution and capable of producing fermentation heat energy at 70 to 90 ° C. Nutrient sources for cultivating thermophilic inoculum PTA-1773 include raw shrimp and crab residues that are not spoiled, as well as charcoal and coffee lees that are porous bodies that are difficult to decompose even at high temperatures of about 90 ° C. Used to increase the adhesion of microorganisms. Thermophilic inoculum PTA-1773 was cultured for 12 hours or more under aerobic conditions. The fermentation heat at this time was kept at 60 to 90 ° C. In addition, transition metal elements derived from the above-mentioned fishery nutrient sources have accumulated in the microorganism as part of the enzyme component. The cultures produced in these production steps were adjusted to 10 7 to 10 8 microorganisms per gram as the number of microorganisms growing on the standard agar medium. A 100-fold diluted suspension of this thermophilic inoculum PTA-1773 was cultured by aeration for 4 hours or more under aerobic conditions. Next, this thermophilic suspension (10 6 to 10 7 microorganisms per gram) 10% by weight, raw material powder containing aluminum, calcium, iron, potassium, magnesium, sodium, titanium, silicic acid, and graphite Both were kneaded so that the body (particle size of 100 μm or less) was 90% by weight, and the kneaded product was formed into a spherical shape having a diameter of 1 cm, and then the molded body was fired at 1000 ° C. FIG. 1 shows an electron micrograph (magnified 3500 times) of a fractured section of the obtained bio-based porous ceramic.
[0056]
As is apparent from FIG. 1, in the bio-based porous ceramic, amorphous carbon particles having a particle size of 5 μm or less form a cluster structure, and the surface area is large.
[0057]
[Example 1]
Using a nuclear magnetic resonance apparatus (NMR), the effect of preventing water molecule clustering by the bio-based porous ceramic obtained above was confirmed. Specifically, 100 g of bio-based porous ceramic was added to 2 L of tap water in Tokyo, and after lightly stirring, it was kept stationary for 24 hours in a refrigerator maintained at 4 ° C. Thereafter, the full width at half maximum for the measurement nuclide 17 O was measured by a nuclear magnetic resonance apparatus. The results are shown in Table 8.
[0058]
[Table 8]
Figure 0004296564
[0059]
[Comparative Example 1]
The same operation as in Example 1 was performed except that tap water in Tokyo was used as a specimen and no bio-based porous ceramic was added. The results are shown in Table 8.
[0060]
As is apparent from Table 8, it can be seen that the use of the bio-based porous ceramic could prevent the water molecules from being clustered in the tap water.
[0061]
[Example 2]
The dechlorination effect of bio-based porous ceramics was tested. Specifically, after the bio-based porous ceramic is lightly washed with tap water (Tama City, Tokyo), it is immersed in 1 L of tap water in a container, covered with a polyvinylidene chloride film and covered in the refrigerator. Left at rest. When 6 hours and 24 hours had elapsed, 100 mL of water was collected, and the residual chlorine concentration was measured by the ortho-tolidine method. The results are shown in Table 9.
[0062]
[Table 9]
Figure 0004296564
[0063]
[Comparative Example 2]
The same operation as in Example 2 was performed except that the same tap water as in Example 2 was used as a specimen and the bio-based porous ceramic was not immersed. The results are shown in Table 9. In Comparative Example 2, the residual chlorine concentration at the start was also measured.
[0064]
Example 3
The biocidal and bactericidal effects of bio-based porous ceramics were tested. Specifically, tap water is filled in a 100 L tank, 10 kg of bio-based porous ceramic is added, 10 kg of cucumber is added, and the change in the number of E. coli adhering to cucumber when exposed under aerated conditions is measured. did. The number of E. coli was counted by counting the number of colonies cultured at 35 ° C. for 24 hours using a DHL agar medium. The results are shown in Table 10.
[0065]
[Table 10]
Figure 0004296564
[0066]
[Comparative Example 3]
The same operation as in Example 3 was performed except that the bio-based porous ceramic was not added. The results are shown in Table 10.
[0067]
As is apparent from Table 10, it can be seen that there is a sterilization effect within a short time.
[0068]
Example 4
A fabric made of 100% cotton is immersed in 6 L of water containing 5% by weight of a bio-based porous ceramic, dried at 160 ° C., then inoculated with Staphylococcus aureus / ATCC 6538P, and then antibacterial effect It was confirmed. The results are shown in Table 11. The test was carried out according to the JIS 1902 quantitative test (unified test method). The number of cells is indicated by a log value. Inoculation was performed with 200 μL of 1/20 neutral gloss, and the inoculated fabric was put into a small bottle under aseptic conditions. The number of inoculated bacteria is 2.0 × 10 4 , the bactericidal activity value is [(log value of inoculated number) − (log value after 18 hours of inoculation treatment)], and the bacteriostatic activity value is [(comparative example). Log value after treatment)-(log value after 18 hours of inoculation treatment)].
[0069]
[Table 11]
Figure 0004296564
[0070]
[Comparative Example 4]
The same operation as in Example 4 was performed except that the bio-based porous ceramic was not added. The results are shown in Table 11.
[0071]
As is clear from Table 11, since the antibacterial processing value of 2.2 was exceeded by the Japan Spinning Association, it was found that the fabric soaked in water made of bio-based porous ceramic showed a bactericidal effect. This suggests that the action of the radiant energy of the bio-based porous ceramic can be transferred to the fabric, and the sustainability of the action effect is excellent.
[0072]
【The invention's effect】
As described above, according to the invention of claim 1, the raw material powder and at least one type of microorganism or at least one type of biological cell suspension or culture solution are kneaded, and the kneaded product is formed into a predetermined shape. After that, the molded body is fired at 800 ° C. or higher to disperse the amorphous carbon particles generated by the firing from the microorganisms or the biological cells in the formed porous fired body. A bio-based porous ceramic can be easily produced. Furthermore, since the microorganisms can live in an extreme environment, the enzyme activity can be maintained even in a poor environment where persistent components and toxic substances coexist, and the ability to maintain life is high. Therefore, even in extreme environments, the ability to take up various components and the ability to biosynthesize functional components can be maintained at a higher level than normal temperature microorganisms, and uptake and biosynthesis of components that are difficult for normal microorganisms to accumulate can be achieved.
[0085]
[Sequence Listing]
SEQ ID NO: 1
Sequence length: 537
Sequence type: RNA
Number of chains: single-stranded topology: linear organism name: thermophilic or thermotolerant lactic acid bacterium LM-1, a species closely related to Bacillus coagulans
Sequence type: 16S rRNA
Array:
Figure 0004296564
[0086]
SEQ ID NO: 2
Sequence length: 537
Sequence type: RNA
Number of chains: single-stranded topology: linear organism name: thermophilic or thermotolerant lactic acid bacteria LM-2, a closely related species of Bacillus coagulans
Sequence type: 16S rRNA
Array:
Figure 0004296564

[Brief description of the drawings]
FIG. 1 is an electron micrograph of a fractured section of a bio-based porous ceramic produced in an example.

Claims (1)

アルミニウム、カルシウム、鉄、カリウム、マグネシウム、ナトリウム、及びチタンのうちの少なくとも1種と、珪酸と、グラファイトとを含む原料粉体と、予め所定成分が蓄積・濃縮された少なくとも1種の極限環境下で生息可能である微生物の懸濁液又は培養液とを混練し、この混練物を所定形状に成形した後、この成形体を800℃以上で焼成することによって、形成される多孔質焼成体に、前記微生物から前記焼成により生成する生成物を含有する無定形炭素粒子を分散させることを特徴とするバイオ系多孔質セラミックの製造方法。  In at least one extreme environment in which at least one of aluminum, calcium, iron, potassium, magnesium, sodium, and titanium, raw material powder containing silicic acid and graphite, and predetermined components are accumulated and concentrated in advance. After kneading a suspension or culture solution of microorganisms that can inhabit in, and molding the kneaded product into a predetermined shape, the molded body is fired at 800 ° C. or higher to obtain a porous fired body to be formed. A method for producing a bio-based porous ceramic, comprising dispersing amorphous carbon particles containing a product produced from the microorganism by the firing.
JP2002162179A 2002-04-24 2002-04-24 Bio-based porous ceramic, method for producing the same, environmental purification material, and environmental purification tool Expired - Fee Related JP4296564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002162179A JP4296564B2 (en) 2002-04-24 2002-04-24 Bio-based porous ceramic, method for producing the same, environmental purification material, and environmental purification tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002162179A JP4296564B2 (en) 2002-04-24 2002-04-24 Bio-based porous ceramic, method for producing the same, environmental purification material, and environmental purification tool

Publications (2)

Publication Number Publication Date
JP2003321282A JP2003321282A (en) 2003-11-11
JP4296564B2 true JP4296564B2 (en) 2009-07-15

Family

ID=29545662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002162179A Expired - Fee Related JP4296564B2 (en) 2002-04-24 2002-04-24 Bio-based porous ceramic, method for producing the same, environmental purification material, and environmental purification tool

Country Status (1)

Country Link
JP (1) JP4296564B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005287395A (en) * 2004-03-31 2005-10-20 Ritsumeikan Microorganism having fishes decomposing performance, fishes decomposing treatment method using the same, and plant growth promoting/improving agent containing decomposed material thereby
JP2005295887A (en) * 2004-04-12 2005-10-27 Chuo Bachiru World:Kk Culture material for promoting high concentration proliferation or sporulation of bacillus bacterium in, and high concentration proliferation or sporulation waste water-treating method using the culture material
KR20060060445A (en) * 2004-11-30 2006-06-05 가부시키가이샤 산비켄 Biological active water and a use thereof
JP4978920B2 (en) * 2005-12-08 2012-07-18 株式会社セイスイ Manufacturing method of mineral water and its usage
WO2014108937A1 (en) * 2013-01-11 2014-07-17 株式会社タカギ Novel lactobacillus
CN111517750A (en) * 2020-05-08 2020-08-11 广西玖醇科技有限公司 Manufacturing process of ceramic product for accelerating alcohol alcoholization and alcohol alcoholization method

Also Published As

Publication number Publication date
JP2003321282A (en) 2003-11-11

Similar Documents

Publication Publication Date Title
CN109576187B (en) Cyanide degradation strain and method for degrading cyanide by using same
CN107058156B (en) Tetracycline antibiotic degrading strain, microbial inoculum containing strain and application thereof
CN111778216A (en) Xanthomonas carpet grass phage, and composition, kit and application thereof
JP4296564B2 (en) Bio-based porous ceramic, method for producing the same, environmental purification material, and environmental purification tool
JP6975701B2 (en) Bacillus subtilis isolation method, Bacillus subtilis, microbial preparation containing Bacillus subtilis, medium set for Bacillus subtilis isolation
CN113583898B (en) Citrobacter vitis and application thereof in chloramphenicol removal and phosphate and potassium dissolution
JP4348411B2 (en) Porous composite material and manufacturing method thereof
JP4654437B2 (en) Novel microorganism and method for treating organic sludge using the same
Moldagulova et al. Data on the isolation and identification of thermotolerant microorganisms from cow manure promising for organic waste processing
CN111235068A (en) Erythromycin degradation bacterium RJJ-61 and application thereof
CN108239612B (en) Neisseri (Nesterenkonia) strain X35 and application thereof
JP4540211B2 (en) New microorganisms belonging to Bacillus subtilis
CN113061550B (en) Lactobacillus new strain Z6 and application thereof in food
CN100429304C (en) Bacillus alcaligenes strain for degrading ortho-nitrophenol and preparing method
CN113755400B (en) Bacillus cereus for degrading aureomycin and application thereof
JP4088690B2 (en) New microorganisms and methods for removing arsenic by microorganisms
CN111647537B (en) Salt-tolerant capsaicin degrading bacteria, application and kitchen waste treatment method
KR20140096470A (en) A novel microorganism Rhodococcus pyridinovorans EDB2 degrading aromatic compounds
WO2009154234A1 (en) Novel microorganisms, selenium oxide compound reducing agent, method for reducing and method for removing a selenium oxide compound, and process for producing metallic selenium
JP4931451B2 (en) New microorganism
JP5227673B2 (en) Novel microorganism, reduced selenate compound preparation, method for reducing and removing selenate compound, and method for producing metal selenium
JP2004000107A (en) Oxidation prevention material, oxidation prevention implement, and sanitizing implement of edible oil
JP4540210B2 (en) A new microorganism belonging to Bacillus schurigensis
JP4416470B2 (en) High-performance denitrifying oil-degrading bacteria, wastewater purification method using the high-performance denitrifying oil-degrading bacteria
Younis et al. Isolation and Molecular Identification of Bacillus boroniphilus sp. nov., Isolated from Dishwasher

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090403

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150424

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees