JP4348411B2 - Porous composite material and manufacturing method thereof - Google Patents

Porous composite material and manufacturing method thereof Download PDF

Info

Publication number
JP4348411B2
JP4348411B2 JP2002134542A JP2002134542A JP4348411B2 JP 4348411 B2 JP4348411 B2 JP 4348411B2 JP 2002134542 A JP2002134542 A JP 2002134542A JP 2002134542 A JP2002134542 A JP 2002134542A JP 4348411 B2 JP4348411 B2 JP 4348411B2
Authority
JP
Japan
Prior art keywords
thermophilic
porous
composite material
pta
porous composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002134542A
Other languages
Japanese (ja)
Other versions
JP2003326296A (en
Inventor
芳建 吉川
久 宮本
浩邦 宮本
Original Assignee
有限会社日野砕石
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社日野砕石 filed Critical 有限会社日野砕石
Priority to JP2002134542A priority Critical patent/JP4348411B2/en
Publication of JP2003326296A publication Critical patent/JP2003326296A/en
Application granted granted Critical
Publication of JP4348411B2 publication Critical patent/JP4348411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Description

【0001】
【発明の属する技術分野】
この発明は、水質浄化・改良能等を有する多孔質複合資材及びその製造方法に関する。
【0002】
【従来の技術】
従来の水質浄化技術としては、例えば、ゼオライトやトルマリン等の天然鉱石を利用したものや、微生物を利用したもの等が知られている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記のような従来の水質浄化技術においては、水質浄化効果が不十分であったり、水質浄化に時間がかかったりする等の問題点がある。
【0004】
この発明は、以上のような事情や問題点に鑑みてなされたものであり、水質浄化等を効果的にかつ効率良く行える多孔質複合資材及びその製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するための請求項1の多孔質複合資材は、粘土を50重量%以上含むと共にゼオライト及びランプストーンのうち少なくとも1種を含み、且つ、500〜680℃で焼成され、さらに、長さが10〜50mmで、幅が長さの0.75〜0.86倍かつ高さが幅より小さい略タマゴ型形状に形成された多孔質焼成体に、バチルス・ブレビスの近縁の種である好熱性細菌C−1と、バチルス・ブレビスの近縁の種である好熱性細菌C−3と、好熱性バチルス・ステアロサーモフィラスCH−4と、好熱性放線菌MH−1と、好熱性又は耐熱性乳酸菌LM−1と、好熱性又は耐熱性乳酸菌LM−2と、未知の細菌及び/又は放線菌との混合菌である好熱性種菌PTA−1773を含有させたものである。
【0016】
また、請求項の製造方法は、請求項1記載の多孔質複合資材の製造方法であって、粘土粉体を50重量%以上含む原料粉体の含水率を9〜14重量%とし、この原料粉体を略タマゴ型形状に加圧成形した後、この成形体を焼成して得られる前記多孔質焼成体に前記好熱性種菌PTA−1773の懸濁液又は培養液を含浸させることによって、前記多孔質焼成体に前記好熱性種菌PTA−1773を含有させたものである。
【0020】
【発明の実施の形態】
以下、この発明の実施形態を図面に基づいて説明する。
図1〜図3に示すように、この実施形態に係る多孔質複合資材1は、多孔質焼成体2に好熱性種菌PTA−1773を含有させたものである。
【0021】
多孔質焼成体2は、粘土を50重量%以上含む多孔質の焼成体である。粘土としては、例えば、木節粘土・蛙目粘土等の耐火粘土、カオリン、陶石、ベントナイト等が挙げられる。粘土以外の成分としては、例えば、ゼオライト、トルマリン、ランプストーン等の天然鉱石等が挙げられる。なお、ゼオライトとは、別名を沸石といい、CaやNaを主成分とする含水アルミノケイ酸塩鉱物である。トルマリンとは、別名を電気石といい、三配位のホウ素を有するシクロケイ酸塩鉱物である。ランプストーンとは、白亜紀における造山活動に伴う動力熱変成作用により形成された鉱物資源であって、主としてシリカ、アルミナ、Na、Caからなり、一般的には珪石や石英片岩の範疇に入るものである。
【0022】
ここで、多孔質焼成体2が、上記のゼオライト、トルマリン、及びランプストーンのうちの少なくとも1種を含んでいれば、これら天然鉱石のマイナスイオン効果等により水質浄化等に対して格別優れた効果を発揮するという利点がある。また、多孔質焼成体2が400〜800℃、好ましくは500〜680℃の比較的低温で焼成されたものであれば、多孔質構造を保持した状態で適度な強度及び硬度を有するので、粉砕し易いと共に、自然風化もし易く、そのため使用後の多孔質複合資材1を簡単にリサイクルできるという利点がある。焼成時間としては、1時間以上であれば上限はないが、製造コスト等の観点からは10時間以内であることが望ましい。なお、焼成温度が400℃よりも低い場合は、焼成できないか又は焼成が不完全となる。一方、800℃よりも高い場合は、得られる多孔質焼成体2が縮小して多孔質部分が少なくなり、表面がガラス化し、硬くなり過ぎて粉砕しにくくなると共に、自然風化もしにくくなる。また、ゼオライトやトルマリンを含んでいる場合において800℃を超える温度で焼成すれば、ゼオライトやトルマリンの結晶構造が変化し、トルマリンについてはそのマイナス電位が小さくなる。
【0023】
このような多孔質焼成体2は、粘土粉体を50重量%以上含む原料粉体の含水率を適宜に調整し、この原料粉体を所定形状に成形した後、この成形体を所定温度で焼成等することによって製造できる。粘土粉体は、例えば、粘土の団塊状の製砂脱水ケーキを乾燥させた後、ミックスマーラー等により粉砕、微細化等することによって製造できる。粘土以外の成分を添加する場合は、ミックスマーラー等により粘土粉体と混合すればよい。原料粉体の粒径としては、10〜500μm、好ましくは20〜100μmが適当である。成形体への成形には、従来公知の各種の成形機や加圧成形機等を使用できる。なお、成形体への成形後は、常温〜110℃で2時間以上養生するのが望ましい。
【0024】
ここで、原料粉体の含水率を8〜20重量%、好ましくは9〜14重量%としておけば、歩留が良く、生産性が向上するという利点がある。なお、含水率が20重量%よりも大きい場合は、加圧成形機の加圧ローラの周面に形成された成形用溝等からの離型性が悪く、成形体の一部又は全部が成形用溝等に残ることが多くなる。一方、含水率が8重量%よりも小さい場合は、成形体の形状に固まりにくくなり、部分的に欠けた状態となることが多くなる。
【0025】
また、原料粉体を成形機等により略タマゴ型形状に成形すれば、成形体が成形用溝等からの離型時及び離型後に崩れにくくなるので、生産性が向上するという利点がある。この場合、原料粉体を加圧成形機等により略タマゴ型形状に加圧成形すれば、成形体が更に崩れにくくなるという利点がある。
【0026】
多孔質焼成体2の形状は特に限定されるものではないが、図1〜図3のような略タマゴ型形状であって、例えば長さLが10〜50mmで、幅Wが長さLより小さくかつ高さHが幅Wより小さい形状に形成しておけば、適度な大きさであるので、取り扱いが容易であり、各種の用途に広く利用できると共に、再利用もし易いという利点がある。なお、多孔質焼成体2の長さLが50mmよりも大きい場合は、400〜800℃の比較的低温での焼成が困難となる。一方、長さLが10mmよりも小さい場合は、小粒になり過ぎ、取り扱いにくくなる。
【0027】
また、多孔質焼成体2の幅Wや長さLは、幅Wが長さLの0.6〜0.9倍(好ましくは0.75〜0.86倍)かつ高さHが長さLの0.3〜0.6倍(好ましくは0.42〜0.55倍)となるようにしておくのが望ましい。なお、幅Wが長さLの0.9倍よりも大きい場合は、400〜800℃の比較的低温で焼成したときに内部まで焼成しにくいと共に、800℃を超える比較的高温で焼成したときに表面と内部との焼成状態に差が生じて不均一となる。一方、幅Wが長さLの0.6倍よりも小さい場合は、細長くなり過ぎるので、破損し易くなる。更に、高さHが長さLの0.6倍よりも大きい場合は、加圧成形機の成形用溝等からの離型性が悪くなる。一方、高さHが長さLの0.3倍よりも小さい場合は、薄くなり過ぎるので、製造しにくいと共に、破損し易くなる。
【0028】
好熱性種菌PTA−1773は、バチルス・ブレビス(Bacillus brevis)の近縁の種である好熱性細菌C−1(以下、「C−1」という。)と、バチルス・ブレビス(Bacillus brevis)の近縁の種である好熱性細菌C−3(以下、「C−3」という。)と、好熱性バチルス・ステアロサーモフィラス(Bacillus stearothermophilus)CH−4(以下、「CH−4」という。)と、好熱性放線菌MH−1(以下、「MH−1」という。)と、好熱性又は耐熱性乳酸菌LM−1〔バチルス・コアギュランス(Bacillus coagulans)の近縁の種。以下、「LM−1」という。)と、好熱性又は耐熱性乳酸菌LM−2〔バチルス・コアギュランス(Bacillus coagulans)の近縁の種。以下、「LM−2」という。)と、未知の細菌及び/又は放線菌との混合菌であって、環境浄化・改良能を有している。なお、環境浄化・改良能とは、生態系に好影響をもたらす生物を活性化し、直接的又は間接的に環境を浄化すると共に、環境(生態系)を整える(改良する)能力(機能)をいう。
【0029】
また、好熱性種菌PTA−1773は、好気条件下でエビやカニの残渣の分解能、並びに安定性・持続力等に優れた耐熱性キチナーゼ(例えば耐熱性N−アセチル−β−D−ヘキソサミニダーゼ等)・耐熱性SOD(スーパーオキシドジスムターゼ)等の耐熱性酵素及び分子シャぺロンの生産能を有すると共に、耐熱性酵素、分子シャぺロン、及び耐熱性SOD・ビタミンE・セレニウム(Se)・不飽和脂肪酸・各種ミネラル成分等の抗酸化機能性成分を発現している。
【0030】
前記耐熱性酵素の常温下における活性の持続力は、常温微生物由来の酵素が1週間以内であるのに対し、半年〜1年程度と長い。また、この耐熱性酵素は、エタノール等の有機溶媒や界面活性剤等によっても失活しない。
【0031】
ここで、分子シャぺロンとは、酵素の構造を保持等させることによって、酵素が安定な活性を示すことができるように手助けをするタンパク質であるが、常温微生物由来の分子シャぺロンではATP(アデノシン−5’−三リン酸)のエネルギーが必要であるのに対し、好熱性種菌PTA−1773由来の分子シャぺロンではATPのエネルギーがなくても働く性質がある。そのため、この好熱性種菌PTA−1773由来の分子シャぺロンは、各種の環境で前記耐熱性酵素や常温微生物由来の酵素等の変性を防止し、その働きを助けることができる。これにより、好熱性種菌PTA−1773は、各種の環境で生育する、生態系に好影響をもたらす常温微生物を活性化(安定化)することができる。
【0032】
この好熱性種菌PTA−1773は、大分県杵築市三光坊の山中の土壌と別府湾の海底エビとの混合発酵物から採取、分離された混合菌である。混合菌を構成する各菌の同定結果等を表1〜表3、図4〜図6に示すが、その他にも同定不能な未知の細菌及び/又は放線菌が含まれている。なお、表中の生育温度や耐熱性は単離菌のものであり、混合菌としての好熱性種菌PTA−1773の生育は−10〜90℃で確認されている。ここで、好熱性種菌PTA−1773は、2000年5月1日付けでATCC(American Type Culture Collection, 10801 University Boulevard Manassas, Virginia 20110-2209 U.S.A.)に国際寄託されている(受託番号:PTA−1773)。
【0033】
【表1】

Figure 0004348411
【0034】
【表2】
Figure 0004348411
【0035】
MH−1の細胞壁には、メソ−ジアミノピメル酸、グルタミン酸又はグルタミン(Glx)、グリシン(Gly)、アラニン(Ala)、グルコサミンが含まれていた。MH−1の全菌体には、マンノース、キシロース、リボース、アラビノース、ラムノースが含まれていた。MH−1のDNA中のグアニン(G)とシトシン(C)の合計比率は、54.6%であった。
【0036】
MH−1については、16S rRNA遺伝子塩基配列(配列の長さ:1020)を調べた。具体的には、自動DNAシークエンサー(ABI 300)を用い、操作はLaneらのダイ−ターミネーター法(Lane, D, J., B. Pace, G. J. Olsen, D. A. Stahl, M. L. Sogin, and N. R. Pace. 1985. Rapid determunation of 16S ribosomal RNA sequences for phylogenetic analysis. Proc. Natl. Acad. Sci. USA 82:6855-6959)に従った。DNA解析は「CLUSTAL W(Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680)」に従い、「Ribosomal Database Project(http://rdp.life.uiuc.edu/)」及び「GenBank(http://ww.ucbi.ulm.nih.gov/)」のデータベースにより照合検索を行った。分離株と近縁株との近隣結合法による系統樹を図4に示す。
【0037】
LM−1及びLM−2の好熱性種菌PTA−1773からの分離に際しては、1gの検体を無菌的に分取し、9mLの滅菌蒸留水に添加して10倍希釈水とした。この希釈水に対しては、80℃、15分間の加熱処理を行った。このようにして加熱処理した希釈水をもとに順次希釈操作を繰り返して10〜106倍の希釈系列を作製した。その後、各希釈検水の0.1mLを乳酸菌選択(MRS)寒天培地に塗抹し、37℃、48時間、嫌気条件下で培養したところ、2種類の異なるコロニー(LM−1及びLM−2)が観察された。なお、LM−1については、MRS培地では芽胞非形成であったが、一般寒天培地では芽胞形成であった。LM−2についても同様であった。これらLM−1及びLM−2の同定結果を表3に示す。
【0038】
【表3】
Figure 0004348411
【0039】
また、LM−1及びLM−2について、それぞれ16S rRNA遺伝子塩基配列を調べた。具体的には、分離株をMRS培地(OXOID)に植菌し、37℃での培養物を供試菌体とした。DNA抽出、PCR、PCR産物の精製、サイクルシークエンスは「MicroSeqTM 500 16S rDNA Bacterial Sequencing Kit(Applied Biosystems社製)」を用い、操作はApplied Biosystems社のプロトコルに従った。DNA解析は「ABI PRISMTM 377 DNA Sequencer(Applied Biosystems社製)」を用い、MicroSeqTM のデータベースにより照合検索を行った。その結果を配列表(配列番号1及び配列番号2)に示す。更に、分離株と近縁株との近隣結合法による系統樹を図5及び図6に示す。
【0040】
ここで、キチン濃度を変えて(0、0.05、0.1、0.2%)培養したC−1、C−3、及びCH−4について、p−ニトロフェニル−N−アセチル−β−D−グルコサミン(p−NP−β−D−GlcNAc)を基質として耐熱性キチナーゼの比活性をそれぞれ測定した。その結果を表4に示す。測定は、グルコース(Glc)−ペプトン培地(Broth)条件及び無細胞(Cell-free)条件でそれぞれ行った。CH−4については、更に酢酸ナトリウム(AcONa)−ペプトン培地(Broth)条件及び無細胞(Cell-free)条件でも行った。
【0041】
【表4】
Figure 0004348411
【0042】
また、C−1、C−3、及びCH−4を、0.2%のコロイダルキチンを含むグルコース−ペプトン培地でそれぞれ培養し、キチン分解活性を測定した。その結果を表5に示す。測定は、グルコース−ペプトン培地(Broth)条件及び無細胞(Cell-free)条件でそれぞれ行った。CH−4については、更に酢酸ナトリウム(AcONa)−ペプトン培地(Broth)条件及び無細胞(Cell-free)条件でも行った。活性は、コロイダルキチン懸濁液を60℃で反応させ、1時間後の濁度低下を蛋白mg当りで表示した。
【0043】
【表5】
Figure 0004348411
【0044】
更に、C−1、C−3、及びCH−4について、p−ニトロフェニル−N−アセチル−β−D−グルコサミン(p−NP−β−D−GlcNAc)を基質とした、pH及び温度に対するエキソ(exo)の分解活性を測定した。その結果を図7及び図8に示す。温度に対する分解活性では、CH−4の菌体外酵素(extra)についても測定した。
【0045】
また、p−ニトロフェニル−N−アセチル−β−D−グルコサミン誘導体を用いて分解活性の基質特異性を調べた。その結果を表6(p−NP−β−D−GalNAcはp−ニトロフェニル−N−アセチル−β−D−ガラクトサミン)に示す。
【0046】
【表6】
Figure 0004348411
【0047】
加えて、MH−1には3種類の耐熱性キチナーゼ(L,M,Sという)が含まれていたので、これらを常法により単離した後、p−NP−β−D−diGlcNAcを基質として耐熱性キチナーゼの比活性をそれぞれ測定した。その結果を表7に示す。
【0048】
【表7】
Figure 0004348411
【0049】
多孔質複合資材1は、多孔質焼成体2に好熱性種菌PTA−1773の懸濁液又は培養液を数時間〜数日間含浸させ、必要に応じて乾燥させることによって簡単に製造できる。好熱性種菌PTA−1773の培養液は、好熱性種菌PTA−1773を含む培地を水等に添加し、曝気等による好気条件下かつ5〜70℃で培養することによって製造できる。この場合、必要に応じて遠赤外線を照射すれば、より効率良く培養できる。また、得られた培養液は、適当な倍率に希釈した希釈液として使用してもよい。
【0050】
このように、多孔質複合資材1は、多孔質焼成体2に好熱性種菌PTA−1773を含有させたものであるので、多孔質焼成体2が好熱性種菌PTA−1773の担体となり、好熱性種菌PTA−1773の活性が高い状態で環境浄化・改良能を発揮できる。そのため、この多孔質複合資材1を各種の環境に使用すれば、水質浄化等の環境浄化を効果的にかつ効率良く行えると共に、環境(生態系)を整えることもできるという利点がある。また、このような多孔質複合資材1においては、好熱性種菌PTA−1773を含有した状態で長期保存が可能である。
【0051】
なお、多孔質複合資材1は、複数個をそのままの状態で投入、沈設、設置、埋設、混入等することにより使用してもよいが、適宜の孔開きバスケット、孔開きケース(メッシュコンテナ)、袋状ネット、土のう袋等に複数個をまとめて収納した状態で使用すれば、使用後の多孔質複合資材1を簡単に回収することができる。また、回収された使用済の多孔質複合資材1は、更に土壌浄化・改良材や植木移植時の根張り活着促進材等として、そのまま又は適度な大きさに粉砕した状態で再利用することもできる。
【0052】
上記のように構成された多孔質複合資材1は、水質浄化・改良能、水中のミクロキスティスの減少化能、水中のアオコの減少化能、土壌浄化・改良能、植物病原菌の抗菌・溶菌能、堆肥の発酵促進・消臭能、及び生ゴミ処理能等を有するので、水質浄化・改良材、ミクロキスティスの減少化材、アオコの減少化材、土壌浄化・改良材、生物農薬(植物病原菌の抗菌・溶菌材)、堆肥の発酵促進・消臭材、及び生ゴミ処理材等として好適に使用できるという利点がある。なお、ここでいうところのアオコ(青粉)とは、池、沼、湖、河川等の水を緑色にする浮遊性の藻の総称である。ミクロキスティスとは、池、沼、湖、河川等に浮遊して生育し、しばしば大繁殖して水の華を生じさせる藍藻ミクロキスティス(Microcystis)属の総称である。
【0053】
既述のように、好熱性種菌PTA−1773は前記耐熱性酵素や分子シャぺロンの生産能を有すると共に、これら耐熱性酵素や分子シャぺロン等が既に発現しているので、汚染水、土壌、堆肥、生ゴミ等に含まれる有機物の分解能を有している。また、好熱性種菌PTA−1773由来の分子シャぺロンによって、前記耐熱性酵素等や有機物の分解能を有する常温微生物の酵素等が安定化されるので、常温微生物が活性化される。そのため、常温微生物の優先環境が安定化され、常温下においても分解処理が効率良く進行する。
【0054】
特に、多孔質複合資材1を水質浄化・改良材として使用した場合は、水質が浄化される結果、ミクロキスティスやアオコを減少化できる。また、水生生物やプランクトン等の常温生物の水系生物相を変化させ、水系生態系を活性化・良質化してホタル、カワニナ、タガメ等を増加させることができる。更に、稲作水田においては、多孔質複合資材1を水当て補材として使用することができる。なお、排水溝、下水浄化槽、し尿浄化槽等に使用した場合でも、同様にして水質が浄化・改良される。
【0055】
生物農薬として使用した場合は、植物病原菌(例えばフザリウム属菌・紋羽病菌等の糸状菌等)に対して抗菌・溶菌効果を発揮するので、従来のような農薬が不要であると共に、人体に対して安全な作物を栽培することができる。
【0056】
生ゴミ処理材として使用した場合は、生ゴミの堆肥化を促進できると共に、大腸菌O−157・レジオネラ菌・赤痢菌・黄色ブドウ球菌・サルモネラ菌等の人体に悪影響を与える日和見感染菌・病原菌、植物病原菌、カビ等を殺菌することもできる。
【0057】
【実施例】
次に、実施例により更に詳細に説明するが、この発明は係る実施例に限定されるものではない。
【0058】
〔多孔質複合資材の製造〕
粘土(島根県仁多郡産)の製砂脱水ケーキを自然乾燥させた後(乾燥後の含水率:約10重量%)、ミックスマーラにより粉砕、微細化したものを粘土粉体(平均粒径:118μm)として使用した。ミックスマーラにより、粘土粉体とトルマリン粉体(中国産,粒径:330μm以下)とゼオライト粉体(島根県大田市産,粒径:500μm以下)とを70:10:20(重量率)の割合で混合して原料粉体とした後、原料粉体全体に対する含水率が約13重量%となるように徐々に水を添加し、引き続きミックスマーラにより混練した。得られた原料粉体の混練物を加圧成形機(有限会社日野砕石製)により略タマゴ型形状(長さ:30mm,幅:25mm,高さ:15mm)に加圧成形(加圧力:5t/cm2)し、成形体とした。複数個の成形体を乾燥炉内に入れて107℃で2時間乾燥させた後、3時間かけて600℃まで昇温させ、その状態を1.5時間保持して成形体を焼成した。焼成後は、乾燥炉内で12時間以上放冷した。
【0059】
得られた多孔質焼成体の複数個を好熱性種菌PTA−1773の培養液に24時間浸漬した後、自然乾燥させることによって複数個の多孔質複合資材を製造した。なお、培養液は、好熱性種菌PTA−1773を含む粉体状の培地(表8参照)を、市販の高温培養装置に入れた水に1:100(体積率)の割合で添加し、空気雰囲気下で30〜70℃に保持して12時間培養することによって製造した。
【0060】
【表8】
Figure 0004348411
【0061】
〔実施例1〕
島根県内の公園の池(水量:約50t)において、多孔質複合資材による水質浄化試験を行った。なお、試験前においては、池の全面がアオコに覆われており、池底が全く見えない状態であった。また、池底の敷丸石は、アオコが付着して緑色を呈していた。
【0062】
具体的には、上記の池の取水口付近に、多孔質複合資材50kgを入れた孔開きケース(メッシュコンテナ)を沈設した。孔開きケース近傍には水中曝気装置(消費電力:0.4kW)を設置し、孔開きケース内の多孔質複合資材を常時曝気した。
【0063】
試験開始から5日後とそれから更に6カ月経過後における池の排水口付近の水質をそれぞれ検査した。その結果を表9に示す。なお、試験開始から約1カ月後においては、池底の敷丸石に付着していたアオコの緑色が薄くなり、池内にはメダカ、タニシ、カワニナ等が大量に発生していた。
【0064】
【表9】
Figure 0004348411
【0065】
〔実施例2〕
出願人である有限会社日野砕石内に設置されたし尿浄化槽(22人用合併浄化槽)において、多孔質複合資材による水質改善試験を行った。
【0066】
具体的には、有限会社日野砕石内に設置されたトイレの7箇所の洗浄水タンク(洗浄水はし尿と共にし尿浄化槽へ流入)に、約20個の多孔質複合資材を入れた筒状の孔開きケースをそれぞれ1つずつ沈設した。試験開始前と試験開始から1カ月後におけるし尿浄化槽の水質をそれぞれ検査した。その結果を表10に示す。
【0067】
【表10】
Figure 0004348411
【0068】
〔実施例3〕
出願人である有限会社日野砕石の島根県内の工場に建設された地下水汲み上げ施設において、地下水に含まれる鉄分、マンガン、硝酸体窒素の除去試験を行った。
【0069】
具体的には、上記の地下水汲み上げ施設で汲み上げられた地下水を、多孔質複合資材50kgがそれぞれ収容されかつ互いに隣接して設置された12個の孔開きケース(メッシュコンテナ)の上方から散水し、これら孔開きケース内の複数個の多孔質複合資材を通して下方にろ過された状態の地下水を貯水タンク(容量:1200L)に貯留した。汲み上げたままの原水と貯水タンク内のろ過水の水質をそれぞれ検査した。その結果を表11に示す。
【0070】
【表11】
Figure 0004348411
【0071】
【発明の効果】
以上のように、請求項1の発明によれば、多孔質焼成体に好熱性種菌PTA−1773を含有させたものであるので、多孔質焼成体が好熱性種菌PTA−1773の担体となり、好熱性種菌PTA−1773の活性が高い状態で環境浄化・改良能を発揮できる。そのため、多孔質複合資材を各種の環境に使用すれば、水質浄化等の環境浄化を効果的にかつ効率良く行えると共に、環境(生態系)を整えることもできる。また、好熱性種菌PTA−1773を含有した状態で長期保存も可能である。さらに、多孔質焼成体が、ゼオライト及びランプストーンのうちの少なくとも1種を含んでいるので、これら天然鉱石のマイナスイオン効果等により水質浄化等に対して格別優れた効果を発揮する。そして、多孔質焼成体が560〜680℃で焼成されたものであるので、多孔質構造を保持した状態で適度な強度及び硬度を有する。そのため、粉砕し易いと共に、自然風化もし易いので、使用後の多孔質複合資材を簡単にリサイクルできる。また、多孔質焼成体が、長さが10〜50mmで、幅が長さの0.75〜0.86倍かつ高さが幅より小さい略タマゴ型形状に形成されたものであるので、適度な大きさであり、そのため取り扱いが容易であり、各種の用途に広く利用できると共に、再利用もし易い。
【0082】
請求項の発明によれば、多孔質焼成体に好熱性種菌PTA−1773の懸濁液又は培養液を含浸させることによって、多孔質焼成体に好熱性種菌PTA−1773を含有させるので、多孔質複合資材を簡単に製造できる。また、粘土粉体を50重量%以上含む原料粉体の含水率を9〜14重量%とし、この原料粉体を略タマゴ型形状に加圧成形した後、この成形体を焼成することによって多孔質焼成体を得るので、成形体が成形用溝等からの離型時及び離型後に崩れにくくなり、そのため生産性が向上する。
【0086】
【配列表】
Figure 0004348411
【0087】
Figure 0004348411

【図面の簡単な説明】
【図1】実施形態に係る多孔質複合資材の正面図。
【図2】図1の多孔質複合資材の平面図。
【図3】図1の多孔質複合資材の側面図。
【図4】分離株(MH−1)と近縁株との近隣結合法による系統樹。
【図5】分離株(LM−1)と近縁株との近隣結合法による系統樹。
【図6】分離株(LM−2)と近縁株との近隣結合法による系統樹。
【図7】C−1、C−3、及びCH−4の最適pHを示すグラフ。
【図8】C−1、C−3、CH−4、及びCH−4(extra)の最適温度を示すグラフ。
【符号の説明】
1 多孔質複合資材
2 多孔質焼成体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a porous composite material having water purification / improvement ability and the like and a method for producing the same.
[0002]
[Prior art]
As conventional water purification technologies, for example, those using natural ores such as zeolite and tourmaline, and those using microorganisms are known.
[0003]
[Problems to be solved by the invention]
However, the conventional water purification techniques as described above have problems such as insufficient water purification effect and taking time for water purification.
[0004]
The present invention has been made in view of the above circumstances and problems, and an object of the present invention is to provide a porous composite material capable of effectively and efficiently purifying water and the like and a method for producing the same.
[0005]
[Means for Solving the Problems]
The porous composite material of claim 1 for achieving the above object, seen contains at least one of zeolite and the lamp stones with comprising clay 50 wt% or more, and is fired at 500 to 680 ° C., further, A porous fired body having a length of 10 to 50 mm, a width of 0.75 to 0.86 times the length, and a height smaller than the width is formed into an approximately egg-shaped shape, and is closely related to Bacillus brevis. A thermophilic bacterium C-1, a thermophilic bacterium C-3 which is a closely related species of Bacillus brevis, a thermophilic Bacillus stearothermophilus CH-4, and a thermophilic actinomycete MH-1. , Thermophilic or thermostable lactic acid bacteria LM-1, thermophilic or thermostable lactic acid bacteria LM-2, and thermophilic inoculum PTA-1773 which is a mixed bacterium of unknown bacteria and / or actinomycetes .
[0016]
The method according to claim 2 is a method for producing a porous composite material of claim 1 Symbol placement, the moisture content of the raw material powder comprising clay powder 50 wt% or more and 9-14 wt%, By pressing the raw material powder into an approximately egg shape and then impregnating the porous fired body obtained by firing the shaped body with the suspension or culture solution of the thermophilic seed PTA-1773. The porous fired body contains the thermophilic inoculum PTA-1773.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
As shown in FIGS. 1 to 3, the porous composite material 1 according to this embodiment is a porous fired body 2 containing a thermophilic inoculum PTA-1773.
[0021]
The porous fired body 2 is a porous fired body containing 50% by weight or more of clay. Examples of the clay include refractory clays such as Kibushi clay and Sasame clay, kaolin, pottery stone, bentonite and the like. Examples of components other than clay include natural ores such as zeolite, tourmaline, and lampstone. Zeolite is also known as zeolite, and is a hydrous aluminosilicate mineral mainly composed of Ca and Na. Tourmaline is called a tourmaline, a cyclosilicate mineral with tricoordinate boron. Lampstone is a mineral resource formed by kinetic thermal metamorphism associated with orogenic activity in the Cretaceous Period, and is mainly composed of silica, alumina, Na, and Ca, and generally falls within the category of quartzite and quartz schist. It is.
[0022]
Here, if the porous fired body 2 contains at least one of the above-mentioned zeolite, tourmaline, and lampstone, it has a particularly excellent effect on water purification by the negative ion effect of these natural ores. There is an advantage of exhibiting. Further, if the porous fired body 2 is fired at a relatively low temperature of 400 to 800 ° C., preferably 500 to 680 ° C., the porous fired body 2 has an appropriate strength and hardness while maintaining the porous structure. The porous composite material 1 after use can be easily recycled because it is easy to be natural and weathered easily. The firing time is not limited as long as it is 1 hour or longer, but is preferably within 10 hours from the viewpoint of production cost and the like. In addition, when a calcination temperature is lower than 400 degreeC, it cannot calcinate or baking becomes incomplete. On the other hand, when the temperature is higher than 800 ° C., the obtained porous fired body 2 is reduced and the porous portion is reduced, the surface is vitrified, becomes too hard to be pulverized, and is not easily weathered naturally. In addition, if zeolite or tourmaline is contained and calcined at a temperature exceeding 800 ° C., the crystal structure of zeolite or tourmaline changes, and the negative potential of tourmaline decreases.
[0023]
In such a porous fired body 2, the moisture content of the raw material powder containing 50% by weight or more of the clay powder is appropriately adjusted, and after the raw material powder is molded into a predetermined shape, the molded body is heated at a predetermined temperature. It can be manufactured by firing or the like. The clay powder can be produced, for example, by drying a clay nodular sand-making dehydrated cake, and then pulverizing and refining with a mix muller or the like. What is necessary is just to mix with clay powder with a mix muller etc., when adding components other than clay. The particle size of the raw material powder is 10 to 500 μm, preferably 20 to 100 μm. Various conventionally known molding machines, pressure molding machines, and the like can be used for molding into a molded body. In addition, after shaping | molding to a molded object, it is desirable to cure at normal temperature-110 degreeC for 2 hours or more.
[0024]
Here, if the moisture content of the raw material powder is 8 to 20% by weight, preferably 9 to 14% by weight, there is an advantage that the yield is good and the productivity is improved. In addition, when the moisture content is larger than 20% by weight, the releasability from the molding groove formed on the peripheral surface of the pressure roller of the pressure molding machine is poor, and a part or all of the molded body is molded. It often remains in the groove. On the other hand, when the moisture content is less than 8% by weight, it is difficult to solidify into the shape of the molded body, and the chipped state often increases.
[0025]
Further, if the raw material powder is molded into an approximately egg shape by a molding machine or the like, the molded body is less likely to collapse at the time of mold release from the molding groove or the like, and there is an advantage that productivity is improved. In this case, if the raw material powder is pressure-molded into a substantially egg shape by a pressure molding machine or the like, there is an advantage that the molded body is more difficult to collapse.
[0026]
The shape of the porous fired body 2 is not particularly limited, but is an approximately egg-shaped shape as shown in FIGS. 1 to 3, for example, the length L is 10 to 50 mm, and the width W is longer than the length L. If it is formed in a shape that is small and the height H is smaller than the width W, it is of an appropriate size, so that it is easy to handle, can be widely used for various applications, and is easy to reuse. In addition, when the length L of the porous fired body 2 is larger than 50 mm, firing at a relatively low temperature of 400 to 800 ° C. becomes difficult. On the other hand, when the length L is smaller than 10 mm, it becomes too small and difficult to handle.
[0027]
Further, the width W and the length L of the porous fired body 2 are 0.6 to 0.9 times (preferably 0.75 to 0.86 times) the width W and the height H is a length. It is desirable to be 0.3 to 0.6 times L (preferably 0.42 to 0.55 times). When the width W is larger than 0.9 times the length L, it is difficult to fire to the inside when fired at a relatively low temperature of 400 to 800 ° C., and when fired at a relatively high temperature exceeding 800 ° C. Therefore, a difference occurs in the firing state between the surface and the inside, resulting in non-uniformity. On the other hand, when the width W is smaller than 0.6 times the length L, the width W becomes too long, and is easily damaged. Furthermore, when the height H is larger than 0.6 times the length L, the releasability from the molding groove or the like of the pressure molding machine is deteriorated. On the other hand, when the height H is smaller than 0.3 times the length L, it becomes too thin, and it is difficult to manufacture and easily breaks.
[0028]
The thermophilic inoculum PTA-1773 is a thermophilic bacterium C-1 (hereinafter referred to as “C-1”), which is a closely related species of Bacillus brevis, and the vicinity of Bacillus brevis. Thermophilic bacterium C-3 (hereinafter referred to as “C-3”) which is a related species, and thermophilic Bacillus stearothermophilus CH-4 (hereinafter referred to as “CH-4”). ), Thermophilic actinomycetes MH-1 (hereinafter referred to as “MH-1”), and thermophilic or thermostable lactic acid bacteria LM-1 [a species closely related to Bacillus coagulans. Hereinafter, it is referred to as “LM-1”. ) And thermophilic or thermostable lactic acid bacteria LM-2 [Bacillus coagulans closely related species. Hereinafter, it is referred to as “LM-2”. ) And unknown bacteria and / or actinomycetes, and has the ability to purify and improve the environment. The ability to clean and improve the environment refers to the ability (function) to activate organisms that have a positive impact on the ecosystem, clean the environment directly or indirectly, and prepare (improve) the environment (ecosystem). Say.
[0029]
In addition, thermophilic inoculum PTA-1773 is a thermostable chitinase (for example, thermostable N-acetyl-β-D-hexosa) having excellent resolution, stability and sustainability of shrimp and crab residues under aerobic conditions. It has the ability to produce thermostable enzymes and molecular chaperones such as minidases) and thermostable SOD (superoxide dismutase), as well as thermostable enzymes, molecular chaperones, and thermostable SOD / vitamin E / selenium (Se ) ・ Antioxidative functional components such as unsaturated fatty acids and various mineral components are expressed.
[0030]
The sustainability of the activity of the thermostable enzyme at room temperature is as long as about six months to one year, while the enzyme derived from a room temperature microorganism is within one week. Further, this thermostable enzyme is not inactivated by an organic solvent such as ethanol, a surfactant or the like.
[0031]
Here, the molecular chaperone is a protein that helps the enzyme to exhibit a stable activity by retaining the structure of the enzyme. Whereas the energy of (adenosine-5′-triphosphate) is required, the molecular chaperone derived from the thermophilic inoculum PTA-1773 has the property of working even without ATP energy. Therefore, the molecular chaperone derived from the thermophilic inoculum PTA-1773 can prevent the denaturation of the heat-resistant enzyme, the enzyme derived from room temperature microorganisms, and the like in various environments, and can help its function. Thereby, the thermophilic inoculum PTA-1773 can activate (stabilize) room temperature microorganisms that grow in various environments and have a positive effect on the ecosystem.
[0032]
This thermophilic inoculum PTA-1773 is a mixed bacterium collected and separated from a mixed fermented product of soil in the mountains of Sankobo, Kitsuki City, Oita Prefecture, and seabed shrimp in Beppu Bay. The identification results and the like of each bacterium constituting the mixed bacterium are shown in Tables 1 to 3 and FIGS. 4 to 6. In addition, unknown bacteria and / or actinomycetes that cannot be identified are included. In addition, the growth temperature and heat resistance in a table | surface are those of an isolated microbe, and the growth of the thermophilic seed | species PTA-1773 as a mixed microbe has been confirmed at -10-90 degreeC. Here, the thermophilic inoculum PTA-1773 is internationally deposited with the ATCC (American Type Culture Collection, 10801 University Boulevard Manassas, Virginia 20110-2209 USA) on May 1, 2000 (Accession Number: PTA-1773). ).
[0033]
[Table 1]
Figure 0004348411
[0034]
[Table 2]
Figure 0004348411
[0035]
The cell wall of MH-1 contained meso-diaminopimelic acid, glutamic acid or glutamine (Glx), glycine (Gly), alanine (Ala), and glucosamine. Mannose, xylose, ribose, arabinose, and rhamnose were contained in all MH-1 cells. The total ratio of guanine (G) and cytosine (C) in MH-1 DNA was 54.6%.
[0036]
For MH-1, the 16S rRNA gene base sequence (sequence length: 1020) was examined. Specifically, an automated DNA sequencer (ABI 300) was used, and the operation was performed by Lane et al.'S dye-terminator method (Lane, D, J., B. Pace, GJ Olsen, DA Stahl, ML Sogin, and NR Pace. 1985). Rapid determunation of 16S ribosomal RNA sequences for phylogenetic analysis. Proc. Natl. Acad. Sci. USA 82: 6855-6959). DNA analysis is based on “CLUSTAL W (Thompson, JD, DG Higgins, and TJ Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Nucleic Acids Res. 22 : 4673-4680) according to "Ribosomal Database Project (http://rdp.life.uiuc.edu/)" and "GenBank (http://ww.ucbi.ulm.nih.gov/)" A collation search was performed. FIG. 4 shows a phylogenetic tree based on the neighbor joining method between the isolate and the related strain.
[0037]
When separating LM-1 and LM-2 from the thermophilic inoculum PTA-1773, 1 g of a sample was aseptically collected and added to 9 mL of sterile distilled water to give 10-fold diluted water. This diluted water was subjected to heat treatment at 80 ° C. for 15 minutes. A dilution series of 10 to 10 6 times was prepared by sequentially repeating the dilution operation based on the diluted water thus heat-treated. Thereafter, 0.1 mL of each diluted test water was smeared on a lactic acid bacteria selection (MRS) agar medium and cultured under anaerobic conditions at 37 ° C. for 48 hours. Two different colonies (LM-1 and LM-2) Was observed. For LM-1, spore formation was not observed in the MRS medium, but spore formation was observed in the general agar medium. The same was true for LM-2. The identification results of these LM-1 and LM-2 are shown in Table 3.
[0038]
[Table 3]
Figure 0004348411
[0039]
Moreover, 16S rRNA gene base sequences were examined for LM-1 and LM-2, respectively. Specifically, the isolate was inoculated into MRS medium (OXOID), and a culture at 37 ° C. was used as a test cell. DNA extraction, PCR, PCR product purification, and cycle sequencing were performed using “MicroSeq 500 16S rDNA Bacterial Sequencing Kit (Applied Biosystems)”, and the operation was performed according to Applied Biosystems protocol. For DNA analysis, “ABI PRISM 377 DNA Sequencer (manufactured by Applied Biosystems)” was used, and collation search was performed using a MicroSeq database. The results are shown in the Sequence Listing (SEQ ID NO: 1 and SEQ ID NO: 2). Furthermore, FIG. 5 and FIG. 6 show phylogenetic trees obtained by the neighborhood joining method between the isolates and the related strains.
[0040]
Here, for C-1, C-3, and CH-4 cultured at different chitin concentrations (0, 0.05, 0.1, 0.2%), p-nitrophenyl-N-acetyl-β-D-glucosamine (p Specific activity of thermostable chitinase was measured using -NP-β-D-GlcNAc) as a substrate. The results are shown in Table 4. The measurement was performed under glucose (Glc) -peptone medium (Broth) conditions and cell-free conditions. CH-4 was also performed under sodium acetate (AcONa) -peptone medium (Broth) conditions and cell-free conditions.
[0041]
[Table 4]
Figure 0004348411
[0042]
Further, C-1, C-3, and CH-4 were each cultured in a glucose-peptone medium containing 0.2% colloidal chitin, and the chitinolytic activity was measured. The results are shown in Table 5. The measurement was performed under glucose-peptone medium (Broth) conditions and cell-free conditions, respectively. CH-4 was also performed under sodium acetate (AcONa) -peptone medium (Broth) conditions and cell-free conditions. The activity was indicated by reacting the colloidal chitin suspension at 60 ° C. and reducing the turbidity after 1 hour per mg of protein.
[0043]
[Table 5]
Figure 0004348411
[0044]
Further, for C-1, C-3, and CH-4, p-nitrophenyl-N-acetyl-β-D-glucosamine (p-NP-β-D-GlcNAc) was used as a substrate for pH and temperature. The exo degradation activity was measured. The results are shown in FIGS. In the degradation activity with respect to temperature, the extracellular enzyme (extra) of CH-4 was also measured.
[0045]
In addition, the substrate specificity of the degradation activity was examined using p-nitrophenyl-N-acetyl-β-D-glucosamine derivatives. The results are shown in Table 6 (p-NP-β-D-GalNAc is p-nitrophenyl-N-acetyl-β-D-galactosamine).
[0046]
[Table 6]
Figure 0004348411
[0047]
In addition, since MH-1 contained three types of thermostable chitinases (L, M, and S), these were isolated by a conventional method, and then p-NP-β-D-diGlcNAc was used as a substrate. Specific activity of thermostable chitinase was measured respectively. The results are shown in Table 7.
[0048]
[Table 7]
Figure 0004348411
[0049]
The porous composite material 1 can be easily produced by impregnating the porous fired body 2 with a suspension or culture solution of the thermophilic inoculum PTA-1773 for several hours to several days and drying it as necessary. The culture solution of the thermophilic inoculum PTA-1773 can be produced by adding a medium containing the thermophilic inoculum PTA-1773 to water and culturing at 5 to 70 ° C. under aerobic conditions such as aeration. In this case, if it irradiates far infrared rays as needed, it can culture more efficiently. The obtained culture solution may be used as a diluted solution diluted to an appropriate magnification.
[0050]
Thus, since the porous composite material 1 contains the thermophilic inoculum PTA-1773 in the porous calcined body 2, the porous calcined body 2 becomes a carrier for the thermophilic inoculum PTA-1773, and is thermophilic. The ability to purify and improve the environment can be exhibited in a state where the activity of the inoculum PTA-1773 is high. Therefore, if this porous composite material 1 is used in various environments, there is an advantage that environmental purification such as water purification can be effectively and efficiently performed and the environment (ecosystem) can be prepared. Moreover, in such a porous composite material 1, long-term preservation | save is possible in the state containing the thermophilic inoculum PTA-1773.
[0051]
In addition, the porous composite material 1 may be used by charging, substituting, installing, burying, mixing, or the like in a plurality as it is, but an appropriate perforated basket, perforated case (mesh container), If it is used in a state where a plurality of pieces are stored together in a bag-like net, a sandbag, etc., the porous composite material 1 after use can be easily recovered. The collected used porous composite material 1 may be reused as it is or after being pulverized to an appropriate size as a soil remediation / improving material, a rooting / enhancement promoting material at the time of planting, etc. it can.
[0052]
The porous composite material 1 configured as described above has water purification / improvement ability, ability to reduce microkistis in water, ability to reduce water larvae, soil purification / improvement ability, antibacterial / lysis ability of phytopathogenic fungi It has the ability to accelerate and deodorize compost, and to treat garbage, so it can be used for water purification / improvement, microkistis reduction, auko reduction, soil purification / improvement, biopesticides (phytopathogenic fungi Antibacterial / bacterial material), compost fermentation promoting / deodorizing material, and raw garbage processing material. The term “blue” is a generic term for floating algae that turn green the water in ponds, swamps, lakes, rivers, and the like. Microkistis is a general term for the genus Microcystis, which grows floating in ponds, swamps, lakes, rivers, etc., and often reproduces and produces water blooms.
[0053]
As described above, the thermophilic inoculum PTA-1773 has the ability to produce the thermostable enzymes and molecular chaperones, and since these thermostable enzymes and molecular chaperones have already been expressed, It has the resolution of organic substances contained in soil, compost, garbage, etc. In addition, the molecular chaperone derived from the thermophilic inoculum PTA-1773 stabilizes the thermostable enzyme or the like, or the enzyme or the like of a room temperature microorganism having the ability to decompose organic matter, so that the room temperature microorganism is activated. Therefore, the priority environment of room temperature microorganisms is stabilized, and the decomposition process proceeds efficiently even at room temperature.
[0054]
In particular, when the porous composite material 1 is used as a water purification / improving material, as a result of purification of the water quality, it is possible to reduce the number of microkistis and sea cucumbers. In addition, aquatic organisms such as aquatic organisms and plankton can be changed, and the aquatic ecosystems can be activated and improved in quality to increase fireflies, crocodiles, turtles and the like. Furthermore, in the rice paddy field, the porous composite material 1 can be used as a watering supplement. Even when used in drains, sewage septic tanks, human waste septic tanks, etc., the water quality is similarly purified and improved.
[0055]
When used as a biopesticide, it exhibits antibacterial and lytic effects against plant pathogens (for example, filamentous fungi such as Fusarium spp. On the other hand, it is possible to grow safe crops.
[0056]
When used as a garbage treatment material, composting of garbage can be promoted, and opportunistic infections, pathogens, and plants that adversely affect the human body, such as Escherichia coli O-157, Legionella, Shigella, Staphylococcus aureus, and Salmonella It is also possible to sterilize pathogenic bacteria and molds.
[0057]
【Example】
Next, although an Example demonstrates further in detail, this invention is not limited to the Example which concerns.
[0058]
[Manufacture of porous composite materials]
After the sand-dehydrated cake of clay (from Nita-gun, Shimane) is air-dried (moisture content after drying: about 10% by weight), it is crushed and refined with mix mara to obtain clay powder (average particle size: 118 μm). Mix Mara made clay powder, tourmaline powder (China, particle size: 330 μm or less) and zeolite powder (Ota, Shimane, particle size: 500 μm or less) at 70:10:20 (weight ratio). After mixing at a ratio to obtain a raw material powder, water was gradually added so that the water content with respect to the whole raw material powder was about 13% by weight, followed by kneading with a mix marler. The obtained kneaded material powder is pressure-molded (pressing force: 5 t) into an approximately egg shape (length: 30 mm, width: 25 mm, height: 15 mm) using a pressure molding machine (manufactured by Hino Crushed Stone Co., Ltd.). / Cm 2 ) to obtain a molded body. A plurality of molded bodies were put in a drying furnace and dried at 107 ° C. for 2 hours, and then the temperature was raised to 600 ° C. over 3 hours, and the state was maintained for 1.5 hours to fire the molded body. After baking, it was left to cool in a drying furnace for 12 hours or more.
[0059]
A plurality of porous fired bodies obtained were immersed in a culture solution of thermophilic inoculum PTA-1773 for 24 hours, and then naturally dried to produce a plurality of porous composite materials. The culture solution was prepared by adding a powdery medium (see Table 8) containing a thermophilic inoculum PTA-1773 to water in a commercially available high-temperature culture apparatus at a ratio of 1: 100 (volume ratio), and air. It was produced by culturing for 12 hours while maintaining at 30 to 70 ° C. in an atmosphere.
[0060]
[Table 8]
Figure 0004348411
[0061]
[Example 1]
A water purification test using a porous composite material was performed on a pond (water volume: about 50 t) in a park in Shimane Prefecture. In addition, before the test, the entire surface of the pond was covered with blue sea urchin, and the bottom of the pond was not visible at all. In addition, the cobblestone at the bottom of the pond was green with blue sea urchins attached.
[0062]
Specifically, a perforated case (mesh container) containing 50 kg of porous composite material was laid near the water intake of the pond. An underwater aeration apparatus (power consumption: 0.4 kW) was installed near the perforated case, and the porous composite material in the perforated case was constantly aerated.
[0063]
The water quality in the vicinity of the drain of the pond was examined after 5 days from the start of the test and after another 6 months. The results are shown in Table 9. In addition, about one month after the start of the test, the green color of the sea cucumber adhering to the cobblestone at the bottom of the pond became thin, and a large amount of medaka, snail, kawainina, etc. were generated in the pond.
[0064]
[Table 9]
Figure 0004348411
[0065]
[Example 2]
A water quality improvement test using a porous composite material was conducted in a human waste septic tank (22-person combined septic tank) installed in the Hino crushed stone, a limited company of the applicant.
[0066]
Specifically, cylindrical holes containing about 20 porous composite materials in seven wash water tanks (with wash water and urine flowing into the urine septic tank) installed in the Hino crushed stone in the limited company Hino crushed stone One open case was set for each. The water quality of the human waste septic tank was examined before the start of the test and one month after the start of the test. The results are shown in Table 10.
[0067]
[Table 10]
Figure 0004348411
[0068]
Example 3
At the groundwater pumping facility constructed at the factory in Shimane Prefecture of Hino Crushed Stone Co., Ltd., the applicant, a removal test for iron, manganese and nitrate nitrogen contained in groundwater was conducted.
[0069]
Specifically, the groundwater pumped at the above groundwater pumping facility is sprinkled from above the 12 perforated cases (mesh containers) each containing 50 kg of the porous composite material and installed adjacent to each other, The groundwater filtered downward through a plurality of porous composite materials in the perforated case was stored in a water storage tank (capacity: 1200 L). The quality of the raw water as it was pumped and the quality of the filtered water in the water storage tank were examined. The results are shown in Table 11.
[0070]
[Table 11]
Figure 0004348411
[0071]
【The invention's effect】
As described above, according to the invention of claim 1, since the porous fired body contains the thermophilic inoculum PTA-1773, the porous fired body serves as a carrier for the thermophilic inoculum PTA-1773. The ability to purify and improve the environment can be exhibited in a state where the activity of the thermophilic seed PTA-1773 is high. Therefore, if the porous composite material is used in various environments, environmental purification such as water purification can be effectively and efficiently performed, and the environment (ecosystem) can be prepared. Moreover, long-term preservation | save is also possible in the state containing the thermophilic inoculum PTA-1773. Furthermore, since the porous fired body contains at least one of zeolite and lamp stone, it exhibits a particularly excellent effect on water purification by the negative ion effect of these natural ores. And since a porous baked body is what was baked at 560-680 degreeC, it has moderate intensity | strength and hardness in the state holding the porous structure. Therefore, since it is easy to grind | pulverize and natural weathering is easy, the porous composite material after use can be recycled easily. Further, since the porous fired body is formed in an approximately egg shape having a length of 10 to 50 mm, a width of 0.75 to 0.86 times the length, and a height smaller than the width, Therefore, it is easy to handle, can be widely used for various purposes, and is easy to reuse.
[0082]
According to the invention of claim 2 , since the porous fired body contains the thermophilic seed bacteria PTA-1773 by impregnating the porous fired body with the suspension or culture solution of the thermophilic seed bacteria PTA-1773, the porous fired body is porous. Easy to manufacture quality composite materials. Further, the moisture content of the raw material powder containing 50% by weight or more of the clay powder is set to 9 to 14% by weight, the raw material powder is pressure-molded into an approximately egg shape, and then the molded body is fired to obtain a porous material. Since a quality fired body is obtained, the molded body is less likely to collapse at the time of mold release from the molding groove or the like, and thus productivity is improved.
[0086]
[Sequence Listing]
Figure 0004348411
[0087]
Figure 0004348411

[Brief description of the drawings]
FIG. 1 is a front view of a porous composite material according to an embodiment.
FIG. 2 is a plan view of the porous composite material of FIG.
3 is a side view of the porous composite material of FIG. 1. FIG.
FIG. 4 is a phylogenetic tree based on the neighbor binding method between an isolated strain (MH-1) and a related strain.
FIG. 5 is a phylogenetic tree based on the neighbor binding method between an isolated strain (LM-1) and a related strain.
FIG. 6 is a phylogenetic tree based on the neighborhood joining method between an isolated strain (LM-2) and a related strain.
FIG. 7 is a graph showing the optimum pH of C-1, C-3, and CH-4.
FIG. 8 is a graph showing optimum temperatures of C-1, C-3, CH-4, and CH-4 (extra).
[Explanation of symbols]
1 Porous composite material 2 Porous fired body

Claims (2)

粘土を50重量%以上含むと共にゼオライト及びランプストーンのうち少なくとも1種を含み、且つ、500〜680℃で焼成され、さらに、長さが10〜50mmで、幅が長さの0.75〜0.86倍かつ高さが幅より小さい略タマゴ型形状に形成された多孔質焼成体に、バチルス・ブレビスの近縁の種である好熱性細菌C−1と、バチルス・ブレビスの近縁の種である好熱性細菌C−3と、好熱性バチルス・ステアロサーモフィラスCH−4と、好熱性放線菌MH−1と、好熱性又は耐熱性乳酸菌LM−1と、好熱性又は耐熱性乳酸菌LM−2と、未知の細菌及び/又は放線菌との混合菌である好熱性種菌PTA−1773を含有させたことを特徴とする多孔質複合資材。 See contains at least one of zeolite and the lamp stones with comprising clay 50 wt% or more, and is fired at 500-680 ° C., further, at a length 10 to 50 mm, 0.75 to width length A porous fired body formed in an approximately egg-shaped shape having a height of 0.86 times smaller than the width , a thermophilic bacterium C-1 which is a close species of Bacillus brevis, and a close relative of Bacillus brevis Thermophilic bacteria C-3, thermophilic Bacillus stearothermophilus CH-4, thermophilic actinomycetes MH-1, thermophilic or heat-resistant lactic acid bacteria LM-1, and thermophilic or heat-resistant species A porous composite material comprising thermophilic inoculum PTA-1773, which is a mixed bacterium of lactic acid bacteria LM-2 and unknown bacteria and / or actinomycetes. 請求項1記載の多孔質複合資材の製造方法であって、
粘土粉体を50重量%以上含む原料粉体の含水率を9〜14重量%とし、この原料粉体を略タマゴ型形状に加圧成形した後、この成形体を焼成して得られる前記多孔質焼成体に前記好熱性種菌PTA−1773の懸濁液又は培養液を含浸させることによって、前記多孔質焼成体に前記好熱性種菌PTA−1773を含有させることを特徴とする多孔質複合資材の製造方法。
A method of manufacturing a porous composite material of claim 1 Symbol placement,
The porous material obtained by setting the moisture content of the raw material powder containing 50% by weight or more of the clay powder to 9 to 14% by weight, pressing the raw material powder into an approximately egg shape, and then firing the formed body A porous composite material comprising the porous fired body containing the thermophilic seed PTA-1773 by impregnating the porous fired body with a suspension or culture solution of the thermophilic seed bacteria PTA-1773 Production method.
JP2002134542A 2002-05-09 2002-05-09 Porous composite material and manufacturing method thereof Expired - Fee Related JP4348411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002134542A JP4348411B2 (en) 2002-05-09 2002-05-09 Porous composite material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002134542A JP4348411B2 (en) 2002-05-09 2002-05-09 Porous composite material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003326296A JP2003326296A (en) 2003-11-18
JP4348411B2 true JP4348411B2 (en) 2009-10-21

Family

ID=29697153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002134542A Expired - Fee Related JP4348411B2 (en) 2002-05-09 2002-05-09 Porous composite material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4348411B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106006822A (en) * 2016-07-13 2016-10-12 袁春华 Preparation method of mineral biomass composite water purifying agent

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4494399B2 (en) * 2004-03-31 2010-06-30 三菱化学フーズ株式会社 Method for producing L-lactic acid
JP5017519B2 (en) * 2005-11-08 2012-09-05 日環科学株式会社 A small device that automatically grows high-quality plants, and a plant cultivation system that responds to humans, water, light, sound, electrical signals, and concentration gradients
JP2007261992A (en) * 2006-03-28 2007-10-11 Eisai Seikaken Kk Soil borne disease inhibitor
JP5465493B2 (en) * 2009-08-31 2014-04-09 ポッカサッポロフード&ビバレッジ株式会社 Heat-resistant acidophilic bacterial growth inhibitor, heat-resistant acidophilic bacterial growth inhibitory method, and method for producing containerized acidic food and drink
JP5505047B2 (en) * 2010-04-02 2014-05-28 株式会社Ihi Water purification method, water purification agent, and water purification agent manufacturing method
JP5631047B2 (en) * 2010-04-28 2014-11-26 敬一郎 浅岡 Method for decomposing organic waste and microbial activator used in the method
JP5490832B2 (en) * 2012-02-15 2014-05-14 株式会社三共刃型工業 Silica alumina catalyst for waste treatment, waste treatment method and waste treatment apparatus using the same
JP2014068578A (en) * 2012-09-28 2014-04-21 Kanema :Kk Fish tank implement
JP5988455B2 (en) * 2013-01-11 2016-09-07 株式会社タカギ New lactic acid bacteria
CN106670228B (en) * 2016-12-15 2020-03-06 南开大学 Method for repairing polybrominated diphenyl ether contaminated soil by surfactant-enhanced tourmaline Fenton combined microorganism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106006822A (en) * 2016-07-13 2016-10-12 袁春华 Preparation method of mineral biomass composite water purifying agent

Also Published As

Publication number Publication date
JP2003326296A (en) 2003-11-18

Similar Documents

Publication Publication Date Title
CN109576187B (en) Cyanide degradation strain and method for degrading cyanide by using same
JP4348411B2 (en) Porous composite material and manufacturing method thereof
KR100664730B1 (en) Production method of probiotics for soil and environmental improvement and the probiotics produced thereby
JP6346982B1 (en) Method for isolating Raulterra microorganisms, method for producing plant waste treatment agent, and method for treating plant waste
KR20180023583A (en) Eco-microbial agent for decomposition of food waste in anaerobic conditions
Yang et al. Effect of earthworms on the biochemical characterization of biofilms in vermifiltration treatment of excess sludge
CN114107092B (en) Endophyte Gordonia L191 for degrading phthalate and application thereof
Ayuningrum et al. Screening of actinobacteria-producing amylolytic enzyme in sediment from Litopenaeus vannamei (Boone, 1931) ponds in Rembang District, Central Java, Indonesia
CN113755337B (en) Polycyclic aromatic hydrocarbon degrading fungi GIG-1 and GIG-2 in petroleum-polluted soil, mixed microbial inoculum thereof and application thereof
CN1244502A (en) Water purifying agent and water purifying method
CN111471611B (en) Rhodococcus ruber HDRR1 for purifying inorganic nitrogen and phosphorus in tail water of seawater pond culture and application thereof
KR101259416B1 (en) The manufacturing method of probiotics containing mixed strains bm-s-1 for soil contamination purification or soil environmental improvement and manufactured probiotics thereof
KR102055544B1 (en) A novel Geobacillus sp. strain and use thereof
Wei et al. Decolorization of dye solutions with Ruditapes philippinarum conglutination mud and the isolated bacteria
CN110229763B (en) Flocculant producing strain and application thereof in prawn biological floc culture and dye decoloration
CN108408921B (en) Microecological preparation for improving transparency of aquaculture water and preparation method thereof
KR20070036016A (en) Nitrite-oxidizing bacteria and methods of using and detecting the same
JP2006230332A (en) New microorganism and method for treating organic sludge therewith
JP4296564B2 (en) Bio-based porous ceramic, method for producing the same, environmental purification material, and environmental purification tool
CN106834165B (en) Paracoccus capable of degrading penicillin, cell fraction and composition thereof
CN112574918B (en) Ammonia nitrogen degrading bacteria, microbial agent and application thereof
KR102175728B1 (en) Microbial preparations for the decomposition of organic wastes including novel geobacilli strains and excipients
CN105039218B (en) One plant of simple bacillus and its cultural method and application
CN107217016A (en) One plant has the endophytic Bacillus bacterial strain ZY122 for suppressing rice sheath blight disease and its application
KR20140117747A (en) Bacillus spp., identified from lugworm and microbial cleaning agent.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150731

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees